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Abstract: In this article we introduce the balanced pair algorithm associated with 2 unimodular Pisot substitutions

having the same incidence matrix. We are interested in beta-substitution related to the polynomial x3−ax2− bx−1 for

a ≥ b ≥ 1. Applying the balanced pair algorithm to these substitutions, we obtain a general formula for the associated

intersection substitution.
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1. Introduction

In 1982 Gérard Rauzy [16] studied the symbolic dynamical system over 3 letters {1, 2, 3},

1 → 12, 2 → 13, 3 → 1,

and associated to it a set known as Rauzy fractal. The Rauzy fractal is an important object in the study of

dynamical systems associated to Pisot substitutions. In particular, it plays a fundamental role in the Pisot

conjecture. Geometrical and topological properties of Rauzy fractals have been studied extensively; see, among

other references, [2, 7, 3, 9, 15, 16, 19, 22]. It is a compact set equal to the closure of its interior and it

decomposes naturally into 3 subtiles. The interiors of the subtiles associated to a primitive unimodular Pisot

substitution do not overlap provided that the substitution satisfies the so-called strong coincidence condition

[2]. Many classes of substitutions are shown to satisfy this condition. For example, Barge and Diamond proved

in [4] that every irreducible Pisot substitution over 2 letters satisfies it. It is conjectured that this is true for

alphabets of arbitrary size but a general proof is still outstanding.

Rauzy fractals appear naturally in connection with many topics such as numeration systems, geometrical

representation of symbolic dynamical systems, multidimensional continued fractions and simultaneous approx-

imations, self-similar tilings, and Markov partitions for hyperbolic automorphisms of the torus.

The aim of this paper is to study the intersection of Rauzy fractals associated to

σa,b :

 1 → 1a2
2 → 1b3
3 → 1

and σ∗
a,b :

 1 → 21a

2 → 31b

3 → 1

over the alphabet A = {1, 2, 3} , where 1 ≤ b ≤ a . The 2 substitutions σa,b and σ∗
a,b have the same incidence
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matrix. For every pair (a, b), the substitution σa,b is an irreducible primitive unimodular Pisot substitution.

Moreover, it satisfies the super coincidence condition.

Intersection of Rauzy fractals was studied first by Sing and Sirvent. In their paper [20], they studied

the prefixes-suffixes automaton associated with each substitution and considered the product automaton to

obtain common points for intersection of the Rauzy fractals. They studied a sequence of dynamical systems

defined on sets Fk , apart from the common dynamics of irreducible Pisot substitutions with the same incidence

matrix. This common dynamics is done throughout the family of the product automata of the prefix automata

associated with the power of substitution σk
1 and σk

2 , but these common sets have zero Lebesgue measure.

In [17, 18], under the Pisot condition, we proved that the intersection of 2 Rauzy fractals associated with

2 unimodular irreducible Pisot substitutions having the same incidence matrix have nonzero Lebesgue measure.

We showed that this intersection is substitutive. This means that the intersection can be seen as a new Rauzy

fractal associated to a third substitution. The new substitution for the intersection is obtained by the balanced

pair algorithm.

In the present paper we continue the study of the balanced pair algorithm. We apply this algorithm

to the family of substitutions σa,b and σ∗
a,b . We show that the substitution for the intersection has a regular

form. We discuss 3 cases where a = b , b = a− 1, and b < a− 1. In the first case, applying the balanced pair

algorithm, we obtain exactly 6 minimal balanced pairs for all a , while in the second and third cases we obtain

only 7 minimal balanced pairs.

In Section 2 we give the definitions of these objects. We explain the projection method to obtain the

Rauzy fractal associated with an irreducible Pisot substitution. In Section 3 we introduce the balanced pair

algorithm, and its application to obtain substitution for intersection of Rauzy fractals. In Section 4 we introduce

the balanced pair algorithm for a class of cubic substitutions and we obtain a general result of this class of Pisot

substitutions. Finally, in Section 5, we present some examples.

