

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

The geometry of hemi-slant submanifolds of a locally product Riemannian manifold

Hakan Mete TAŞTAN^{1,*}, Fatma ÖZDEMİR²

¹Department of Mathematics, İstanbul University, Vezneciler, İstanbul, Turkey ²Department of Mathematics, İstanbul Technical University, Maslak, İstanbul, Turkey

Received: 07.07.2014	•	Accepted: 14.01.2015	•	Published Online: 23.02.2015	•	Printed: 20.03.2015
-----------------------------	---	----------------------	---	-------------------------------------	---	----------------------------

Abstract: In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some applications of this result. We get a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product Riemannian manifolds.

Key words: Locally product manifold, hemi-slant submanifold, slant distribution

1. Introduction

Study of slant submanifolds was initiated by Chen [8], as a generalization of both holomorphic and totally real submanifolds of a Kähler manifold. Slant submanifolds have been studied in different kind of structures: almost contact [13], neutral Kähler [4], Lorentzian Sasakian [2], and Sasakian [6] by several geometers. N. Papaghiuc [14] introduced semi-slant submanifolds of a Kähler manifold as a natural generalization of slant submanifold. Carriago [7], introduced bi-slant submanifolds of an almost Hermitian manifold as a generalization of semi-slant submanifolds. One of the classes of bi-slant submanifolds is that of anti-slant submanifolds, which are studied by Carriazo [7]. However, Sahin [18] called these submanifolds hemi-slant submanifolds because the name antislant indicates it has no slant factor. We observe that a hemi-slant submanifold is a special case of generic submanifold introduced by Ronsse [16]. Since then many geometers have studied hemi-slant submanifolds in different kinds of structures: Kähler [3, 18], nearly Kähler [21], generalized complex space form [20], and almost Hermitian [19]. In some cases, we should note that hemi-slant submanifolds are also studied under the name pseudo-slant submanifolds; see [11] and [21]. Furthermore, the submanifolds of a locally product Riemannian manifold have been studied by many geometers. For example, Adati [1] defined and studied invariant and anti-invariant submanifolds, while Bejancu [5] and Pitis [15] studied semi-invariant submanifolds. Slant and semi-slant submanifolds of a locally product Riemannian manifold are examined by Sahin [17] and Li and Liu [12]. In this paper, we study the geometry of hemi-slant submanifolds of a locally product Riemannian manifold in detail.

^{*}Correspondence: hakmete@istanbul.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: Primary 53B25; Secondary 53C55.

2. Preliminaries

This section is devoted to preliminaries. Actually, in subsection 2.1 we present the basic background needed for a locally product Riemannian manifold. Theory of submanifolds and distributions related to the study are given in subsection 2.2.

2.1. Locally product Riemannian manifolds

Let \overline{M} be an *m*-dimensional manifold with a tensor field of type (1,1) such that

$$F^2 = I, (F \neq \pm I)$$
, (2.1)

where I is the identity morphism on the tangent bundle $T\overline{M}$ of \overline{M} . Then we say that \overline{M} is an *almost product* manifold with almost product structure F. If an almost product manifold (\overline{M}, F) admits a Riemannian metric q such that

$$g(F\bar{U},F\bar{V}) = g(\bar{U},\bar{V}) \tag{2.2}$$

for all $\overline{U}, \overline{V} \in T\overline{M}$, then \overline{M} is called an *almost product Riemannian manifold*.

Next, we denote by $\overline{\nabla}$ the Riemannian connection with respect to g on \overline{M} . We say that \overline{M} is a *locally* product Riemannian manifold, (briefly, *l.p.R. manifold*) if we have

$$(\overline{\nabla}_{\bar{U}} F)\bar{V} = 0, \qquad (2.3)$$

for all $\bar{U}, \bar{V} \in T\bar{M}$ [22].

2.2. Submanifolds

Let M be a submanifold of a l.p.R. manifold (\overline{M}, g, F) . Let $\overline{\nabla}, \nabla$, and ∇^{\perp} be the Riemannian, induced Riemannian, and induced normal connection in \overline{M}, M and the normal bundle $T^{\perp}M$ of M, respectively. Then for all $U, V \in TM$ and $\xi \in T^{\perp}M$ the Gauss and Weingarten formulas are given by

$$\overline{\nabla}_U V = \nabla_U V + h(U, V) \tag{2.4}$$

and

$$\overline{\nabla}_U \xi = -A_\xi U + \nabla_U^{\perp} \xi \tag{2.5}$$

where h is the second fundamental form of M and A_{ξ} is the Weingarten endomorphism associated with ξ . The second fundamental form h and the shape operator A are related by

$$g(h(U,V),\xi) = g(A_{\xi}U,V)$$
 . (2.6)

A submanifold M is said to be *totally geodesic* if its second fundamental form vanishes identically, that is, h = 0, or equivalently $A_{\xi} = 0$. We say that M is *totally umbilical* submanifold in \overline{M} if for all $U, V \in TM$ we have

$$h(U,V) = g(U,V)H , \qquad (2.7)$$

where H is the mean curvature vector field of M in \overline{M} . A normal vector field ξ is said to be parallel, if $\nabla_{U}^{\perp}\xi = 0$ for each vector field $U \in TM$.

The Riemannian curvature tensor \overline{R} of \overline{M} is given by

$$\overline{R}(\overline{U},\overline{V}) = \left[\overline{\nabla}_{\overline{U}},\overline{\nabla}_{\overline{V}}\right] - \overline{\nabla}_{[\overline{U},\overline{V}]},\tag{2.8}$$

where $\bar{U}, \bar{V} \in T\bar{M}$.

Then the Codazzi equation is given by

$$\left(\overline{R}(U,V)W\right)^{\perp} = (\overline{\nabla}_U h)(V,W) - (\overline{\nabla}_V h)(U,W)$$
(2.9)

for all $U V, W \in TM$. Here, \perp denotes the normal component and the covariant derivative of h, denoted by $\overline{\nabla}_U h$ is defined by

$$(\overline{\nabla}_U h)(V, W) = \nabla_U^{\perp} h(V, W) - h(\nabla_U V, W) - h(V, \nabla_U W).$$
(2.10)

Now, we write

$$FU = TU + NU av{2.11}$$

for any $U \in TM$. Here TU is the tangential part of FU, and NU is the normal part of FU. Similarly, for any $\xi \in T^{\perp}M$, we put

$$F\xi = t\xi + \omega\xi \quad , \tag{2.12}$$

where $t\xi$ is the tangential part of $F\xi$, and $\omega\xi$ is the normal part of $F\xi$.

