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Abstract: In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We
prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some
applications of this result. We get a necessary and sufficient condition for a proper hemi-slant submanifold to be a
hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two
characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality
involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product

Riemannian manifolds.
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1. Introduction
Study of slant submanifolds was initiated by Chen [8], as a generalization of both holomorphic and totally real

submanifolds of a Kahler manifold. Slant submanifolds have been studied in different kind of structures: almost
contact [13], neutral Kéhler [1], Lorentzian Sasakian [2], and Sasakian [6] by several geometers. N. Papaghiuc

[14] introduced semi-slant submanifolds of a Kéhler manifold as a natural generalization of slant submanifold.
Carriazo [7], introduced bi-slant submanifolds of an almost Hermitian manifold as a generalization of semi-slant
submanifolds. One of the classes of bi-slant submanifolds is that of anti-slant submanifolds, which are studied
by Carriazo [7]. However, Sahin [18] called these submanifolds hemi-slant submanifolds because the name anti-
slant indicates it has no slant factor. We observe that a hemi-slant submanifold is a special case of generic
submanifold introduced by Ronsse [16]. Since then many geometers have studied hemi-slant submanifolds in
different kinds of structures: Kahler [3, 18], nearly Kahler [21], generalized complex space form [20], and almost
Hermitian [19]. In some cases, we should note that hemi-slant submanifolds are also studied under the name
pseudo-slant submanifolds; see [11] and [21]. Furthermore, the submanifolds of a locally product Riemannian
manifold have been studied by many geometers. For example, Adati [I] defined and studied invariant and
anti-invariant submanifolds, while Bejancu [5] and Pitis [15] studied semi-invariant submanifolds. Slant and
semi-slant submanifolds of a locally product Riemannian manifold are examined by Sahin [17] and Li and Liu
[12]. In this paper, we study the geometry of hemi-slant submanifolds of a locally product Riemannian manifold
in detail.

*Correspondence: hakmete@istanbul.edu.tr
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2. Preliminaries
This section is devoted to preliminaries. Actually, in subsection 2.1 we present the basic background needed
for a locally product Riemannian manifold. Theory of submanifolds and distributions related to the study are

given in subsection 2.2.

2.1. Locally product Riemannian manifolds

Let M be an m-dimensional manifold with a tensor field of type (1,1) such that
F?2=1,(F#%I) , (2.1)

where I is the identity morphism on the tangent bundle TM of M. Then we say that M is an almost product
manifold with almost product structure F. If an almost product manifold (M, F) admits a Riemannian metric
g such that

g(FU,FV) =g(U,V) (2.2)
for all U,V € TM, then M is called an almost product Riemannian manifold.

Next, we denote by V the Riemannian connection with respect to g on M. We say that M is a locally

product Riemannian manifold, (briefly, l.p.R. manifold) if we have
(Vg F)V =0, (2.3)
for all U,V € TM [22].

2.2. Submanifolds
Let M be a submanifold of a L.p.R. manifold (M,g,F). Let V,V, and V' be the Riemannian, induced

Riemannian, and induced normal connection in M, M and the normal bundle T+ M of M, respectively. Then
for all U,V € TM and &€ € T*M the Gauss and Weingarten formulas are given by

VoV =VyV + h(U,V) (2.4)

and
Vué=—-AU + Vi (2.5)

where h is the second fundamental form of M and A is the Weingarten endomorphism associated with §.
The second fundamental form h and the shape operator A are related by

g(h(U,V),€) = g(AeU, V) . (2.6)

A submanifold M is said to be totally geodesic if its second fundamental form vanishes identically, that
is, h =0, or equivalently A = 0. We say that M is totally umbilical submanifold in M if for all U,V € TM

we have
h(U, V) =g(U,V)H , (2.7)
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where H is the mean curvature vector field of M in M. A normal vector field ¢ is said to be parallel, if
V€ =0 for each vector field U € TM.

The Riemannian curvature tensor R of M is given by
R(U,V)= [V, Vy] =V, (2.8)

where U,V € TM.
Then the Codazzi equation is given by

(R, V)W) = (Vuh)(V, W) — (Vv h)(U, W) (2.9)

for all U V, W € TM . Here, 1 denotes the normal component and the covariant derivative of h, denoted by
Vuh is defined by

(Vuh)(V,W) = VEh(V, W) = h(VuV, W) = h(V, VyW). (2.10)

Now, we write

FU=TU + NU , (2.11)

for any U € TM . Here TU is the tangential part of FU, and NU is the normal part of FU. Similarly, for any
e T+M, we put
FE& =t6 + wé | (2.12)

where t£ is the tangential part of F§, and wf is the normal part of F¢&.

