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Abstract: This paper investigates the dynamics and stability properties of a so-called planar truncated normal form

map. This kind of map is widely used in the applied context, especially in normal form coefficients of n-dimensional

maps. We determine analytically the border collision bifurcation curves that characterize the dynamic behaviors of the

system. We first analyze stability of the fixed points and the existence of local bifurcations. Our analysis shows the

presence of a rich variety of local bifurcations, namely stable fixed points, periodic cycles, quasiperiodic cycles that are

constraints to stable attractors called invariant closed curves, and chaos, where dynamics of the system change erratically.

Our study is based on the numerical continuation method under variation of 1 and 2 parameters and computation of

different bifurcation curves of the system and its iterations. For the all codimension 1 and 2 bifurcation points, we

compute the corresponding normal form coefficients to reveal the criticality of the corresponding bifurcations as well

as to identify different bifurcation curves that emerge around the corresponding bifurcation point. We further perform

numerical simulations to characterize qualitatively different dynamical behaviors within each regime of parameter space.

Key words: Normal form coefficients, stable fixed point, chaotic behavior, invariant curve

1. Introduction

Discrete-time dynamical systems generated by iterated maps appear in many scientific areas, such as economics,

engineering, and ecology [2, 1, 3, 6, 11, 12, 13, 14, 15, 16, 19, 20]. The usual method for getting an insight into

their behavior is to compute many orbits, starting from various initial points (i.e. simulation). Another tool

for gaining a better understanding of these systems is bifurcation analysis. It provides theoretic results on the

classification of possible modes of behavior, which may explain results of the simulations at different values of

control parameters. We consider a 2-dimensional map, introduced in [17], §9.9. This map arises in the normal

form of a map near a 1:2 strong resonance point in which the corresponding Jacobian matrix has 2 multipliers,

µ1,2 = −1. This resonance point serves as an organizing center in bifurcation analysis of an iterated map.

There is a smooth invertible change of coordinates, smoothly depending on the parameters, that transforms an

n-dimensional map into the planar map [17], Lemma 9.8:(
ξ1
ξ2

)
7−→

(
−1 1
β1 − 1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 +Dξ21ξ2

)
+O(||ϵ4||) (1.1)

We truncate the map (1.2) to obtain the following map, which has the same asymptotic behavior as (1.1),

M :

(
ξ1
ξ2

)
7−→

(
−1 1
β1 − 1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 +Dξ21ξ2

)
(1.2)
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This map determines the bifurcation scenario of an n-dimensional map near a 1:2 resonance. For more details

on parameter-dependent normal form coefficients, we refer to [17] and [18]. In this paper, by means of analytical

and numerical tools, we determine all codim-1 and codim-2 bifurcations of the map M . We specially derive

an analytical expression for the normal form coefficients of this map for codim-1 bifurcation points. These

quantities determine critically the corresponding bifurcation, which shows the direction and stability of the

bifurcation point.

The eigenvalues of the Jacobian matrix A of (1.2) are called multipliers. The fixed point is asymptotically

stable if |µi| < 1 for every multiplier µi . If there exists a multiplier µi with |µi| > 1, then the fixed point is

unstable. While following a curve of fixed points, 3 codimension 1 bifurcations can generically occur, namely

a limit point (fold, LP) with a multiplier +1, a period-doubling point (flip, PD) with a multiplier −1, and

a NeimarkSacker point (NS) with a conjugate pair of complex multipliers e±θi, 0 < θ < π . The parameter-

dependent normal forms of generic codim-1 bifurcations of fixed points are given in [17]. For fold, flip, and

NeimarkSacker, we respectively have

w 7→ w + β + aw2 +O(w3), w ∈ R1, (1.3)

w 7−→ −(1 + β)w + bw3 +O(w4), w ∈ R1, (1.4)

w 7−→ weiθ0
(
1 + β + c|w|2

)
+O(|w|4), w ∈ C1, (1.5)

where a, b , and d = ℜ(c) are the critical normal form coefficients that determine the dynamical behavior near

these bifurcation points. The fold bifurcation is nondegenerate if a ̸= 0. The normal form coefficients b and d

are given by:

b =
1

6

⟨
p, C(q, q, q) + 3B(q, (I −A)−1B(q, q))

⟩
(1.6)

and

d =
1

2
e−iθ0 ⟨p, C(q, q, q̄) + 2B(q, h11) +B(q̄, h20)⟩ , (1.7)

where

h11 = (In −A)−1B(q, q̄), h20 = (e2iθ0In −A−1B(q, q).