A distribution \mathcal{D} on a manifold \overline{M} is called *autoparallel* if $\overline{\nabla}_X Y \in \mathcal{D}$ for any $X, Y \in \mathcal{D}$ and called parallel if $\overline{\nabla}_U X \in \mathcal{D}$ for any $X \in \mathcal{D}$ and $U \in T\overline{M}$. If a distribution \mathcal{D} on \overline{M} is autoparallel, then it is clearly integrable, and by Gauss formula \mathcal{D} is totally geodesic in \overline{M} . If \mathcal{D} is parallel then the orthogonal complementary distribution \mathcal{D}^{\perp} is also parallel, which implies that \mathcal{D} is parallel if and only if \mathcal{D}^{\perp} is parallel. In this case \overline{M} is locally product of the leaves of \mathcal{D} and \mathcal{D}^{\perp} . Let M be a submanifold of \overline{M} . For two distributions \mathcal{D}_1 and \mathcal{D}_2 on M, we say that M is $(\mathcal{D}_1, \mathcal{D}_2)$ mixed totally geodesic if for all $X \in \mathcal{D}_1$ and $Y \in \mathcal{D}_2$ we have h(X, Y) = 0, where h is the second fundamental form of M [20, 22].

3. Hemi-slant submanifolds of a locally product Riemannian manifold

In this section, we define the notion of hemi-slant submanifold and observe its effect on the tangent bundle of the submanifold and canonical projection operators and start to study hemi-slant submanifolds of a locally product Riemannian manifold.

Let (\overline{M}, g, F) be a locally product Riemannian manifold and let M be a submanifold of \overline{M} . A distribution \mathcal{D} on M is said to be a *slant distribution* if for $X \in \mathcal{D}_p$, the angle θ between FX and \mathcal{D}_p is constant, i.e. independent of $p \in M$ and $X \in \mathcal{D}_p$. The constant angle θ is called the slant angle of the slant distribution \mathcal{D} . A submanifold M of \overline{M} is said to be a *slant submanifold* if the tangent bundle TM of M is slant [12, 17]. Thus, the F-invariant and F-anti-invariant submanifolds are slant submanifolds with slant angle $\theta = 0$ and $\theta = \pi/2$, respectively. A slant submanifold that is neither F-invariant nor F-anti-invariant is called a *proper* slant submanifold.

Definition 3.1 A hemi-slant submanifold M of a locally product Riemannian manifold \overline{M} is a submanifold that admits two orthogonal complementary distributions \mathcal{D}^{\perp} and \mathcal{D}^{θ} such that

- (a) TM admits the orthogonal direct decomposition $TM = \mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$
- (b) The distribution \mathcal{D}^{\perp} is F-anti-invariant, i.e. $F\mathcal{D}^{\perp} \subseteq T^{\perp}M$.
- (c) The distribution \mathcal{D}^{θ} is slant with slant angle θ .

In this case, we call θ the slant angle of M. Suppose the dimension of distribution \mathcal{D}^{\perp} (resp. \mathcal{D}^{θ}) is p (resp. q). Then we easily see the following particular cases.

- (d) If q = 0, then M is an anti-invariant submanifold [1].
- (e) If p = 0 and $\theta = 0$, then M is an invariant submanifold [1].
- (f) If p = 0 and $\theta \neq 0, \frac{\pi}{2}$, then M is a proper slant submanifold [17].
- (g) If $\theta = \frac{\pi}{2}$, then M is an anti-invariant submanifold.
- (h) If $p \neq 0$ and $\theta = 0$, then M is a semi-invariant submanifold [5].

We say that the hemi-slant submanifold M is proper if $p \neq 0$ and $\theta \neq 0, \frac{\pi}{2}$.

Lemma 3.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then we have,

$$F(\mathcal{D}^{\perp}) \perp N(\mathcal{D}^{\theta})$$
 . (3.1)

Proof For any $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$, using (2.2) and (2.11), we have g(FX, NZ) = g(FX, FZ) = g(X, Z) = 0. This completes the proof.

In view of Lemma 3.2, for a hemi-slant submanifold M of a l.p.R. manifold \overline{M} , the normal bundle $T^{\perp}M$ of M is decomposed as

$$T^{\perp}M = F(\mathcal{D}^{\perp}) \oplus N(\mathcal{D}^{\theta}) \oplus \mu \quad , \tag{3.2}$$

where μ is the orthogonal complementary distribution of $F(\mathcal{D}^{\perp}) \oplus N(\mathcal{D}^{\theta})$ in $T^{\perp}M$ and it is the invariant subbundle of $T^{\perp}M$ with respect to F.

The following facts follow easily from (2.1), (2.11), and (2.12) and will be used later.

$$T^2 + tN = I, (3.3a)$$

$$\omega^2 + Nt = I, \tag{3.3b}$$

$$NT + \omega N = 0, \tag{3.3c}$$

$$Tt + t\omega = 0. \tag{3.3d}$$

As in a slant submanifold [17], for a hemi-slant submanifold M of a l.p.R. manifold \overline{M} , we have

$$T^2 Z = \cos^2 \theta Z \,, \tag{3.4}$$

$$g(TZ, TW) = \cos^2\theta g(Z, W) \tag{3.5}$$

and

$$g(NZ, NW) = \sin^2 \theta g(Z, W) , \qquad (3.6)$$

where $Z, W \in \mathcal{D}^{\theta}$.

Here, we omit the proofs of equations (3.4)–(3.6), because the proof of (3.4) is the same as the proof of Theorem 3.1 of [17] and the other proofs are also the same as the proofs of equations (3.3) and (3.4) in Lemma 3.1 of [17].