A distribution D on a manifold M is called autoparallel if VxY € D for any X,Y € D and called
parallel if VyX € D for any X € D and U € TM. If a distribution D on M is autoparallel, then it is
clearly integrable, and by Gauss formula D is totally geodesic in M. If D is parallel then the orthogonal
complementary distribution D~ is also parallel, which implies that D is parallel if and only if D+ is parallel.
In this case M is locally product of the leaves of D and DL. Let M be a submanifold of M. For two
distributions D; and Dy on M, we say that M is (D;,D3) mixed totally geodesic if for all X € D; and
Y € Dy we have h(X,Y) = 0, where h is the second fundamental form of M [20, 22].

3. Hemi-slant submanifolds of a locally product Riemannian manifold
In this section, we define the notion of hemi-slant submanifold and observe its effect on the tangent bundle
of the submanifold and canonical projection operators and start to study hemi-slant submanifolds of a locally

product Riemannian manifold.

Let (M,g,F) be a locally product Riemannian manifold and let M be a submanifold of M. A
distribution D on M is said to be a slant distribution if for X € D,, the angle 6 between FX and D,
is constant, i.e. independent of p € M and X € D,. The constant angle ¢ is called the slant angle of the slant
distribution D. A submanifold M of M is said to be a slant submanifold if the tangent bundle TM of M
is slant [12, 17]. Thus, the F'—invariant and F—anti-invariant submanifolds are slant submanifolds with slant
angle § =0 and 6 = 7/2, respectively. A slant submanifold that is neither F'—invariant nor F'—anti-invariant

is called a proper slant submanifold.
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Definition 3.1 A hemi-slant submanifold M of a locally product Riemannian manifold M is a submanifold

that admits two orthogonal complementary distributions D+ and D? such that

(a) TM admits the orthogonal direct decomposition TM = D+ & D?
(b) The distribution D+ is F—anti-invariant, i.e. FD+ C T+M.
(c) The distribution D is slant with slant angle 6.

In this case, we call 6 the slant angle of M. Suppose the dimension of distribution D+ (resp. DY ) is p

(resp. ¢ ). Then we easily see the following particular cases.

(d) If ¢ =0, then M is an anti-invariant submanifold [1].

(e) If p=0 and 6 =0, then M is an invariant submanifold [1].

(f) If p=0 and 6 # 0, %, then M is a proper slant submanifold [17].
(g) If 0 = T, then M is an anti-invariant submanifold.

(h) If p#0 and 8 =0, then M is a semi-invariant submanifold [5].
We say that the hemi-slant submanifold M is proper if p # 0 and 6 # 0, 3.

Lemma 3.2 Let M be a proper hemi-slant submanifold of a L.p.R. manifold M. Then we have,

F(D+) L N(DY) . (3.1)

Proof For any X € Dt and Z € DY, using (2.2) and (2.11), we have
g(FX,NZ)=g(FX,FZ) = g(X,Z) = 0. This completes the proof. O
In view of Lemma 3.2, for a hemi-slant submanifold M of a 1.p.R. manifold M, the normal bundle T"M

of M is decomposed as
T+M = F(DY) e N(D) @ pu (3.2)

where 1 is the orthogonal complementary distribution of F(D+) @ N(D?) in T+M and it is the invariant
subbundle of T+M with respect to F.
The following facts follow easily from (2.1), (2.11), and (2.12) and will be used later.

T? +tN =1, (3.3a)
w?+ Nt =1, (3.3b)
NT +wN =0, (3.3¢)
Tt+tw=0. (3.3d)
As in a slant submanifold [17], for a hemi-slant submanifold M of a L.p.R. manifold M, we have
T?Z = cos®07 , (3.4)
g(TZ, TW) = cos?*0g(Z, W) (3.5)
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and
g(NZ,NW) = sin’g(Z,W) , (3.6)

where Z, W € DY .
Here, we omit the proofs of equations (3.4)—(3.6), because the proof of (3.4) is the same as the proof of

Theorem 3.1 of [17] and the other proofs are also the same as the proofs of equations (3.3) and (3.4) in Lemma
3.1 of [17].

Lemma 3.3 Let M be a proper hemi-slant submanifold of a L.p.R. manifold M. Then we have,
(D) = {0}, (3.7a)
T(D% = D°. (3.7b)

Proof Since D' is anti-invariant with respect to F', (a) follows from (2.11). For any Z € DY and X € D+,
using (2.1), (2.2), and (2.11), we have ¢(TZ,X) = g(FZ,X) = ¢g(Z,FX) = 0. Hence, we conclude that
T(D%) L D+. Since T(DY) C TM, it follows that T(D?) C DY. Let W be in D?. Then using (3.4), we have
W = —L5(cos?0W) = —L-T?W = —L_T(TW). Therefore, we find W € T(D?). It follows that DY C T(D?).

cos?6 cos?6 cos?6
Thus, we get the assertion (b). O
Thanks to Theorem 3.1 [17], we characterize hemi-slant submanifolds of a 1.p.R. manifold.