For details and proofs we refer to [17], §5.4.2. In the above expressions, A is the Jacobian matrix, and B and

C are multilinear forms as follows. Assuming sufficient smoothness of f , we write

f(x0 + u, α0) = x0 +Au+B(u, u) + C(u, u, u) +O(∥u∥4), (1.8)

where the components of the multilinear functions B and C are given by

B(x, y) =
n∑

j,k=1

∂2f(x0, α0)

∂ξj∂ξk
xjyk,

C(x, y, z) =
n∑

j,k,l=1

∂3f(x0, α0)

∂ξj∂ξk∂ξl
xjykzl,

The flip bifurcation is supercritical, degenerate, or subcritical if b is positive, zero, or negative, respec-

tively. The Neimark–Sacker bifurcation is supercritical, degenerate, or subcritical if d is negative, zero, or

positive, respectively.
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This paper is organized as follows. In Section 2, we discuss the stability and bifurcation of the fixed points

of the map (1.2). We derive analytically the stability regions of fixed points and their bifurcation behaviors.

Moreover, we compute analytically the critical normal form coefficients in the case of the period doubling and

Neimark–Sacker bifurcations to reveal the criticality of the these bifurcations. Next, in Section 3, we numerically

compute curves of fixed points and bifurcation curves of the map and its iterates under variation of 1 and 2

parameters. In this section, we also do numerical simulations to reveal more complex behaviors of the system

near a resonance R4 point. We conclude our work in Section 5 with a discussion of the obtained results.

2. Fixed points of the system and their stability

Bifurcation of maps have been studied intensively in the literature [5, 7, 8, 9]. A comprehensive discussion is

given in [17]. We further use the recent results from [10, 18].

We naturally start the bifurcation analysis of (1.2) with the calculation of the fixed points. For all

parameter values, this map has the fixed point E1 = (0, 0)T . On the other hand, if (ξ1, ξ2) is a nontrivial fixed

point, then we have:

ξ1 = −ξ1 + ξ2,
ξ2 = β1ξ1 + (−1 + β1)ξ2 + Cξ31 +Dξ21ξ2.

(2.1)

From the first equation in (2.1) we obtain:

ξ2 = 2ξ1. (2.2)

The second equation of (2.1) can then be rewritten as:

2ξ1 = β1ξ1 + 2(−1 + β2)ξ1 + Cξ31 + 2Dξ21ξ1. (2.3)

By (2.2), both components of (ξ1, ξ2) must be nonzero. Thus, by dividing both sides of (2.3) by ξ1 and assuming

that C + 2D ̸= 0, we have:

ξ21 =
4− (β1 + 2β2)

C + 2D
. (2.4)

If

4− (β1 + 2β2)

C + 2D
> 0,

then 2 further fixed points are E2 = (ξ1, 2ξ1) and E3 = (ξ1,−2ξ1), where

ξ1 =

√
4− (β1 + 2β2)

C + 2D
.

If

4− (β1 + 2β2)

C + 2D
= 0,

then these points collide with a trivial fixed point. If this happens with β1 or β2 as a free parameter in a

continuation of trivial fixed points, then clearly we have a pitchfork bifurcation of fixed points.

