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Abstract: In this paper, we prove that the generalized matrix algebra G =

[
A M
N B

]
is a zero triple product (resp.

zero Jordan triple product) determined if and only if A and B are zero triple products (resp. zero Jordan triple products)

determined under certain conditions. Then the main results are applied to triangular algebras and full matrix algebras.
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1. Introduction

Let R be a commutative ring with identity and A be an associative R -algebra. We define the Jordan triple

product by a ◦ b ◦ c = abc+ cba for each a, b, c ∈ A . These products on A are nonassociative and A becomes a

Jordan triple algebra if we replace the original product by the Jordan triple product. We denote the R -linear

span of all elements of the form abc (resp. a ◦ b ◦ c), where a, b, c ∈ A , by A3 (resp. A ◦ A ◦ A).

The algebra A is called a zero triple product determined algebra if for every R -module W and every

R -trilinear mapping ϕ : A×A×A −→ W , the following holds: if ϕ(a, b, c) = 0 whenever abc = 0, then there

exists an R -linear mapping T : A3 −→ W such that ϕ(a, b, c) = T (abc) for all a, b, c ∈ A . If the ordinary

product is replaced by the Jordan triple product and A3 is replaced by A ◦A ◦A , then we shall say that A is

a zero Jordan triple product determined algebra.

The question of characterizing linear maps that preserve zero product, Jordan product, commutativity,

etc. on algebras has attracted the attention of many authors. However, these problems can be sometimes

effectively solved by considering bilinear maps that preserve certain zero product properties (for instance,

see [1–3,6]). Motivated by these reasons, Brešar et al. [5] introduced the concept of zero product (resp. Jordan

product, Lie product) determined algebras, which can be used to study the linear maps preserving zero product

(resp. Jordan product, commutativity). For example, it is not difficult to check that any zero product preserving

unital linear map on a zero product determined algebra is an algebra homomorphism. Then zero (resp. zero

Jordan, zero Lie) product determined algebras were studied by many authors (see [9–11,15] and the references

therein). Recently, Yao and Zheng [17] extended the aforementioned products to more generalized forms, such

as triple product and Jordan triple product, in order to get the concept of zero triple product (resp. zero Jordan

triple product) determined algebras, which may be used to study the linear maps preserving zero triple product

(resp. zero Jordan triple product). They showed that matrix algebra Mn(R)(n ≥ 3) is always zero triple
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product determined, and Mn(F)(n ≥ 3), where F is any field with charF ̸= 2, is zero Jordan triple product

determined.

Inspired by the aforementioned, we will study whether the generalized matrix algebra is zero triple (resp.

zero Jordan triple) product determined. In particular, we prove that under certain conditions the generalized

matrix algebra is zero triple product (resp. zero Jordan triple product) determined and the main results are

then applied to triangular algebras and full matrix algebras.

2. Preliminaries

Let us begin with the definition of generalized matrix algebras given by a Morita context. Let R be a

commutative ring with identity. A Morita context consists of 2 R -algebras A and B , 2 bimodules AMB

and BNA , and 2 bimodule homomorphisms called the pairings ΦMN :M ⊗
B
N −→ A and ΨNM : N ⊗

A
M −→ B

satisfying the following commutative diagrams:

M ⊗
B
N ⊗

A
M

ΦMN⊗IM //

IM⊗ΨNM

��

A⊗
A
M

∼=

��
M ⊗

B
B

∼= // M

and N ⊗
A
M ⊗

B
N

ΨNM⊗IN //

IN⊗ΦMN

��

B ⊗
B
N

∼=

��
N ⊗

A
A

∼= // N .

Let us write this Morita context as (A,B,M,N,ΦMN ,ΨNM ). We refer the readers to [14] for the basic

properties of Morita contexts. If (A,B,M,N, ΦMN ,ΨNM ) is a Morita context, then the set

[
A M
N B

]
=

{[
a m
n b

]
a ∈ A,m ∈M,n ∈ N, b ∈ B

}

forms an R -algebra under matrix-like addition and matrix-like multiplication, where at least 1 of the 2 bimodules

M and N is distinct from 0. Such an R -algebra is usually called a generalized matrix algebra of order 2 and

is denoted by

G =

[
A M
N B

]
.

In a similar way, one can define a generalized matrix ring of order n > 2. It was shown that up to isomorphism,

arbitrary generalized matrix algebra of order n (n ≥ 2) is a generalized matrix algebra of order 2 [12, Example

2.2]. If one of the modules M and N is zero, then G exactly degenerates to an upper triangular algebra or a

lower triangular algebra. In this case, we denote the resulted upper triangular algebra (resp. lower triangular

algebra) by

T U =

[
A M
O B

] (
resp. TL =

[
A O
N B

])
.

Let us single out some classical examples of generalized matrix algebras that will be revisited in the

sequel. We refer the readers to [4, 12,16] for more details.
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(a) full matrix algebras;

(b) upper and lower triangular matrix algebras;

(c) block upper and lower triangular matrix algebras.