Theorem 3.4 Let M be a submanifold of a l.p.R. manifold M. Then M is a hemi-slant submanifold if and
only if there exist a constant A € [0,1] and a distribution D on M such that

(a) D={UecTM | T?U = \U},
(b) for any X € TM orthogonal to D, TX = 0.
Moreover, in this case A = cos28, where 6 is the slant angle of M.
Proof Let M be a hemi-slant submanifold of M with anti-invariant distribution D+ and slant distribution
D?. Here, 6 is the slant angle of M ; in which case, we have TM = D+ @ D?. Then we can choose D as D’.
Moreover, we have A = cos?f thanks to (3.4). Hence, (a) follows. (b) follows from Lemma 3.3. Conversely, (a)
and (b) imply TM = D+ @ D. Since T(D) C D, we conclude that D+ is an anti-invariant distribution from
(D). O
Example. Consider the Euclidean 6-space RS with usual metric g. Define the almost product structure F' on
(R% g) by
0 0 0
=5 Fla-)=75-,
dz;” Oy dy;”  Ox;

F( i=1,2,3,

where (x1,22,23,Y1,Y2,y3) are natural coordinates of R®. Then M = (RS g,F) is an almost product
Riemannian manifold. Furthermore, it is easy to see that M is a L.p.R. manifold. Let M be a submanifold of
M defined by

woow
—,u+ v, —,—,0

f(u7v7w):( 7\1/L§ 3" V2’ )7 U#O

Sl
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Then a local frame of T'M is given by

0
X—T%,
_\/58351 \/58%2 3:53’

19 1o
B ﬂﬁyl \/iayQ.

By using the almost product structure F above, we see that FX is orthogonal to TM ; thus D+ = span{X}.
Moreover, it is not difficult to see that D? = span{Z, W} is a slant distribution with slant angle § = 7 /4.
Thus, M is a proper hemi-slant submanifold of M .

4. Integrability

In this section, we give a necessary and sufficient condition for the integrability of the slant distribution of the
hemi- slant submanifold. After that we prove that the anti invariant distribution of the hemi-slant submanifold

is always integrable and give some applications of this result.

Let M be a submanifold of a L.p.R. manifold M. For any U,V € TM, we have Vi FV = FVyV from
(2.3). Then, using (2.4-2.5), (2.11-2.12) and identifying the components from TM and T+M , we have the

following.

Lemma 4.1 Let M be a submanifold of a l.p.R. manifold M. Then we have
VuTV — AyyvU =TVyV +th(U,V), (4.1)

WU, TV) + VENV = NVyV +wh(U, V) . (4.2)

forall U,V € TM.

In a similar way, we have:

Lemma 4.2 Let M be a submanifold of a l.p.R. manifold M. Then we have
Vité— AyeU = —TAU +tVEE (4.3)
h(Ut€) + VEwé = —NAU +wVi € (4.4)

for any U € TM and & € T+M.

Theorem 4.3 Let M be a hemi-slant manifold of a Lp.R. manifold M. Then the slant distribution DY is
integrable if and only if

AngW — ANwZ +VzTW —VywTZ € D? (4.5)
for any Z,W € D?.
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Proof From (4.1), we have
VzTW — AnwZ =TVZW +th(Z,W) (4.6)

and
VwTZ — AnzW =TVwZ +th(W, Z) (4.7)

for any Z, W € DY. By (4.6) and (4.7), we get
ANZW—ANWZ+V2TW—VWTZ:T[Z, W] . (48)

Thus, our assertion follows from (3.7b) and (4.8). O

In the following we give an application of Theorem 4.3.

Theorem 4.4 Let M be a hemi-slant manifold of a Lp.R. manifold M . If M is DY -totally geodesic, then the

slant distribution D is integrable.