The Jacobian of (1.2) at a point (ξ1, 2ξ1) is given by

J(x, y) =

(
−1 1

β1 + 3Cξ21 + 2Dξ1ξ2 − 1 + β2 +Dξ21

)
. (2.5)
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2.1. Stability and bifurcation of E1

To derive the stability region in the parameter space, we consider the characteristic equation evaluated in E1 :

det(J(E1)− λI) = det

(
−1− λ 1

β1 − 1 + β2 − λ

)
= 0, (2.6)

i.e.

F (λ) = λ2 + (2− β2)λ+ 1− β1 − β2 = 0. (2.7)

To study the stability of E1 we use Jury’s criteria; see [21], §A2.1. Let F (λ) = λ2− tr(J(E1))λ+det(J(E1)) be

the characteristic equation of J(E1). According to Jury’s criteria E1 is asymptotically stable if the following

conditions hold:

F (−1) = 1 + tr(J(E1)) + det(J(E1)) > 0,
F (1) = 1− tr(J(E1)) + det(J(E1)) > 0,

1− det(J(E1)) > 0.
(2.8)

Applying these conditions leads to

F (−1) = β1 < 0,
F (1) = β1 + 2β2 < 4,

1− det(J(E1)) = β1 + β2 > 0.
(2.9)

Thus, E1 is asymptotically stable in the parameter region

ΩS
E1

= {(β1, β2)|β1 + 2β2 < 4, β1 + β2 > 0, β1 < 0}.

The stability boundary of E1 consists of parts of 3 curves, namely:

1. Curve 1: β1 + 2β2 = 4,

2. Curve 2: β1 + β2 = 0,

3. Curve 3: β1 = 0.

By crossing each of these boundaries, E1 undergoes a bifurcation. The points of Curve 1 that are on the

stability boundary of E1 satisfy F (1) = 0, i.e. they have an eigenvalue +1. The points of Curve 2 that are

on the stability boundary satisfy det(J(E1)) = 1, i.e. they have 2 eigenvalues with product 1. The points of

Curve 3 that are on the stability boundary satisfy F (−1) = 0, i.e. they have an eigenvalue −1.

We first note that the product of the 2 multipliers is 1 if and only if β1 + β2 = 0, i.e. along

Curve 2. In particular, a Neimark–Sacker (NS) point can only be found if β1 + β2 = 0. In this case,

∆ = (2 − β2)
2 − 4 = β2(β2 − 4). It should be mentioned that ∆ is the discriminant of the quadratic

polynomial in equation 2.7. Thus, we have true NS points if β2 ∈]0, 4[, β1 = −β2 ; we have neutral saddles

if β2 /∈ [0, 4], β1 = −β2 .

In particular, we consider the following 3 special cases of the NS bifurcation:

(i) β1 = −1, β2 = 1, (θ = 2π
3 )

(ii) β1 = −2, β2 = 2, (θ = π
2 )

(iii) β1 = −3, β2 = 3, (θ = π
3 )

(2.10)
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We note that cases (i) and (ii) are cases with a strong resonance.

It is also easy to see that (2.7) has root −1 if and only if β1 = 0, i.e. along Curve 3. The other root

then is −1 + β2 .

Along Curve 2, E1 undergoes a branch point, in which 2 branches of E2 and E3 collide to E1 , where√
4−(β1+2β2)

C+2D = 0.

We will also consider the following case :

(iv)β1 = 0, β2 = 1. (2.11)

Now consider case (i) in more detail. The characteristic polynomial is:

λ2 + λ+ 1 = 0. (2.12)

The eigenvalues of this equation are

λ1,2 = −1

2
± i

√
3

2
.

