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1. Introduction

Let Fq , be the Galois field of order q = ps , where p is a prime and s is a natural number, and F∗
q be its

multiplicative group. Let P (x) be a monic irreducible polynomial of degree n over Fq and β be a root of

P (x). The field Fq(β) = Fqn is an n -dimensional extension of Fq and can be considered as a vector space of

dimension n over Fq . The Galois group of Fqn over Fq is cyclic and is generated by the Frobenius mapping

σ(α) = αq , α ∈ Fqn . A normal basis of Fqn over Fq is a basis of the form N = {α, αq, ..., αqn−1} , i.e. a

basis that consists of the algebraic conjugates of a fixed element α ∈ F∗
qn . Recall that an element α ∈ Fqn

is said to generate a normal basis over Fq if its conjugates form a basis of Fqn as a vector space over Fq .

For our convenience we call a generator of a normal basis a normal element. A monic irreducible polynomial

F (x) ∈ Fq[x] is called normal polynomial or N -polynomial if its roots form a normal basis or, equivalently,

if they are linearly independent over Fq . The elements in a normal basis are exactly the roots of some N -

polynomial. Hence, an N -polynomial is just another way of describing a normal basis. It is well known that

such a basis always exists and any element of N is a generator of N (the normal basis theorem, see [4], Theorem

1.4.1).

The construction of N -polynomials over any finite field is a challenging mathematical problem. Interest

in N -polynomials stems both from mathematical theory and practical applications such as coding theory and

several cryptosystems using finite fields. The problem in general is: given an integer n and the ground field

Fq , construct a normal basis of Fqn over Fq , or, equivalently, construct an N -polynomial in Fq[x] of degree n

by providing an efficient construction method.

Some results regarding constructions of special sequences (Fk(x))k≥0 of normal polynomials over Fq can

be found in [2, 4, 6, 7, 9] and [10, 11]. All constructions are considered as computationally easy and explicit.

Cohen [3] and McNay [8] gave iterative constructions of irreducible polynomials of 2-power degree over finite
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fields of odd characteristics. Meyn [10] and Chapman [2] showed that these polynomials are N -polynomials.

Another family of N -polynomials of degree 2k was suggested by Gao [4], who constructed specific sequences

(Fk(x))k≥0 of N -polynomials of degree pk+2 over Fp . In these constructions he used substitutions introduced

earlier by Varshamov [13]. Kyuregyan in [6, 7] proposed a rather more general iterative technique of constructing

sequences (Fk(x))k≥0 of N -polynomials of degree pk+2 over Fq compared with the ones given by Gao [4] and

Scheerhorn [11]. While in the constructions of N -polynomials over F2S suggested by Gao [4] and Scheerhorn

[11] the initial polynomial is a quadratic normal polynomial, in constructions suggested by Kyuregyan in [7] the

initial polynomial is a normal polynomial of arbitrary degree.

In this paper, a computationally simple and explicit construction of sequences (Fk(x))k≥0 of normal

polynomials and (Fk(x+ 1))k≥0 of self-reciprocal normal polynomials over F2s is presented. For this, we will

show that all members of the sequence (Fk(x))k≥0 defined by polynomials Fk(x) ∈ F2s [x] of degree n2k that

are constructed by iterated application of the polynomial composition Fk(x) = xn2kFk−1(
x2+x+1

x2 ), k ≥ 0, for

a suitable chosen initial normal polynomial F0(x) ∈ F2s [x] of degree n , for which the polynomial F0(x+ 1) is a

self-reciprocal normal polynomial, are N -polynomials and the polynomials Fk(x+ 1) are self-reciprocal normal

polynomials over F2s . Such a sequence of polynomials define a sequence of extension fields F
2sn2k whose union

is denoted by F2sn2∞ = ∪k≥0F2sn2k .

2. Preliminary notes

We need the following normality results for our further study.

Let p denote the characteristic of Fq and let n = n1p
e = n1t , with gcd(p, n1) = 1, and suppose that

xn − 1 has the following factorization in Fq[x] :

xn − 1 = (xn1 − 1)t = (φ1(x)φ2(x) · · ·φr(x))
t, (1)

where φi(x) ∈ Fq[x] are the distinct irreducible factors of xn1 − 1. For 1 ≤ i ≤ r , let

ϕi(x) =
xn − 1

φi(x)
. (2)

We assume that ϕi(x) has degree mi for 1 ≤ i ≤ r . Furthermore, we will need Schwartz’s theorem in [12] (see

also [9], Theorem 4.18), which allows us to check whether an irreducible polynomial is N -polynomial.