Proof Suppose that M is D?-totally geodesic, that is, for any Z, W € D we have

h(Z,W) = 0. (4.9)
By (4.1) and (4.9), we have
AnzW = VwTZ = -TVwZ (4.10)
and similarly
AnwZ —VzTW = =TV W . (4.11)

From (4.10) and (4.11), using Lemma 3.3, we get
9J(ANZW — ANwZ + VzTW —VwTZ, X) =g(T[Z, W], X) =0 (4.12)
for any X € D+. The last equation (4.12) says that
AngW — ANwZ +VzTW —VywTZ € D?

and by Theorem 4.3, we deduce that D? is integrable. O

Lemma 4.5 Let M be a hemi-slant submanifold of a l.p.R. manifold M. Then

ANXY = —ANyX (4.13)

for any X,Y € D+,
Proof For any X € D+ and U € TM, using (3.7a), we have

~TVyX = AyxU + th(U, X) (4.14)

274



TASTAN and OZDEMIR/Turk J Math

from (4.1). Let Y be in D+. Using (3.7b), we obtain
0= —g(TVyX,Y) = g(AnxU,Y) + g(th(U, X),Y) (4.15)
from (4.14). On the other hand, using (2.2), (2.6), (2.11), and (2.12), we find
g(th(U, X),Y) = g(AnyU, X). (4.16)
Thus, from (4.15) and (4.16), we deduce that
g(AnxY + Any X, U) = 0. (4.17)

This equation gives (4.13). O

Theorem 4.6 Let M be a hemi-slant submanifold of a l.p.R. manifold M . Then the anti-invariant distribution
D+ is integrable if and only if
AnxY = Any X (4.18)

for all X, Y € D*.
Proof From (4.1), using (3.7a), we have

“AnyX =TVxY +th(X,Y) (4.19)
for all X € D+. By interchanging X and Y in (4.19), then subtracting it from (4.19) we obtain
AnxY — Axy X = T[X,Y] . (4.20)

Because of (3.7a), we know that D is integrable if and only if T[X,Y] = 0 for all X,Y € D+. Thus, our
assertion comes from (4.20). O

By Lemma 4.5 and Theorem 4.6, we have the following result.

Corollary 4.7 Let M be a hemi-slant submanifold of a l.p.R. manifold M . Then the anti-invariant distribution
D+ is integrable if and only if
AnxY =0 (4.21)

for all X, Y € D*.

Now, we give the main result of this section.

Theorem 4.8 Let M be a hemi-slant submanifold of a I.p.R. manifold M . Then the anti-invariant distribution

D+ is always integrable.

Proof Let M be a Lp.R. manifold with Riemannian metric g and almost product structure F. Define the
symmetric (0,2)-type tensor field Q by Q(U,V) = g(FU,V) on the tangent bundle T'M . It is not difficult to
see that (Vg Q)(V,W) = g((VgF)V,W) on TM . Thus, because of (2.3), we deduce that

3dUV,W,U) =G(Vg)(V,W) =0
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for all U,V,W € TM, that is, dQ2 = 0, where G denotes the cyclic sum over U,V,W € TM . Next, for any
X,Y €Dt and U € TM we have

0=3d(U,X,Y)=UQX,Y)+XQY,U)+Y QU,X)
_Q([Ua X]’Y) - Q([Xv Y]’ U) - Q([K U]aX)
= g(T[Ya X]v U]) :

It follows that T[X,Y] = 0 and because of (3.7a), [V, X] € D+ . O

Corollary 4.9 Let M be a hemi-slant submanifold of a I.p.R. manifold M . Then the following facts hold:

AxypiD+ =0 (4.22)
ANXZ S l)e7 i.e., ANDLDG - Dg (423)

and
g(M(TM,D*),ND*) =0, (4.24)

where X € D+ and Z € DY.
Proof (4.22) follows from Corollary 4.7 and Theorem 4.8. (4.23) follows from (4.22). Finally, using (2.6),
(4.22) gives (4.24). O

Next, we give another application of Theorem 4.8.

Theorem 4.10 Let M be a proper hemi-slant submanifold of a Lp.R. manifold M. The anti-invariant
distribution D+ defines a totally geodesic foliation on M if and only if h(D-,D+)L NDY.

Proof For X,Y € DY, we put VxY = *VxY + ?VxY, where 1VxY (resp. VxY) denotes the anti-
invariant (resp. slant) part of VxY . Then using Lemma 3.3 and (3.5), for any Z € DY we have

9(VxY,2) = g(°VxY,Z) = S5 9TV xY,TZ) = 55 g(TVxY,TZ). (4.25)
On the other hand, from (4.1), we have
TVxY +th(X,)Y)=—-Any X =0, (4.26)
since the distribution D+ is integrable. Therefore, using (4.26), from (4.25), we get
9(VxY,Z) = - g(th(X,Y),TZ) = — L5 g(FM(X,Y),TZ). (4.27)

Here, using (2.2), (2.11), and (3.4), we find

g(Fh(X,Y),TZ) = g(h(X,Y),NTZ). (4.28)
From (4.27) and (4.28), we get

9(VxY,Z) = — L0 g(M(X,Y),NTZ). (4.29)
Since TZ € DY, our assertion comes from (4.29). O
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5. Hemi-slant product

In this section, we give a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant
product.