The normal form coefficient d in this case can be computed explicitly from (1.7) as follows. First we

need a right eigenvector q = (q1, q2)
T such that(
−1

2 − i
√
3
2 1

−1 1
2 − i

√
3
2

)(
q1
q2

)
= 0. (2.13)

After normalization, we obtain q : (
q1
q2

)
=

(
1√
2

1
2
√
2
+ i

√
3

2
√
2

)
. (2.14)

We also need a left eigenvector p = (p1, p2)
T :

(
p̄1 p̄2

)( − 1
2 − i

√
3
2 1

−1 1
2 − i

√
3
2

)
= 0. (2.15)

Taking into account that < p, q >= 1 we get

(
p̄1 p̄2

)
=

√
6

6
(
√
3 + i)

(
1 − 1

2 − i
√
3
2

)
. (2.16)

Now all second-order derivatives of the map M vanish in (0, 0)T . Therefore, in (1.7), only the term C(1)(q, q, q̄)

contributes to the normal form coefficient. We have

C(1) (q, q, q̄) =

(
0∑n

j,k,l=1
∂3(Cξ31+Dξ21ξ2)

∂ξj∂ξk∂ξl
qjqkq̄l

)
,

i.e.

C(1) (q, q, q̄) =

(
0

6Cq1q1q̄1 +D(2q1q1q̄2 + 4q1q2q̄1)

)
. (2.17)
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From q2
q1

= 1
2 + i

√
3
2 = ei

π
3 , we get

q2 = q1e
iπ
3 . (2.18)

Or, equivalently:

q̄2 = q̄1e
−iπ

3 .

Then we can rewrite (2.17) as follows:

C(1) (q, q, q̄) =

(
0

6Cq1q1q̄1 +D[q1q1q̄1(2e
−iπ

3 + 4ei
π
3 )]

)
. (2.19)

Hence,

< p,C(1)(q, q, q̄) >= 6Cp̄2q1q1q̄1 +Dp̄2q1q1q̄1(2e
−iπ

3 + 4ei
π
3 ). (2.20)

However, we have

p̄2
p̄1

= −1

2
− i

√
3

2
= −ei

π
3 , (2.21)

and from < p, q >= 1, we have

1 = p̄1q1 + p̄2q2 = −e−iπ
3 p̄2q1 + ei

π
3 p̄2q1 = (p̄2q1)(e

iπ
3 − e−iπ

3 ), (2.22)

so

p̄2q1 = − i√
3
. (2.23)

By substituting (2.23) into (2.20), we get:

< p,C(1)(q, q, q̄) >= (q1q̄1)(−
6i√
3
C + (1−

√
3i)D), (2.24)

or, equivalently:

< p,C(1)(q, q, q̄) >= (q1q̄1)(D − i
√
3(D + 2C)). (2.25)

Now we define

T =
1

2
e−iθ0 < p,C(1)(q, q, q̄) >=

1

2
(q1q̄1)(−

1

2
− i

√
3

2
)(D − i

√
3(D + 2C)). (2.26)

The real part of T is

1

2
(q1q̄1)(−

1

2
D − 3

2
(D + 2C)). (2.27)

By substituting q1q̄1 = 1√
2
× 1√

2
= 1

2 in the last statement, we obtain:

d = −1

8
(6C + 4D). (2.28)

In the same way, we can analytically obtain the normal form coefficients in the other NS cases. The results are

as follows:
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• in the case of (ii), i.e. θ = π
2 : d = − 1

12 (6C + 6D).

• in the case of (iii), i.e. θ = π
3 : d = − 1

16 (6C + 8D).

By similar arguments we obtain in the PD case the normal form coefficient by (1.6), b = −2C . Consequently,

we have the following theorem.

Theorem 2.1 The fixed point E1 is asymptotically stable in ΩS
E1

. Moreover, it loses stability:

(i) via a Neimark–Sacker along Curve 1. In particular, for θ = 2π
3 , θ = π

2 , and θ = π
3 , the associated normal

form coefficients are d = −1
8 (6C + 4D) , d = − 1

12 (6C + 6D) , and d = − 1
16 (6C + 8D) , respectively. In

these cases the NS is supercritical (subcritical) if d > 0 (d < 0).

(ii) via branching along Curve 2, there bifurcating to E2 and E3 .

(iii) via a flip along Curve 3 with the associated normal form coefficient b = −2C , which is supercritical when

C < 0 and subcritical when C > 0 .