Proposition 2.1 ([9], Theorem 4.18) Let F (x) be an irreducible polynomial of degree n over Fq and α be a

root of F (x) . Let xn − 1 factor as (1) and let ϕi(x) be as in (2). Then F (x) is N -polynomial over Fq if and

only if

Lϕi(α) ̸= 0 for i = 1, 2, . . . , r

where Lϕi(x) is the linearized polynomial defined by

Lϕi(x) =

mi∑
v=0

tivx
qv if ϕi(x) =

mi∑
v=0

tivx
v.
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A result by Jungnickel in [5] states when an element of Fq is a normal bases generator. We can restate it as

follows.

Lemma 2.2 Let f(x) =
∑n

i=0 cix
i be N -polynomial of degree n over Fq . Suppose g(x) = f(x−a

b ) , where

a, b ∈ Fq and b ̸= 0 . Then g(x) is N -polynomial if and only if na− b cn−1

cn
̸= 0.

Proof Let n = n1p
e = n1t , and then by (1), xn − 1 has the following factorization in Fq[x] :

xn − 1 = (xn1 − 1)t = (φ1(x)φ2(x) · · ·φr(x))
t,

where φ1(x) = x− 1. Set for i = 2, 3, . . . , r

ϕi(x) =
xn − 1

φi(x)

= (x− 1)tsi(x)

= (x− 1)s′i(x),

where

s′i(x) = (x− 1)t−1si(x) =

m′
i∑

v=0

t′ivx
v.

Hence,

ϕi(x) =

m′
i∑

v=0

t′ivx
v+1 −

m′
i∑

v=0

t′ivx
v.

Since f(x) is N -polynomial, then by Proposition 2.1 we have Lϕi(α) ̸= 0 for each i = 1, 2, . . . , r , where

α is a root of f(x). We need to show that Lϕi(a+ bα) ̸= 0 is also true for each i = 2, 3, . . . , r , where a+ bα

is a root of g(x). Since

Lϕi(a+ bα) =

m′
i∑

v=0

t′iv(a+ bα)q
v+1

−
m′

i∑
v=0

t′iv(a+ bα)q
v

,

we have

Lϕi(a+ bα) = a

m′
i∑

v=0

t′iv + b

m′
i∑

v=0

t′ivα
qv+1

− a

m′
i∑

v=0

t′iv − b

m′
i∑

v=0

t′ivα
qv

= b(

m′
i∑

v=0

t′ivα
qv+1

−
m′

i∑
v=0

t′ivα
qv )

= bLϕi(α) ̸= 0, (3)

and hence, for g(x) to be an N -polynomial, it suffices to solve the condition Lϕ1(a + bα) ̸= 0. On the other

hand, we have

ϕ1(x) =
xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x+ 1 =

n−1∑
i=0

xi.
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So:

Lϕ1
(a+ bα) =

n−1∑
i=0

(a+ bα)q
i

=

n−1∑
i=0

a+ b

n−1∑
i=0

αqi

= na+ bTrqn|q(α) = na− b
cn−1

cn
,

(4)

which is nonzero by hypothesis. This completes the proof. 2

In the following propositions a family of irreducible polynomials of degree n2k over F2s is suggested. We

will use them in the proof of our results.

Proposition 2.3 ([1], Theorem 2.2) Recalling the definitions of P ∗ and P ∗′
, let P (x) =

∑n
i=0 cix

i be an

irreducible polynomial over F2s of degree n . Then

F (x) = x2nP (
x2 + δ0x+ δ1

x2
), δ0, δ1 ∈ F∗

2s

is an irreducible polynomial of degree 2n over F2s if and only if

Tr2s|2(
δ1
δ20

(
P ∗′(0)

P ∗(0)
+ n)) ̸= 0.

Proposition 2.4 ([1], Theorem 3.1) Let P (x) be an irreducible polynomial of degree n over F2s . Define

F0(x) = P (x),

Fk(x) = xn2kFk−1(
x2 + x+ 1

x2
) k ≥ 1. (5)

Suppose that

Tr2s|2(
P ′(1)

P (1)
) · Tr2s|2(

P ∗′(0)

P ∗(0)
+ n) ̸= 0.

Then (Fk(x))k≥1 is a sequence of irreducible polynomials over F2s of degree n2k .

3. Construction of N -polynomials over finite fields

In this section we establish theorems that will show how Propositions 2.3 and 2.4 can be applied to produce

N -polynomials over F2s .