2. Substitutions and Rauzy fractals

Let A be an alphabet of k letters. We denote by A∗ = ∪i≥0Ai the free monoid on A , that is, the set of finite

words on the alphabet A , endowed with the concatenation map. A substitution on a finite alphabet A is a

map σ from A to the set A∗ . The substitution σ is extended in a natural way to an endomorphism of the

monoid A∗ by concatenation, i.e. σ(∅) = ∅ and σ(UV ) = σ(U)σ(V ), for all U , V ∈ A∗ . Let AN (respectively

AZ ) denote the set of 1-sided (respectively 2-sided) infinite sequences in A . The map σ is extended to AN and

AZ in the obvious way.

Letting u ∈ AN (or u ∈ AZ ), u is a fixed point of σ if σ(u) = u and periodic if there exists l > 0 so that

it is fixed for σl .

The incidence matrix Mσ of σ is the square matrix of size k × k defined by Mσ = (mij), where mij is

the number of occurrences of the letter i in σ(j). We denote by l(U) the vector l(U) = (l1(U), . . . , lk(U))t . A

substitution σ is unimodular if det(Mσ) = ±1. We say that the substitution is primitive if its incidence matrix

is primitive, i.e. all the entries of Mr are positive for some r > 0.

Every primitive substitution has at least one periodic point. All its periodic points have the same

language. Let u be fixed point of σ and (Ωu, S) its associated dynamical system, where S is the shift map on

AN (respectively on AZ ) defined by S(v0v1 · · · ) = v1 · · · (respectively S(v) = w , where wi = vi+1 ) and Ωu is

the closure of the orbit of the fixed point u under the shift map S .
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A substitution is unit of Pisot type if the dominant eigenvalue of its incidence matrix is a unit Piost

number, i.e. the determinant is ±1 and all the roots of the characteristic polynomial have a modulus of less

than or equal to 1. In other words, the matrix Mσ has one expanding eigenvalue β and all the other eigenvalues

βi are contracting.

A substitution is irreducible Pisot if it is Pisot and the characteristic polynomial of the incidence matrix

is irreducible. An irreducible Pisot substitution is primitive [7].

There is a long conjecture stating that the dynamical system associated to an unimodular irreducible

Pisot substitution is measurably conjugate to a translation on a (k − 1)-dimensional torus (cf. [16, 23]). This

conjecture is known in the literature as the Pisot conjecture. Rauzy approached it via geometrical realization

of the symbolic system. He proved it in the case of the Tribonacci substitution, σ(1) = 12, σ(2) = 13, and

σ(3) = 1 (cf. [16]). In his proof, the construction of a set in R2 , in general Rk−1 , plays an important role.

This set is known as the Rauzy fractal associated to the substitution. For references on conditions under which

the Pisot conjecture is true, we refer to, among other references, [1, 2, 3, 4, 5, 6, 7, 11, 12, 15, 16, 21, 22, 23].

Before we define Rauzy fractals, we have to introduce some constructions and notations.

Letting σ be an unimodular Pisot substitution and λ the Perron–Frobenius eigenvalue of the incidence

matrix M , λ is a Pisot number. The characteristic polynomial of M might be reducible, so the algebraic degree

of λ is smaller than or equal to k , the cardinality of the alphabet A . Let Eu be the λ-expanding space of M ,

the eigenspace associated to the eigenvalue λ ; Es the λ -contracting space of M , the eigenspaces associated to

the Galois conjugates of λ ; and Ec the M -invariant space such that Rk = Eu ⊕ Es ⊕ Ec . The space Ec is

trivial if and only if the substitution is irreducible. Let π : Rk → Es be the projection of Rk onto Es along

Eu ⊕ Ec .

Definition 2.1 A stepped line L = (xn) in Rd is a sequence (it could be finite or infinite) of points in Rd such

that xn+1 − xn belongs to a finite set.

