

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math
(2015) 39
© TÜBİTAK
doi:10.3906/mat-1401-12

On separating subadditive maps

Vesko VALOV*

Department of Computer Science and Mathematics, Nipissing University, North Bay, Ontario, Canada

Received: 04.01.2014	•	Accepted: 23.09.2014	٠	Published Online: 23.02.2015	•	Printed: 20.03.2015
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Recall that a map $T: C(X, E) \to C(Y, F)$, where X, Y are Tychonoff spaces and E, F are normed spaces, is said to be separating, if for any 2 functions $f, g \in C(X, E)$ we have $c(T(f)) \cap c(T(g)) = \emptyset$ provided $c(f) \cap c(g) = \emptyset$. Here c(f) is the co-zero set of f. A typical result generalizing the Banach–Stone theorem is of the following type (established by Araujo): if T is bijective and additive such that both T and T^{-1} are separating, then the realcompactification νX of X is homeomorphic to νY . In this paper we show that a similar result is true if additivity is replaced by subadditivity (a map T is called subadditive if $||T(f + g)(y)|| \leq ||T(f)(y)|| + ||T(g)(y)||$ for any $f, g \in C(X, E)$ and any $y \in Y$). Here is our main result (a stronger version is actually established): if $T: C(X, E) \to C(Y, F)$ is a separating subadditive map, then there exists a continuous map $S_Y: \beta Y \to \beta X$. Moreover, S_Y is surjective provided T(f) = 0 iff f = 0. In particular, when T is a bijection such that both T and T^{-1} are separating and subadditive, βX is homeomorphic to βY . We also provide an example of a biseparating subadditive map from $C(\mathbb{R})$ onto $C(\mathbb{R})$, which is not additive.

Key words: Function spaces, separating maps, supports, subadditive maps

1. Introduction

Recall that the Banach–Stone theorem [2,8] states that 2 compact spaces X and Y are homeomorphic provided there exists a linear isometry between the sup norm Banach spaces C(X) and C(Y) (everywhere below C(X,Z)denotes the set of all continuous maps from X to Z; if Z is the real line we just write C(X)). In order to generalize this theorem, the so-called separating maps were introduced in [4]. Separating maps were explored in several other papers; see the survey in [5].

The definition of a separating map usually requires linearity or additivity of that map. To the best of this author's knowledge, subadditive separating maps were considered in only 2 papers [3,7]. The first was devoted to subadditive separating maps between function spaces C(X) and C(Y), where X and Y are compact spaces, while the second generalized the results of [3] to regular Banach algebras. Additive separating maps between vector-valued function spaces were considered in [1]. In this paper we show that some of the results established for separating additive maps remain true when additivity is weakened to subadditivity.

If E and F are normed linear spaces and X, Y 2 Tychonoff spaces, we consider maps $T: L(X, E) \rightarrow L(Y, F)$, where L(X, E) and L(Y, F) are linear subspaces of the function spaces C(X, E) and C(Y, F), respectively. Recall that such a map $T: L(X, E) \rightarrow L(Y, F)$ is said to be *separating* if $c(f) \cap c(g) = \emptyset$

^{*}Correspondence: veskov@nipissingu.ca

²⁰¹⁰ AMS Mathematics Subject Classification: 54C35, 54C40, 54D35.

VALOV/Turk J Math

implies $c(T(f)) \cap c(T(g)) = \emptyset$ for every $f, g \in L(X, E)$, where, $c(f) = \{x \in X : f(x) \neq 0_E\}$ with 0_E being the zero element of E. When T is bijective and both T and T^{-1} are separating, T is called *biseparating*.

For any map $T: L(X, E) \to L(Y, F)$ we consider the maps $\mu_y : L(X, E) \to \beta F$ and $\varphi_y : L(X, E) \to [0, \infty]$, $y \in \beta Y$, defined by $\mu_y(f) = \beta(T(f))(y)$ and $\varphi_y(f) = ||| \mu_y(f) |||$. Here, βF denotes the Čech–Stone compactification of F and $||| \cdot ||| : \beta F \to [0, \infty]$ is the continuous extension of the norm $|| \cdot ||$ of F considered as a function from F into $[0, \infty)$. Let us also explain that $\beta(T(f))$ is the Čech–Stone extension of the map T(f), so $\beta(T(f))$ is a map from βY to βF (generally, if $h: Z_1 \to Z_2$, then $\beta h: \beta Z_1 \to \beta Z_2$). We say that T is subadditive if each φ_y is subadditive, i.e. $\varphi_y(f+g) \leq \varphi_y(f) + \varphi_y(g)$ for all $y \in Y$. According to Proposition 3.2 below, if $||T(f+g)(y)|| \leq ||T(f)(y)|| + ||T(g)(y)||$ for any $f, g \in L(X, E)$ and any y from a dense subset of Y, then all $\varphi_y, y \in \beta Y$, are subadditive.

