
Turk J Math

(2015) 39

c⃝ TÜBİTAK
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Abstract: Recall that a map T : C(X,E) → C(Y, F ) , where X,Y are Tychonoff spaces and E,F are normed spaces, is

said to be separating, if for any 2 functions f, g ∈ C(X,E) we have c(T (f))∩c(T (g)) = ∅ provided c(f)∩c(g) = ∅ . Here

c(f) is the co-zero set of f . A typical result generalizing the Banach–Stone theorem is of the following type (established

by Araujo): if T is bijective and additive such that both T and T−1 are separating, then the realcompactification νX

of X is homeomorphic to νY . In this paper we show that a similar result is true if additivity is replaced by subadditivity

(a map T is called subadditive if ||T (f + g)(y)|| ≤ ||T (f)(y)|| + ||T (g)(y)|| for any f, g ∈ C(X,E) and any y ∈ Y ).

Here is our main result (a stronger version is actually established): if T : C(X,E) → C(Y, F ) is a separating subadditive

map, then there exists a continuous map SY : βY → βX . Moreover, SY is surjective provided T (f) = 0 iff f = 0. In

particular, when T is a bijection such that both T and T−1 are separating and subadditive, βX is homeomorphic to

βY . We also provide an example of a biseparating subadditive map from C(R) onto C(R) , which is not additive.
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1. Introduction

Recall that the Banach–Stone theorem [2,8] states that 2 compact spaces X and Y are homeomorphic provided

there exists a linear isometry between the sup norm Banach spaces C(X) and C(Y ) (everywhere below C(X,Z)

denotes the set of all continuous maps from X to Z ; if Z is the real line we just write C(X)). In order to

generalize this theorem, the so-called separating maps were introduced in [4]. Separating maps were explored

in several other papers; see the survey in [5].

The definition of a separating map usually requires linearity or additivity of that map. To the best of this

author’s knowledge, subadditive separating maps were considered in only 2 papers [3,7]. The first was devoted

to subadditive separating maps between function spaces C(X) and C(Y ), where X and Y are compact spaces,

while the second generalized the results of [3] to regular Banach algebras. Additive separating maps between

vector-valued function spaces were considered in [1]. In this paper we show that some of the results established

for separating additive maps remain true when additivity is weakened to subadditivity.

If E and F are normed linear spaces and X , Y 2 Tychonoff spaces, we consider maps T : L(X,E) →
L(Y, F ), where L(X,E) and L(Y, F ) are linear subspaces of the function spaces C(X,E) and C(Y, F ),

respectively. Recall that such a map T : L(X,E) → L(Y, F ) is said to be separating if c(f) ∩ c(g) = ∅
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implies c(T (f)) ∩ c(T (g)) = ∅ for every f, g ∈ L(X,E), where, c(f) = {x ∈ X : f(x) ̸= 0E} with 0E being

the zero element of E . When T is bijective and both T and T−1 are separating, T is called biseparating.

For any map T : L(X,E) → L(Y, F ) we consider the maps µy : L(X,E) → βF and φy : L(X,E) →

[0,∞] , y ∈ βY , defined by µy(f) = β(T (f))(y) and φy(f) = ∥| µy(f) |∥ . Here, βF denotes the Čech–Stone

compactification of F and ∥| . |∥ : βF → [0,∞] is the continuous extension of the norm ∥.∥ of F considered

as a function from F into [0,∞). Let us also explain that β(T (f)) is the Čech–Stone extension of the map

T (f), so β(T (f)) is a map from βY to βF (generally, if h : Z1 → Z2 , then βh : βZ1 → βZ2 ). We say that T

is subadditive if each φy is subadditive, i.e. φy(f + g) ≤ φy(f)+φy(g) for all y ∈ Y . According to Proposition

3.2 below, if ||T (f + g)(y)|| ≤ ||T (f)(y)||+ ||T (g)(y)|| for any f, g ∈ L(X,E) and any y from a dense subset of

Y , then all φy , y ∈ βY , are subadditive.