It should be mentioned that our current generalized matrix algebras contain those generalized matrix algebras

in the sense of Brown [7] as special cases. Let Mn(R) be the full matrix algebra consisting of all n×n matrices

over R . It is worth pointing out that the notion of generalized matrix algebras efficiently unifies triangular

algebras with full matrix algebras. The distinguished feature of our systematic work is that we deal with all

questions related to additive mappings of triangular algebras and full matrix algebras under a unified frame,

which is the admired generalized matrix algebras frame (see [8, 12,13,16]).

3. Zero triple product determined generalized matrix algebras

The purpose of this section is to verify whether a generalized matrix algebra is zero triple product determined,

and then apply the main result to various triangular algebras and full matrix algebras.

The following is our main result in this section.

Theorem 3.1 Let G =

[
A M
N B

]
be a generalized matrix algebra consisting of algebras A,B and (A,B )-

bimodules M,N . If A and B are both zero triple product determined algebras, then G is a zero triple product

determined algebra.

Conversely, let G be a generalized matrix algebra with the bimodule homomorphisms ΦMN :M ⊗
B
N → A

and ΨNM : N ⊗
A
M → B of G be trivial. If G is a zero triple product determined algebra, then A and B are

both zero triple product determined algebras.

Proof Let 1A (resp. 1B ) be the identity of the algebra A (resp. B ) and I be the identity of the generalized

matrix algebra G . Let us write

P =

[
1A 0
0 0

]
and Q =

[
0 0
0 1B

]
.

Then P and Q are standard idempotents in G . 2

Suppose that A and B are both zero triple product determined algebras. Let W be a R -module, and

ϕ : G ×G ×G −→ W be a R trilinear mapping such that for all X,Y, Z ∈ G , XY Z = 0 implies ϕ(X,Y, Z) = 0

(Here and throughout, X,Y, Z always denote the elements of G ).

For arbitrary elements X,Y ∈ G , it is easy to compute that

(PXP )(QY Q) = (QXQ)(PY P ) = (PXQ)(PY Q)

= (PXQ)(PY P ) = (QXQ)(PY Q) = (QXP )(QY P )

= (QXP )(QY Q) = (PXP )(QY P ) = 0.

So we have

ϕ(PXP,QY Q,Z) = ϕ(QXQ,PY P,Z) = ϕ(PXQ,PY Q,Z)

= ϕ(PXQ,PY P,Z) = ϕ(QXQ,PY Q,Z) = ϕ(QXP,QY P,Z)

= ϕ(QXP,QY Q,Z) = ϕ(PXP,QY P,Z) = 0

(3.1)
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for all X,Y, Z ∈ G .

From (Q−QY P )I(PXP +QY PXP ) = 0, we obtain

ϕ(QY P, I, PXP ) = ϕ(Q, I,QY PXP ).

Letting X = P in the above equation, we find

ϕ(QY P, I, P ) = ϕ(Q, I,QY P ). (3.2)

Likewise, (PXP + PXPY Q)I(Q− PY Q) = 0 yields

ϕ(PXP, I, PY Q) = ϕ(PXPY Q, I,Q),

and setting X = P , we have

ϕ(P, I, PY Q) = ϕ(PY Q, I,Q). (3.3)

Next we will complete the proof of this part via the following 7 steps.

Step 1. Let us define η : A×A×A −→ W by

η(a1, a2, a3) = ϕ

([
a1 0
0 0

]
,

[
a2 0
0 0

]
,

[
a3 0
0 0

])
for all a1, a2, a3 ∈ A . Therefore, η is a R -trilinear mapping such that for all a1, a2, a3 ∈ A , a1a2a3 = 0 implies

η(a1, a2, a3) = 0. Since A is a zero triple product determined algebra, there is an R -linear mapping T1 : A −→
W such that η(a1, a2, a3) = T1(a1a2a3) for all a1, a2, a3 ∈ A . Therefore, η(a1, a2, a3) = η(a1a2a3, 1A, 1A) and

hence ϕ(PXP,PY P, PZP ) = ϕ(PXPY PZP, P, P ), or we can write it as

ϕ(PXP,PY P, PZP ) = ϕ(PXPY PZP, I, I).

Taking into account PXP (PY P +PY PZQ)(Q−PZQ) = 0 and (PXP +PXPY PZQ)(Q−PY PZQ)I = 0,

we have
ϕ(PXP,PY P, PZQ) = ϕ(PXP,PY PZQ, I) = ϕ(PXPY PZQ, I, I).

It is easy to verify that

ϕ(PXP,PY P,QZP ) = ϕ(PXP,PY P,QZQ) = 0.

All these show that
ϕ(PXP,PY P,Z) = ϕ(PXPY PZ, I, I). (3.4)

In a similar way, by the hypothesis that B is also a zero triple determined algebra, we get

ϕ(QXQ,QY Q,Z) = ϕ(QXQY QZ, I, I). (3.5)

Step 2. Since (PXP + PXPY Q)(Q− PY Q)Z = 0, we obtain

ϕ(PXP,PY Q,Z) = ϕ(PXPY Q, I, Z).

Now, we have (PXPY Q + PXPY QZP )I(QZP − P ) = 0 and (PXPY Q + P )I(QZQ − PXPY QZQ) = 0.

