Turk J Math
(2015) 39
(c) TÜBİTAK
doi:10.3906/mat-1407-18

The geometry of hemi-slant submanifolds of a locally product Riemannian manifold

Hakan Mete TAŞTAN ${ }^{1, *}$, Fatma ÖZDEMİR ${ }^{2}$
${ }^{1}$ Department of Mathematics, İstanbul University, Vezneciler, İstanbul, Turkey
${ }^{2}$ Department of Mathematics, İstanbul Technical University, Maslak, İstanbul, Turkey

Received: 07.07.2014 • Accepted: 14.01.2015 • \quad Published Online: 23.02.2015 \quad Printed: 20.03 .2015

Abstract

In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some applications of this result. We get a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product Riemannian manifolds.

Key words: Locally product manifold, hemi-slant submanifold, slant distribution

1. Introduction

Study of slant submanifolds was initiated by Chen [8], as a generalization of both holomorphic and totally real submanifolds of a Kähler manifold. Slant submanifolds have been studied in different kind of structures: almost contact [13], neutral Kähler [4], Lorentzian Sasakian [2], and Sasakian [6] by several geometers. N. Papaghiuc [14] introduced semi-slant submanifolds of a Kähler manifold as a natural generalization of slant submanifold. Carriazo [7], introduced bi-slant submanifolds of an almost Hermitian manifold as a generalization of semi-slant submanifolds. One of the classes of bi-slant submanifolds is that of anti-slant submanifolds, which are studied by Carriazo [7]. However, Şahin [18] called these submanifolds hemi-slant submanifolds because the name antislant indicates it has no slant factor. We observe that a hemi-slant submanifold is a special case of generic submanifold introduced by Ronsse [16]. Since then many geometers have studied hemi-slant submanifolds in different kinds of structures: Kähler [3, 18], nearly Kähler [21], generalized complex space form [20], and almost Hermitian [19]. In some cases, we should note that hemi-slant submanifolds are also studied under the name pseudo-slant submanifolds; see [11] and [21]. Furthermore, the submanifolds of a locally product Riemannian manifold have been studied by many geometers. For example, Adati [1] defined and studied invariant and anti-invariant submanifolds, while Bejancu [5] and Pitis [15] studied semi-invariant submanifolds. Slant and semi-slant submanifolds of a locally product Riemannian manifold are examined by Şahin [17] and Li and Liu [12]. In this paper, we study the geometry of hemi-slant submanifolds of a locally product Riemannian manifold in detail.

[^0]
2. Preliminaries

This section is devoted to preliminaries. Actually, in subsection 2.1 we present the basic background needed for a locally product Riemannian manifold. Theory of submanifolds and distributions related to the study are given in subsection 2.2.

2.1. Locally product Riemannian manifolds

Let \bar{M} be an m-dimensional manifold with a tensor field of type $(1,1)$ such that

$$
\begin{equation*}
F^{2}=I,(F \neq \pm I) \tag{2.1}
\end{equation*}
$$

where I is the identity morphism on the tangent bundle $T \bar{M}$ of \bar{M}. Then we say that \bar{M} is an almost product manifold with almost product structure F. If an almost product manifold (\bar{M}, F) admits a Riemannian metric g such that

$$
\begin{equation*}
g(F \bar{U}, F \bar{V})=g(\bar{U}, \bar{V}) \tag{2.2}
\end{equation*}
$$

for all $\bar{U}, \bar{V} \in T \bar{M}$, then \bar{M} is called an almost product Riemannian manifold.
Next, we denote by $\bar{\nabla}$ the Riemannian connection with respect to g on \bar{M}. We say that \bar{M} is a locally product Riemannian manifold, (briefly, l.p.R. manifold) if we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{U}} F\right) \bar{V}=0 \tag{2.3}
\end{equation*}
$$

for all $\bar{U}, \bar{V} \in T \bar{M}[22]$.

2.2. Submanifolds

Let M be a submanifold of a l.p.R. manifold (\bar{M}, g, F). Let $\bar{\nabla}, \nabla$, and ∇^{\perp} be the Riemannian, induced Riemannian, and induced normal connection in \bar{M}, M and the normal bundle $T^{\perp} M$ of M, respectively. Then for all $U, V \in T M$ and $\xi \in T^{\perp} M$ the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{U} V=\nabla_{U} V+h(U, V) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{U} \xi=-A_{\xi} U+\nabla_{U}^{\perp} \xi \tag{2.5}
\end{equation*}
$$

where h is the second fundamental form of M and A_{ξ} is the Weingarten endomorphism associated with ξ. The second fundamental form h and the shape operator A are related by

$$
\begin{equation*}
g(h(U, V), \xi)=g\left(A_{\xi} U, V\right) \tag{2.6}
\end{equation*}
$$

A submanifold M is said to be totally geodesic if its second fundamental form vanishes identically, that is, $h=0$, or equivalently $A_{\xi}=0$. We say that M is totally umbilical submanifold in \bar{M} if for all $U, V \in T M$ we have

$$
\begin{equation*}
h(U, V)=g(U, V) H \tag{2.7}
\end{equation*}
$$

where H is the mean curvature vector field of M in \bar{M}. A normal vector field ξ is said to be parallel, if $\nabla_{U}^{\perp} \xi=0$ for each vector field $U \in T M$.

The Riemannian curvature tensor \bar{R} of \bar{M} is given by

$$
\begin{equation*}
\bar{R}(\bar{U}, \bar{V})=\left[\bar{\nabla}_{\bar{U}}, \bar{\nabla}_{\bar{V}}\right]-\bar{\nabla}_{[\bar{U}, \bar{V}]} \tag{2.8}
\end{equation*}
$$

where $\bar{U}, \bar{V} \in T \bar{M}$.
Then the Codazzi equation is given by

$$
\begin{equation*}
(\bar{R}(U, V) W)^{\perp}=\left(\bar{\nabla}_{U} h\right)(V, W)-\left(\bar{\nabla}_{V} h\right)(U, W) \tag{2.9}
\end{equation*}
$$

for all $U V, W \in T M$. Here, \perp denotes the normal component and the covariant derivative of h, denoted by $\bar{\nabla}_{U} h$ is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{U} h\right)(V, W)=\nabla_{U}^{\perp} h(V, W)-h\left(\nabla_{U} V, W\right)-h\left(V, \nabla_{U} W\right) \tag{2.10}
\end{equation*}
$$