Definition 5.1 A proper hemi-slant submanifold M of a L.p.R. manifold M is called a hemi-slant product if it
is locally product Riemannian of an anti-invariant submanifold M, and a proper slant submanifold Mg of M .
Now, we are going to examine the problem when a proper hemi-slant submanifold of a l.p.R. manifold is

a hemi-slant product.

We first give a result that is equivalent to Theorem 4.10.

Theorem 5.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M . Then the anti-invariant D+
defines a totally geodesic foliation on M if and only if

g(ANyZ,X) = 7g(ANZ}/,X), (51)

where X, Y € D+ and Z € DY
Proof Forany X, Y € D+ and Z € DY, using (2.4), (2.2), and (2.3), we have

9(VxY,Z)=g(VxY,Z)=g(VNxFY,FZ).
Hence, using (2.11), (2.4), (2.5), and (2.2), we obtain
9(VxY,Z) = —g(Any X, TZ) + g(VxY,FNZ) + g(h(X,Y), FNZ).
Here, using (3.3c), (3.3a), (2.12), and (3.4), we have
FNZ =tNZ — NTZ and tNZ = Z — T?>Z = sin®0Z. Thus, with the help of (2.6), we get
9(VxY,Z) = —g(Any X, TZ) +sin®0g(VxY, Z) — g(Anr2Y, X).
After some calculations, we find
cos20g(VxY, Z) = —g(AnyTZ, X) — g(An72Y, X).
It follows that the distribution D+ defines a totally geodesic foliation on M if and only if
9(ANnyTZ, X) = —g(AnT2Y, X). (5.2)

Putting Z =TZ in (5.2), we obtain (5.1) and vice versa. O

Theorem 5.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M. Then the distribution DY
defines a totally geodesic foliation on M if and only if

JANxW, Z) = —g(Anw X, Z), (5.3)

where X € D+ and Z,W € DY

277



TASTAN and OZDEMIR/Turk J Math

Proof Using (2.4), (2.2), and (2.3), we have g(VzW, X) = g(VzFW,FX) for any Z,W € D? and X € D*.
Next, using (2.11) and (3.1), we obtain g(VzW, X) = —g(TW,VzNX) — g(NW,VzFX). Hence, using (2.5)
and (2.1), we get g(VzW, X) = g(TW,AyxZ) — g(FNW,VzX). With the help of (2.12), (3.3a), (3.3c), and

(2.4), we arrive at
g(VoW,X) = g(Anx Z,TW) —sin®0 g(Vz X, W) + g(h(X, Z), NTW).
Upon direct calculation, we find
cos?0 g(VzW,X) = g(AnxTW, Z) + g(Antw X, Z)
Therefore, we deduce that the slant distribution DY defines a totally geodesic foliation if and only if
9 ANxTW,Z) = —g(AnTw X, Z), (5.4)

By putting W = TW | we see that the last equation is equivalent to the equation (5.3). O

Thus, from Theorems 5.2 and 5.3, we obtain the expected result.

Corollary 5.4 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M. Then M is a hemi-slant
product manifold M = M, x My if and only if

AnxZ = ANz X, (5.5)
where X € D+ and Z € DY

6. Hemi-slant submanifolds with parallel canonical structures

In this section, we get several results for the hemi-slant submanifolds with parallel canonical structures using

the previous results.

Let M be any submanifold of a 1.p.R. manifold M with the endomorphism 7" and the normal bundle
valued 1-form N defined by (2.11). We put

(VuT)V =VyTV —TVyV (6.1)

and
(?UN)V = VﬁNV — NVyV (6.2)

for any U,V € TM. Then the endomorphism 7' (resp.l-form N) is parallel if VI' = 0 (resp. VN =0) .
From (4.1) and (4.2) we have
(ﬁUT)V =AnvU +th(U, V) (6.3)

and
(VuN)V =wh(U,V) - h(U,TV), (6.4)

respectively.
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Theorem 6.1 Let M be any submanifold of a Lp.R. manifold M. Then T is parallel, i.e. VT = 0 if and
only if
AnyU =0 (6.5)

foradl U,V € TM.
Proof For any U,V,W € TM from (6.3), we have

g(VwT)V,U) = g(AnvyW,U) 4 g(t (W, V), U).
Hence, using (2.12), (2.2), and (2.11), we obtain
g(VwT)V,U) = g(AnvW,U) + g(h(W, V), NU).
Since A is self-adjoint, with the help of (2.6), we get
g(VwT)V,U) = g(AnvU, W) + g(AxuV, W). (6.6)
Now let T' be parallel; then from (6.6) it follows that
AnyU = —AnpV (6.7)
for all U,V € TM. On the other hand, from (6.3), we have
AnvU = AnyV o, (6.8)

since h is a symmetric tensor field. Thus, (6.5) follows from (6.7) and (6.8).