Consequently

ϕ(PXPY Q, I,QZP ) = ϕ(PXPY QZP, I, I),
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ϕ(PXPY Q, I,QZQ) = ϕ(I, I, PXPY QZQ) = ϕ(PXPY QZQ, I, I),

where we used (3.3) in the last step. We can also get

ϕ(PXPY Q, I, PZQ) = ϕ(PXPY Q, I, PZP ) = 0.

The last 3 relations imply that

ϕ(PXP,PY Q,Z) = ϕ(PXPY Q, I, Z) = ϕ(PXPY QZ, I, I). (3.6)

Step 3. From (QXP +QXPY Q)(PY Q−Q)Z = 0 we can see that

ϕ(QXP,PY Q,Z) = ϕ(QXPY Q, I, Z).

Furthermore, it follows from Eq. (3.5) that

ϕ(QXPY Q, I,QZQ) = ϕ(QXPY QZQ, I, I).

Using (QXPY Q+QXPY QZP )I(P −QZP ) = 0 we obtain

ϕ(QXPY Q, I,QZP ) = ϕ(QXPY QZP, I, I).

It is easy to check that

ϕ(QXPY Q, I, PZQ) = ϕ(QXPY Q, I, PZP ) = 0.

Therefore,

ϕ(QXP,PY Q,Z) = ϕ(QXPY Q, I, Z) = ϕ(QXPY QZ, I, I). (3.7)

Step 4. Since (PXQ+ PXQY P )(QY P − P )Z = 0, we have

ϕ(PXQ,QY P,Z) = ϕ(PXQY P, I, Z).

A direct computation yields (PXQY P + PXQY PZQ)I(Q− PZQ) = 0; this implies that

ϕ(PXQY P, I, PZQ) = ϕ(PXQY PZQ, I, I).

By Eq. (3.4) we know that

ϕ(PXQY P, I, PZP ) = ϕ(PXQY PZP, I, I).

We can also get

ϕ(PXQY P, I,QZQ) = ϕ(PXQY P, I,QZP ) = 0.

Therefore,

ϕ(PXQ,QY P,Z) = ϕ(PXQY PZ, I, I). (3.8)

Step 5. From (QXQ+QXQY P )(P −QY P )Z = 0 we get

ϕ(QXQ,QY P,Z) = ϕ(QXQY P, I, Z).

Using (QXQY P +QXQY PZQ)I(PZQ−Q) = 0, we have

ϕ(QXQY P, I, PZQ) = ϕ(QXQY PZQ, I, I).
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Applying (Q−QXQY P )I(PZP +QXQY PZP ) = 0 and revisiting the relation (3.2), we obtain

ϕ(QXQY P, I, PZP ) = ϕ(I, I,QXQY PZP ) = ϕ(QXQY PZP, I, I).

Obviously,

ϕ(QXQY P, I,QZQ) = ϕ(QXQY P, I,QZP ) = 0,

and so
ϕ(QXQ,QY P,Z) = ϕ(QXQY P, I, Z) = ϕ(QXQY PZ, I, I). (3.9)

Step 6. By a simple computation we have (Q−QXP )(PY P +QXPY P )Z = 0 and (Q+QXPY P )(P −
QXPY P )Z = 0. It follows that

ϕ(QXP,PY P,Z) = ϕ(Q,QXPY P,Z) = ϕ(QXPY P, P, Z).

This gives

ϕ(QXP,PY P,Z) = ϕ(QXPY P, I, Z).

Note that (QXPY P +QXPY PZQ)I(PZQ−Q) = 0, we have

ϕ(QXPY P, I, PZQ) = ϕ(QXPY PZQ, I, I).

Since (Q−QXPY P )I(PZP +QXPY PZP ) = 0, we get from (3.2) that

ϕ(QXPY P, I, PZP ) = ϕ(I, I,QXPY PZP ) = ϕ(QXPY PZP, I, I).

It is not difficult to check that

ϕ(QXPY P, I,QZQ) = ϕ(QXPY P, I,QZP ) = 0.

Now we obtain
ϕ(QXP,PY P,Z) = ϕ(QXPY PZ, I, I). (3.10)

Step 7. From (P + PXQ)(QYQ− PXQY Q)Z = 0 and (P + PXQY Q)(Q− PXQY Q)Z = 0 we can

get

ϕ(PXQ,QY Q,Z) = ϕ(P, PXQY Q,Z) = ϕ(PXQY Q, I, Z).

By (PXQY Q+ PXQY QZP )I(QZP − P ) = 0 we obtain

ϕ(PXQY Q, I,QZP ) = ϕ(PXQY QZP, I, I).

Using (P + PXQY Q)I(QZQ− PXQY QZQ) = 0 and applying (3.3) again yield

ϕ(PXQY Q, I,QZQ) = ϕ(P, I, PXQY QZQ) = ϕ(PXQY QZQ, I, I).

Moreover,

ϕ(PXQY Q, I, PZP ) = ϕ(PXQY Q, I, PZQ) = 0.

Hence we have
ϕ(PXQ,QY Q,Z) = ϕ(PXQY QZ, I, I). (3.11)
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In view of Eqs. (3.1) and ((3.4)–(3.11)) we obtain

ϕ(PXP + PXQ+QXQ+QXP,PY P + PY Q+QY Q+QY P,Z)

=ϕ(PXPY PZ, I, I) + ϕ(PXPY QZ, I, I) + ϕ(PXQY QZ, I, I) + ϕ(QXQYQZ, I, I)

+ϕ(QXPY PZ, I, I) + ϕ(QXPY QZ, I, I) + ϕ(PXQY PZ, I, I) + ϕ(QXQY PZ, I, I)

=ϕ(XY Z, I, I).