Now, we write

$$
\begin{equation*}
F U=T U+N U \tag{2.11}
\end{equation*}
$$

for any $U \in T M$. Here $T U$ is the tangential part of $F U$, and $N U$ is the normal part of $F U$. Similarly, for any $\xi \in T^{\perp} M$, we put

$$
\begin{equation*}
F \xi=t \xi+\omega \xi \tag{2.12}
\end{equation*}
$$

where $t \xi$ is the tangential part of $F \xi$, and $\omega \xi$ is the normal part of $F \xi$.
A distribution \mathcal{D} on a manifold \bar{M} is called autoparallel if $\bar{\nabla}_{X} Y \in \mathcal{D}$ for any $X, Y \in \mathcal{D}$ and called parallel if $\bar{\nabla}_{U} X \in \mathcal{D}$ for any $X \in \mathcal{D}$ and $U \in T \bar{M}$. If a distribution \mathcal{D} on \bar{M} is autoparallel, then it is clearly integrable, and by Gauss formula \mathcal{D} is totally geodesic in \bar{M}. If \mathcal{D} is parallel then the orthogonal complementary distribution \mathcal{D}^{\perp} is also parallel, which implies that \mathcal{D} is parallel if and only if \mathcal{D}^{\perp} is parallel. In this case \bar{M} is locally product of the leaves of \mathcal{D} and \mathcal{D}^{\perp}. Let M be a submanifold of \bar{M}. For two distributions \mathcal{D}_{1} and \mathcal{D}_{2} on M, we say that M is $\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)$ mixed totally geodesic if for all $X \in \mathcal{D}_{1}$ and $Y \in \mathcal{D}_{2}$ we have $h(X, Y)=0$, where h is the second fundamental form of M [20, 22].

3. Hemi-slant submanifolds of a locally product Riemannian manifold

In this section, we define the notion of hemi-slant submanifold and observe its effect on the tangent bundle of the submanifold and canonical projection operators and start to study hemi-slant submanifolds of a locally product Riemannian manifold.

Let (\bar{M}, g, F) be a locally product Riemannian manifold and let M be a submanifold of \bar{M}. A distribution \mathcal{D} on M is said to be a slant distribution if for $X \in \mathcal{D}_{p}$, the angle θ between $F X$ and \mathcal{D}_{p} is constant, i.e. independent of $p \in M$ and $X \in \mathcal{D}_{p}$. The constant angle θ is called the slant angle of the slant distribution \mathcal{D}. A submanifold M of \bar{M} is said to be a slant submanifold if the tangent bundle $T M$ of M is slant $[12,17]$. Thus, the F-invariant and F-anti-invariant submanifolds are slant submanifolds with slant angle $\theta=0$ and $\theta=\pi / 2$, respectively. A slant submanifold that is neither F-invariant nor F-anti-invariant is called a proper slant submanifold.

Definition 3.1 A hemi-slant submanifold M of a locally product Riemannian manifold \bar{M} is a submanifold that admits two orthogonal complementary distributions \mathcal{D}^{\perp} and \mathcal{D}^{θ} such that
(a) $T M$ admits the orthogonal direct decomposition $T M=\mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$
(b) The distribution \mathcal{D}^{\perp} is F-anti-invariant, i.e. $F \mathcal{D}^{\perp} \subseteq T^{\perp} M$.
(c) The distribution \mathcal{D}^{θ} is slant with slant angle θ.

In this case, we call θ the slant angle of M. Suppose the dimension of distribution \mathcal{D}^{\perp} (resp. \mathcal{D}^{θ}) is p (resp. q). Then we easily see the following particular cases.
(d) If $q=0$, then M is an anti-invariant submanifold [1].
(e) If $p=0$ and $\theta=0$, then M is an invariant submanifold [1].
(f) If $p=0$ and $\theta \neq 0, \frac{\pi}{2}$, then M is a proper slant submanifold [17].
(g) If $\theta=\frac{\pi}{2}$, then M is an anti-invariant submanifold.
(h) If $p \neq 0$ and $\theta=0$, then M is a semi-invariant submanifold [5].

We say that the hemi-slant submanifold M is proper if $p \neq 0$ and $\theta \neq 0, \frac{\pi}{2}$.
Lemma 3.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then we have,

$$
\begin{equation*}
F\left(\mathcal{D}^{\perp}\right) \perp N\left(\mathcal{D}^{\theta}\right) \tag{3.1}
\end{equation*}
$$

Proof For any $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$, using (2.2) and (2.11), we have $g(F X, N Z)=g(F X, F Z)=g(X, Z)=0$. This completes the proof.

In view of Lemma 3.2, for a hemi-slant submanifold M of a l.p.R. manifold \bar{M}, the normal bundle $T^{\perp} M$ of M is decomposed as

$$
\begin{equation*}
T^{\perp} M=F\left(\mathcal{D}^{\perp}\right) \oplus N\left(\mathcal{D}^{\theta}\right) \oplus \mu \tag{3.2}
\end{equation*}
$$

where μ is the orthogonal complementary distribution of $F\left(\mathcal{D}^{\perp}\right) \oplus N\left(\mathcal{D}^{\theta}\right)$ in $T^{\perp} M$ and it is the invariant subbundle of $T^{\perp} M$ with respect to F.

The following facts follow easily from (2.1), (2.11), and (2.12) and will be used later.

$$
\begin{align*}
& T^{2}+t N=I \tag{3.3a}\\
& \omega^{2}+N t=I \tag{3.3b}\\
& N T+\omega N=0 \tag{3.3c}\\
& T t+t \omega=0 \tag{3.3d}
\end{align*}
$$

As in a slant submanifold [17], for a hemi-slant submanifold M of a l.p.R. manifold \bar{M}, we have

$$
\begin{gather*}
T^{2} Z=\cos ^{2} \theta Z \tag{3.4}\\
g(T Z, T W)=\cos ^{2} \theta g(Z, W) \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
g(N Z, N W)=\sin ^{2} \theta g(Z, W) \tag{3.6}
\end{equation*}
$$

where $Z, W \in \mathcal{D}^{\theta}$.
Here, we omit the proofs of equations (3.4)-(3.6), because the proof of (3.4) is the same as the proof of Theorem 3.1 of [17] and the other proofs are also the same as the proofs of equations (3.3) and (3.4) in Lemma 3.1 of [17].