As usual (see [3,9]), the support of µy (resp., φy), y ∈ βY , is defined to be the set supp(µy) (resp.,

supp(φy)) of all x ∈ βX such that for every neighborhood U of x in βX there is f ∈ L(X,E) with

βf |(βX − U) = 0 and µy(f) ̸= 0 (resp., φy(f) ̸= 0). It follows from the definition that a point x ∈ βX

does not belong to supp(µy) if there exists its neighborhood U in βX such that for every f ∈ L(X,E) with

βf |(βX−U) = 0 we have µ(f) = 0. This implies that supp(µy) are closed in βX . Similarly, supp(φy) are also

closed in βX , and obviously supp(φy) ⊂ supp(µy) for every y ∈ βY . Let us observe that supp(φy) = supp(µy)

for all y ∈ Y .

We say that a family A ⊂ C(X,E) separates the points of βX if for every x ∈ βX there exists f ∈ A
with ∥| (βf)(x) |∥ ̸= 0 (for example, this is true if A = C(X,F ) or A = C∗(X,F )). Denote also by Ker(T )

the set {f ∈ L(X,E) : T (f) = 0} . According to Corollary 2.3(i) below, Ker(T ) contains the constant function

0 provided that T is subadditive.

Everywhere below we suppose that L(X,E) and L(Y, F ) have the following properties: there exist

subsets A ⊂ C∗(X) and B ⊂ C∗(Y ) such that

• L(X,E) is an A-module and L(Y, F )) is a B -module;

• for any finite open cover γ = {U1, .., Uk} of βX (resp., of βY ) there exist functions {h1, .., hk} from A

(resp., from B ) such that {h1, .., hk} form a partition of unity subordinated to γ .

Our first result is the following theorem:

Theorem 1.1 Let T : L(X,E) → L(Y, F ) be a subadditive separating map such that T (L(X,E)) separate the

points of βY . Then the support map SY : βY → βX , SY (y) = supp(φy) , is single-valued and continuous. If,

in addition, L(X,E) separates the points of βX and Ker(T ) = 0 , then SY (βY ) = βX .

Corollary 1.2 Let L(X,E) and L(Y, F ) separate the points of βX and βY , respectively. If T : L(X,E) →
L(Y, F ) is a subadditive biseparating bijection such that T−1 is also subadditive, then the supporting map

SY : βY → βX is a homeomorphism.

In our next results the requirement for T−1 to be subadditive is weakened. We show that any subadditive

separating map T : L(X,E) → L(Y, F ) is strongly separating, where T is strongly separating if for any

f, g ∈ L(X,E)

c(f)
βX

∩ c(g)
βX

= ∅ implies c(T (f))
βY

∩ c(T (g))
βY

= ∅.
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If T−1 in Corollary 1.2 is strongly separating (instead of being subadditive and separating), we still have that

βX and βY are homeomorphic:

Theorem 1.3 Let L(X,E) and L(Y, F ) separate the points of βX and βY , respectively. If T : L(X,E) →
L(Y, F ) is a subadditive separating bijection such that T−1 is strongly separating, then the supporting map

SY : βY → βX is a homeomorphism.

Question 1.4 Is it true that the realcompactifications νX and νY are homeomorphic provided there exists a

map T : L(X,E) → L(Y, F ) satisfying the requirements from Corollary 1.2?

It follows from Corollary 1.2 that the above question has a positive answer provided both X and Y are

first countable (then βX being homeomorphic to βY implies that νX and νY are also homeomorphic; see

[6]). According to a result of Araujo [1, Theorem 3.1], the above question also has a positive answer if T is

additive.

2. Proof of Theorem 1.1 and Corollary 1.2

Everywhere in this section, we assume that T : L(X,E) → L(Y, F ) is a fixed subadditive map.

We extend the operations a + b and |a − b| on [0,∞] by defining ∞ + a = ∞ for every a ∈ [0,∞] ,

|∞ − a| = |a−∞| = ∞ for a ∈ [0,∞) and |∞ −∞| = 0.

Lemma 2.1 For all y ∈ βY and f, g ∈ L(X,E) we have |φy(f)− φy(g)| ≤ max{φy(f − g), φy(g − f)} .