Theorem 3.1 Let P (x) =
∑n

i=0 cix
i , with P (x) ̸= x an N -polynomial of degree n over F2s such that P (x+1)

is a self-reciprocal polynomial over F2s . Also let

F (x) = x2nP (
x2 + x+ 1

x2
). (6)
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Then F (x) is an N -polynomial of degree 2n over F2s , if and only if

Tr2s|2(
cn−1

cn
+ n) ̸= 0.

Proof Recall the definition of Ordα,σ . Since P (x) is an irreducible polynomial over F2s , Proposition 2.3

and the hypothesis imply that F (x) is irreducible over F2s . Let α ∈ F2sn be a root of P (x). Since P (x) is an

N -polynomial of degree n over F2s by the hypothesis, α ∈ F2sn is a normal element over F2s and hence has

order Ordα,σ(x) = xn − 1.

Let n = n12
e , where n1 is a nonnegative integer with gcd(n1, 2) = 1 and e ≥ 0. For convenience we

denote 2e by t . Let xn − 1 have the following factorization in F2s [x] :

xn − 1 = (φ1(x)φ2(x) · · ·φr(x))
t, (7)

where the polynomials φi(x) ∈ Fq[x] are the distinct irreducible factors of xn1 − 1. Set

ϕi(x) =
(xn − 1)

φi(x)
=

mi∑
v=0

tivx
v, i = 1, 2, . . . , r. (8)

By the hypothesis cn−1

cn
+ n ̸= 0, and so by Lemma 2.2, P (x+ 1) is a normal polynomial.

Now we proceed by proving that F (x) is a normal polynomial. Let α1 be a root of F (x).

We only need to show that the σ -order of α1 is

Ordα1,σ(x) = x2n − 1.

Note that by (7) the polynomial x2n − 1 has the following factorization in F2s [x] :

x2n − 1 = (φ1(x) · φ2(x) · · · · · φr(x))
2t,

where φi(x) ∈ F2s [x] are distinct irreducible factors of xn1 − 1. Let

Hi(x) =
x2n − 1

φi(x)
,

or

Hi(x) =
x2n − 1

φi(x)
= (xn + 1) · x

n − 1

φi(x)
.

By (8) we obtain

Hi(x) = (xn + 1) · ϕi(x).

Hence, since ϕi(x) =
∑mi

v=0 tivx
v , i = 1, 2, . . . , r , we have

Hi(x) =

mi∑
v=0

tiv(x
n+v + xv).

It follows that

LHi(α1) =

mi∑
v=0

tiv(α1
2sn + α1)

2sv . (9)
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Note that, according to Proposition 2.1, to complete the proof of the theorem we only need to show that

LHi(α1) ̸= 0 for each i = 1, 2, . . . , r.

From (6), if α1 is a zero of F (x), then α1
2+α1+1
α1

2 is a zero of P (x). It may thus be assumed that

α =
α1

2 + α1 + 1

α1
2

,

where α is a root of P (x). It follows that

α+ 1 =
α1 + 1

α1
2

=
1

α1
+

1

α1
2
. (10)

Now, by (10) and observing that P (x) is an irreducible polynomial of degree n over F2s , we obtain

α+ 1 = (α+ 1)
2sn

= (
1

α1
+

1

α1
2
)
2sn

. (11)

It follows from (10) and (11) that

(
1

α1
+ (

1

α1
)
2sn

)

2

= (
1

α1
+ (

1

α1
)
2sn

). (12)

It is clear that ( 1
α1

+ ( 1
α1

)
2sn

) ̸= 0.

Hence, it follows from (12) that 1
α1

+ ( 1
α1

)
2sn

= 1. Therefore,

α1
2sn =

α1

1 + α1
. (13)

Now by (10) and (13), we can obtain

α1
2sn + α1 =

1

α+ 1
. (14)

Thus, by (9) and (14), we have

LHi(α1) =

mi∑
v=0

tiv(
1

α+ 1
)2

sv

. (15)

Since 1
α+1 is a zero of the normal polynomial (P (x+ 1))

∗
, therefore LHi(α1) ̸= 0. Hence, F (x) is a normal

polynomial of degree 2n over F2s , and the proof is completed. 2

4. Recurrent methods for constructing normal polynomials

In this section we describe a computationally simple and explicit recurrent method for constructing higher

degree normal polynomials over finite fields F2s starting from a normal polynomial. We begin by establishing

the following theorem.
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Theorem 4.1 Let P (x) =
∑n

i=0 cix
i , with P (x) ̸= x an N -polynomial of degree n over F2s such that P (x+1)

is a self-reciprocal polynomial over F2s . Define

F0(x) = P (x),

Fk(x) = xn2kFk−1(
x2 + x+ 1

x2
) k ≥ 1. (16)