Lemma 3.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then we have,

$$T(\mathcal{D}^{\perp}) = \{0\},$$
 (3.7a)

$$T(\mathcal{D}^{\theta}) = \mathcal{D}^{\theta}.$$
 (3.7b)

Proof Since \mathcal{D}^{\perp} is anti-invariant with respect to F, (a) follows from (2.11). For any $Z \in \mathcal{D}^{\theta}$ and $X \in \mathcal{D}^{\perp}$, using (2.1), (2.2), and (2.11), we have g(TZ, X) = g(FZ, X) = g(Z, FX) = 0. Hence, we conclude that $T(\mathcal{D}^{\theta}) \perp \mathcal{D}^{\perp}$. Since $T(\mathcal{D}^{\theta}) \subseteq TM$, it follows that $T(\mathcal{D}^{\theta}) \subseteq \mathcal{D}^{\theta}$. Let W be in \mathcal{D}^{θ} . Then using (3.4), we have $W = \frac{1}{\cos^{2}\theta}(\cos^{2}\theta W) = \frac{1}{\cos^{2}\theta}T^{2}W = \frac{1}{\cos^{2}\theta}T(TW)$. Therefore, we find $W \in T(\mathcal{D}^{\theta})$. It follows that $\mathcal{D}^{\theta} \subseteq T(\mathcal{D}^{\theta})$. Thus, we get the assertion (b).

Thanks to Theorem 3.1 [17], we characterize hemi-slant submanifolds of a l.p.R. manifold.

Theorem 3.4 Let M be a submanifold of a l.p.R. manifold M. Then M is a hemi-slant submanifold if and only if there exist a constant $\lambda \in [0, 1]$ and a distribution \mathcal{D} on M such that

- (a) $\mathcal{D} = \{ U \in TM \mid T^2U = \lambda U \},\$
- (b) for any $X \in TM$ orthogonal to $\mathcal{D}, TX = 0$.

Moreover, in this case $\lambda = \cos^2 \theta$, where θ is the slant angle of M.

Proof Let M be a hemi-slant submanifold of \overline{M} with anti-invariant distribution \mathcal{D}^{\perp} and slant distribution \mathcal{D}^{θ} . Here, θ is the slant angle of M; in which case, we have $TM = \mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$. Then we can choose \mathcal{D} as \mathcal{D}^{θ} . Moreover, we have $\lambda = \cos^2\theta$ thanks to (3.4). Hence, (a) follows. (b) follows from Lemma 3.3. Conversely, (a) and (b) imply $TM = \mathcal{D}^{\perp} \oplus \mathcal{D}$. Since $T(\mathcal{D}) \subseteq \mathcal{D}$, we conclude that \mathcal{D}^{\perp} is an anti-invariant distribution from (b).

Example. Consider the Euclidean 6-space \mathbb{R}^6 with usual metric g. Define the almost product structure F on (\mathbb{R}^6, g) by

$$F(\frac{\partial}{\partial x_i}) = \frac{\partial}{\partial y_i}, \quad F(\frac{\partial}{\partial y_i}) = \frac{\partial}{\partial x_i}, \quad i = 1, 2, 3,$$

where $(x_1, x_2, x_3, y_1, y_2, y_3)$ are natural coordinates of \mathbb{R}^6 . Then $\overline{M} = (\mathbb{R}^6, g, F)$ is an almost product Riemannian manifold. Furthermore, it is easy to see that \overline{M} is a l.p.R. manifold. Let M be a submanifold of \overline{M} defined by

$$f(u, v, w) = \left(\frac{u}{\sqrt{2}}, \frac{u}{\sqrt{2}}, u + v, \frac{w}{\sqrt{2}}, \frac{w}{\sqrt{2}}, 0\right), \qquad u \neq 0.$$

Then a local frame of TM is given by

$$\begin{split} X &= \frac{\partial}{\partial x_3} \,, \\ Z &= \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_1} + \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \,, \\ W &= \frac{1}{\sqrt{2}} \frac{\partial}{\partial y_1} + \frac{1}{\sqrt{2}} \frac{\partial}{\partial y_2} \,. \end{split}$$

By using the almost product structure F above, we see that FX is orthogonal to TM; thus $\mathcal{D}^{\perp} = \operatorname{span}\{X\}$. Moreover, it is not difficult to see that $\mathcal{D}^{\theta} = \operatorname{span}\{Z, W\}$ is a slant distribution with slant angle $\theta = \pi/4$. Thus, M is a proper hemi-slant submanifold of \overline{M} .

4. Integrability

In this section, we give a necessary and sufficient condition for the integrability of the slant distribution of the hemi-slant submanifold. After that we prove that the anti invariant distribution of the hemi-slant submanifold is always integrable and give some applications of this result.

Let M be a submanifold of a l.p.R. manifold \overline{M} . For any $U, V \in TM$, we have $\overline{\nabla}_U FV = F\overline{\nabla}_U V$ from (2.3). Then, using (2.4-2.5), (2.11-2.12) and identifying the components from TM and $T^{\perp}M$, we have the following.

Lemma 4.1 Let M be a submanifold of a l.p.R. manifold \overline{M} . Then we have

$$\nabla_U TV - A_{NV}U = T\nabla_U V + t h(U, V), \qquad (4.1)$$

$$h(U,TV) + \nabla_U^{\perp} NV = N\nabla_U V + \omega h(U,V) \quad . \tag{4.2}$$

for all $U, V \in TM$.

In a similar way, we have:

Lemma 4.2 Let M be a submanifold of a l.p.R. manifold \overline{M} . Then we have

$$\nabla_U t\xi - A_{\omega\xi}U = -TA_{\xi}U + t\nabla_U^{\perp}\xi \quad , \tag{4.3}$$

$$h(U, t\xi) + \nabla_U^{\perp} \omega \xi = -NA_{\xi}U + \omega \nabla_U^{\perp} \xi$$
(4.4)

for any $U \in TM$ and $\xi \in T^{\perp}M$.