A canonical stepped line is a stepped line such that x0 = 0 and for all n ≥ 0 , xn+1−xn belongs to the canonical

basis of Rd .

Using the abelianization map l , with any finite or infinite word W , we can associate a canonical stepped

line in Rd as the sequence (l(Vn)), where Vn is the prefix of length n of W .

We introduce a suitable decomposition of the space. We denote by m the algebraic degree of the Pisot

number β ; one has m ≤ d , since the characteristic polynomial of M may be reducible. We denote Es , the

beta-contracting space of the matrix M generated by the eigenspaces associated to the beta-conjugates. Let

Eu be the beta-expanding line of M , i.e. the real line generated by the beta-eigenvector uβ . Let En be the

invariant space of M that satisfies Rd = Es⊕Eu⊕En . It is trivial if and only if the substitution is irreducible.

Let πs : Rd → Es be the linear projection on the contracting space, along Eu ⊕ En , according to the

natural decomposition Rd = Es ⊕ Eu ⊕ En .

2.1. Definition of the Rauzy fractal

An interesting property of the canonical stepped line associated with a periodic point of irreducible Pisot

substitution is that it remains within a bounded distance from the expanding direction given by the right

Perron–Frobenius eigenvector of M . In the reducible case, the discrete line may have other expanding directions,

but the projection of the discrete line by πs still provides a bounded set; for more details, we refer to [8].
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Figure 1. The projection method to get the Rauzy fractal.

Definition 2.2 Let σ be a primitive unimodular Pisot substitution with dominant eigenvalue β . The Rauzy

fractal of σ is the closure of the projection of the vertices of the canonical stepped line associated with any

periodic point u = (uk)k∈N of σ on the beta-contracting space Es ; see Figure 1; i.e.

Rσ := {πs(l(u0 . . . uk−1)), k ∈ N}.

For each i ∈ A the subtiles of the central tile Rσ are naturally defined depending on the letter associated

with the vertex of the stepped line that is projected:

Rσ(i) := {πs(l(u0 . . . uk−1), k ∈ N, uk = i}.

Remark 1 It follows from the primitivity of the substitution σ that the definition of Rσ and Rσ(i) (i ∈ A)

does not depend on the choice of the periodic point u ∈ AN ; see [2].

We define the subgroup L of Zd as :

L =

{
d∑

i=1

niei :

d∑
i=1

ni = 0, ni ∈ Z

}

Let Γ be the projection of L on the stable space, i.e. Γ = πs(L). In the irreducible case, the translation

by Γ of the Rauzy fractal covers the stable space. Hence the Rauzy fractal has positive measure. The projection

from the orbit of the periodic point to the Rauzy fractal extends by continuity to all of Ωu . If we take the

quotient by Γ, this projection gives a semiconjugacy between (Ωu, S) and the translation by πs(ei) on Rσ/Γ,

where ei is any vector in the canonical base.
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3. Balanced pair algorithm and fractals intersection

The balanced pair algorithm was introduced by Livshits in [12] in the study of the Pisot conjecture and was also

used in [21] in the same context. A variant of this algorithm was used later in [17, 18] to study the intersection

of Rauzy fractals associated with different substitutions having the same incidence matrix. This version of the

balanced pair algorithm is used in the present article; we describe it in this section.

3.1. Balanced pair algorithm

We introduce the balanced pair algorithm for 2 substitutions σ1 and σ2 having the same incidence matrix.

This algorithm was used in [17] and [18] in order to study the intersection of Rauzy fractals.

Definition 3.1 Letting U and V be 2 finite words, we say that

(
U
V

)
is a balanced pair if l(U) = l(V ) , where

l(U) is the k -dimensional vector that gives the occurrences of the different symbols of the word U .

Definition 3.2 Given a word U , we denote by ⟨U⟩m the proper prefix of U of length m . A minimal balanced

pair is a balanced pair

(
U
V

)
, such that l(⟨U⟩m) ̸= l(⟨V ⟩m) , for 1 ≤ m < |U | .