Then (Fk(x))k≥0 and (Fk(x+ 1))k≥0 are the sequences of N -polynomials and self-reciprocal N -polynomials of

degree n2k over F2s , respectively, if and only if

Tr2s|2(
P ′(1)

P (1)
) · Tr2s|2(

cn−1

cn
+ n) ̸= 0,

where P
′
(1) is the formal derivative of P (x) at point 1.

Proof It is easy to check that the polynomial Fk(x + 1), for each k ≥ 1, is self-reciprocal by using the

definitions. According to Proposition 2.4 for each k ≥ 1, Fk(x) is an irreducible polynomial over F2s .

Consequently, (Fk(x+ 1))k≥0 is a sequence of irreducible polynomials over F2s . The proof of normality of

the irreducible polynomial Fk(x) for each k ≥ 1 is done by mathematical induction on k .

For k = 1, F1(x) is a normal polynomial according to Theorem 3.1.

For k ≥ 2, we show that Fk(x) is also a normal polynomial. To this end we need to show that the

hypothesis of Theorem 3.1 is satisfied. However, by induction hypothesis, we have Fk−1(x) as a normal

polynomial and Fk−1(x+1) as a self-reciprocal polynomial. Thus, by Theorem 3.1, Fk(x) is a normal polynomial

if and only if

Tr2s|2(
F ∗
k−1

′(0)

F ∗
k−1(0)

+ 2k−1n) ̸= 0,

or

Tr2s|2(
F ∗
k−1

′(0)

F ∗
k−1(0)

) ̸= 0.

However, from (16), we have

F ∗
k−1(x) = xn2(k−1)

Fk−1(
1

x
)

= xn2(k−1)

((
1

x
)
n2(k−1)

Fk−2(
( 1x )

2
+ ( 1x ) + 1

( 1x )
2 )

= Fk−2(x
2 + x+ 1). (17)

So
F ∗
k−1(0) = Fk−2(1) (18)

and

F ∗
k−1

′(0) = F ′
k−2(1). (19)
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On the other hand:

F ′
k−1(x) = xn2(k−1)−2F ′

k−2(
x2 + x+ 1

x2
). (20)

So

F ′
k−1(1) = F ′

k−2(1). (21)

Using (19) and (21), we get

F ∗
k−1

′(0) = P ′(1). (22)

Obviously by (16)

Fk−1(1) = Fk−2(1). (23)

So (18) and (23) imply that

F ∗
k−1(0) = P (1). (24)

Hence, by (22) and (24) we obtain

Tr2s|2(
F ∗
k−1

′(0)

F ∗
k−1(0)

) = Tr2s|2(
P ′(1)

P (1)
), (25)

which is not equal to zero by the hypothesis of the theorem and so (Fk(x))k≥0) is a sequence of N -polynomials

of degree n2k over F2s . Finally, we note that by Lemma 2.2, for every k ≥ 1, Fk(x+1) is an N -polynomial if

and only if F ∗
k
′(0) ̸= 0. Thus, (22) and the hypothesis of the theorem imply that (Fk(x+ 1))k≥0 is a sequence

of self-reciprocal N -polynomials of degree n2k over F2s . The theorem is proved. 2

Example 4.2 Consider the normal polynomial P (x) = x2+x+1 over F2 . It is easy to see that the assumptions

of Theorem 4.1 are fulfilled. Therefore, the composite polynomials

F1(x) = x4P (
x2 + x+ 1

x2
) = x4 + x3 + 1

and

F2(x) = x8F1(
x2 + x+ 1

x2
)

= x8 + x7 + x5 + x4 + x3 + x2 + 1

are normal polynomials over F2 . Furthermore, the polynomials

F1(x+ 1) = x4 + x3 + x2 + x+ 1

and

F2(x+ 1) = x8 + x7 + x6 + x4 + x2 + x+ 1

are self-reciprocal normal polynomials over F2 . Obviously, Theorem 4.1 describes a computationally simple

and explicit recurrent method for constructing normal and self-reciprocal normal polynomials, so computing the

normal and self-reciprocal normal polynomials Fk(x) and Fk(x + 1) , respectively, for k ≥ 3 is not a complex

problem.
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