If we define the R -linear mapping T : G → W by T (Z) = ϕ(Z, I, I) for all Z ∈ G , then T satisfies

all the requirements in the definition of zero product determined algebras. Thus, G is a zero triple product

determined algebra.

Conversely, assume G is a zero triple product determined algebra with the bimodule homomorphisms

ΦMN :M ⊗
B
N → A and ΨNM : N ⊗

A
M → B of G be trivial. Let W be a R -module and ψ : A×A×A→ W

be a R -trilinear map such that for all a1, a2, a3 ∈ A, a1a2a3 = 0 implies ψ(a1, a2, a3) = 0. Define a R -trilinear

map ϕ : G × G × G → W by ϕ(X ′, Y ′, Z ′) = ψ(a1, a2, a3) whereX ′ =

(
a1 m1

n1 b1

)
, Y ′ =

(
a2 m2

n2 b2

)
, Z ′ =(

a3 m3

n3 b3

)
∈ G . If XY Z = 0, then ϕ(X,Y, Z) = 0. Since G is a zero triple product determined algebra,

there is a R -linear map T : G → W such that ϕ(X ′, Y ′, Z ′) = T (X ′Y ′Z ′) for all X ′, Y ′, Z ′ ∈ G . Define a

R -linear map T1 : A→ W by T1(a) = T

(
a 0
0 0

)
for all a ∈ A . Therefore, ψ(a1, a2, a3) = T1(a1a2a3) for all

a1, a2, a3 ∈ A . Thus, A is a zero triple product determined algebra. Similarly, we can show that B is a zero

triple product determined algebra. The proof is completed.

As a direct consequence of this theorem we have the following corollary.

Corollary 3.2 T U (resp. TL ) is a zero triple product determined algebra if and only if A and B are zero

triple product determined algebras.

3.1. Full matrix algebras

Let R be a commutative ring with identity, A be a torsion free or i(i ≤ k)-torsion free unital algebra over R ,

and Mn(A) be the algebra of n× n matrices with n ≥ 2. Then the full matrix algebra Mn(A)(n ≥ 2) can be

represented as a generalized matrix algebra of the form

Mn(A) =

[
A M1×(n−1)(A)

M(n−1)×1(A) Mn−1(A)

]
.

Then according to Theorem 3.1 we have

Corollary 3.3 If A is zero triple product determined algebra, then Mn(A)(n ≥ 1) is zero triple product

determined algebra.

In this corollary, it is not necessarily true that A is a zero triple product determined algebra.
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3.2. Upper and lower matrix triangular algebras

Let R be a commutative ring with identity and A be a unital algebra over R . We denote the set of all p× q

matrices over R by Mp×q(A). Let us denote the set of all n × n upper triangular matrices over R and the

set of all n × n lower triangular matrices over R by Tn(A) and T ′
n(A), respectively. For n ≥ 2 and each

1 ≤ k ≤ n − 1, the upper triangular matrix algebra Tn(A) and lower triangular matrix algebra T ′
n(A) can be

written as

Tn(A) =
[

Tk(A) Mk×(n−k)(A)
Tn−k(A)

]
and T ′

n(A) =

[
T ′
k(A)

M(n−k)×k(A) T ′
n−k(A)

]
,

respectively.

Then we have the following:

Corollary 3.4 Tn(A)(resp. T ′
n(A)) is a zero triple product determined algebra if and only if A is a zero

triple product determined algebra.

3.3. Block upper and lower triangular matrix algebras

Let R be a commutative ring with identity and A be a unital algebra over R . Let N be the set of all positive

integers and let n ∈ N . For any positive integer m with m ≤ n , we denote by d̄ = (d1, · · · , di, · · · , dm) ∈ Nm

an ordered m-vector of positive integers such that n = d1 + · · · + di + · · · + dm . The block upper triangular

matrix algebra Bd̄
n(A) is a subalgebra of Mn(A) with form

Bd̄
n(A) =



Md1(A) · · · Md1×di(A) · · · Md1×dm(A)
. . .

...
...

Mdi(A) · · · Mdi×dm(A)

O
. . .

...
Mdm(A)

 .

Likewise, the block lower triangular matrix algebra B′d̄
n (A) is a subalgebra of Mn(A) with form

B′d̄
n (A) =



Md1
(A)
...

. . . O
Mdi×d1(A) · · · Mdi(A)

...
...

. . .

Mdm×d1(A) . . . Mdm×di(A) . . . Mdm(A)

 .