Theorem 4.3 Let M be a hemi-slant manifold of a l.p.R. manifold \overline{M} . Then the slant distribution \mathcal{D}^{θ} is integrable if and only if

$$A_{NZ}W - A_{NW}Z + \nabla_Z TW - \nabla_W TZ \in \mathcal{D}^{\theta}$$

$$\tag{4.5}$$

for any $Z, W \in \mathcal{D}^{\theta}$.

Proof From (4.1), we have

$$\nabla_Z TW - A_{NW}Z = T\nabla_Z W + t h(Z, W) \tag{4.6}$$

and

$$\nabla_W TZ - A_{NZ} W = T \nabla_W Z + th(W, Z) \tag{4.7}$$

for any $Z, W \in \mathcal{D}^{\theta}$. By (4.6) and (4.7), we get

$$A_{NZ}W - A_{NW}Z + \nabla_Z TW - \nabla_W TZ = T[Z, W] .$$

$$(4.8)$$

Thus, our assertion follows from (3.7b) and (4.8).

In the following we give an application of Theorem 4.3.

Theorem 4.4 Let M be a hemi-slant manifold of a l.p.R. manifold \overline{M} . If M is \mathcal{D}^{θ} -totally geodesic, then the slant distribution \mathcal{D}^{θ} is integrable.

Proof Suppose that M is \mathcal{D}^{θ} -totally geodesic, that is, for any $Z, W \in \mathcal{D}^{\theta}$ we have

$$h(Z,W) = 0.$$
 (4.9)

By (4.1) and (4.9), we have

$$A_{NZ}W - \nabla_W TZ = -T\nabla_W Z \tag{4.10}$$

and similarly

$$A_{NW}Z - \nabla_Z TW = -T\nabla_Z W. \tag{4.11}$$

From (4.10) and (4.11), using Lemma 3.3, we get

$$g(A_{NZ}W - A_{NW}Z + \nabla_Z TW - \nabla_W TZ, X) = g(T[Z, W], X) = 0$$
(4.12)

for any $X \in \mathcal{D}^{\perp}$. The last equation (4.12) says that

$$A_{NZ}W - A_{NW}Z + \nabla_Z TW - \nabla_W TZ \in \mathcal{D}^{\theta}$$

and by Theorem 4.3, we deduce that \mathcal{D}^{θ} is integrable.

Lemma 4.5 Let M be a hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then

$$A_{NX}Y = -A_{NY}X\tag{4.13}$$

for any $X, Y \in \mathcal{D}^{\perp}$.

Proof For any $X \in \mathcal{D}^{\perp}$ and $U \in TM$, using (3.7a), we have

$$-T\nabla_U X = A_{NX}U + t h(U, X) \tag{4.14}$$

from (4.1). Let Y be in \mathcal{D}^{\perp} . Using (3.7b), we obtain

$$0 = -g(T\nabla_U X, Y) = g(A_{NX}U, Y) + g(th(U, X), Y)$$
(4.15)

from (4.14). On the other hand, using (2.2), (2.6), (2.11), and (2.12), we find

$$g(th(U,X),Y) = g(A_{NY}U,X).$$
(4.16)

Thus, from (4.15) and (4.16), we deduce that

$$g(A_{NX}Y + A_{NY}X, U) = 0. (4.17)$$

This equation gives (4.13).

Theorem 4.6 Let M be a hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the anti-invariant distribution \mathcal{D}^{\perp} is integrable if and only if

$$A_{NX}Y = A_{NY}X \tag{4.18}$$

for all $X, Y \in \mathcal{D}^{\perp}$.

Proof From (4.1), using (3.7a), we have

$$-A_{NY}X = T\nabla_X Y + t h(X, Y) \tag{4.19}$$

for all $X \in \mathcal{D}^{\perp}$. By interchanging X and Y in (4.19), then subtracting it from (4.19) we obtain

$$A_{NX}Y - A_{NY}X = T[X, Y] {.} {(4.20)}$$

Because of (3.7a), we know that \mathcal{D}^{\perp} is integrable if and only if T[X,Y] = 0 for all $X, Y \in \mathcal{D}^{\perp}$. Thus, our assertion comes from (4.20).

By Lemma 4.5 and Theorem 4.6, we have the following result.

Corollary 4.7 Let M be a hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the anti-invariant distribution \mathcal{D}^{\perp} is integrable if and only if

$$A_{NX}Y = 0 \tag{4.21}$$

for all $X, Y \in \mathcal{D}^{\perp}$.

Now, we give the main result of this section.

Theorem 4.8 Let M be a hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the anti-invariant distribution \mathcal{D}^{\perp} is always integrable.

Proof Let \overline{M} be a l.p.R. manifold with Riemannian metric g and almost product structure F. Define the symmetric (0,2)-type tensor field Ω by $\Omega(\overline{U}, \overline{V}) = g(F\overline{U}, \overline{V})$ on the tangent bundle $T\overline{M}$. It is not difficult to see that $(\overline{\nabla}_{\overline{U}}\Omega)(\overline{V}, \overline{W}) = g((\overline{\nabla}_{\overline{U}}F)\overline{V}, \overline{W})$ on $T\overline{M}$. Thus, because of (2.3), we deduce that

$$3\,d\Omega(\bar{V},\bar{W},\bar{U}) = \mathcal{G}(\bar{\nabla}_{\bar{U}}\Omega)(\bar{V},\bar{W}) = 0$$

for all $\overline{U}, \overline{V}, \overline{W} \in T\overline{M}$, that is, $d\Omega \equiv 0$, where \mathcal{G} denotes the cyclic sum over $\overline{U}, \overline{V}, \overline{W} \in T\overline{M}$. Next, for any $X, Y \in \mathcal{D}^{\perp}$ and $U \in TM$ we have

$$\begin{split} 0 &= 3 \, d\Omega(U, X, Y) = U \, \Omega(X, Y) + X \, \Omega(Y, U) + Y \, \Omega(U, X) \\ &- \Omega([U, X], Y) - \Omega([X, Y], U) - \Omega([Y, U], X) \\ &= g(T[Y, X], U]) \,. \end{split}$$

It follows that T[X, Y] = 0 and because of (3.7a), $[Y, X] \in \mathcal{D}^{\perp}$.