Lemma 3.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then we have,

$$
\begin{gather*}
T\left(\mathcal{D}^{\perp}\right)=\{0\}, \tag{3.7a}\\
T\left(\mathcal{D}^{\theta}\right)=\mathcal{D}^{\theta} . \tag{3.7b}
\end{gather*}
$$

Proof Since \mathcal{D}^{\perp} is anti-invariant with respect to F, (a) follows from (2.11). For any $Z \in \mathcal{D}^{\theta}$ and $X \in \mathcal{D}^{\perp}$, using (2.1), (2.2), and (2.11), we have $g(T Z, X)=g(F Z, X)=g(Z, F X)=0$. Hence, we conclude that $T\left(\mathcal{D}^{\theta}\right) \perp \mathcal{D}^{\perp}$. Since $T\left(\mathcal{D}^{\theta}\right) \subseteq T M$, it follows that $T\left(\mathcal{D}^{\theta}\right) \subseteq \mathcal{D}^{\theta}$. Let W be in \mathcal{D}^{θ}. Then using (3.4), we have $W=\frac{1}{\cos ^{2} \theta}\left(\cos ^{2} \theta W\right)=\frac{1}{\cos ^{2} \theta} T^{2} W=\frac{1}{\cos ^{2} \theta} T(T W)$. Therefore, we find $W \in T\left(\mathcal{D}^{\theta}\right)$. It follows that $\mathcal{D}^{\theta} \subseteq T\left(\mathcal{D}^{\theta}\right)$. Thus, we get the assertion (b).
Thanks to Theorem 3.1 [17], we characterize hemi-slant submanifolds of a l.p.R. manifold.
Theorem 3.4 Let M be a submanifold of a l.p.R. manifold \bar{M}. Then M is a hemi-slant submanifold if and only if there exist a constant $\lambda \in[0,1]$ and a distribution \mathcal{D} on M such that
(a) $\mathcal{D}=\left\{U \in T M \mid T^{2} U=\lambda U\right\}$,
(b) for any $X \in T M$ orthogonal to $\mathcal{D}, T X=0$.

Moreover, in this case $\lambda=\cos ^{2} \theta$, where θ is the slant angle of M.
Proof Let M be a hemi-slant submanifold of \bar{M} with anti-invariant distribution \mathcal{D}^{\perp} and slant distribution \mathcal{D}^{θ}. Here, θ is the slant angle of M; in which case, we have $T M=\mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$. Then we can choose \mathcal{D} as \mathcal{D}^{θ}. Moreover, we have $\lambda=\cos ^{2} \theta$ thanks to (3.4). Hence, (a) follows. (b) follows from Lemma 3.3. Conversely, (a) and (b) imply $T M=\mathcal{D}^{\perp} \oplus \mathcal{D}$. Since $T(\mathcal{D}) \subseteq \mathcal{D}$, we conclude that \mathcal{D}^{\perp} is an anti-invariant distribution from (b).

Example. Consider the Euclidean 6 -space \mathbb{R}^{6} with usual metric g. Define the almost product structure F on $\left(\mathbb{R}^{6}, g\right.$) by

$$
F\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial}{\partial y_{i}}, \quad F\left(\frac{\partial}{\partial y_{i}}\right)=\frac{\partial}{\partial x_{i}}, \quad i=1,2,3,
$$

where $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$ are natural coordinates of \mathbb{R}^{6}. Then $\bar{M}=\left(\mathbb{R}^{6}, g, F\right)$ is an almost product Riemannian manifold. Furthermore, it is easy to see that \bar{M} is a l.p.R. manifold. Let M be a submanifold of \bar{M} defined by

$$
f(u, v, w)=\left(\frac{u}{\sqrt{2}}, \frac{u}{\sqrt{2}}, u+v, \frac{w}{\sqrt{2}}, \frac{w}{\sqrt{2}}, 0\right), \quad u \neq 0 .
$$

Then a local frame of $T M$ is given by

$$
\begin{aligned}
X & =\frac{\partial}{\partial x_{3}} \\
Z & =\frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{1}}+\frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}} \\
W & =\frac{1}{\sqrt{2}} \frac{\partial}{\partial y_{1}}+\frac{1}{\sqrt{2}} \frac{\partial}{\partial y_{2}}
\end{aligned}
$$

By using the almost product structure F above, we see that $F X$ is orthogonal to $T M$; thus $\mathcal{D}^{\perp}=\operatorname{span}\{\mathrm{X}\}$. Moreover, it is not difficult to see that $\mathcal{D}^{\theta}=\operatorname{span}\{Z, W\}$ is a slant distribution with slant angle $\theta=\pi / 4$. Thus, M is a proper hemi-slant submanifold of \bar{M}.

4. Integrability

In this section, we give a necessary and sufficient condition for the integrability of the slant distribution of the hemi- slant submanifold. After that we prove that the anti invariant distribution of the hemi-slant submanifold is always integrable and give some applications of this result.

Let M be a submanifold of a l.p.R. manifold \bar{M}. For any $U, V \in T M$, we have $\bar{\nabla}_{U} F V=F \bar{\nabla}_{U} V$ from (2.3). Then, using (2.4-2.5), (2.11-2.12) and identifying the components from $T M$ and $T^{\perp} M$, we have the following.

Lemma 4.1 Let M be a submanifold of a l.p.R. manifold \bar{M}. Then we have

$$
\begin{gather*}
\nabla_{U} T V-A_{N V} U=T \nabla_{U} V+t h(U, V), \tag{4.1}\\
h(U, T V)+\nabla_{U}^{\perp} N V=N \nabla_{U} V+\omega h(U, V) . \tag{4.2}
\end{gather*}
$$

for all $U, V \in T M$.
In a similar way, we have:
Lemma 4.2 Let M be a submanifold of a l.p.R. manifold \bar{M}. Then we have

$$
\begin{gather*}
\nabla_{U} t \xi-A_{\omega \xi} U=-T A_{\xi} U+t \nabla_{U}^{\perp} \xi \tag{4.3}\\
h(U, t \xi)+\nabla_{U}^{\perp} \omega \xi=-N A_{\xi} U+\omega \nabla_{U}^{\perp} \xi \tag{4.4}
\end{gather*}
$$

for any $U \in T M$ and $\xi \in T^{\perp} M$.
Theorem 4.3 Let M be a hemi-slant manifold of a l.p.R. manifold \bar{M}. Then the slant distribution \mathcal{D}^{θ} is integrable if and only if

$$
\begin{equation*}
A_{N Z} W-A_{N W} Z+\nabla_{Z} T W-\nabla_{W} T Z \in \mathcal{D}^{\theta} \tag{4.5}
\end{equation*}
$$

for any $Z, W \in \mathcal{D}^{\theta}$.

Proof From (4.1), we have

$$
\begin{equation*}
\nabla_{Z} T W-A_{N W} Z=T \nabla_{Z} W+t h(Z, W) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{W} T Z-A_{N Z} W=T \nabla_{W} Z+t h(W, Z) \tag{4.7}
\end{equation*}
$$

for any $Z, W \in \mathcal{D}^{\theta}$. By (4.6) and (4.7), we get

$$
\begin{equation*}
A_{N Z} W-A_{N W} Z+\nabla_{Z} T W-\nabla_{W} T Z=T[Z, W] \tag{4.8}
\end{equation*}
$$

Thus, our assertion follows from (3.7b) and (4.8).
In the following we give an application of Theorem 4.3.