Note that the full matrix algebra Mn(A) of all n× n matrices over A and the upper (resp. lower) triangular

matrix algebra Tn(A) of all n × n upper triangular matrices over A are 2 special cases of block upper (resp.

lower) triangular matrix algebras. If n ≥ 2 and Bd̄
n(A) ̸= Mn(A), then Bd̄

n(A) is an upper triangular algebra

and can be written as

Bd̄
n(A) =

[
Bd̄1

j (A) Mj×(n−j)(A)

O(n−j)×j Bd̄2
n−j(A)

]
,
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where 1 ≤ j < m and d̄1 ∈ Nj , d̄2 ∈ Nm−j . Similarly, if n ≥ 2 and B′d̄
n (A) ̸= Mn(A), then B′d̄

n (A) is a lower

triangular algebra and can be represented as

B′d̄
n (A) =

[
B′d̄1

j (A) Oj×(n−j)

M(n−j)×j(A) B′d̄2
n−j(A)

]
,

where 1 ≤ j < m and d̄1 ∈ Nj , d̄2 ∈ Nm−j .

Therefore, by Theorem 3.1, the next corollary is immediate.

Corollary 3.5 Let Bd̄
n(A)(resp. B

′d̄
n (A)) be a block upper triangular matrix algebra, where d̄ = (d1, · · · , di, · · · ,

dm) ∈ Nm . Then we have

(a) If A is a zero triple product determined algebra, then Bd̄
n(A)(resp. B′d̄

n (A)) is a zero triple product

determined algebra.

(b) If dj = 1 for some 1 ≥ j ≥ m , then Bd̄
n(A)(resp. B

′d̄
n (A)) is a zero triple product determined algebra if

and only if A is a zero triple product determined algebra.

4. Zero Jordan triple product determined generalized matrix algebras

Now we assume that R contains the element 1
2 , i.e. 2 is invertible in R .

Theorem 4.1 Let G be a generalized matrix algebra consisting of algebras A,B and (A,B )-bimodules M,N

with bimodule homomorphisms ΦMN : M ⊗
B
N → A and ΨNM : N ⊗

A
M → B be trivial. Then G is a zero

Jordan triple product determined algebra if and only if A and B are zero Jordan triple product determined

algebras.

Proof Suppose that A and B are zero Jordan triple product determined algebras. Let W be a R -module

and ϕ : G×G×G → W be a R -trilinear map such that for all X,Y, Z ∈ G, X ◦Y ◦Z = 0 implies ϕ(X,Y, Z) = 0.
2

It is easy to check that

(PXP ) ◦ (QY Q) ◦ Z = (PXQ) ◦ (PY Q) ◦ Z = (QXP ) ◦ (QY P ) ◦ Z = 0

for all X,Y, Z ∈ G . Thus we have

ϕ(PXP,QY Q,Z) = 0, ϕ(QXQ,PY P,Z) = 0,

ϕ(PXQ,PY Q,Z) = 0,

ϕ(QXP,QY P,Z) = 0.

(4.1)

Note that (P −Q) ◦ I ◦QXP = 0 for any X ∈ G , we get

ϕ(P −Q, I,QXP ) = ϕ(QXP, I, P −Q) = 0,

and hence
ϕ(P, I,QXP ) = ϕ(Q, I,QXP ), ϕ(QXP, I, P ) = ϕ(QXP, I,Q).
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On the other hand, the equation (P −Q) ◦ I ◦ PXQ = 0 gives

ϕ(P, I, PXQ) = ϕ(Q, I, PXQ), ϕ(PXQ, I, P ) = ϕ(PXQ, I,Q).

In view of the above relations, we have

ϕ(QXP, I, P ) = ϕ(QXP, I,Q) =
1

2
ϕ(QXP, I, I),

ϕ(P, I,QXP ) = ϕ(Q, I,QXP ) =
1

2
ϕ(I, I,QXP ),

ϕ(PXQ, I, P ) = ϕ(PXQ, I,Q) =
1

2
ϕ(PXQ, I, I),

ϕ(P, I, PXQ) = ϕ(Q, I, PXQ) =
1

2
ϕ(I, I, PXQ).

(4.2)

From (PXP +QY PXP ) ◦ I ◦ (Q−QY P ) = 0, we obtain

ϕ(PXP, I,QY P ) = ϕ(QY PXP, I,Q), ϕ(QY P, I, PXP ) = ϕ(Q, I,QY PXP ).

Letting X = P in the above equations, we arrive at

ϕ(P, I,QY P ) = ϕ(QY P, I,Q),

ϕ(QY P, I, P ) = ϕ(Q, I,QY P ).
(4.3)

Likewise, (PXP + PXPY Q) ◦ I ◦ (Q− PY Q) = 0 yields

ϕ(PXP, I, PY Q) = ϕ(PXPY Q, I,Q), ϕ(PY Q, I, PXP ) = ϕ(Q, I, PXPY Q).

Next, setting X = P in the above equations, we have

ϕ(P, I, PY Q) = ϕ(PY Q, I,Q),

ϕ(PY Q, I, P ) = ϕ(Q, I, PY Q).
(4.4)

Next we will complete the proof of this part via the following 10 steps.