Corollary 4.9 Let M be a hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the following facts hold:

$$A_{ND^{\perp}}D^{\perp} = 0 \tag{4.22}$$

$$A_{NX}Z \in D^{\theta}, \quad i.e., \ A_{ND^{\perp}}D^{\theta} \subseteq D^{\theta}$$

$$(4.23)$$

and

$$g(h(TM, \mathcal{D}^{\perp}), N\mathcal{D}^{\perp}) = 0, \qquad (4.24)$$

where $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.

Proof (4.22) follows from Corollary 4.7 and Theorem 4.8. (4.23) follows from (4.22). Finally, using (2.6), (4.22) gives (4.24). \Box

Next, we give another application of Theorem 4.8.

Theorem 4.10 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . The anti-invariant distribution \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if $h(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}) \perp N\mathcal{D}^{\theta}$.

Proof For $X, Y \in \mathcal{D}^{\perp}$, we put $\nabla_X Y = {}^{\perp} \nabla_X Y + {}^{\theta} \nabla_X Y$, where ${}^{\perp} \nabla_X Y$ (resp. ${}^{\theta} \nabla_X Y$) denotes the antiinvariant (resp. slant) part of $\nabla_X Y$. Then using Lemma 3.3 and (3.5), for any $Z \in \mathcal{D}^{\theta}$ we have

$$g(\nabla_X Y, Z) = g({}^{\theta}\nabla_X Y, Z) = \frac{1}{\cos^2\theta} g(T^{\theta}\nabla_X Y, TZ) = \frac{1}{\cos^2\theta} g(T\nabla_X Y, TZ).$$
(4.25)

On the other hand, from (4.1), we have

$$T\nabla_X Y + t h(X, Y) = -A_{NY} X = 0$$
, (4.26)

since the distribution \mathcal{D}^{\perp} is integrable. Therefore, using (4.26), from (4.25), we get

$$g(\nabla_X Y, Z) = -\frac{1}{\cos^2\theta} g(t h(X, Y), TZ) = -\frac{1}{\cos^2\theta} g(Fh(X, Y), TZ).$$
(4.27)

Here, using (2.2), (2.11), and (3.4), we find

$$g(Fh(X,Y),TZ) = g(h(X,Y),NTZ).$$
 (4.28)

From (4.27) and (4.28), we get

$$g(\nabla_X Y, Z) = -\frac{1}{\cos^2\theta} g(h(X, Y), NTZ).$$
(4.29)

Since $TZ \in \mathcal{D}^{\theta}$, our assertion comes from (4.29).

5. Hemi-slant product

In this section, we give a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant product.

Definition 5.1 A proper hemi-slant submanifold M of a l.p.R. manifold \overline{M} is called a hemi-slant product if it is locally product Riemannian of an anti-invariant submanifold M_{\perp} and a proper slant submanifold M_{θ} of \overline{M} .

Now, we are going to examine the problem when a proper hemi-slant submanifold of a l.p.R. manifold is a hemi-slant product.

We first give a result that is equivalent to Theorem 4.10.

Theorem 5.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the anti-invariant \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if

$$g(A_{NY}Z,X) = -g(A_{NZ}Y,X), \qquad (5.1)$$

where $X, Y \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.

Proof For any $X, Y \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$, using (2.4), (2.2), and (2.3), we have

$$g(\nabla_X Y, Z) = g(\nabla_X Y, Z) = g(\nabla_X FY, FZ)$$

Hence, using (2.11), (2.4), (2.5), and (2.2), we obtain

$$g(\nabla_X Y, Z) = -g(A_{NY}X, TZ) + g(\nabla_X Y, FNZ) + g(h(X, Y), FNZ)$$

Here, using (3.3c), (3.3a), (2.12), and (3.4), we have

FNZ = tNZ - NTZ and $tNZ = Z - T^2Z = \sin^2\theta Z$. Thus, with the help of (2.6), we get

$$g(\nabla_X Y, Z) = -g(A_{NY}X, TZ) + \sin^2\theta g(\nabla_X Y, Z) - g(A_{NTZ}Y, X).$$

After some calculations, we find

$$\cos^2\theta g(\nabla_X Y, Z) = -g(A_{NY}TZ, X) - g(A_{NTZ}Y, X).$$

It follows that the distribution \mathcal{D}^{\perp} defines a totally geodesic foliation on M if and only if

$$g(A_{NY}TZ,X) = -g(A_{NTZ}Y,X).$$
(5.2)

Putting Z = TZ in (5.2), we obtain (5.1) and vice versa.

Theorem 5.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then the distribution \mathcal{D}^{θ} defines a totally geodesic foliation on M if and only if

$$g(A_{NX}W,Z) = -g(A_{NW}X,Z), \qquad (5.3)$$

where $X \in \mathcal{D}^{\perp}$ and $Z, W \in \mathcal{D}^{\theta}$.

Proof Using (2.4), (2.2), and (2.3), we have $g(\nabla_Z W, X) = g(\overline{\nabla}_Z FW, FX)$ for any $Z, W \in \mathcal{D}^{\theta}$ and $X \in \mathcal{D}^{\perp}$. Next, using (2.11) and (3.1), we obtain $g(\nabla_Z W, X) = -g(TW, \overline{\nabla}_Z NX) - g(NW, \overline{\nabla}_Z FX)$. Hence, using (2.5) and (2.1), we get $g(\nabla_Z W, X) = g(TW, A_{NX}Z) - g(FNW, \overline{\nabla}_Z X)$. With the help of (2.12), (3.3a), (3.3c), and (2.4), we arrive at

$$g(\nabla_Z W, X) = g(A_{NX}Z, TW) - \sin^2\theta \, g(\nabla_Z X, W) + g(h(X, Z), NTW).$$

Upon direct calculation, we find

$$\cos^2\theta \ g(\nabla_Z W, X) = g(A_{NX}TW, Z) + g(A_{NTW}X, Z)$$

Therefore, we deduce that the slant distribution \mathcal{D}^{θ} defines a totally geodesic foliation if and only if

$$g(A_{NX}TW,Z) = -g(A_{NTW}X,Z), \qquad (5.4)$$

By putting W = TW, we see that the last equation is equivalent to the equation (5.3). Thus, from Theorems 5.2 and 5.3, we obtain the expected result.