2.2. Stability and bifurcation of E2 (E3 )

To determine stability regions of E2 , we again apply Jury’s stability criteria. Let F (λ) = λ2 − tr(J(E2))λ +

det(J(E2)) be the characteristic equation of J(E2), where

tr(J(E2)) =
−2C + β2(C + 4D)−Dβ1

C + 2D

and

det(J(E2)) = −−11C + 18D + β2(7C + 12D) + β1

−3C − 2D
.

According to Jury’s criteria E2 is asymptotically stable if the following conditions hold:

F (−1) = −2(6C+8D+β2(3C+4D)+β1(D−C))
C+2D > 0,

F (1) = −4− 4β2 + β1 > 0,

1− det(J(E2)) =
12C+20D+β2(7C+12D)+β1(−3D−2C)

C+2D > 0.

(2.29)

The stability boundary of E2 consists of parts of 3 curves, namely:

1. Curve 1: β1 = 4β2 + 4, (F (1) = 0),

2. Curve 2: β1 = 6C+8D+β2(3C+4D
D+C , (F (−1) = 0),

3. Curve 3: β1 = 12C+20D+β2(7C+12D
3D+2C , (1− det(J(E2)) = 0).

By crossing each of these boundaries, E2 undergoes a bifurcation. Multipliers of J(E2) along the Curve 1 are:

λ1 = 1, λ2 =
−3C − 6D + Cβ2

C + 2D
.
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The multipliers along the Curve 2 are:

λ1 = −1, λ2 =
−C − 3D + Cβ2

C +D
,

and the multipliers along the Curve 3 are:

λ1,2 =
−2C + Cβ2 − 5D ±

√
(− 4C2β2 + 8CD + C2β2

2 − 10CDβ2
2)

3D + 2C
.

Consequently, we have the following theorem.

Theorem 2.2 The fixed point E2 is asymptotically stable if the conditions of (2.29) hold. Moreover, it loses

stability:

(i) via a branch point along Curve 1, there bifurcating to E1 .

(ii) via a flip point along Curve 2.

(iii) via a Neimark–Sacker point along Curve 3 provided that −4C2β2 + 8CD + C2β2
2 − 10CDβ2

2 < 0 .

3. Numerical stability and bifurcation of the map M

Numerical bifurcation analysis reveals more complicated dynamics of the map and its iterates. The theoretically

computed values can also be checked numerically when continuing the fixed point curve. The bifurcation analysis

is based on continuation and bifurcation methods for maps, tracing out the solution manifolds of fixed points

while some of the parameters of the map vary. See [4, 10].

3.1. Numerical bifurcation of E1

First we continue the fixed point curve numerically to detect the NS point in case (i). To do numerical

continuation we fix the parameter values β1 = −1, C = D = 1 and continue E1 with the free parameter β2 .

We see that the fixed point E1 is stable when 1 < β2 < 2.5. It loses stability via a supercritical NS point

when β2 = 1, and via a branch point when β2 crosses 2.5. These results are consistent with Theorem 2.1 since

(β1, β2) ∈ ΩS
E1

for all β2 ∈]1, 2.5[. The numerical results, Run 1, are given below.

label = NS , x = ( 0.000000 0.000000 1.000000 )

normal form coefficient of NS = -1.250000e+000

label = BP , x = ( 0.000000 0.000000 2.500000 )

The first 2 entries of x are the coordinate values of the fixed point E1 , and the last entry of x is the value of

the free parameter β2 at the corresponding bifurcation point. We note that the normal form coefficient of the

NS point is −1.25, confirming Theorem 2.1, part (i), where d = −1
8 (6C + 4D) = −1.25 for C = D = 1.

We also compute numerically a branch point (BP) for β2 = 2.5. By (2.4) the nontrivial fixed points

collide to a trivial fixed point when

4− (β1 + 2β2) = 0. (3.1)

The fixed parameter is β1 = −1, and this implies that in a BP β2 = 2.5 in (3.1). This confirms the numerical

result concerning the BP point.
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Figure 1. Continuation of trivial and nontrivial fixed points of the map M in (β2, ξ1) space.