As usual (see [3,9]), the support of μ_y (resp., φ_y), $y \in \beta Y$, is defined to be the set $\operatorname{supp}(\mu_y)$ (resp., $\operatorname{supp}(\varphi_y)$) of all $x \in \beta X$ such that for every neighborhood U of x in βX there is $f \in L(X, E)$ with $\beta f|(\beta X - U) = 0$ and $\mu_y(f) \neq 0$ (resp., $\varphi_y(f) \neq 0$). It follows from the definition that a point $x \in \beta X$ does not belong to $\operatorname{supp}(\mu_y)$ if there exists its neighborhood U in βX such that for every $f \in L(X, E)$ with $\beta f|(\beta X - U) = 0$ we have $\mu(f) = 0$. This implies that $\operatorname{supp}(\mu_y)$ are closed in βX . Similarly, $\operatorname{supp}(\varphi_y)$ are also closed in βX , and obviously $\operatorname{supp}(\varphi_y) \subset \operatorname{supp}(\mu_y)$ for every $y \in \beta Y$. Let us observe that $\operatorname{supp}(\varphi_y) = \operatorname{supp}(\mu_y)$ for all $y \in Y$.

We say that a family $\mathcal{A} \subset C(X, E)$ separates the points of βX if for every $x \in \beta X$ there exists $f \in \mathcal{A}$ with $\|| (\beta f)(x) \|\| \neq 0$ (for example, this is true if $\mathcal{A} = C(X, F)$ or $\mathcal{A} = C^*(X, F)$). Denote also by Ker(T) the set $\{f \in L(X, E) : T(f) = 0\}$. According to Corollary 2.3(i) below, Ker(T) contains the constant function 0 provided that T is subadditive.

Everywhere below we suppose that L(X, E) and L(Y, F) have the following properties: there exist subsets $A \subset C^*(X)$ and $B \subset C^*(Y)$ such that

- L(X, E) is an A-module and L(Y, F) is a B-module;
- for any finite open cover $\gamma = \{U_1, ..., U_k\}$ of βX (resp., of βY) there exist functions $\{h_1, ..., h_k\}$ from A (resp., from B) such that $\{h_1, ..., h_k\}$ form a partition of unity subordinated to γ .

Our first result is the following theorem:

Theorem 1.1 Let $T: L(X, E) \to L(Y, F)$ be a subadditive separating map such that T(L(X, E)) separate the points of βY . Then the support map $S_Y: \beta Y \to \beta X$, $S_Y(y) = \operatorname{supp}(\varphi_y)$, is single-valued and continuous. If, in addition, L(X, E) separates the points of βX and $\operatorname{Ker}(T) = 0$, then $S_Y(\beta Y) = \beta X$.

Corollary 1.2 Let L(X, E) and L(Y, F) separate the points of βX and βY , respectively. If $T : L(X, E) \rightarrow L(Y, F)$ is a subadditive biseparating bijection such that T^{-1} is also subadditive, then the supporting map $S_Y : \beta Y \rightarrow \beta X$ is a homeomorphism.

In our next results the requirement for T^{-1} to be subadditive is weakened. We show that any subadditive separating map $T : L(X, E) \to L(Y, F)$ is strongly separating, where T is strongly separating if for any $f, g \in L(X, E)$

$$\overline{c(f)}^{\beta X} \cap \overline{c(g)}^{\beta X} = \varnothing \text{ implies } \overline{c(T(f))}^{\beta Y} \cap \overline{c(T(g))}^{\beta Y} = \varnothing.$$

VALOV/Turk J Math

If T^{-1} in Corollary 1.2 is strongly separating (instead of being subadditive and separating), we still have that βX and βY are homeomorphic:

Theorem 1.3 Let L(X, E) and L(Y, F) separate the points of βX and βY , respectively. If $T : L(X, E) \rightarrow L(Y, F)$ is a subadditive separating bijection such that T^{-1} is strongly separating, then the supporting map $S_Y : \beta Y \rightarrow \beta X$ is a homeomorphism.