Step 1. Define ψ : A×A×A→ W by

ψ(a1, a2, a3) = ϕ

([
a1 0
0 0

]
,

[
a2 0
0 0

]
,

[
a3 0
0 0

])

for all a1, a2, a3 ∈ A . Therefore, ψ is a R-trilinear map such that for all a1, a2, a3 ∈ A , a1 ◦ a2 ◦ a3 = 0

implies ψ(a1, a2, a3) = 0. Since A is a zero Jordan triple product determined algebra, there is an R -linear map

T1 : A → W such that ψ(a1, a2, a3) = T1(a1 ◦ a2 ◦ a3) for all a1, a2, a3 ∈ A . Therefore, T1(a) =
1
2ψ(a, 1A, 1A)

for any a ∈ A and hence ψ(a1, a2, a3) =
1
2ψ(a1a2a3, 1A, 1A) +

1
2ψ(a3a2a1, 1A, 1A) for all a1, a2, a3 ∈ A , that is,

ϕ(PXP,PY P, PZP ) =
1

2
ϕ(PXPY PZP, P, P ) +

1

2
ϕ(PZPY PXP,P, P ),
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or we can write it as

ϕ(PXP,PY P, PZP ) =
1

2
ϕ(PXPY PZP, I, I) +

1

2
ϕ(PZPY PXP, I, I).

Note that PXP ◦ (PY P + PY PZQ) ◦ (Q− PZQ) = 0 and (PXP + PXPY PZQ) ◦ (Q− PY PZQ) ◦Q = 0;

therefore,

ϕ(PXP,PY P, PZQ) = ϕ(PXP,PY PZQ,Q) = ϕ(PXPY PZQ,Q,Q).

Thus, we get from (4.2) that

ϕ(PXP,PY P, PZQ) = ϕ(PXPY PZQ, I,Q) =
1

2
ϕ(PXPY PZQ, I, I).

Taking account of PXP ◦(PY P+QZPY P )◦(Q−QZP ) = 0 and (PXP+QZPY PXP )◦(Q−QZPY P )◦Q = 0,

we have

ϕ(PXP,PY P,QZP ) = ϕ(PXP,QZPY P,Q) = ϕ(QZPY PXP,Q,Q)

= ϕ(QZPY PXP, I,Q) =
1

2
ϕ(QZPY PXP, I, I),

where we used Eq. (4.2) in the last step. One can easily check that

ϕ(PXP,PY P,QZQ) = 0.

Now we can claim that

ϕ(PXP,PY P,Z) =
1

2
ϕ(PXPY PZ, I, I) +

1

2
ϕ(ZPY PXP, I, I). (4.5)

Step 2. In a similar way, by the hypothesis that B is a zero Jordan triple determined algebra, one sees

that

ϕ(QXQ,QY Q,QZQ) =
1

2
ϕ(QXQYQZQ, I, I) +

1

2
ϕ(QZQY QXQ, I, I).

Note that QXQ ◦ (PZQY Q−QY Q) ◦ (P + PZQ) = 0 and (PZQY QXQ−QXQ) ◦ (P + PZQY Q) ◦ P = 0,

by (4.2), we find that

ϕ(QXQ,QY Q,PZQ) = ϕ(QXQ,PZQY Q,P )

= ϕ(PZQY QXQ,P, P ) = ϕ(PZQY QXQ, I, P ) =
1

2
ϕ(PZQY QXQ, I, I).

Similarly, by QXQ◦(QY QZP−QYQ)◦(P+QZP ) = 0 and (QXQYQZP−QXQ)◦(P+QY QZP )◦P = 0

we can get

ϕ(QXQ,QY Q,QZP ) = ϕ(QXQ,QY QZP,P )

= ϕ(QXQYQZP,P, P ) = ϕ(QXQY QZP, I, P ) =
1

2
ϕ(QXQYQZP, I, I).

By QXQ ◦QYQ ◦ PZP = 0 we have

ϕ(QXQ,QY Q,PZP ) = 0.
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Therefore,

ϕ(QXQ,QY Q,Z) =
1

2
ϕ(ZQY QXQ, I, I) +

1

2
ϕ(QXQY QZ, I, I). (4.6)

Step 3. Considering PXP ◦ (P +QY P ) ◦ (QZQY P −QZQ) = 0 and (PXP +QZQY PXP ) ◦ I ◦ (Q−
QZQY P ) = 0, and applying (4.2) we obtain

ϕ(PXP,QY P,QZQ) = ϕ(PXP,P,QZQY P )

= ϕ(PXP, I,QZQY P ) = ϕ(QZQY PXP, I,Q) =
1

2
ϕ(QZQY PXP, I, I).

It is easy to check that

ϕ(PXP,QY P,QZP ) = 0,

ϕ(PXP,QY P, PZQ) = 0,

ϕ(PXP,QY P, PZP ) = 0.

Now we claim that

ϕ(PXP,QY P,Z) =
1

2
ϕ(QZQY PXP, I, I). (4.7)

Step 4. From (PXP+PXPY Q)◦(Q−PY Q)◦QZQ = 0 and (P+PXPY Q)◦I◦(PXPY QZQ−QZQ) =

0, and applying (4.4) we get

ϕ(PXP,PY Q,QZQ) = ϕ(PXPY Q,Q,QZQ) = ϕ(PXPY Q, I,QZQ)

= ϕ(P, I, PXPY QZQ) = ϕ(PXPY QZQ, I,Q).

Taking into account (4.2), we obtain

ϕ(PXP,PY Q,QZQ) = ϕ(PXPY QZQ, I,Q) =
1

2
ϕ(PXPY QZQ, I, I).

We can also get

ϕ(PXP,PY Q,QZP ) = 0,

ϕ(PXP,PY Q,PZQ) = 0,

ϕ(PXP,PY Q,PZP ) = 0.