Corollary 5.4 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . Then M is a hemi-slant product manifold $M = M_{\perp} \times M_{\theta}$ if and only if

$$A_{NX}Z = -A_{NZ}X, (5.5)$$

where $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$.

6. Hemi-slant submanifolds with parallel canonical structures

In this section, we get several results for the hemi-slant submanifolds with parallel canonical structures using the previous results.

Let M be any submanifold of a l.p.R. manifold \overline{M} with the endomorphism T and the normal bundle valued 1-form N defined by (2.11). We put

$$(\overline{\nabla}_U T)V = \nabla_U TV - T\nabla_U V \tag{6.1}$$

and

$$(\overline{\nabla}_U N)V = \nabla_U^{\perp} NV - N\nabla_U V \tag{6.2}$$

for any $U, V \in TM$. Then the endomorphism T (resp.1-form N) is parallel if $\overline{\nabla}T \equiv 0$ (resp. $\overline{\nabla}N \equiv 0$). From (4.1) and (4.2) we have

$$(\overline{\nabla}_U T)V = A_{NV}U + t h(U, V) \tag{6.3}$$

and

$$(\overline{\nabla}_U N)V = \omega h(U, V) - h(U, TV), \tag{6.4}$$

respectively.

Theorem 6.1 Let M be any submanifold of a l.p.R. manifold \overline{M} . Then T is parallel, i.e. $\overline{\nabla}T \equiv 0$ if and only if

$$A_{NV}U = 0 \tag{6.5}$$

for all $U, V \in TM$.

Proof For any $U, V, W \in TM$ from (6.3), we have

$$g((\overline{\nabla}_W T)V, U) = g(A_{NV}W, U) + g(th(W, V), U).$$

Hence, using (2.12), (2.2), and (2.11), we obtain

$$g((\overline{\nabla}_W T)V, U) = g(A_{NV}W, U) + g(h(W, V), NU).$$

Since A is self-adjoint, with the help of (2.6), we get

$$g((\overline{\nabla}_W T)V, U) = g(A_{NV}U, W) + g(A_{NU}V, W).$$
(6.6)

Now let T be parallel; then from (6.6) it follows that

$$A_{NV}U = -A_{NU}V \tag{6.7}$$

for all $U, V \in TM$. On the other hand, from (6.3), we have

$$A_{NV}U = A_{NU}V \quad , \tag{6.8}$$

since h is a symmetric tensor field. Thus, (6.5) follows from (6.7) and (6.8).

From Corollary 5.4 and Theorem 6.1, we have the following result.

Corollary 6.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold \overline{M} . If T is parallel, then M is a hemi-slant product.

Theorem 6.3 Let M be a proper hemi-slant submanifold of \overline{M} . If N is parallel, then

(a)
$$A_{\mu}\mathcal{D}^{\perp} = 0$$
, (b) $A_{N\mathcal{D}^{\perp}}\mathcal{D}^{\theta} = 0$,
(c) $M \text{ is } (\mathcal{D}^{\perp}, \mathcal{D}^{\theta})\text{-mixed totally geodesic.}$

Proof Let N be parallel, it follows from (6.4) that

$$h(U,TV) = \omega h(U,V) \tag{6.9}$$

for any $U, V \in TM$. Then, for any $X \in \mathcal{D}^{\perp}$, we have

$$\omega h(U,X) = 0 \tag{6.10}$$

from (6.9). For any $\xi \in \mu$, using (2.11), (2.2), and (2.6), we have

$$g(\omega h(U,X),\xi) = g(h(U,X),F\xi) = g(A_{F\xi}X,U).$$

Thus, using (6.10) we get

$$g(A_{F\xi}X,U) = 0. (6.11)$$

Since μ is invariant with respect to F, the assertion (a) comes from (6.11). On the other hand, for any $X \in \mathcal{D}^{\perp}$, using (2.2), (2.11), (2.12), and (6.9), we have

$$g(h(U, TZ), NX) = g(h(U, TZ), FX) = g(\omega h(U, Z), FX)$$

= $g(Fh(U, Z), FX) = g(h(U, Z), X) = 0,$

that is, g(h(U,TZ), NX) = 0. Putting Z = TZ in last equation, we obtain

$$\cos^2\theta g(h(U,Z), NX) = \cos^2\theta g(A_{NX}Z, U) = 0.$$

Since $\theta \neq \frac{\pi}{2}$, the assertion (b) follows. Lastly, using (3.4), from (6.9), we have

 $\omega^2 h(X,Z) = \omega h(X,TZ) = h(X,T^2Z) = \cos^2\theta h(X,Z).$

On the other hand, using (3.7a), we have

$$\omega^2 h(X,Z) = \omega^2 h(Z,X) = \omega h(Z,TX) = 0.$$

Thus, we get

 $\cos^2\theta h(X,Z) = 0.$

Since $\theta \neq \frac{\pi}{2}$, we deduce that h(X, Z) = 0, which proves the last assertion.

7. Totally umbilical hemi-slant submanifolds

In this section we shall give two characterization theorems for the totally umbilical proper hemi-slant submanifolds of a l.p.R. manifold. First we prove

Theorem 7.1 If M is a totally umbilical proper hemi-slant submanifold of a l.p.R. manifold \overline{M} , then either the anti-invariant distribution \mathcal{D}^{\perp} is 1-dimensional or the mean curvature vector field H of M is perpendicular to $F(\mathcal{D}^{\perp})$. Moreover, if M is a hemi-slant product, then $H \in \mu$.