Let σ1 and σ2 be 2 irreducible Pisot substitutions with the same incidence matrix. Let u and v

be the elements of AN that are fixed points of σ1 and σ2 , respectively. The balanced pair algorithm gives a

decomposition of the double fixed point

(
u
v

)
into minimal balanced pairs. The question is: when is the number

of minimal balanced pairs bounded? We define the balanced pair algorithm associated to the substitutions σ1

and σ2 as follows:

Let

(
1
1

)
be the first minimal balanced pair. We iterate this first minimal balanced pair with the 2

substitutions σ1 and σ2 , and this means that

(
1
1

)
→
(
σ1(U)
σ2(V )

)
. Since the substitutions σ1 and σ2 have the

same incidence matrix, the pair

(
σ1(1)
σ2(1)

)
is balanced. We decompose this new balanced pair with minimal

balanced pairs.

With this decomposition, we obtain all the common points of the 2 stepped lines associated with the 2

fixed points u and v . This means that we obtain common points from the interior of the 2 associated Rauzy

fractals of σ1 and σ2 . Under the right hypotheses, considered in the next subsection, the set of minimal

balanced pairs is finite, and the algorithm terminates.

3.2. Intersection of Rauzy fractals

Let σ1 and σ2 be 2 unimodular irreducible Pisot substitutions with the same incidence matrix. We consider

their respective Rauzy fractals Rσ1 and Rσ2 . We suppose that 0, i.e. the origin, is an inner point of Rσ1 .

The intersection of Rσ1 and Rσ2 is nonempty since it contains 0, and it is a compact set as the intersection of

2 compacts sets. Let E be the closure of the intersection of the interior of Rσ1 and the interior of Rσ2 .
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Proposition 3.1 Let σ1 and σ2 be 2 unimodular irreducible Pisot substitutions with the same incidence matrix.

We consider Rσ1 and Rσ2 their associated Rauzy fractal. We suppose that 0 is an inner point to Rσ1 . The

set E then has nonempty interior and strictly positive Lebesgue measure.

Proof Since 0 is an inner point of Rσ1 , there exists an open set U such that 0 ∈ U ⊂ R1 . The Rauzy fractal

is the closure of its interior [22] and 0 is a point of Rσ2 ; hence, there exists a sequence of points {xn}n∈N in the

interior of Rσ2 that converges to 0. Thus, there exist open sets Vn such that xn ∈ Vn ⊂ Rσ2 . Since {xn} con-

verges to 0, there exists N ∈ N such that xN ∈ U . The open set U ∩VN is nonempty and U ∩VN ⊂ Rσ1 ∩Rσ2 .

This implies that E contains a nonempty open set, and hence it has strictly positive Lebesgue measure. 2

If the substitutions σ1 and σ2 satisfy the Pisot conjecture, then the set E is also a Rauzy fractal associated

to the substitution defined by the balanced pair algorithm. More precisely, we will characterize this intersection

of 2 Rauzy fractals associated with 2 unimodular Pisot substitutions with the same incidence matrix as follows.

Theorem 3.1 ([[18] Theorem 4.4]) Let σ1 and σ2 be 2 unimodular irreducible Pisot substitutions with the

same incidence matrix. Let Rσ1 and Rσ2 be their 2 associated Rauzy fractals. Suppose that 0 is an inner point

of Rσ1 and that both substitutions satisfy the Pisot conjecture. We denote by E the closure of the intersection

of the interiors of Rσ1 and Rσ2 . Then E has nonempty interior and is a substitutive set associated with a

Pisot substitution Σ on the alphabet of minimal balanced pairs.

Using Theorem 3.1 in the case of the substitutions σa,b and σ∗
a,b , we obtain the following main result:

Theorem 3.2 Let σa,b and σ∗
a,b be 2 substitutions defined as follows :

σa,b :

 1 → 1a2
2 → 1b3
3 → 1

and σ∗
a,b :

 1 → 21a

2 → 31b

3 → 1.