Thus we have

ϕ(PXP,PY Q,Z) =
1

2
ϕ(PXPY QZQ, I, I). (4.8)

Step 5. Similarly, from (Q−PXQ) ◦ (PY P +PY PXQ) ◦PZP = 0 and Q ◦ (Q−PY PXQ) ◦ (PZP +

PZPY PXQ) = 0 we obtain

ϕ(PXQ,PY P, PZP ) = ϕ(Q,PY PXQ,PZP ) = ϕ(Q,Q,PZPY PXQ)

= ϕ(Q, I, PZPY PXQ) = ϕ(PZPY PXQ, I, P ) =
1

2
ϕ(PZPY PXQ, I, I).
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It is not difficult to verify

ϕ(PXQ,PY P,QZP ) = 0,

ϕ(PXQ,PY P, PZQ) = 0,

ϕ(PXQ,PY P,QZQ) = 0.

Therefore,

ϕ(PXQ,PY P,Z) =
1

2
ϕ(PZPY PXQ, I, I). (4.9)

Step 6. We can routinely compute that (P + PXQ) ◦ (PXQY Q − QY Q) ◦ QZQ = 0 and P ◦ (P +

PXQY Q) ◦ (PXQY QZQ−QZQ) = 0. This implies that

ϕ(PXQ,QY Q,QZQ) = ϕ(P, PXQY Q,QZQ) = ϕ(P, I, PXQY QZQ),

and hence by (4.4) and (4.2) we get

ϕ(PXQ,QY Q,QZQ) = ϕ(PXQY QZQ, I,Q) =
1

2
ϕ(PXQY QZQ, I, I).

Obviously,

ϕ(PXQ,QY Q,QZP ) = 0,

ϕ(PXQ,QY Q,PZP ) = 0,

ϕ(PXQ,QY Q,PZQ) = 0.

As a consequence,

ϕ(PXQ,QY Q,Z) =
1

2
ϕ(PXQY QZQ, I, I). (4.10)

Step 7. Likewise, using (PY QXQ−QXQ) ◦ (P +PY Q) ◦PZP = 0 and (Q−PY QXQ) ◦ I ◦ (PZP +

PZPY QXQ) = 0, we can also get

ϕ(QXQ,PY Q,PZP ) = ϕ(PY QXQ,P, PZP ) = ϕ(PY QXQ, I, PZP )

= ϕ(Q, I, PZPY QXQ) = (PZPY QXQ, I, P ) =
1

2
ϕ(PZPY QXQ, I, I).

Moreover,

ϕ(QXQ,PY Q,QZP ) = 0,

ϕ(QXQ,PY Q,QZQ) = 0,

ϕ(QXQ,PY Q,PZQ) = 0.

Therefore,

ϕ(QXQ,PY Q,Z) =
1

2
ϕ(PZPY QXQ, I, I). (4.11)

Step 8. Since (P+QXP )◦(QYQXP−QY Q)◦QZQ = 0 and P◦(P+QYQXP )◦(QZQY QXP−QZQ) =

0, we have

ϕ(QXP,QY Q,QZQ) = ϕ(P,QY QXP,QZQ) = ϕ(P, P,QZQY QXP )

= ϕ(P, I,QZQY QXP ).
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Considering (4.2) and (4.3), we obtain

ϕ(QXP,QY Q,QZQ) = ϕ(P, I,QZQY QXP ) = ϕ(QZQY QXP, I,Q)

=
1

2
ϕ(QZQY QXP, I, I).

Obviously,

ϕ(QXP,QY Q,QZP ) = 0,

ϕ(QXP,QY Q,PZP ) = 0,

ϕ(QXP,QY Q,PZQ) = 0.

Hence,

ϕ(QXP,QY Q,Z) =
1

2
ϕ(QZQY QXP, I, I). (4.12)

Step 9. Similarly, from (QXQY P −QXQ) ◦ (P +QY P ) ◦PZP = 0 and (Q−QXQY P ) ◦ I ◦ (PZP +

QXQY PZP ) = 0 we get

ϕ(QXQ,QY P, PZP ) = ϕ(QXQY P,P, PZP ) = ϕ(Q, I,QXQY PZP )

= ϕ(QXQY PZP, I, P ) =
1

2
ϕ(QXQY PZP, I, I).

It is easy to check that

ϕ(QXQ,QY P,QZP ) = 0,

ϕ(QXQ,QY P, PZQ) = 0,

ϕ(QXQ,QY P,QZQ) = 0.

Now we have

ϕ(QXQ,QY P,Z) =
1

2
ϕ(QXQY PZP, I, I). (4.13)

Step 10. Likewise, by (Q−QXP ) ◦ (PY P +QXPY P ) ◦ PZP = 0 and Q ◦ (Q−QXPY P ) ◦ (PZP +

QXPY PZP ) = 0 we obtain

ϕ(QXP,PY P, PZP ) = ϕ(Q,QXPY P, PZP ) = ϕ(Q,Q,QXPY PZP )

= ϕ(Q, I,QXPY PZP ) = ϕ(QXPY PZP, I, P ) =
1

2
ϕ(QXPY PZP, I, I).