Question 1.4 Is it true that the realcompactifications νX and νY are homeomorphic provided there exists a map $T: L(X, E) \rightarrow L(Y, F)$ satisfying the requirements from Corollary 1.2?

It follows from Corollary 1.2 that the above question has a positive answer provided both X and Y are first countable (then βX being homeomorphic to βY implies that νX and νY are also homeomorphic; see [6]). According to a result of Araujo [1, Theorem 3.1], the above question also has a positive answer if T is additive.

2. Proof of Theorem 1.1 and Corollary 1.2

Everywhere in this section, we assume that $T: L(X, E) \to L(Y, F)$ is a fixed subadditive map.

We extend the operations a + b and |a - b| on $[0, \infty]$ by defining $\infty + a = \infty$ for every $a \in [0, \infty]$, $|\infty - a| = |a - \infty| = \infty$ for $a \in [0, \infty)$ and $|\infty - \infty| = 0$.

Lemma 2.1 For all $y \in \beta Y$ and $f, g \in L(X, E)$ we have $|\varphi_y(f) - \varphi_y(g)| \le \max\{\varphi_y(f-g), \varphi_y(g-f)\}$. **Proof** This inequality follows directly from subadditivity of the functions φ_y .

Lemma 2.2 Suppose $y \in \beta Y$ and U is a neighborhood of $\operatorname{supp}(\varphi_y)$ in βX . Then $\varphi_y(f) = 0$ for every $f \in L(X, E)$ with $\beta f = 0$ on U.

Proof For every $x \notin \operatorname{supp}(\varphi_y)$ take a neighborhood U(x) of x in βX such that $\varphi_y(g) = 0$ provided $g \in L(X, E)$ and $\beta g|(\beta X - U(x)) = 0$. We can suppose that all U(x) coincide with the interior of their closures in βX and are disjoint from $\operatorname{supp}(\varphi_y)$. Take a finite cover $\gamma = \{U, U(x_i) : i = 1, 2, ..., k\}$ of βX and a real-valued function $\{h, h_i\}_{i \leq k}$ from A forming a partition of unity subordinated to γ . Now, suppose $\beta f(U) = 0$ for some $f \in L(X, E)$. Set $g_0 = h \cdot f$ and $g_i = h_i \cdot f$. Since L(X, E) is an A-module, $g_i \in L(X, E)$ for all i = 0, 1, ..., k. Obviously, $g_0 \equiv 0$. Moreover, $g_i|(X - U(x_i)) = 0$, i = 1, ..., k, and because $X - U(x_i)$ is dense in $\beta X - U(x_i)$, we have $\beta g_i|(\beta X - U(x_i)) = 0$. Hence, $\varphi_y(g_i) = 0$ for all i = 1, ..., k. Finally, since $f = \sum \{g_i : i = 1, ..., k\}$, the subadditivity of φ_y implies $\varphi_y(f) \leq \sum \{\varphi_y(g_i) : i = 1..., k\}$. Therefore, $\varphi_y(f) = 0$.

Corollary 2.3 The following conditions are satisfied:

(*i*) T(0) = 0;

(ii) if $\varphi_y(f) \neq 0$, where $y \in \beta Y$ and $f \in L(X, E)$, then $\operatorname{supp}(\varphi_y)$ intersects the closure in βX of the set $c(\beta f) = \{z \in \beta X : (\beta f)(z) \neq 0\};$

(iii) if $U \subset \beta X$ is open and $f, g \in L(X, E)$ are 2 functions with f(x) = g(x) for all $x \in U$, then $\varphi_y(f) = \varphi_y(g)$ for all $y \in \beta Y$ such that $\operatorname{supp}(\varphi_y) \subset U$.

Proof The first 2 items follow directly from Lemma 2.2. Since the functions f - g and g - f are 0 on U, the third item follows from Lemmas 2.1 and 2.2.

Recall that a set-valued map $F: Y \to X$ is called lower semicontinuous (br., lsc) if $F^{-1}(V) = \{y \in Y : F(y) \cap V \neq \emptyset\}$ is open in Y for every open $V \subset X$.

Lemma 2.4 The set-valued map $\operatorname{supp}(\varphi_y) : \beta Y \to \beta X$ is lsc.