Let Ra,b and R∗
a,b be the respective Rauzy fractals. Then the set Ra,b ∩R∗

a,b has nonempty interior and

is a substitutive set associated to the substitution Σ obtained by the balanced pair algorithm. The substitution

Σ is over 6 or 7 letters.

4. Balanced pair algorithm for a class of cubic substitutions

In this section we are interested in the 2 substitutions

σa,b :

 1 → 1a2
2 → 1b3
3 → 1

and σ∗
a,b :

 1 → 21a

2 → 31b

3 → 1

and the intersection of their Rauzy fractals, where 1 ≤ b ≤ a . The 2 substitutions σa,b and σ∗
a,b have the same

incidence matrix defined by Ma,b =

a b 1
1 0 0
0 1 0

 .

For each (a, b), σa,b and σ∗
a,b are irreducible primitives unimodular substitutions. Moreover, it satisfies

the super coincidence condition [5]. The substitutions σa,b are so-called beta-substitutions (β verifies β3 =

aβ2 + bβ + 1); that is, the induced dynamical system is related to beta-expansion.
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The class of Rauzy fractals associated to σ∗
a,b was first studied by Ito and Kimura in [10]. They showed

that for a = b = 1, the boundary of the Rauzy fractal is a Jordan curve, and they also computed its Hausdorff

dimension. Later, for the same case, Messaoudi [14] constructed a finite state automaton that generates the

boundary of the Rauzy fractal. This helped to show that this boundary is a quasicircle. In [14], analogous

results were obtained for the car a ≥ 1 and b = 1. In [24] Thuswaldner gave an explicit formula for the fractal

dimension of the boundary of the Rauzy fractal in the case a ≥ b ≥ 1. Recently, in [13], the authors described

the boundary of the tiles by determining their neighbors in the tiling.

In this paper we are interested in the intersection of Rauzy fractals associated to σa,b and σ∗
a,b . We give

a general formula for substitution associated with the intersection. Applying the balanced pair algorithm, we

prove that the substitution describing the intersection has a regular form and that this substitution is over 6

or 7 letters. We obtain the following proposition:

Proposition 4.1 Let σa,b and σ∗
a,b be the 2 substitutions defined above with a ≥ b ≥ 1 . Then we can

characterize the set E of minimal balanced pairs as follows:

• If a = b then E1 =

{(
1
1

)
,

(
1a2
21a

)
,

(
(1a2)a1a3
31a(21a)a

)
,

(
1a−12
21a−1

)
,

(
1a−13
31a−1

)
,

(
(1a2)a−11a3
31a(21a)a−1

)}
.

• If b = a− 1 then

E2 =

{(
1
1

)
,

(
1a2
21a

)
,

(
(1a2)a1b3
31b(21a)a

)
,

(
1a−12
21a−1

)
,

(
1a−121a−13
31a−121a−1

)
,

(
(1a2)a−11a−13
31a−1(21a)a−1

)
,

(
1a−23
31a−2

)}
.

• If b < a− 1 then

E3 =

{(
1
1

)
,

(
1a2
21a

)
,

(
(1a2)a1b3
31b(21a)a

)
,

(
1a−12
21a−1

)
,

(
1a−12(1a2)a−b−11b3
31b(21a)a−b−121a−1

)
,

(
(1a2)a−11a−13
31a−1(21a)a− 1

)
,

(
1a−12(1b2)a−b−21b3
31b(21a)a−b−221a−1

)}
.

Proof The proof of the first case was done by Sellami and Sirvent in their paper, “Symmetric intersection of

Rauzy fractals (preprint). The second and the third cases can be proved similarly as the first case.