The Jacobian is given by:

[Mx − I|Mβ2 ] =

(
−2 1 0
β1 − 2 + β2 0

)
. (3.2)

If β1 = −1 and β2 = 2.5, then this reduces to:

[Mx − I|Mβ2
] =

(
−2 1 0
−1 0.5 0

)
. (3.3)

Clearly [Mx − I|Mβ2 ] is rank deficient as expected.

Now we compute the new branch in the BP point. The new branch is a set of nontrivial fixed points

that are a parabola in (β2, ξ1) space. A picture of the continued trivial fixed point in Run 1 and the computed

nontrivial fixed points are presented in Figure 1.

3.2. Numerical bifurcation of E2 (E3)

We now consider E2 = (0.860916, 1.721832), which is in the stable region for the parameter values β1 =

0.3, β2 = 5, C = −2.5, and D = −3 (stability follows from Theorem 2.2). We do a numerical continuation of

E2 with control parameter β2 . The output, Run 2, is given by:

label = NS , x = ( 0.343232 0.686464 2.350685 )

normal form coefficient of NS = -2.114932e+001

label = PD , x = ( 0.124035 0.248069 1.915385 )

normal form coefficient of PD = -1.523118e+001

label = BP , x = ( -0.000000 -0.000000 1.850000 )

E2 is stable when 1.915385 < β2 < 2.350685. It loses stability via a supercritical Neimark–Sacker point when

β2 = 2.350685, which is consistent with Theorem 2.2, part (iii). It also loses stability through a subcritical PD

point when β2 = 1.915385, which is consistent with Theorem 2.2, part (iii).

31



KHOSHSIAR GHAZIANI/Turk J Math

The dynamics of the system prior to the PD point consists of an unstable 2-cycle that coexists with a

stable fixed point. Beyond the NS point the dynamics of the system consists of a stable closed invariant that

coexists with unstable fixed points of the map M . For β2 = 2.3510 a stable closed invariant curve is created

around the unstable fixed point E2 (see Figure 2).

Now we compute the period doubling curve, with β2 and C free, by starting from the PD point of Run

2. We call this Run 3.

label = R2 , x = ( 0.974679 1.949359 2.850000 3.894737 )

Normal form coefficient for R2 :[c , d]= 1.216842e+001, -2.684210e+001

This computed PD curve is shown in Figure 3 (lower curve). Now we compute the NS curve, with β2 and C

free parameters, by starting from the NS point of Run 2. We call this Run 4.

label = R3 , x = ( 0.730297 1.460594 2.600000 3.187500 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -3.642213e-001

label = R2 , x = ( 0.974679 1.949359 2.850000 3.894737 -1.000000 )

Normal form coefficient of R2 : [c , d] = 1.215940e+001, -2.682222e+001

label = R4 , x = ( 0.341565 0.683130 2.350000 -2.571429 0.000000 )

Normal form coefficient of R4 : A = -3.719269e+000 + -4.521757e-001 i

The computed curve of NS points is also shown in Figure 3 (upper curve).
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ξ
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ξ
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R4

C

β
2

Figure 2. A limit cycle for β1 = 0.3, β2 = 2.3510, C =

−2.5, and D = −3.

Figure 3. Flip and Neimark–Sacker bifurcation curves

starting from points in Run 2.

The normal form coefficient A of the R4 point in Run 4 satisfies |A| > 1, and hence 2 cycles of period

4 of the map are born. A stable 4-cycle for β1 = 0.3, β2 = 2.419620924343121, C = −3.219952966567809, and

D = −3 is given by: C4 = X1, X2, X3, X4 where X1 = (0.313943351106174, 0.545162737134870). In order

to compute the stability region of this 4-cycle, we compute 2 fold curves of the fourth iterate rooted at the R4

point. These curves exist since |A| > 1; see [17]. We can thus switch from the R4 point to the fold curves of

the fourth iterate. The stable fixed points of the fourth iterate exist in the wedge between the 2 fold curves

(LP 4 curves) and a flip curve of the fourth iterate (PD4 curve). The computed LP 4 curves and PD4 curve

are shown in Figure 4.
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We further compute a curve of fixed points of the fourth iterate starting from the 4-cycle C4 with control

parameter C . The curve is presented in Figure 5.
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Figure 4. NS bifurcation curve, 2 branches of LP 4 cycles

rooted at the R4 point, and a PD4 curve rooted at the

LPPD point. These curves form stability boundaries of

4-cycles ΩS
4 .