Proof Suppose $x \in \operatorname{supp}(\varphi_y) \cap U$ for some $y \in \beta Y$ and an open $U \subset \beta X$. Take an open set $W \subset \beta X$ such that $x \in W$ and $\overline{W} \subset U$. Since $x \in \operatorname{supp}(\varphi_y)$, there exists $f \in L(X, E)$ with $\beta f(\beta X - W) = 0$ and $\varphi_y(f) \neq 0$. Let $c_{\varphi}(f) = \{z \in \beta Y : \varphi_z(f) \neq 0\}$. Obviously, $c_{\varphi}(f)$ is open in βY and contains y. If there is $z \in c_{\varphi}(f)$ such that $\operatorname{supp}(\varphi_z) \cap U = \emptyset$, then $\operatorname{supp}(\varphi_z) \subset \beta X - \overline{W}$. Thus, by Lemma 2.2, $\varphi_z(f) = 0$, which contradicts $z \in c_{\varphi}(f)$. Therefore, $\operatorname{supp}(\varphi_z) \cap U \neq \emptyset$ for all $z \in c_{\varphi}(f)$. \Box

Lemma 2.5 If L(X, E) separates the points of βX and Ker(T) = 0, then $\bigcup \{ \text{supp}(\varphi_y) : y \in \beta Y \}$ is dense in βX .

Proof Suppose $P = \overline{\bigcup \{ \operatorname{supp}(\varphi_y) : y \in \beta Y \}} \neq \beta X$ and take an open set $U \subset \beta X$ such that $\overline{U} \cap P = \emptyset$ and X - U is dense in $\beta X - U$. According to the properties of A, there exists $h \in A$ and $x \in U \cap X$ with $h(x) \neq 0$ and $h(\beta X - U) = 0$. On the other hand, since L(X, E) separates the points of βX , there is $g \in L(X, E)$ with $\beta g(x) \neq 0$. Then $f = g \cdot h \in L(X, E)$ and $f \neq 0$. Moreover, βf is 0 on the set $\beta X - \overline{U}$. Hence, according to Lemma 2.2, $\varphi_y(f) = 0$ for every $y \in \beta Y$. This implies T(f) = 0, which contradicts $\operatorname{Ker}(T) = 0$.

Lemma 2.6 If T(L(X, E)) separates the points of βY , then $\operatorname{supp}(\varphi_y) \neq \emptyset$ for all $y \in \beta Y$.

Proof Suppose $\operatorname{supp}(\varphi_y) = \emptyset$ for some $y \in \beta Y$. As in the proof of Lemma 2.2, we can choose a finite open cover $\gamma = \{U_i; i = 1, .., k\}$ of βX such that each U_i has the following property: $\varphi_y(g) = 0$ provided βg is 0 on the set $\beta X - U_i$. If $\{h_i : i = 1, .., k\} \subset A$ is a partition of unity subordinated to γ , then $\varphi_y(f \cdot h_i) = 0$ for all $f \in L(X, E)$ and $i \leq k$. Consequently, $\varphi_y(f) = 0$ for all $f \in L(X, E)$ (see the proof of Lemma 2.2). On the other hand, because T(L(X, E)) separates the points of βY , $\varphi_y(f_0) \neq 0$ for some $f_0 \in L(X, E)$, a contradiction.

The next lemma is the first one in this section using that T is separating (observe that the subadditivity of T is not used).

Lemma 2.7 If T is separating, then each $supp(\varphi_y)$, $y \in \beta Y$, contains at most one point.

Proof Since $\operatorname{supp}(\varphi_y) \subset \operatorname{supp}(\mu_y)$, it suffices to show that $\operatorname{supp}(\mu_y)$ consists of no more than one point. Suppose $\operatorname{supp}(\mu_y)$ contains 2 different points x_1 and x_2 for some $y \in \beta Y$. Let U_1, U_2 be disjoint open subsets of βX with $x_i \in U_i$, i = 1, 2. Then, according to the definition of $\operatorname{supp}(\mu_y)$, there exist $f_1, f_2 \in L(X, E)$ such that $\beta f_i | (\beta X - U_i) = 0$ and $\mu_y(f_i) \neq 0$, i = 1, 2. Consider the sets $V_i = \{z \in \beta Y : \beta(T(f_i))(z) \neq 0\}$. Obviously, V_1 and V_2 are open in βY and both contain y. Therefore, $V_1 \cap V_2$ meets Y. On the other hand, $V_i \cap Y = c(T(f_i)), i = 1, 2$. Hence, $c(T(f_1)) \cap c(T(f_2)) \neq \emptyset$, which contradicts the fact that $c(f_1) \cap c(f_2) = \emptyset$ and T is separating.