From Corollary 5.4 and Theorem 6.1, we have the following result.

Corollary 6.2 Let M be a proper hemi-slant submanifold of a Lp.R. manifold M. If T is parallel, then M

is a hemi-slant product.

Theorem 6.3 Let M be a proper hemi-slant submanifold of M. If N is parallel, then

(a) A,D-=0, (b) Anp.D’ =0,
(¢) M is (D*, DY) -mized totally geodesic.
Proof Let N be parallel, it follows from (6.4) that

U, TV) =wh(U,V) (6.9)
for any U,V € TM . Then, for any X € D', we have
wh(U, X) =0 (6.10)
from (6.9). For any & € u, using (2.11), (2.2), and (2.6), we have

9(wh(U, X), &) = g(h(U, X), F§) = g(Ape X, U).

279



TASTAN and OZDEMIR/Turk J Math

Thus, using (6.10) we get
g(ApeX,U) =0. (6.11)

Since p is invariant with respect to F', the assertion (a) comes from (6.11). On the other hand, for any X € D+,
using (2.2), (2.11), (2.12), and (6.9), we have

g(h(U,TZ),NX) = g(h(U,TZ),FX) = g(wh(U, Z), FX)
=g(Fh(U,Z),FX)=g(hU,Z),X) =0,

that is, g(h(U,TZ), NX) = 0. Putting Z = T'Z in last equation, we obtain
cos?0 g(h(U, Z),NX) = cos’0 g(Anx Z,U) = 0.

Since 6 # %, the assertion (b) follows. Lastly, using (3.4), from (6.9), we have
W2h(X,Z) =wh(X,TZ) = h(X,T*Z) = cos*0h(X, Z).

On the other hand, using (3.7a), we have
W h(X, Z) = w?h(Z,X) = wh(Z,TX) = 0.
Thus, we get

cos?0h(X,Z) = 0.

Since 6 # 7, we deduce that h(X, Z) = 0, which proves the last assertion. O

7. Totally umbilical hemi-slant submanifolds

In this section we shall give two characterization theorems for the totally umbilical proper hemi-slant subman-

ifolds of a l.p.R. manifold. First we prove

Theorem 7.1 If M is a totally umbilical proper hemi-slant submanifold of a l.p.R. manifold M, then either
the anti-invariant distribution D+ is 1-dimensional or the mean curvature vector field H of M is perpendicular

to F(DY). Moreover, if M is a hemi-slant product, then H € y.

Proof Since M is a totally umbilical proper hemi-slant submanifold either Dim (D) = 1 or Dim(Dt) > 1.
If Dim(Dt) = 1, it is obvious. If Dim(D+) > 1, then we can choose X,Y € Dt such that {X,Y} is
orthonormal. By using (2.11), (2.7), (2.6), and (4.22), we have

g(H,FY) = g(h(X,X),NY) = g(Any X, X) =0 (7.1)
It means that

H1F(Dh). (7.2)
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Moreover, if M is a hemi-slant product, for any Z € DY, using (5.5) and (2.7), we have
g(H,NZ) = g(h(X, X),NZ) = g(Anz X, X) = —g(Anx Z, X)
= —g(h(Z,X),NX) = 0.
Hence, it follows that
HLN(D?). (7.3)

Thus, using (7.2) and (7.3) from (3.2), we get H € p. O
Before giving the second result of this section, recall the following fact about locally product Riemannian
manifolds.

Let M;j(c1) (resp. Ma(cz)) be a real space form with sectional curvature c¢; (resp. c¢z). Then the

Riemannian curvature tensor R of the locally product Riemannian manifold M = Mj(c;) x Ma(c2) has the

form

<cﬁf2>{g(V,v‘v)U—g<aW>V+g<FV,W>FU—9<F[7 ’W)FV} o

(c1r=2) {g<Fv,v‘v>U—g<Fav‘v>v+g<v,v‘v>FU—g<rzv‘v>Fv},

where U,V,W € TM [22].

Theorem 7.2 Let M be a totally umbilical hemi-slant submanifold with parallel mean curvature vector field H
of a l.p.R. manifold M = M (cy) x My(ca) with ¢y # ca. Then M cannot be proper.