Theorem 4.4 Let M be a hemi-slant manifold of a l.p.R. manifold \bar{M}. If M is \mathcal{D}^{θ}-totally geodesic, then the slant distribution \mathcal{D}^{θ} is integrable.
Proof Suppose that M is \mathcal{D}^{θ}-totally geodesic, that is, for any $Z, W \in \mathcal{D}^{\theta}$ we have

$$
\begin{equation*}
h(Z, W)=0 \tag{4.9}
\end{equation*}
$$

By (4.1) and (4.9), we have

$$
\begin{equation*}
A_{N Z} W-\nabla_{W} T Z=-T \nabla_{W} Z \tag{4.10}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
A_{N W} Z-\nabla_{Z} T W=-T \nabla_{Z} W \tag{4.11}
\end{equation*}
$$

From (4.10) and (4.11), using Lemma 3.3, we get

$$
\begin{equation*}
g\left(A_{N Z} W-A_{N W} Z+\nabla_{Z} T W-\nabla_{W} T Z, X\right)=g(T[Z, W], X)=0 \tag{4.12}
\end{equation*}
$$

for any $X \in \mathcal{D}^{\perp}$. The last equation (4.12) says that

$$
A_{N Z} W-A_{N W} Z+\nabla_{Z} T W-\nabla_{W} T Z \in \mathcal{D}^{\theta}
$$

and by Theorem 4.3, we deduce that \mathcal{D}^{θ} is integrable.

Lemma 4.5 Let M be a hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then

$$
\begin{equation*}
A_{N X} Y=-A_{N Y} X \tag{4.13}
\end{equation*}
$$

for any $X, Y \in \mathcal{D}^{\perp}$.
Proof For any $X \in \mathcal{D}^{\perp}$ and $U \in T M$, using (3.7a), we have

$$
\begin{equation*}
-T \nabla_{U} X=A_{N X} U+t h(U, X) \tag{4.14}
\end{equation*}
$$

from (4.1). Let Y be in \mathcal{D}^{\perp}. Using (3.7b), we obtain

$$
\begin{equation*}
0=-g\left(T \nabla_{U} X, Y\right)=g\left(A_{N X} U, Y\right)+g(t h(U, X), Y) \tag{4.15}
\end{equation*}
$$

from (4.14). On the other hand, using (2.2), (2.6), (2.11), and (2.12), we find

$$
\begin{equation*}
g(t h(U, X), Y)=g\left(A_{N Y} U, X\right) \tag{4.16}
\end{equation*}
$$

Thus, from (4.15) and (4.16), we deduce that

$$
\begin{equation*}
g\left(A_{N X} Y+A_{N Y} X, U\right)=0 \tag{4.17}
\end{equation*}
$$

This equation gives (4.13).

Theorem 4.6 Let M be a hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the anti-invariant distribution \mathcal{D}^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{N X} Y=A_{N Y} X \tag{4.18}
\end{equation*}
$$

for all $X, Y \in \mathcal{D}^{\perp}$.
Proof From (4.1), using (3.7a), we have

$$
\begin{equation*}
-A_{N Y} X=T \nabla_{X} Y+t h(X, Y) \tag{4.19}
\end{equation*}
$$

for all $X \in \mathcal{D}^{\perp}$. By interchanging X and Y in (4.19), then subtracting it from (4.19) we obtain

$$
\begin{equation*}
A_{N X} Y-A_{N Y} X=T[X, Y] \tag{4.20}
\end{equation*}
$$

Because of (3.7a), we know that \mathcal{D}^{\perp} is integrable if and only if $T[X, Y]=0$ for all $X, Y \in \mathcal{D}^{\perp}$. Thus, our assertion comes from (4.20).
By Lemma 4.5 and Theorem 4.6, we have the following result.
Corollary 4.7 Let M be a hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the anti-invariant distribution \mathcal{D}^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{N X} Y=0 \tag{4.21}
\end{equation*}
$$

for all $X, Y \in \mathcal{D}^{\perp}$.
Now, we give the main result of this section.
Theorem 4.8 Let M be a hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the anti-invariant distribution \mathcal{D}^{\perp} is always integrable.
Proof Let \bar{M} be a l.p.R. manifold with Riemannian metric g and almost product structure F. Define the symmetric (0,2)-type tensor field Ω by $\Omega(\bar{U}, \bar{V})=g(F \bar{U}, \bar{V})$ on the tangent bundle $T \bar{M}$. It is not difficult to see that $\left(\bar{\nabla}_{\bar{U}} \Omega\right)(\bar{V}, \bar{W})=g\left(\left(\bar{\nabla}_{\bar{U}} F\right) \bar{V}, \bar{W}\right)$ on $T \bar{M}$. Thus, because of (2.3), we deduce that

$$
3 d \Omega(\bar{V}, \bar{W}, \bar{U})=\mathcal{G}\left(\bar{\nabla}_{\bar{U}} \Omega\right)(\bar{V}, \bar{W})=0
$$

TAŞTAN and ÖZDEMİR/Turk J Math

for all $\bar{U}, \bar{V}, \bar{W} \in T \bar{M}$, that is, $d \Omega \equiv 0$, where \mathcal{G} denotes the cyclic sum over $\bar{U}, \bar{V}, \bar{W} \in T \bar{M}$. Next, for any $X, Y \in \mathcal{D}^{\perp}$ and $U \in T M$ we have

$$
\begin{aligned}
0=3 d \Omega(U, X, Y) & =U \Omega(X, Y)+X \Omega(Y, U)+Y \Omega(U, X) \\
& -\Omega([U, X], Y)-\Omega([X, Y], U)-\Omega([Y, U], X) \\
& =g(T[Y, X], U])
\end{aligned}
$$

It follows that $T[X, Y]=0$ and because of (3.7a), $[Y, X] \in \mathcal{D}^{\perp}$.

Corollary 4.9 Let M be a hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the following facts hold:

$$
\begin{gather*}
A_{N D^{\perp}} D^{\perp}=0 \tag{4.22}\\
A_{N X} Z \in D^{\theta}, \quad \text { i.e., } A_{N D^{\perp}} D^{\theta} \subseteq D^{\theta} \tag{4.23}
\end{gather*}
$$

and

$$
\begin{equation*}
g\left(h\left(T M, \mathcal{D}^{\perp}\right), N \mathcal{D}^{\perp}\right)=0 \tag{4.24}
\end{equation*}
$$

where $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.
Proof (4.22) follows from Corollary 4.7 and Theorem 4.8. (4.23) follows from (4.22). Finally, using (2.6), (4.22) gives (4.24).