Proof of Theorem 1.1.

Suppose T is a subadditive separating map such that T(L(X, E)) separate the points of βY . It follows from Lemma 2.6 and Lemma 2.7 that $\operatorname{supp}(\varphi_y)$ consists of exactly one point for every $y \in \beta Y$, and we define $S_Y(y) = \operatorname{supp}(\varphi_y)$. By Lemma 2.4, S_Y is continuous (recall that every single-valued lsc map is continuous). If, in addition, L(X, E) separates the points of βX and $\operatorname{Ker}(T) = 0$, then $S_Y(\beta Y)$ is dense in βX (see Lemma 2.5). Hence, $S_Y(\beta Y) = \beta X$.

Proof of Corollary 1.2.

For any $x \in \beta X$ we define the map $\psi_x : L(Y, F) \to [0, \infty], \ \psi_x(g) = |||\beta(T^{-1}(g))(x)|||$, where $||| \cdot ||| : \beta E \to [0, \infty]$ is the continuous extension of the norm $|| \cdot ||$ of E considered as a function from E into $[0, \infty)$. Because T and T^{-1} are subadditive and separating, by Theorem 1.1, both $S_Y : \beta Y \to \beta X$ and $S_X : \beta X \to \beta Y$, $S_X(x) = \operatorname{supp}(\psi_x)$, are single-valued and continuous surjections.

We claim that $S_X(S_Y(y)) = y$ for all $y \in \beta Y$. Indeed, if $y_0 \neq S_X(S_Y(y_0)) = y_1$ for some $y_0 \in \beta Y$, we take disjoint open sets U and V in βY with $y_0 \in U$ and $y_1 \in V$. Since $y_1 \in \operatorname{supp}(\psi_{x_0})$, where $x_0 = S_Y(y_0)$, there exists a function $g \in L(Y, F)$ such that $c(\beta g) \subset V$ and $\psi_{x_0}(g) \neq 0$. Thus, $\beta(T^{-1}(g))(x_0) \neq 0$. We choose a function $f \in L(Y, F)$ with $||| \beta f(y_0) ||| \neq 0$. Because $x_0 = \operatorname{supp}(\varphi_{y_0})$, by Lemma 2.3(ii), $x_0 \in \overline{c(\beta(T^{-1}(f)))}$. This implies $c(\beta(T^{-1}(g))) \cap c(\beta(T^{-1}(f))) \neq \emptyset$. Consequently, $c(T^{-1}(g)) \cap c(T^{-1}(f)) \neq \emptyset$, which contradicts that T^{-1} is separating and $c(f) \cap c(g) = \emptyset$. Therefore, S_Y is a homeomorphism. \Box

3. Proof of Theorem 1.3

Proposition 3.1 Any subadditive separating surjection $T : L(X, E) \to L(Y, F)$, where L(Y, F) separates the points of βY , is strongly separating.

Proof Suppose $\overline{c(f)}^{\beta X} \cap \overline{c(g)}^{\beta X} = \emptyset$ for some $f, g \in L(X, E)$, but there exists $y_0 \in \overline{c(T(f))}^{\beta Y} \cap \overline{c(T(g))}^{\beta Y}$. According to Lemmas 2.4, 2.6, and 2.7, the map $\operatorname{supp}(\varphi_y) \colon \beta Y \to \beta X$ is well-defined and continuous. We are going to show that $\operatorname{supp}(\varphi_{y_0}) \in \overline{c(f)}^{\beta X}$. Indeed, otherwise there would be a neighborhood U of y_0 in βY such that $\operatorname{supp}(\varphi_y) \notin \overline{c(f)}^{\beta X}$ for all $y \in U$. Take a point $y_1 \in U \cap c(T(f))$. Then $\operatorname{supp}(\varphi_{y_1}) \notin \overline{c(f)}^{\beta X} = \overline{c(\beta f)}^{\beta X}$. On the other hand, by Corollary 2.3(ii), $\operatorname{supp}(\varphi_{y_1}) \in \overline{c(\beta f)}^{\beta X}$. Hence, $\operatorname{supp}(\varphi_{y_0}) \in \overline{c(f)}^{\beta X}$. Similarly, $\operatorname{supp}(\varphi_{y_0}) \in \overline{c(g)}^{\beta X}$, which completes the proof.