Figure 5. Curve of fixed points of the fourth iterate

starting from the 4-cycle C4 .

4. Numerical simulation

To reveal the qualitative dynamical behaviors of (1.2) near the computed NS point corresponding to β2 = 1, in

Run 1, we present a complete bifurcation sequence that is observed for different values of β2 = 1. We fix the

parameters β1 = −1, C = 1, D = 1 and consider several values of β2 .

Figure 6 shows that E1 is a stable attractor for β2 = 1.01. The behavior of (1.2) before the NS point at

β2 = 1.002 is depicted in Figure 7.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

ξ
1

ξ 2

−0.1 −0.05 0 0.05 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

ξ
1

ξ
2

Figure 6. An attracting fixed point for system (1.1) that

exists for β2 = 1.01.

Figure 7. Phase portrait for the system (1.2) that exists

for β2 = 1.002.
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Figure 8 demonstrates the behavior of the model after the NS bifurcation when β2 = 0.9. From Figure 7

and Figure 8 it turns out that the fixed point F3 loses its stability through a NS bifurcation when β2 varies from

0.9 to 1.01. Since the critical normal form coefficient corresponding to the NS point is negative, then a stable

closed invariant curve bifurcates from E1 , which coexists with unstable fixed point E1 . Figure 8 demonstrates

and confirms the above statement.
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Figure 8. A phase portrait for the system (1.2) for β2 =

0.9.

Figure 9. The breakdown of the closed invariant curve of

the system (1.2) for β2 = 0.55.

As β2 is increased further, however, the phase portrait starts to fold. We see that the circle, after being

stretched, is shrunken and folded, creating new phenomena due to the breakdown of the closed curve; see Figure

9. For further increasing β2 we obtain the multiple invariant closed curves brought about by the NS bifurcation

point of iterates of (1.2). In these cases higher bifurcations of the torus occur as the system moves out of the

quasiperiodic region by increasing β2 . The dynamics move from one closed curve to another periodically, but

the dynamics in each closed curve may be periodic or quasiperiodic. Figure 10 presents the set of closed curves

around the NS bifurcation. Figure 11 presents a strange attractor for β2 = 0.45 that exhibits fractal structure.

5. Concluding remarks

We investigated the dynamical behavior of a discrete map arising in normal form of a map near a 1:2 strong

resonance point. In Section 2, we focused on the stability and possible bifurcations of 3 types of fixed points

of the map denoted by E1 , E2 , and E3 . We established the stability condition and branching behavior of

E1 , and conditions under which E1 may bifurcate to a NeimarkSacker, flip, or branch point were derived in

Theorem 2.1. We also proved the criticality of the flip and Neimark–Sacker bifurcations of E1 by computing

analytically the corresponding normal form coefficients. In Section 3, we computed curves of fixed points and

bifurcation curves of several iterates. In particular, we computed the parameter region of stability of the 4-cycle

(Ω4
4 ) surrounded by the flip bifurcation curve of the fourth iterate (PD4 ) and 2 branches of fold bifurcations

of the fourth iterate (LP 4 ). By branch switching, we also computed a secondary branch of fixed points of

E2 emanating from a branch point on a curve of fixed points of E1 . We further used a numerical simulation

method to reveal chaotic behaviors and a strange attractor near the Neimark–Sacker bifurcation.
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Figure 10. The existence of multiple closed curves of the

system (1.2) for β2 = 0.45.

Figure 11. Chaotic attractor for the system (1.2) that

exists for β2 = 0.45.
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