Next, we give another application of Theorem 4.8.
Theorem 4.10 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. The anti-invariant distribution \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if $h\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right) \perp N \mathcal{D}^{\theta}$.
Proof For $X, Y \in \mathcal{D}^{\perp}$, we put $\nabla_{X} Y={ }^{\perp} \nabla_{X} Y+{ }^{\theta} \nabla_{X} Y$, where ${ }^{\perp} \nabla_{X} Y$ (resp. ${ }^{\theta} \nabla_{X} Y$) denotes the antiinvariant (resp. slant) part of $\nabla_{X} Y$. Then using Lemma 3.3 and (3.5), for any $Z \in \mathcal{D}^{\theta}$ we have

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=g\left({ }^{\theta} \nabla_{X} Y, Z\right)=\frac{1}{\cos ^{2} \theta} g\left(T^{\theta} \nabla_{X} Y, T Z\right)=\frac{1}{\cos ^{2} \theta} g\left(T \nabla_{X} Y, T Z\right) \tag{4.25}
\end{equation*}
$$

On the other hand, from (4.1), we have

$$
\begin{equation*}
T \nabla_{X} Y+\operatorname{th}(X, Y)=-A_{N Y} X=0 \tag{4.26}
\end{equation*}
$$

since the distribution \mathcal{D}^{\perp} is integrable. Therefore, using (4.26), from (4.25), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=-\frac{1}{\cos ^{2} \theta} g(t h(X, Y), T Z)=-\frac{1}{\cos ^{2} \theta} g(F h(X, Y), T Z) \tag{4.27}
\end{equation*}
$$

Here, using (2.2), (2.11), and (3.4), we find

$$
\begin{equation*}
g(F h(X, Y), T Z)=g(h(X, Y), N T Z) \tag{4.28}
\end{equation*}
$$

From (4.27) and (4.28), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=-\frac{1}{\cos ^{2} \theta} g(h(X, Y), N T Z) \tag{4.29}
\end{equation*}
$$

Since $T Z \in \mathcal{D}^{\theta}$, our assertion comes from (4.29).

TAŞTAN and ÖZDEMİR/Turk J Math

5. Hemi-slant product

In this section, we give a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant product.

Definition 5.1 A proper hemi-slant submanifold M of a l.p.R. manifold \bar{M} is called a hemi-slant product if it is locally product Riemannian of an anti-invariant submanifold M_{\perp} and a proper slant submanifold M_{θ} of \bar{M}.

Now, we are going to examine the problem when a proper hemi-slant submanifold of a l.p.R. manifold is a hemi-slant product.

We first give a result that is equivalent to Theorem 4.10.

Theorem 5.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the anti-invariant \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if

$$
\begin{equation*}
g\left(A_{N Y} Z, X\right)=-g\left(A_{N Z} Y, X\right) \tag{5.1}
\end{equation*}
$$

where $X, Y \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.
Proof For any $X, Y \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$, using (2.4), (2.2), and (2.3), we have

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\bar{\nabla}_{X} Y, Z\right)=g\left(\bar{\nabla}_{X} F Y, F Z\right)
$$

Hence, using (2.11), (2.4), (2.5), and (2.2), we obtain

$$
g\left(\nabla_{X} Y, Z\right)=-g\left(A_{N Y} X, T Z\right)+g\left(\nabla_{X} Y, F N Z\right)+g(h(X, Y), F N Z)
$$

Here, using (3.3c), (3.3a), (2.12), and (3.4), we have
$F N Z=t N Z-N T Z$ and $t N Z=Z-T^{2} Z=\sin ^{2} \theta Z$. Thus, with the help of (2.6), we get

$$
g\left(\nabla_{X} Y, Z\right)=-g\left(A_{N Y} X, T Z\right)+\sin ^{2} \theta g\left(\nabla_{X} Y, Z\right)-g\left(A_{N T Z} Y, X\right)
$$

After some calculations, we find

$$
\cos ^{2} \theta g\left(\nabla_{X} Y, Z\right)=-g\left(A_{N Y} T Z, X\right)-g\left(A_{N T Z} Y, X\right)
$$

It follows that the distribution \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if

$$
\begin{equation*}
g\left(A_{N Y} T Z, X\right)=-g\left(A_{N T Z} Y, X\right) \tag{5.2}
\end{equation*}
$$

Putting $Z=T Z$ in (5.2), we obtain (5.1) and vice versa.

Theorem 5.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then the distribution \mathcal{D}^{θ} defines a totally geodesic foliation on M if and only if

$$
\begin{equation*}
g\left(A_{N X} W, Z\right)=-g\left(A_{N W} X, Z\right) \tag{5.3}
\end{equation*}
$$

where $X \in \mathcal{D}^{\perp}$ and $Z, W \in \mathcal{D}^{\theta}$.

TAŞTAN and ÖZDEMİR/Turk J Math

Proof Using (2.4), (2.2), and (2.3), we have $g\left(\nabla_{Z} W, X\right)=g\left(\bar{\nabla}_{Z} F W, F X\right)$ for any $Z, W \in \mathcal{D}^{\theta}$ and $X \in \mathcal{D}^{\perp}$. Next, using (2.11) and (3.1), we obtain $g\left(\nabla_{Z} W, X\right)=-g\left(T W, \bar{\nabla}_{Z} N X\right)-g\left(N W, \bar{\nabla}_{Z} F X\right)$. Hence, using (2.5) and (2.1), we get $g\left(\nabla_{Z} W, X\right)=g\left(T W, A_{N X} Z\right)-g\left(F N W, \bar{\nabla}_{Z} X\right)$. With the help of (2.12), (3.3a), (3.3c), and (2.4), we arrive at

$$
g\left(\nabla_{Z} W, X\right)=g\left(A_{N X} Z, T W\right)-\sin ^{2} \theta g\left(\nabla_{Z} X, W\right)+g(h(X, Z), N T W) .
$$

Upon direct calculation, we find

$$
\cos ^{2} \theta g\left(\nabla_{Z} W, X\right)=g\left(A_{N X} T W, Z\right)+g\left(A_{N T W} X, Z\right)
$$

Therefore, we deduce that the slant distribution \mathcal{D}^{θ} defines a totally geodesic foliation if and only if

$$
\begin{equation*}
g\left(A_{N X} T W, Z\right)=-g\left(A_{N T W} X, Z\right) \tag{5.4}
\end{equation*}
$$

By putting $W=T W$, we see that the last equation is equivalent to the equation (5.3).
Thus, from Theorems 5.2 and 5.3, we obtain the expected result.
Corollary 5.4 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. Then M is a hemi-slant product manifold $M=M_{\perp} \times M_{\theta}$ if and only if

$$
\begin{equation*}
A_{N X} Z=-A_{N Z} X \tag{5.5}
\end{equation*}
$$

where $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.

6. Hemi-slant submanifolds with parallel canonical structures

In this section, we get several results for the hemi-slant submanifolds with parallel canonical structures using the previous results.