Proof This inequality follows directly from subadditivity of the functions φy . 2

Lemma 2.2 Suppose y ∈ βY and U is a neighborhood of supp(φy) in βX . Then φy(f) = 0 for every

f ∈ L(X,E) with βf = 0 on U .

Proof For every x ̸∈ supp(φy) take a neighborhood U(x) of x in βX such that φy(g) = 0 provided

g ∈ L(X,E) and βg|(βX−U(x)) = 0. We can suppose that all U(x) coincide with the interior of their closures

in βX and are disjoint from supp(φy). Take a finite cover γ = {U,U(xi) : i = 1, 2, .., k} of βX and a real-

valued function {h, hi}i≤k from A forming a partition of unity subordinated to γ . Now, suppose βf(U) = 0

for some f ∈ L(X,E). Set g0 = h · f and gi = hi · f . Since L(X,E) is an A -module, gi ∈ L(X,E) for

all i = 0, 1, .., k . Obviously, g0 ≡ 0. Moreover, gi|(X − U(xi)) = 0, i = 1, , ., k , and because X − U(xi) is

dense in βX − U(xi), we have βgi|(βX − U(xi)) = 0. Hence, φy(gi) = 0 for all i = 1, .., k . Finally, since

f =
∑

{gi : i = 1, .., k} , the subadditivity of φy implies φy(f) ≤
∑

{φy(gi) : i = 1.., k} . Therefore, φy(f) = 0.
2

Corollary 2.3 The following conditions are satisfied:

(i) T (0) = 0 ;

(ii) if φy(f) ̸= 0 , where y ∈ βY and f ∈ L(X,E) , then supp(φy) intersects the closure in βX of the set

c(βf) = {z ∈ βX : (βf)(z) ̸= 0} ;
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(iii) if U ⊂ βX is open and f, g ∈ L(X,E) are 2 functions with f(x) = g(x) for all x ∈ U , then φy(f) = φy(g)

for all y ∈ βY such that supp(φy) ⊂ U .

Proof The first 2 items follow directly from Lemma 2.2. Since the functions f − g and g − f are 0 on U ,

the third item follows from Lemmas 2.1 and 2.2. 2

Recall that a set-valued map F : Y → X is called lower semicontinuous (br., lsc) if F−1(V ) = {y ∈ Y :

F (y) ∩ V ̸= ∅} is open in Y for every open V ⊂ X .

Lemma 2.4 The set-valued map supp(φy) : βY → βX is lsc.

Proof Suppose x ∈ supp(φy) ∩ U for some y ∈ βY and an open U ⊂ βX . Take an open set W ⊂ βX

such that x ∈ W and W ⊂ U . Since x ∈ supp(φy), there exists f ∈ L(X,E) with βf(βX −W ) = 0 and

φy(f) ̸= 0. Let cφ(f) = {z ∈ βY : φz(f) ̸= 0} . Obviously, cφ(f) is open in βY and contains y . If there is

z ∈ cφ(f) such that supp(φz) ∩ U = ∅ , then supp(φz) ⊂ βX −W . Thus, by Lemma 2.2, φz(f) = 0, which

contradicts z ∈ cφ(f). Therefore, supp(φz) ∩ U ̸= ∅ for all z ∈ cφ(f). 2

Lemma 2.5 If L(X,E) separates the points of βX and Ker(T ) = 0 , then
∪
{supp(φy) : y ∈ βY } is dense in

βX .

Proof Suppose P = ∪{supp(φy) : y ∈ βY } ≠ βX and take an open set U ⊂ βX such that U ∩ P = ∅ and

X−U is dense in βX−U . According to the properties of A , there exists h ∈ A and x ∈ U ∩X with h(x) ̸= 0

and h(βX −U) = 0. On the other hand, since L(X,E) separates the points of βX , there is g ∈ L(X,E) with

βg(x) ̸= 0. Then f = g · h ∈ L(X,E) and f ̸= 0. Moreover, βf is 0 on the set βX − U . Hence, according to

Lemma 2.2, φy(f) = 0 for every y ∈ βY . This implies T (f) = 0, which contradicts Ker(T ) = 0. 2

Lemma 2.6 If T (L(X,E)) separates the points of βY , then supp(φy) ̸= ∅ for all y ∈ βY .