Proof Let X € DY and Z € DY be two unit vector fields. Since H is parallel, using (2.10) and (2.7) from

the Codazzi equation (2.9), we have
(R(X,Z)X)+ = —-VzH =0. (7.5)
On the other hand, equation (7.4) gives

R(X, Z)X = _411{(61 + CQ)Z + (Cl — CQ)FZ} (76)

Taking the normal component of (7.6), we get

(R(X, 2)X)* = —i(cl —e)NZ, (7.7)

which contradicts (7.5). O

We have immediately from Theorem 7.2 that:

Corollary 7.3 There exists no totally geodesic proper hemi-slant submanifold of a l.p.R. manifold M =
Ml(cl) X MQ(CQ) with C1 75 Co.
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8. Ricci curvature of hemi-slant submanifolds

In this section we obtain a Chen-type inequality for hemi-slant submanifolds of a l.p.R. manifold M =
M;i(e1) x Ma(cz). We first present the following fundamental facts about this topic.

Let M be a n-dimensional Riemannian manifold equipped with a Riemannian metric g and {ej, ..., e, }

be an orthonormal basis for T,,M, p € M. Then the Ricci tensor S is defined by
n
Z (e:, U, V, e:), (8.1)

where U,V € T,M. For a fixed i € {1,...,n}, the Ricci curvature of e;, denoted by Ric(e;), is given by

n

Ric(e;) =Y Kij, (8.2)

i#]
where fij = g(ﬁ(ei,ej)ej7ei) is the sectional curvature of the plane spanned by e; and e; at p € M. Let
M) be a k-plane of T,M and {ei,...,ex} any orthonormal basis of IT;. For a fixed i € {1,...,k}, the k-Ricci

curvature [J] of I at e;, denoted by Ricy, (e;), is defined by

k

EiCHk (61) = ZF” (83)
i#]
It is easy to see that Ricipyp(ei) = Ric(e;) for 1 <4 <mn, since II,, = T,M.
We now recall the following basic inequality [10, Theorem 3.1] involving Ricci curvature and the squared

mean curvature of a submanifold of a Riemannian manifold.

Theorem 8.1 ([10, Theorem 3.1]) Let M be an m-dimensional submanifold of a Riemannian manifold M .
Then, for any unit vector X € T,M , we have

1 _
Ric(X) < im2||H||2 + Ricirn (X) (8.4)

where Ric(X) is the Ricci curvature of X .

Of course, the equality case of (8.4) was also discussed in [10], but we will not deal with the equality case in
this paper.

Now, we are ready to state the main result of this section.

Theorem 8.2 Let M be an m-dimensional hemi-slant submanifold of a l.p.R. manifold M = M (c1) x Ma(cz).
Then, for unit vector V € T,M , we have

4Ric(V) < m?| H|]*+ (c1+ 02){(m - 1)+Zg(T6i, ei)g(TV, V) (8.5)
TV AV - {Zg (T, i) 4m=g(TV. V)

where {V,ea,...,en} is an orthonormal basis for T, M.
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Proof Since M is an m-dimensional hemi-slant submanifold of a 1.p.R. manifold M = M;j(c;) x Ma(c2), then
for any unit vector V' € T, M, using (7.4) and (2.11) from (8.3) we have

m

4Ricqa(V)=(c1+ 02){(771 — 1)+Zg(Tei, e))g(TV, V) (8.6)

=2

STV e Y alTes ) Hom-a(rv. V)

=2

Thus, using (8.6) in (8.4) we get (8.5). O

Remark 8.3 In general, g(FV,V) # 0 for any unit vector V. € T,M in a l.p.R. manifold M, contrary to
almost Hermitian (g(JV,V) = 0) and almost contact ((g(pV,V) = 0) manifolds. However, we can establish
that the almost product structure F in a l.p.R. manifold M such that g(FV,V) =0, for all V € TpM. In

fact, if M is an even dimensional L.p.R. manifold with an orthonormal basis {e1, ..., €n,€ni1, ..., €2n}, then we
can define F by
F(e;) =enyi, Flenys) =€, i€{1,2,...,n}.

Hence, we observe easily that the almost product structure F satisfies
g(Fe;e;) =0. (8.7)

For example, the almost product structure F' in the example of section 3 satisfies the condition (8.7). On the
other hand, because of Lemma 3.3 and equation (3.5), we have TV = 0, if V € D+ and ||[TV]|? = cos?d, if
V € DY and |V| = 1, respectively. Thus, by Theorem 8.2 we get the following two results.

Corollary 8.4 Let M be an m-dimensional anti-invariant submanifold of a Lp.R. manifold M = M (c1) x
Moy (c3). If the almost product structure F of M satisfies the condition (8.7), then we have

ARic(V) < m?|H|? + (c1 + e2)(m — 1),
where V € T,M is any unit vector.