Let us prove the second case when b = a−1. By applying the balanced pair algorithm with σa,a and σ∗
a,a

to the first minimal balanced pair A =

(
1
1

)
, we deduce the second new minimal balanced pair B =

(
1a2
21a

)
.

We deduce the relation A −→ B . Again, we take the image of the minimal balanced pair B

(
1a2
21a

)
σa,a,σ

∗
a,a−→

(
(1a2)a1a3
31a(21a)a

)
.

We obtain a new different balanced pair denoted C . This new balanced pair is minimal because the first word

begins with the letter 3 and the second word finishes with 3, and the number of occurrence of this letter is

only one. We thus have B −→ C .
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By calculating the image of C , we obtain(
(1a2)a1a−13
31a−1(21a)a

)
σa,a,σ

∗
a,a−→

(
[(1a2)a1a−13]a(1a2)a−11
1(21a)a−1[31a−1(21a)a]a

)
.

The last obtained balanced pair can be written as:

[[(
1
1

)(
1a−12
21a−1

)]a−1(
1
1

)(
1a−121a−13
31a−121a−1

)]a[(
1
1

)(
1a−12
21a−1

)]a−1(
1
1

)
.

Two new minimal balanced pairs appear, which we denote by D =

(
1a−12
21a−1

)
and E =

(
1a−121a−13
31a−121a−1

)
.

The image of C is [(AD)a−1AE]a(AD)a−1A . By applying the balanced pair algorithm to D we obtain a new

balanced pair F =

(
(1a2)a−11a−13
31a−1(21a)a−1

)
. We remark that F is a minimal balanced pair, because the letter 3 is

at the beginning and the end of the 2 words, and occurrence is only once.

We continue with the balanced pair algorithm; we take the image of E :

(
1a−121a−13
31a−121a−1

)
σa,a,σ

∗
a,a−→

(
(1a2)a−11a−13(1a2)a−11
1(21a)a−131a−1(21a)a]a−1

)
.

The last balanced pair obtained can be decomposed with minimal balanced pairs as:

[(
1
1

)(
1a−12
21a−1

)]a−1(
1
1

)(
1a−23
31a−2

)[(
1
1

)(
1a−12
21a−1

)]a−1(
1
1

)
.

A new minimal balanced pair appears and we denote it by G =

(
1a−23
31a−2

)
.

Finally, the image of G is (AD)a−2A , and no new minimal balanced pairs appear.

In the third case we apply the same balanced pairs algorithm and we obtain the result. 2

Theorem 4.1 Let σa,b and σ∗
a,b be the 2 substitutions defined as before with a ≥ b ≥ 1 . Let Ra,b and R∗

a,b be

their 2 associated Rauzy fractals. Let Σa,b be the substitution associated to the intersection of Ra,b and R∗
a,b .

Then Σa,b is defined as follows:

• If a = b then Σ1
a,b :



A → B
B → C
C → [(AD)aAE]a(AD)aA
D → F
E → (AD)a−1A
F → [(AD)aAE]a−1(AD)aA.
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• If b = a− 1 then Σ2
a,b :



A → B
B → C
C → [(AD)a−1AE]a(AD)a−1A
D → F
E → (AD)a−1AG(AD)a−1A
F → [(AD)a−1AE]a−1(AD)a−1A
G → (AD)a−2A.

• If b < a− 1 then Σ3
a,b :



A → B
B → C
C → [(AD)bAE]a(AD)bA
D → F
E → (AD)bAG[(AD)b+1AG]a−b−1(AD)bA
F → [(AD)bAE]a−1(AD)bA
G → (AD)bAG[(AD)a−2AG]a−b−2(AD)bA.

Here the capital letters A,B,C,D,E, F,G represent minimal balanced pairs defined in Proposition 4.1; for each

case, we have respectively:

E1 = {A,B,C,D,E, F} , E2 = {A,B,C,D,E, F,G} , and E3 = {A,B,C,D,E, F,G} .