Let M be any submanifold of a l.p.R. manifold \bar{M} with the endomorphism T and the normal bundle valued 1 -form N defined by (2.11). We put

$$
\begin{equation*}
\left(\bar{\nabla}_{U} T\right) V=\nabla_{U} T V-T \nabla_{U} V \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{\nabla}_{U} N\right) V=\nabla_{U}^{\perp} N V-N \nabla_{U} V \tag{6.2}
\end{equation*}
$$

for any $U, V \in T M$. Then the endomorphism T (resp.1-form N) is parallel if $\bar{\nabla} T \equiv 0 \quad($ resp. $\bar{\nabla} N \equiv 0)$. From (4.1) and (4.2) we have

$$
\begin{equation*}
\left(\bar{\nabla}_{U} T\right) V=A_{N V} U+t h(U, V) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{\nabla}_{U} N\right) V=\omega h(U, V)-h(U, T V) \tag{6.4}
\end{equation*}
$$

respectively.

TAŞTAN and ÖZDEMİR/Turk J Math

Theorem 6.1 Let M be any submanifold of a l.p.R. manifold \bar{M}. Then T is parallel, i.e. $\bar{\nabla} T \equiv 0$ if and only if

$$
\begin{equation*}
A_{N V} U=0 \tag{6.5}
\end{equation*}
$$

for all $U, V \in T M$.
Proof For any $U, V, W \in T M$ from (6.3), we have

$$
g\left(\left(\bar{\nabla}_{W} T\right) V, U\right)=g\left(A_{N V} W, U\right)+g(t h(W, V), U)
$$

Hence, using (2.12), (2.2), and (2.11), we obtain

$$
g\left(\left(\bar{\nabla}_{W} T\right) V, U\right)=g\left(A_{N V} W, U\right)+g(h(W, V), N U)
$$

Since A is self-adjoint, with the help of (2.6), we get

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{W} T\right) V, U\right)=g\left(A_{N V} U, W\right)+g\left(A_{N U} V, W\right) \tag{6.6}
\end{equation*}
$$

Now let T be parallel; then from (6.6) it follows that

$$
\begin{equation*}
A_{N V} U=-A_{N U} V \tag{6.7}
\end{equation*}
$$

for all $U, V \in T M$. On the other hand, from (6.3), we have

$$
\begin{equation*}
A_{N V} U=A_{N U} V \tag{6.8}
\end{equation*}
$$

since h is a symmetric tensor field. Thus, (6.5) follows from (6.7) and (6.8).

From Corollary 5.4 and Theorem 6.1, we have the following result.
Corollary 6.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \bar{M}. If T is parallel, then M is a hemi-slant product.

Theorem 6.3 Let M be a proper hemi-slant submanifold of \bar{M}. If N is parallel, then

$$
\begin{array}{ll}
\text { (a) } \quad A_{\mu} \mathcal{D}^{\perp}=0, & \text { (b) } \quad A_{N \mathcal{D} \perp} \mathcal{D}^{\theta}=0 \\
\text { (c) } \quad M \text { is }\left(\mathcal{D}^{\perp}, \mathcal{D}^{\theta}\right) \text {-mixed totally geodesic. }
\end{array}
$$

Proof Let N be parallel, it follows from (6.4) that

$$
\begin{equation*}
h(U, T V)=\omega h(U, V) \tag{6.9}
\end{equation*}
$$

for any $U, V \in T M$. Then, for any $X \in \mathcal{D}^{\perp}$, we have

$$
\begin{equation*}
\omega h(U, X)=0 \tag{6.10}
\end{equation*}
$$

from (6.9). For any $\xi \in \mu$, using (2.11), (2.2), and (2.6), we have

$$
g(\omega h(U, X), \xi)=g(h(U, X), F \xi)=g\left(A_{F \xi} X, U\right)
$$

TAŞTAN and ÖZDEMİR/Turk J Math

Thus, using (6.10) we get

$$
\begin{equation*}
g\left(A_{F \xi} X, U\right)=0 \tag{6.11}
\end{equation*}
$$

Since μ is invariant with respect to F, the assertion (a) comes from (6.11). On the other hand, for any $X \in \mathcal{D}^{\perp}$, using (2.2), (2.11), (2.12), and (6.9), we have

$$
\begin{aligned}
& g(h(U, T Z), N X)=g(h(U, T Z), F X)=g(\omega h(U, Z), F X) \\
& \quad=g(F h(U, Z), F X)=g(h(U, Z), X)=0
\end{aligned}
$$

that is, $g(h(U, T Z), N X)=0$. Putting $Z=T Z$ in last equation, we obtain

$$
\cos ^{2} \theta g(h(U, Z), N X)=\cos ^{2} \theta g\left(A_{N X} Z, U\right)=0
$$

Since $\theta \neq \frac{\pi}{2}$, the assertion (b) follows. Lastly, using (3.4), from (6.9), we have

$$
\omega^{2} h(X, Z)=\omega h(X, T Z)=h\left(X, T^{2} Z\right)=\cos ^{2} \theta h(X, Z)
$$

On the other hand, using (3.7a), we have

$$
\omega^{2} h(X, Z)=\omega^{2} h(Z, X)=\omega h(Z, T X)=0
$$

Thus, we get
$\cos ^{2} \theta h(X, Z)=0$.
Since $\theta \neq \frac{\pi}{2}$, we deduce that $h(X, Z)=0$, which proves the last assertion.

7. Totally umbilical hemi-slant submanifolds

In this section we shall give two characterization theorems for the totally umbilical proper hemi-slant submanifolds of a l.p.R. manifold. First we prove

Theorem 7.1 If M is a totally umbilical proper hemi-slant submanifold of a l.p.R. manifold \bar{M}, then either the anti-invariant distribution \mathcal{D}^{\perp} is 1-dimensional or the mean curvature vector field H of M is perpendicular to $F\left(\mathcal{D}^{\perp}\right)$. Moreover, if M is a hemi-slant product, then $H \in \mu$.

Proof Since M is a totally umbilical proper hemi-slant submanifold either $\operatorname{Dim}\left(\mathcal{D}^{\perp}\right)=1$ or $\operatorname{Dim}\left(\mathcal{D}^{\perp}\right)>1$. If $\operatorname{Dim}\left(\mathcal{D}^{\perp}\right)=1$, it is obvious. If $\operatorname{Dim}\left(\mathcal{D}^{\perp}\right)>1$, then we can choose $X, Y \in \mathcal{D}^{\perp}$ such that $\{X, Y\}$ is orthonormal. By using (2.11), (2.7), (2.6), and (4.22), we have

$$
\begin{equation*}
g(H, F Y)=g(h(X, X), N Y)=g\left(A_{N Y} X, X\right)=0 \tag{7.1}
\end{equation*}
$$

It means that

$$
\begin{equation*}
H \perp F\left(\mathcal{D}^{\perp}\right) \tag{7.2}
\end{equation*}
$$

TAŞTAN and ÖZDEMİR/Turk J Math

Moreover, if M is a hemi-slant product, for any $Z \in \mathcal{D}^{\theta}$, using (5.5) and (2.7), we have

$$
\begin{aligned}
g(H, N Z) & =g(h(X, X), N Z)=g\left(A_{N Z} X, X\right)=-g\left(A_{N X} Z, X\right) \\
& =-g(h(Z, X), N X)=0 .
\end{aligned}
$$

Hence, it follows that

$$
\begin{equation*}
H \perp N\left(\mathcal{D}^{\theta}\right) \tag{7.3}
\end{equation*}
$$

Thus, using (7.2) and (7.3) from (3.2), we get $H \in \mu$.
Before giving the second result of this section, recall the following fact about locally product Riemannian manifolds.