Proof of Theorem 1.3

Proof By Theorem 1.1, the supporting map S_Y is a single-valued continuous surjection. Therefore, we need only to prove that S_Y is one-to-one. Suppose $S_Y^{-1}(x_0)$ contains 2 different points y_1 and y_2 for some $x_0 \in \beta X$. Then there exist 2 functions $g_1, g_2 \in L(Y, F)$ such that $|||(\beta g_i)(y_i)||| \neq 0$, i = 1, 2, and $\overline{c(\beta g_1)}^{\beta Y} \cap \overline{c(\beta g_2)}^{\beta Y} = \emptyset$.

VALOV/Turk J Math

Since T^{-1} is strongly separating, we have $\overline{c(\beta f_1)}^{\beta X} \cap \overline{c(\beta f_2)}^{\beta X} = \emptyset$, where $f_i = T^{-1}(g_i)$. Obviously, $\varphi_{y_i}(f_i) = (\beta g_i)(y_i)$. Thus, by Corollary 2.3(ii), x_0 belongs to $\overline{c(\beta f_i)}^{\beta X}$, i = 1, 2, a contradiction. Therefore, S_Y is bijective.

The next proposition establishes a sufficient condition for T to be subadditive.

Proposition 3.2 If $M \subset Y$ is dense and $||T(f+g)(y)|| \le ||T(f)(y)|| + ||T(g)(y)||$ for any $f, g \in L(X, E)$ and any $y \in M$, then T is subadditive.

Proof Fix $y \in \beta Y$ and $f, g \in L(X, E)$, and take a net $\{y_{\alpha}\}$ in M converging to y. Then for each α we have $||T(f+g)(y_{\alpha})|| \leq ||T(f)(y_{\alpha})|| + ||T(g)(y_{\alpha})||$. This implies $\varphi_y(f+g) \leq \varphi_y(f) + \varphi_y(g)$ because the net $\{T(h)(y_{\alpha})\}$ converges to $\beta T(h)(y)$ for any $h \in L(X, E)$ and the map |||.||| is continuous on βF . \Box

Finally, we provide an example of a subadditive biseparating map between 2 function spaces, which is not additive.

Example 3.3 There exists a subadditive biseparating map $T: C(\mathbb{R}) \to C(\mathbb{R})$, which is not additive.

Proof Define the map $\phi \colon \mathbb{R} \to \mathbb{R}$ by $\phi(x) = \sqrt{x}$ if $x \ge 0$ and $\phi(x) = -\sqrt{-x}$ if $x \le 0$. It is easily seen that ϕ is subadditive and surjective, but not additive. Then the map $T \colon C(\mathbb{R}) \to C(\mathbb{R}), T(f)(x) = \phi(f(x))$, is subadditive and injective. Since T(f)(x) = 0 if and only if f(x) = 0, T is biseparating.

Acknowledgments

The author would like to express his gratitude to colleague A Karassev for providing the subadditive function ϕ from Example 3.3. The author is also grateful to the referee for his/her valuable remarks and suggestions. The author was partially supported by NSERC Grant 261914-18.

References

- [1] Araujo J. Realcompactness and spaces of vector-valued functions. Fund Math 2002; 172: 27–40.
- [2] Banach S. Theorie des operations lineares. New York, NY, USA: Chelsea, 1932 (in French).
- [3] Beckenstein E, Narici L. Subadditive separating maps. Acta Math Hung 2000; 88: 147–167.
- [4] Beckenstein E, Narici L. A nonarchimedian Banach-Stone theorem. Proc Amer Math Soc 1987; 100: 242–246.
- [5] Beckenstein E, Narici L. The separating map: a survey. Rend Circ Mat Palermo 1998; 52: 637-648.
- [6] Čech E. On bicompact spaces. Ann Math 1937; 38: 823–844.
- [7] Sady F, Estaremi Y. Subadditive separating maps between regular Banach function algebras. Bull Korean Math Soc 2007; 44: 753–761.
- [8] Stone M. Applications of the theory of Boolean rings to general topology. Trans Amer Math Soc 1937; 41: 375–481.
- [9] Valov V. Spaces of bounded functions with the compact open topology. Bull Polish Acad Sci 1997; 4: 171–179.