Proof Suppose supp(φy) = ∅ for some y ∈ βY . As in the proof of Lemma 2.2, we can choose a finite open

cover γ = {Ui; i = 1, .., k} of βX such that each Ui has the following property: φy(g) = 0 provided βg is 0

on the set βX − Ui . If {hi : i = 1, .., k} ⊂ A is a partition of unity subordinated to γ , then φy(f · hi) = 0

for all f ∈ L(X,E) and i ≤ k . Consequently, φy(f) = 0 for all f ∈ L(X,E) (see the proof of Lemma 2.2).

On the other hand, because T (L(X,E)) separates the points of βY , φy(f0) ̸= 0 for some f0 ∈ L(X,E), a

contradiction. 2

The next lemma is the first one in this section using that T is separating (observe that the subadditivity

of T is not used).

Lemma 2.7 If T is separating, then each supp(φy) , y ∈ βY , contains at most one point.

Proof Since supp(φy) ⊂ supp(µy), it suffices to show that supp(µy) consists of no more than one point.

Suppose supp(µy) contains 2 different points x1 and x2 for some y ∈ βY . Let U1, U2 be disjoint open subsets

of βX with xi ∈ Ui , i = 1, 2. Then, according to the definition of supp(µy), there exist f1, f2 ∈ L(X,E)

such that βfi|(βX − Ui) = 0 and µy(fi) ̸= 0, i = 1, 2. Consider the sets Vi = {z ∈ βY : β(T (fi))(z) ̸= 0} .
Obviously, V1 and V2 are open in βY and both contain y . Therefore, V1 ∩ V2 meets Y . On the other hand,
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Vi ∩ Y = c(T (fi)), i = 1, 2. Hence, c(T (f1)) ∩ c(T (f2)) ̸= ∅ , which contradicts the fact that c(f1) ∩ c(f2) = ∅
and T is separating. 2

Proof of Theorem 1.1.

Suppose T is a subadditive separating map such that T (L(X,E)) separate the points of βY . It follows from

Lemma 2.6 and Lemma 2.7 that supp(φy) consists of exactly one point for every y ∈ βY , and we define

SY (y) = supp(φy). By Lemma 2.4, SY is continuous (recall that every single-valued lsc map is continuous). If,

in addition, L(X,E) separates the points of βX and Ker(T ) = 0, then SY (βY ) is dense in βX (see Lemma

2.5). Hence, SY (βY ) = βX . 2

Proof of Corollary 1.2.

For any x ∈ βX we define the map ψx : L(Y, F ) → [0,∞] , ψx(g) = |||β(T−1(g))(x)||| , where ∥| . |∥ : βE →
[0,∞] is the continuous extension of the norm ∥.∥ of E considered as a function from E into [0,∞). Because

T and T−1 are subadditive and separating, by Theorem 1.1, both SY : βY → βX and SX : βX → βY ,

SX(x) = supp(ψx), are single-valued and continuous surjections.

We claim that SX(SY (y)) = y for all y ∈ βY . Indeed, if y0 ̸= SX(SY (y0)) = y1 for some y0 ∈ βY , we

take disjoint open sets U and V in βY with y0 ∈ U and y1 ∈ V . Since y1 ∈ supp(ψx0
), where x0 = SY (y0),

there exists a function g ∈ L(Y, F ) such that c(βg) ⊂ V and ψx0
(g) ̸= 0. Thus, β(T−1(g))(x0) ̸= 0. We choose

a function f ∈ L(Y, F ) with ∥| βf(y0) |∥ ̸= 0. Because x0 = supp(φy0), by Lemma 2.3(ii), x0 ∈ c(β(T−1(f)).

This implies c(β(T−1(g))) ∩ c(β(T−1(f))) ̸= ∅ . Consequently, c(T−1(g)) ∩ c(T−1(f))) ̸= ∅ , which contradicts

that T−1 is separating and c(f) ∩ c(g) = ∅ . Therefore, SY is a homeomorphism. 2

3. Proof of Theorem 1.3

Proposition 3.1 Any subadditive separating surjection T : L(X,E) → L(Y, F ) , where L(Y, F ) separates the

points of βY , is strongly separating.