Let $M_{1}\left(c_{1}\right)$ (resp. $M_{2}\left(c_{2}\right)$) be a real space form with sectional curvature c_{1} (resp. c_{2}). Then the Riemannian curvature tensor \bar{R} of the locally product Riemannian manifold $\bar{M}=M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$ has the form

$$
\begin{align*}
\bar{R}(\bar{U}, \bar{V}) \bar{W}= & \frac{\left(c_{1}+c_{2}\right)}{4}\{g(\bar{V}, \bar{W}) \bar{U}-g(\bar{U}, \bar{W}) \bar{V}+g(F \bar{V}, \bar{W}) F \bar{U}-g(F \bar{U}, \bar{W}) F \bar{V}\} \tag{7.4}\\
& +\frac{\left(c_{1}-c_{2}\right)}{4}\{g(F \bar{V}, \bar{W}) \bar{U}-g(F \bar{U}, \bar{W}) \bar{V}+g(\bar{V}, \bar{W}) F \bar{U}-g(\bar{U}, \bar{W}) F \bar{V}\},
\end{align*}
$$

where $\bar{U}, \bar{V}, \bar{W} \in T \bar{M} \quad[22]$.
Theorem 7.2 Let M be a totally umbilical hemi-slant submanifold with parallel mean curvature vector field H of a l.p.R. manifold $\bar{M}=M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$ with $c_{1} \neq c_{2}$. Then M cannot be proper.
Proof Let $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$ be two unit vector fields. Since H is parallel, using (2.10) and (2.7) from the Codazzi equation (2.9), we have

$$
\begin{equation*}
(\bar{R}(X, Z) X)^{\perp}=-\nabla \frac{1}{Z} H=0 \tag{7.5}
\end{equation*}
$$

On the other hand, equation (7.4) gives

$$
\begin{equation*}
\bar{R}(X, Z) X=-\frac{1}{4}\left\{\left(c_{1}+c_{2}\right) Z+\left(c_{1}-c_{2}\right) F Z\right\} . \tag{7.6}
\end{equation*}
$$

Taking the normal component of (7.6), we get

$$
\begin{equation*}
(\bar{R}(X, Z) X)^{\perp}=-\frac{1}{4}\left(c_{1}-c_{2}\right) N Z \tag{7.7}
\end{equation*}
$$

which contradicts (7.5).
We have immediately from Theorem 7.2 that:
Corollary 7.3 There exists no totally geodesic proper hemi-slant submanifold of a l.p.R. manifold $\bar{M}=$ $M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$ with $c_{1} \neq c_{2}$.

8. Ricci curvature of hemi-slant submanifolds

In this section we obtain a Chen-type inequality for hemi-slant submanifolds of a l.p.R. manifold $\bar{M}=$ $M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$. We first present the following fundamental facts about this topic.

Let \bar{M} be a n-dimensional Riemannian manifold equipped with a Riemannian metric g and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for $T_{p} \bar{M}, p \in \bar{M}$. Then the Ricci tensor \bar{S} is defined by

$$
\begin{equation*}
\bar{S}(U, V)=\sum_{i=1}^{n} \bar{R}\left(e_{i}, U, V, e_{i}\right) \tag{8.1}
\end{equation*}
$$

where $U, V \in T_{p} \bar{M}$. For a fixed $i \in\{1, \ldots, n\}$, the Ricci curvature of e_{i}, denoted by $\bar{R} i c\left(e_{i}\right)$, is given by

$$
\begin{equation*}
\bar{R} i c\left(e_{i}\right)=\sum_{i \neq j}^{n} \bar{K}_{i j} \tag{8.2}
\end{equation*}
$$

where $\bar{K}_{i j}=g\left(\bar{R}\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)$ is the sectional curvature of the plane spanned by e_{i} and e_{j} at $p \in \bar{M}$. Let Π_{k} be a k-plane of $T_{p} \bar{M}$ and $\left\{e_{1}, \ldots, e_{k}\right\}$ any orthonormal basis of Π_{k}. For a fixed $i \in\{1, \ldots, k\}$, the k-Ricci curvature [9] of Π_{k} at e_{i}, denoted by $\bar{R} i c_{\Pi_{k}}\left(e_{i}\right)$, is defined by

$$
\begin{equation*}
\bar{R} i c_{\Pi_{k}}\left(e_{i}\right)=\sum_{i \neq j}^{k} \bar{K}_{i j} \tag{8.3}
\end{equation*}
$$

It is easy to see that $\overline{\operatorname{R}} i c_{\left(T_{p} \bar{M}\right)}\left(e_{i}\right)=\bar{R} i c\left(e_{i}\right)$ for $1 \leq i \leq n$, since $\Pi_{n}=T_{p} \bar{M}$.
We now recall the following basic inequality [10, Theorem 3.1] involving Ricci curvature and the squared mean curvature of a submanifold of a Riemannian manifold.

Theorem 8.1 ([10, Theorem 3.1]) Let M be an m-dimensional submanifold of a Riemannian manifold \bar{M}. Then, for any unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4} m^{2}\|H\|^{2}+\overline{\operatorname{R}} c_{\left(T_{p} M\right)}(X) \tag{8.4}
\end{equation*}
$$

where $\operatorname{Ric}(X)$ is the Ricci curvature of X.
Of course, the equality case of (8.4) was also discussed in [10], but we will not deal with the equality case in this paper.

Now, we are ready to state the main result of this section.
Theorem 8.2 Let M be an m-dimensional hemi-slant submanifold of a l.p.R. manifold $\bar{M}=M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$. Then, for unit vector $V \in T_{p} M$, we have

$$
\begin{align*}
& 4 \operatorname{Ric}(V) \leq m^{2}\|H\|^{2}+\left(c_{1}+c_{2}\right)\left\{(m-1)+\sum_{i=2}^{m} g\left(T e_{i}, e_{i}\right) g(T V, V)\right. \tag{8.5}\\
& \left.-\|T V\|^{2}+g^{2}(T V, V)\right\}+\left(c_{1}-c_{2}\right)\left\{\sum_{i=2}^{m} g\left(T e_{i}, e_{i}\right)+(m-1) g(T V, V)\right\}
\end{align*}
$$

where $\left\{V, e_{2}, \ldots, e_{m}\right\}$ is an orthonormal basis for $T_{p} M$.