Particularly,

ϕ(QXP,PY P,QZP ) = 0,

ϕ(QXP,PY P, PZQ) = 0,

ϕ(QXP,PY P,QZQ) = 0.

Consequently,

ϕ(QXP,PY P,Z) =
1

2
ϕ(QXPY PZP, I, I). (4.14)

152



HAN/Turk J Math

In view of Eqs. (4.1) and (4.5)–(4.14), we have

ϕ(X,Y, Z) =ϕ(PXP,PY P,Z) + ϕ(QXQ,QY Q,Z) + ϕ(PXP,PY Q,Z) + ϕ(PXP,QY P,Z)

+ ϕ(PXQ,QY Q,Z) + ϕ(PXQ,PY P,Z) + ϕ(PXQ,QY P,Z) + ϕ(QXQ,PY Q,Z)

+ ϕ(QXQ,QY P,Z) + ϕ(QXP,PY Q,Z) + ϕ(QXP,QY Q,Z) + ϕ(QXP,PY P,Z)

=
1

2
ϕ(PXPY PZ, I, I) +

1

2
ϕ(ZPY PXP, I, I)

+
1

2
ϕ(QXQYQZ, I, I) +

1

2
ϕ(ZQY QXQ, I, I)

+
1

2
ϕ(PXPY QZQ, I, I) +

1

2
ϕ(QZQY PXP, I, I)

+
1

2
ϕ(PXQY QZQ, I, I) +

1

2
ϕ(PZPY PXQ, I, I)

+
1

2
ϕ(QXQY PZP, I, I) +

1

2
ϕ(PZPY QXQ, I, I)

+
1

2
ϕ(QXPY PZP, I, I) +

1

2
ϕ(QZQY QXP, I, I)

=
1

2
ϕ(PXPY PZ, I, I) +

1

2
ϕ(ZPY PXP, I, I)

+
1

2
ϕ(QXQYQZ, I, I) +

1

2
ϕ(ZQY QXQ, I, I)

+
1

2
ϕ(PXPY QZ, I, I) +

1

2
ϕ(ZQY PXP, I, I)

+
1

2
ϕ(PXQY QZ, I, I) +

1

2
ϕ(ZPY PXQ, I, I)

+
1

2
ϕ(QXQY PZ, I, I) +

1

2
ϕ(ZPY QXQ, I, I)

+
1

2
ϕ(QXPY PZ, I, I) +

1

2
ϕ(ZQY QXP, I, I),

and so ϕ(X,Y, Z) = 1
2ϕ(XY Z, I, I) +

1
2ϕ(ZY X, I, I). If we define the R -linear mapping T : G → W by

T (Z) = 1
2ϕ(Z, I, I) for all Z ∈ G , then T satisfies all the requirements in the definition of zero Jordan triple

product determined algebras. Thus, G is a zero Jordan triple product determined algebra.

Conversely, assume G is a zero Jordan triple product determined algebra. Let W be an R -module

and ψ : A × A × A → W be an R -trilinear map such that for all a1, a2, a3 ∈ A, a1 ◦ a2 ◦ a3 = 0 implies

ψ(a1, a2, a3) = 0. Define an R -trilinear map ϕ : G × G × G → W by ϕ(X ′, Y ′, Z ′) = ψ(a1, a2, a3) where

X ′ =

(
a1 m1

n1 b1

)
, Y ′ =

(
a2 m2

n2 b2

)
, Z ′ =

(
a3 m3

n3 b3

)
∈ G . If X ◦ Y ◦ Z = 0, then ϕ(X,Y, Z) = 0.

Since G is a zero Jordan triple product determined algebra, there is an R -linear map T : G → W such

that ϕ(X ′, Y ′, Z ′) = T (X ′ ◦ Y ′ ◦ Z ′) for all X ′, Y ′, Z ′ ∈ G . Define an R -linear map T1 : A → W by

T1(a) = T

(
a 0
0 0

)
for all a ∈ A . Therefore, ψ(a1, a2, a3) = T1(a1 ◦ a2 ◦ a3) for all a1, a2, a3 ∈ A . Thus, A is
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a zero Jordan triple product determined algebra. Similarly, we can show that B is a zero Jordan triple product

determined algebra. The proof is completed.

A direct consequence of this theorem is the following:

Corollary 4.2 T U (resp. TL ) is a zero Jordan triple product determined algebra if and only if A and B are

zero Jordan triple product determined algebras.

By Theorem 4.1, we can also get the following corollary.

Corollary 4.3 Tn(A)(resp. T ′
n(A)) is a zero Jordan triple product determined algebra if and only if A is a

zero triple product determined algebra.

Corollary 4.4 Let Bd̄
n(A)(resp. B

′d̄
n (A)) be a block upper triangular matrix algebra, where d̄ = (d1, · · · , di, · · · ,

dm) ∈ Nm . Then we have

(a) If A is zero Jordan triple product determined algebra, then Bd̄
n(A)(resp. B

′d̄
n (A)) is a zero Jordan triple

product determined algebra.

(b) If dj = 1 for some 1 ≥ j ≥ m , then Bd̄
n(A)(resp. B′d̄

n (A)) is a zero Jordan triple product determined

algebra if and only if A is a zero Jordan triple product determined algebra.
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