Proof Suppose c(f)
βX

∩ c(g)
βX

= ∅ for some f, g ∈ L(X,E), but there exists y0 ∈ c(T (f))
βY

∩ c(T (g))
βY

.

According to Lemmas 2.4, 2.6, and 2.7, the map supp(φy) : βY → βX is well-defined and continuous. We are

going to show that supp(φy0) ∈ c(f)
βX

. Indeed, otherwise there would be a neighborhood U of y0 in βY such

that supp(φy) ̸∈ c(f)
βX

for all y ∈ U . Take a point y1 ∈ U ∩ c(T (f)). Then supp(φy1) ̸∈ c(f)
βX

= c(βf)
βX

.

On the other hand, by Corollary 2.3(ii), supp(φy1) ∈ c(βf)
βX

. Hence, supp(φy0) ∈ c(f)
βX

. Similarly,

supp(φy0) ∈ c(g)
βX

, which completes the proof. 2

Proof of Theorem 1.3

Proof By Theorem 1.1, the supporting map SY is a single-valued continuous surjection. Therefore, we need

only to prove that SY is one-to-one. Suppose S−1
Y (x0) contains 2 different points y1 and y2 for some x0 ∈ βX .

Then there exist 2 functions g1, g2 ∈ L(Y, F ) such that ∥|(βgi)(yi)∥| ≠ 0, i = 1, 2, and c(βg1)
βY

∩c(βg2)
βY

= ∅ .
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Since T−1 is strongly separating, we have c(βf1)
βX

∩ c(βf2)
βX

= ∅ , where fi = T−1(gi). Obviously,

φyi(fi) = (βgi)(yi). Thus, by Corollary 2.3(ii), x0 belongs to c(βfi)
βX

, i = 1, 2, a contradiction. There-

fore, SY is bijective. 2

The next proposition establishes a sufficient condition for T to be subadditive.

Proposition 3.2 If M ⊂ Y is dense and ||T (f +g)(y)|| ≤ ||T (f)(y)||+ ||T (g)(y)|| for any f, g ∈ L(X,E) and

any y ∈M , then T is subadditive.

Proof Fix y ∈ βY and f, g ∈ L(X,E), and take a net {yα} in M converging to y . Then for each α we

have ||T (f + g)(yα)|| ≤ ||T (f)(yα)|| + ||T (g)(yα)|| . This implies φy(f + g) ≤ φy(f) + φy(g) because the net

{T (h)(yα)} converges to βT (h)(y) for any h ∈ L(X,E) and the map ∥|.|∥ is continuous on βF . 2

Finally, we provide an example of a subadditive biseparating map between 2 function spaces, which is

not additive.

Example 3.3 There exists a subadditive biseparating map T : C(R) → C(R) , which is not additive.

Proof Define the map ϕ : R → R by ϕ(x) =
√
x if x ≥ 0 and ϕ(x) = −

√
−x if x ≤ 0. It is easily seen

that ϕ is subadditive and surjective, but not additive. Then the map T : C(R) → C(R), T (f)(x) = ϕ(f(x)), is

subadditive and injective. Since T (f)(x) = 0 if and only if f(x) = 0, T is biseparating. 2

Acknowledgments

The author would like to express his gratitude to colleague A Karassev for providing the subadditive function

ϕ from Example 3.3. The author is also grateful to the referee for his/her valuable remarks and suggestions.

The author was partially supported by NSERC Grant 261914-18.

References

[1] Araujo J. Realcompactness and spaces of vector-valued functions. Fund Math 2002; 172: 27–40.

[2] Banach S. Theorie des operations lineares. New York, NY, USA: Chelsea, 1932 (in French).

[3] Beckenstein E, Narici L. Subadditive separating maps. Acta Math Hung 2000; 88: 147–167.

[4] Beckenstein E, Narici L. A nonarchimedian Banach-Stone theorem. Proc Amer Math Soc 1987; 100: 242–246.

[5] Beckenstein E, Narici L. The separating map: a survey. Rend Circ Mat Palermo 1998; 52: 637–648.
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