Proof Since M is a totally umbilical proper hemi-slant submanifold either $Dim(\mathcal{D}^{\perp}) = 1$ or $Dim(\mathcal{D}^{\perp}) > 1$. If $Dim(\mathcal{D}^{\perp}) = 1$, it is obvious. If $Dim(\mathcal{D}^{\perp}) > 1$, then we can choose $X, Y \in \mathcal{D}^{\perp}$ such that $\{X, Y\}$ is orthonormal. By using (2.11), (2.7), (2.6), and (4.22), we have

$$g(H, FY) = g(h(X, X), NY) = g(A_{NY}X, X) = 0$$
(7.1)

It means that

$$H \bot F(\mathcal{D}^{\bot}). \tag{7.2}$$

Moreover, if M is a hemi-slant product, for any $Z \in \mathcal{D}^{\theta}$, using (5.5) and (2.7), we have

$$g(H, NZ) = g(h(X, X), NZ) = g(A_{NZ}X, X) = -g(A_{NX}Z, X)$$

= $-g(h(Z, X), NX) = 0.$

Hence, it follows that

$$H \bot N(\mathcal{D}^{\theta}). \tag{7.3}$$

Thus, using (7.2) and (7.3) from (3.2), we get $H \in \mu$.

Before giving the second result of this section, recall the following fact about locally product Riemannian manifolds.

Let $M_1(c_1)$ (resp. $M_2(c_2)$) be a real space form with sectional curvature c_1 (resp. c_2). Then the Riemannian curvature tensor \overline{R} of the locally product Riemannian manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$ has the form

$$\overline{R}(\bar{U},\bar{V})\bar{W} = \frac{(c_1+c_2)}{4} \left\{ g(\bar{V},\bar{W})\bar{U} - g(\bar{U},\bar{W})\bar{V} + g(F\bar{V},\bar{W})F\bar{U} - g(F\bar{U},\bar{W})F\bar{V} \right\} + \frac{(c_1-c_2)}{4} \left\{ g(F\bar{V},\bar{W})\bar{U} - g(F\bar{U},\bar{W})\bar{V} + g(\bar{V},\bar{W})F\bar{U} - g(\bar{U},\bar{W})F\bar{V} \right\},$$
(7.4)

where $\bar{U}, \bar{V}, \bar{W} \in T\bar{M}$ [22].

Theorem 7.2 Let M be a totally umbilical hemi-slant submanifold with parallel mean curvature vector field H of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$ with $c_1 \neq c_2$. Then M cannot be proper.

Proof Let $X \in \mathcal{D}^{\perp}$ and $Z \in \mathcal{D}^{\theta}$ be two unit vector fields. Since *H* is parallel, using (2.10) and (2.7) from the Codazzi equation (2.9), we have

$$(\overline{R}(X,Z)X)^{\perp} = -\nabla_{Z}^{\perp}H = 0.$$
(7.5)

On the other hand, equation (7.4) gives

$$\overline{R}(X,Z)X = -\frac{1}{4} \bigg\{ (c_1 + c_2)Z + (c_1 - c_2)FZ \bigg\}.$$
(7.6)

Taking the normal component of (7.6), we get

$$(\overline{R}(X,Z)X)^{\perp} = -\frac{1}{4}(c_1 - c_2)NZ,$$
(7.7)

which contradicts (7.5).

We have immediately from Theorem 7.2 that:

Corollary 7.3 There exists no totally geodesic proper hemi-slant submanifold of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$ with $c_1 \neq c_2$.

8. Ricci curvature of hemi-slant submanifolds

In this section we obtain a Chen-type inequality for hemi-slant submanifolds of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$. We first present the following fundamental facts about this topic.

Let \overline{M} be a *n*-dimensional Riemannian manifold equipped with a Riemannian metric g and $\{e_1, ..., e_n\}$ be an orthonormal basis for $T_p\overline{M}$, $p \in \overline{M}$. Then the *Ricci tensor* \overline{S} is defined by

$$\overline{S}(U,V) = \sum_{i=1}^{n} \overline{R}(e_i, U, V, e_i), \qquad (8.1)$$

where $U, V \in T_p \overline{M}$. For a fixed $i \in \{1, ..., n\}$, the *Ricci curvature* of e_i , denoted by $\overline{Ric}(e_i)$, is given by

$$\overline{R}ic(e_i) = \sum_{i \neq j}^n \overline{K}_{ij},\tag{8.2}$$

where $\overline{K}_{ij} = g(\overline{R}(e_i, e_j)e_j, e_i)$ is the sectional curvature of the plane spanned by e_i and e_j at $p \in \overline{M}$. Let Π_k be a k-plane of $T_p\overline{M}$ and $\{e_1, ..., e_k\}$ any orthonormal basis of Π_k . For a fixed $i \in \{1, ..., k\}$, the k-Ricci curvature [9] of Π_k at e_i , denoted by $\overline{R}ic_{\Pi_k}(e_i)$, is defined by

$$\overline{R}ic_{\Pi_k}(e_i) = \sum_{i \neq j}^k \overline{K}_{ij}.$$
(8.3)

It is easy to see that $\overline{Ric}_{(T_p\bar{M})}(e_i) = \overline{Ric}(e_i)$ for $1 \le i \le n$, since $\Pi_n = T_p\bar{M}$.

We now recall the following basic inequality [10, Theorem 3.1] involving Ricci curvature and the squared mean curvature of a submanifold of a Riemannian manifold.

Theorem 8.1 ([10, Theorem 3.1]) Let M be an m-dimensional submanifold of a Riemannian manifold \overline{M} . Then, for any unit vector $X \in T_pM$, we have

$$Ric(X) \le \frac{1}{4}m^2 ||H||^2 + \overline{Ric}_{(T_pM)}(X)$$
 (8.4)

where Ric(X) is the Ricci curvature of X.

Of course, the equality case of (8.4) was also discussed in [10], but we will not deal with the equality case in this paper.

Now, we are ready to state the main result of this section.

Theorem 8.2 Let M be an m-dimensional hemi-slant submanifold of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$. Then, for unit vector $V \in T_p M$, we have

$$4Ric(V) \le m^2 ||H||^2 + (c_1 + c_2) \left\{ (m-1) + \sum_{i=2}^m g(Te_i, e_i)g(TV, V) - ||TV||^2 + g^2(TV, V) \right\} + (c_1 - c_2) \left\{ \sum_{i=2}^m g(Te_i, e_i) + (m-1)g(TV, V) \right\}$$

$$(8.5)$$

where $\{V, e_2, ..., e_m\}$ is an orthonormal basis for T_pM .