Proof Applying σa,b and σ∗
a,b for the balanced pair algorithm defined in Proposition 4.1, we obtain for each

minimal balanced pair a new balanced pair. By decomposition of this balanced pair into minimal balanced

pairs we obtain the image of each one. In this case, the number of minimal balanced pairs is finite, so the

image of each minimal balanced pair is a finite word on the alphabet of capital letters. Finally, we obtain the

substitution associated with intersection for each case. 2

Remark 2 The characteristic polynomial of the substitutions Σi
a,b where i = 1, 2, 3 respectively is:

P1 = (X3 − aX2 − aX − 1)× (X3 + aX2 + aX − 1).

P2 = (X + 1)× (X3 − aX2 − (a− 1)X − 1)× (X3 + (a− 1)X2 + aX − 1).

P3 = (X + 1)(X3 − aX2 − bX − 1)× (X3 + bX2 + aX − 1).

We conjecture that the characteristic polynomial of the intersection substitution is a multiple of the product

of the initial polynomial by its reciprocal.

5. Examples

In this section, we show examples of Rauzy fractals and their intersections for each case in Theorem 4.1.

• a = b = 1, σ1,1 :

 1 → 12
2 → 13
3 → 1

, σ∗
1,1 :

 1 → 21
2 → 31
3 → 1

, and Σ1,1 :



A → B
B → C
C → ADAEADA
D → F
E → A
F → ADA.

The Rauzy fractals of σ1,1, σ
∗
1,1 and Σ1,1 are shown in Figure 2.
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Here, A =

(
1
1

)
, B =

(
12
21

)
, C =

(
1213
3121

)
, D =

(
2
2

)
, E =

(
3
3

)
, and, finally F =

(
13
31

)
.

(
1
1

)
−→

(
12
21

)
−→

(
1213
3121

)
−→

(
1 2 1 3 1 2 1
1 2 1 3 1 2 1

)
A −→ B −→ C −→ A D A E A D A

(
2
2

)
−→

(
13
31

)
−→

(
1 2 1
1 2 1

)
D −→ F −→ A D A.

Figure 2. Rauzy fractal associated with σ1,1, σ
∗
1,1 , and Σ1,1 .

• a = 3 and b = 2,

σ3,2 :

 1 → 1112
2 → 113
3 → 1

, σ∗
3,2 :

 1 → 2111
2 → 311
3 → 1

, and Σ3,2 :



A → B
B → C
C → [(AD)2AE]3(AD)2A
D → F
E → (AD)2AG(AD)2A
F → [(AD)2AE]2(AD)2A
G → ADA.

The Rauzy fractals of σ3,2, σ
∗
3,2 , and Σ3,2 are shown in Figure 3.

Figure 3. Rauzy fractal associated with σ3,2, σ
∗
3,2 , and Σ3,2 .

• a = 4 and b = 1
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σ4,1 :

 1 → 11112
2 → 13
3 → 1

, σ∗
4,1 :

 1 → 21111
2 → 31
3 → 1

, and Σ4,1 :



A → B
B → C
C → [ADAE]4ADA
D → F
E → ADAG[(AD)2AG]2ADA
F → [ADAE]3ADA
G → ADAG(AD)2AGADA.

The Rauzy fractals of σ4,1, σ
∗
4,1 , and Σ4,1 are shown in Figure 4.

Figure 4. Rauzy fractal associated with σ4,1, σ
∗
4,1 , and Σ4,1 .
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2002; 3: 1002–1018.

[12] Livshits AN. On the spectra of adic transformations of Markov compacta. Russian Math Surveys 1987; 42: 222–223.

[13] Loridant B, Messaoudi A, Surer P, Thuswaldner JM. Tilings induced by a class of cubic Rauzy fractals. Theor

Comput Sci 2013; 477: 6–31.

[14] Messaoudi A. Propriétés arithmétiques et dynamiques du fractal de Rauzy. J Théor Nombres Bordeaux 1998; 10:
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