TAŞTAN and ÖZDEMİR/Turk J Math

Proof Since M is an m-dimensional hemi-slant submanifold of a l.p.R. manifold $\bar{M}=M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$, then for any unit vector $V \in T_{p} M$, using (7.4) and (2.11) from (8.3) we have

$$
\begin{array}{r}
4 \bar{R} i c_{\left(T_{p} M\right)}(V)=\left(c_{1}+c_{2}\right)\left\{(m-1)+\sum_{i=2}^{m} g\left(T e_{i}, e_{i}\right) g(T V, V)\right. \tag{8.6}\\
\left.-\|T V\|^{2}+g^{2}(T V, V)\right\}+\left(c_{1}-c_{2}\right)\left\{\sum_{i=2}^{m} g\left(T e_{i}, e_{i}\right)+(m-1) g(T V, V)\right\}
\end{array}
$$

Thus, using (8.6) in (8.4) we get (8.5).

Remark 8.3 In general, $g(F \bar{V}, \bar{V}) \neq 0$ for any unit vector $\bar{V} \in T_{p} \bar{M}$ in a l.p.R. manifold \bar{M}, contrary to almost Hermitian $(g(J \bar{V}, \bar{V})=0)$ and almost contact $((g(\varphi \bar{V}, \bar{V})=0)$ manifolds. However, we can establish that the almost product structure F in a l.p.R. manifold \bar{M} such that $g(F \bar{V}, \bar{V})=0$, for all $\bar{V} \in T_{p} \bar{M}$. In fact, if \bar{M} is an even dimensional l.p.R. manifold with an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n}\right\}$, then we can define F by

$$
F\left(e_{i}\right)=e_{n+i}, \quad F\left(e_{n+i}\right)=e_{i}, \quad i \in\{1,2, \ldots, n\}
$$

Hence, we observe easily that the almost product structure F satisfies

$$
\begin{equation*}
g\left(F e_{i}, e_{i}\right)=0 \tag{8.7}
\end{equation*}
$$

For example, the almost product structure F in the example of section 3 satisfies the condition (8.7). On the other hand, because of Lemma 3.3 and equation (3.5), we have $T V=0$, if $V \in \mathcal{D}^{\perp}$ and $\|T V\|^{2}=\cos ^{2} \theta$, if $V \in \mathcal{D}^{\theta}$ and $\|V\|=1$, respectively. Thus, by Theorem 8.2 we get the following two results.

Corollary 8.4 Let M be an m-dimensional anti-invariant submanifold of a l.p.R. manifold $\bar{M}=M_{1}\left(c_{1}\right) \times$ $M_{2}\left(c_{2}\right)$. If the almost product structure F of \bar{M} satisfies the condition (8.7), then we have

$$
4 \operatorname{Ric}(V) \leq m^{2}\|H\|^{2}+\left(c_{1}+c_{2}\right)(m-1)
$$

where $V \in T_{p} M$ is any unit vector.
Corollary 8.5 Let M be an m-dimensional slant submanifold of a l.p.R. manifold $\bar{M}=M_{1}\left(c_{1}\right) \times M_{2}\left(c_{2}\right)$. If the almost product structure F of \bar{M} satisfies the condition (8.7), then we have

$$
4 \operatorname{Ric}(Z) \leq m^{2}\|H\|^{2}+\left(c_{1}+c_{2}\right)\left\{(m-1)-\cos ^{2} \theta\right\}
$$

where $Z \in T_{p} M$ is any unit vector.

Acknowledgment

We would like to thank Professor Bayram Şahin for his contributions and suggestions concerning Section 7 of this work. We also would like to thank the referee for his/her suggestions.

TAŞTAN and ÖZDEMİR/Turk J Math

References

[1] Adati T. Submanifolds of an almost product manifold. Kodai Math J 1981; 4: 327-343.
[2] Alegre P. Slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds. Taiwanese J Math 2013; 17: 897-910. DOI:10.11650/tjm.17.2013.2427.
[3] Al-Solamy FR, Khan MA, Uddin S. Totally umbilical hemi-slant submanifolds of Kähler manifolds. Abstr Appl Anal 2011; Art. ID 987157, 9 pp.
[4] Arslan K, Carriazo A, Chen BY, Murathan C. On slant submanifolds of neutral Kaehler manifolds. Taiwanese J Math 2010; 17: 561-584.
[5] Bejancu A. Semi-invariant submanifolds of locally product Riemannian manifolds. An Univ Timişoara Ser Ştiint Math Al 1984; 22: 3-11.
[6] Cabrerizo JL, Carriazo A, Fernandez LM, Fernandez M. Slant submanifolds in Sasakian manifolds. Glasgow Math J 2000; 42: 125-138.
[7] Carriazo A. Bi-slant immersions. In: Proc. ICRAMS 2000, Kharagpur, India, 2000, 88-97.
[8] Chen BY. Geometry of slant submanifolds. Katholieke Universiteit Leuven, 1990.
[9] Chen BY. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math J 1999; 41: 33-41.
[10] Hong S, Tripathi MM. On Ricci curvature of submanifolds. Internat J Pure Appl Math Sci 2005; 2: 227-246.
[11] Khan VA, Khan MA. Pseudo-slant submanifolds of a Sasakian manifold. Indian J Pure Appl Math 2007; 38: 31-42.
[12] Li H, Liu X. Semi-slant submanifolds of a locally product manifold. Georgian Math J 2005; 12: 273-282.
[13] Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Roumanie 1996; 39: 183-198.
[14] Papaghiuc N. Semi-slant submanifolds of a Kählerian manifold. Ann Şt Al I Cuza Univ Iaşi 1994; 40: 55-61.
[15] Pitis G. On some submanifolds of a locally product manifold. Kodai Math J 1986; 9: 327-333.
[16] Ronsse GS. Generic and skew CR-submanifolds of a Kähler manifold. Bull Inst Math Acad Sinica 1990; 18: 127-141.
[17] Şahin B. Slant submanifolds of an almost product Riemannian manifold. J Korean Math Soc 2006; 43: 717-732.
[18] Şahin B. Warped product submanifolds of a Kähler manifold with a slant factor. Ann Pol Math 2009; 95: 207-226.
[19] Taştan HM. The axiom of hemi-slant 3-spheres in almost Hermitian geometry. Bull Malays Math Sci Soc(2) 2014; 37: 555-564.
[20] Tripathi MM. Generic submanifolds of generalized complex space forms. Publ Math Debrecen 1997; 50: 373-392.
[21] Uddin S, Khan MA, Singh K. A note on totally umbilical pseudo-slant submanifolds of a nearly Kähler manifold. Acta Univ Apulensis Math Inform 2012; 29: 279-285.
[22] Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984.

[^0]: *Correspondence: hakmete@istanbul.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 53B25; Secondary 53C55.