Proof Since M is an m-dimensional hemi-slant submanifold of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$, then for any unit vector $V \in T_p M$, using (7.4) and (2.11) from (8.3) we have

$$4\overline{R}ic_{(T_pM)}(V) = (c_1 + c_2) \left\{ (m-1) + \sum_{i=2}^m g(Te_i, e_i)g(TV, V) \right\}$$

$$\|TV\|^2 + g^2(TV, V) \left\} + (c_1 - c_2) \left\{ \sum_{i=2}^m g(Te_i, e_i) + (m-1)g(TV, V) \right\}$$
(8.6)

Thus, using (8.6) in (8.4) we get (8.5).

Remark 8.3 In general, $g(F\overline{V},\overline{V}) \neq 0$ for any unit vector $\overline{V} \in T_p\overline{M}$ in a l.p.R. manifold \overline{M} , contrary to almost Hermitian $(g(J\overline{V},\overline{V}) = 0)$ and almost contact $((g(\varphi\overline{V},\overline{V}) = 0)$ manifolds. However, we can establish that the almost product structure F in a l.p.R. manifold \overline{M} such that $g(F\overline{V},\overline{V}) = 0$, for all $\overline{V} \in T_p\overline{M}$. In fact, if \overline{M} is an even dimensional l.p.R. manifold with an orthonormal basis $\{e_1, ..., e_n, e_{n+1}, ..., e_{2n}\}$, then we can define F by

$$F(e_i) = e_{n+i}, \quad F(e_{n+i}) = e_i, \quad i \in \{1, 2, ..., n\}.$$

Hence, we observe easily that the almost product structure F satisfies

$$g(Fe_i, e_i) = 0.$$
 (8.7)

For example, the almost product structure F in the example of section 3 satisfies the condition (8.7). On the other hand, because of Lemma 3.3 and equation (3.5), we have TV = 0, if $V \in \mathcal{D}^{\perp}$ and $||TV||^2 = \cos^2\theta$, if $V \in \mathcal{D}^{\theta}$ and ||V|| = 1, respectively. Thus, by Theorem 8.2 we get the following two results.

Corollary 8.4 Let M be an m-dimensional anti-invariant submanifold of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$. If the almost product structure F of \overline{M} satisfies the condition (8.7), then we have

$$4Ric(V) \le m^2 ||H||^2 + (c_1 + c_2)(m - 1)$$

where $V \in T_p M$ is any unit vector.

Corollary 8.5 Let M be an m-dimensional slant submanifold of a l.p.R. manifold $\overline{M} = M_1(c_1) \times M_2(c_2)$. If the almost product structure F of \overline{M} satisfies the condition (8.7), then we have

$$4Ric(Z) \le m^2 ||H||^2 + (c_1 + c_2)\{(m-1) - \cos^2\theta\},\$$

where $Z \in T_p M$ is any unit vector.

Acknowledgment

We would like to thank Professor Bayram Şahin for his contributions and suggestions concerning Section 7 of this work. We also would like to thank the referee for his/her suggestions.

TAŞTAN and ÖZDEMİR/Turk J Math

References

- [1] Adati T. Submanifolds of an almost product manifold. Kodai Math J 1981; 4: 327–343.
- [2] Alegre P. Slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds. Taiwanese J Math 2013; 17: 897–910. DOI:10.11650/tjm.17.2013.2427.
- [3] Al-Solamy FR, Khan MA, Uddin S. Totally umbilical hemi-slant submanifolds of Kähler manifolds. Abstr Appl Anal 2011; Art. ID 987157, 9 pp.
- [4] Arslan K, Carriazo A, Chen BY, Murathan C. On slant submanifolds of neutral Kaehler manifolds. Taiwanese J Math 2010; 17: 561–584.
- [5] Bejancu A. Semi-invariant submanifolds of locally product Riemannian manifolds. An Univ Timişoara Ser Ştiint Math Al 1984; 22: 3–11.
- [6] Cabrerizo JL, Carriazo A, Fernandez LM, Fernandez M. Slant submanifolds in Sasakian manifolds. Glasgow Math J 2000; 42: 125–138.
- [7] Carriazo A. Bi-slant immersions. In: Proc. ICRAMS 2000, Kharagpur, India, 2000, 88–97.
- [8] Chen BY. Geometry of slant submanifolds. Katholieke Universiteit Leuven, 1990.
- Chen BY. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math J 1999; 41: 33–41.
- [10] Hong S, Tripathi MM. On Ricci curvature of submanifolds. Internat J Pure Appl Math Sci 2005; 2: 227–246.
- [11] Khan VA, Khan MA. Pseudo-slant submanifolds of a Sasakian manifold. Indian J Pure Appl Math 2007; 38: 31–42.
- [12] Li H, Liu X. Semi-slant submanifolds of a locally product manifold. Georgian Math J 2005; 12: 273–282.
- [13] Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Roumanie 1996; 39: 183–198.
- [14] Papaghiuc N. Semi-slant submanifolds of a Kählerian manifold. Ann St Al I Cuza Univ Iași 1994; 40: 55-61.
- [15] Pitis G. On some submanifolds of a locally product manifold. Kodai Math J 1986; 9: 327–333.
- [16] Ronsse GS. Generic and skew CR-submanifolds of a Kähler manifold. Bull Inst Math Acad Sinica 1990; 18: 127–141.
- [17] Sahin B. Slant submanifolds of an almost product Riemannian manifold. J Korean Math Soc 2006; 43: 717–732.
- [18] Sahin B. Warped product submanifolds of a Kähler manifold with a slant factor. Ann Pol Math 2009; 95: 207–226.
- [19] Taştan HM. The axiom of hemi-slant 3-spheres in almost Hermitian geometry. Bull Malays Math Sci Soc(2) 2014; 37: 555–564.
- [20] Tripathi MM. Generic submanifolds of generalized complex space forms. Publ Math Debrecen 1997; 50: 373–392.
- [21] Uddin S, Khan MA, Singh K. A note on totally umbilical pseudo-slant submanifolds of a nearly Kähler manifold. Acta Univ Apulensis Math Inform 2012; 29: 279–285.
- [22] Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984.