Corollary 8.5 Let M be an m-dimensional slant submanifold of a l.p.R. manifold M = M (cy) x Ma(c3). If
the almost product structure F of M satisfies the condition (8.7), then we have

4Ric(Z) < m?||H||? + (c1 + c2){(m — 1) — cos?0},

where Z € T,M is any unit vector.

Acknowledgment

We would like to thank Professor Bayram Sahin for his contributions and suggestions concerning Section 7 of

this work. We also would like to thank the referee for his/her suggestions.

283



—
—_

—_
[\

—
w

—
>

—
(=)

" = == = = ~~ ~ "~ = &=
L X 3 9 s B D = O

©

284

TASTAN and OZDEMIR/Turk J Math

References

Adati T. Submanifolds of an almost product manifold. Kodai Math J 1981; 4: 327-343.

Alegre P. Slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds. Taiwanese J Math 2013; 17:
897-910. DOI:10.11650/tjm.17.2013.2427.

Al-Solamy FR, Khan MA, Uddin S. Totally umbilical hemi-slant submanifolds of K&hler manifolds. Abstr Appl
Anal 2011; Art. ID 987157, 9 pp.

Arslan K, Carriazo A, Chen BY, Murathan C. On slant submanifolds of neutral Kaehler manifolds. Taiwanese J
Math 2010; 17: 561-584.

Bejancu A. Semi-invariant submanifolds of locally product Riemannian manifolds. An Univ Timigsoara Ser Stiint
Math Al 1984; 22: 3-11.

Cabrerizo JL, Carriazo A, Fernandez LM, Fernandez M. Slant submanifolds in Sasakian manifolds. Glasgow Math
J 2000; 42: 125-138.

Carriazo A. Bi-slant immersions. In: Proc. ICRAMS 2000, Kharagpur, India, 2000, 88-97.
Chen BY. Geometry of slant submanifolds. Katholieke Universiteit Leuven, 1990.

Chen BY. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions.
Glasgow Math J 1999; 41: 33—41.

Hong S, Tripathi MM. On Ricci curvature of submanifolds. Internat J Pure Appl Math Sci 2005; 2: 227-246.
Khan VA, Khan MA. Pseudo-slant submanifolds of a Sasakian manifold. Indian J Pure Appl Math 2007; 38: 31-42.
Li H, Liu X. Semi-slant submanifolds of a locally product manifold. Georgian Math J 2005; 12: 273-282.

Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Roumanie 1996; 39: 183-198.

Papaghiuc N. Semi-slant submanifolds of a K&hlerian manifold. Ann §t Al I Cuza Univ Iagi 1994; 40: 55-61.

Pitis G. On some submanifolds of a locally product manifold. Kodai Math J 1986; 9: 327-333.

Ronsse GS. Generic and skew CR-submanifolds of a Kahler manifold. Bull Inst Math Acad Sinica 1990; 18: 127-141.
Sahin B. Slant submanifolds of an almost product Riemannian manifold. J Korean Math Soc 2006; 43: 717-732.
Sahin B. Warped product submanifolds of a Kéhler manifold with a slant factor. Ann Pol Math 2009; 95: 207-226.

Tastan HM. The axiom of hemi-slant 3-spheres in almost Hermitian geometry. Bull Malays Math Sci Soc(2) 2014;
37: 555-564.

Tripathi MM. Generic submanifolds of generalized complex space forms. Publ Math Debrecen 1997; 50: 373-392.

Uddin S, Khan MA, Singh K. A note on totally umbilical pseudo-slant submanifolds of a nearly K&hler manifold.
Acta Univ Apulensis Math Inform 2012; 29: 279-285.

Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984.


http://dx.doi.org/10.2996/kmj/1138036379
http://dx.doi.org/10.1155/2011/987157
http://dx.doi.org/10.1155/2011/987157
http://dx.doi.org/10.1017/S0017089500010156
http://dx.doi.org/10.1017/S0017089500010156
http://dx.doi.org/10.1017/S0017089599970271
http://dx.doi.org/10.1017/S0017089599970271
http://dx.doi.org/10.2996/kmj/1138037261
http://dx.doi.org/10.4064/ap95-3-2

	Introduction
	Preliminaries
	Locally product Riemannian manifolds
	Submanifolds

	Hemi-slant submanifolds of a locally product Riemannian manifold
	Integrability
	Hemi-slant product
	Hemi-slant submanifolds with parallel canonical structures
	Totally umbilical hemi-slant submanifolds
	Ricci curvature of hemi-slant submanifolds

