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Abstract: Recall that a map T: C(X, E) — C(Y, F), where X,Y are Tychonoff spaces and E, F are normed spaces, is
said to be separating, if for any 2 functions f, g € C(X, E) we have c(T'(f))Nc(T(g)) = @ provided ¢(f)Ne(g) = @. Here
c(f) is the co-zero set of f. A typical result generalizing the Banach—Stone theorem is of the following type (established
by Araujo): if T is bijective and additive such that both T and T~! are separating, then the realcompactification vX
of X is homeomorphic to vY . In this paper we show that a similar result is true if additivity is replaced by subadditivity
(a map T is called subadditive if ||T'(f + ¢)(W)I| < T (W + 1T (9)(y)|| for any f,g € C(X,E) and any y € Y').
Here is our main result (a stronger version is actually established): if T: C(X, E) — C(Y, F) is a separating subadditive
map, then there exists a continuous map Sy: fY — X . Moreover, Sy is surjective provided T(f) =0 iff f=0. In
particular, when 7 is a bijection such that both T and T~! are separating and subadditive, SX is homeomorphic to

BY . We also provide an example of a biseparating subadditive map from C(R) onto C(R), which is not additive.
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1. Introduction

Recall that the Banach—Stone theorem [2,8] states that 2 compact spaces X and Y are homeomorphic provided
there exists a linear isometry between the sup norm Banach spaces C(X) and C(Y) (everywhere below C(X, Z)
denotes the set of all continuous maps from X to Z; if Z is the real line we just write C(X)). In order to
generalize this theorem, the so-called separating maps were introduced in [4]. Separating maps were explored
in several other papers; see the survey in [5].

The definition of a separating map usually requires linearity or additivity of that map. To the best of this
author’s knowledge, subadditive separating maps were considered in only 2 papers [3,7]. The first was devoted
to subadditive separating maps between function spaces C'(X) and C(Y), where X and Y are compact spaces,
while the second generalized the results of [3] to regular Banach algebras. Additive separating maps between
vector-valued function spaces were considered in [1]. In this paper we show that some of the results established
for separating additive maps remain true when additivity is weakened to subadditivity.

If F and F are normed linear spaces and X, Y 2 Tychonoff spaces, we consider maps T: L(X, E) —
L(Y,F), where L(X,E) and L(Y,F) are linear subspaces of the function spaces C(X,FE) and C(Y,F),
respectively. Recall that such a map T: L(X,E) — L(Y,F) is said to be separating if ¢(f) Nc(g) = @
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implies ¢(T'(f)) Ne(T(g)) = @ for every f,g € L(X, E), where, ¢(f) = {z € X : f(x) # 0g} with Og being
the zero element of E. When T is bijective and both T' and T! are separating, T is called biseparating.

For any map T': L(X,E) — L(Y,F) we consider the maps p, : L(X,E) — BF and ¢, : L(X,E) —
[0,00], y € BY, defined by p,(f) = B(T(f))(y) and ¢, (f) = |||y (f) |||. Here, BF denotes the Cech-Stone
compactification of F and ||| .|| : BF — [0,00] is the continuous extension of the norm |.|| of F considered
as a function from F into [0,00). Let us also explain that B(T(f)) is the Cech-Stone extension of the map
T(f),so B(T(f)) is a map from BY to BF (generally, if h: Z; — Z5, then Bh: fZ1 — $Z5). We say that T
is subadditive if each ¢, is subadditive, i.e. o, (f+g) < @, (f)+¢y(g) for all y € Y. According to Proposition
3.2 below, if ||T(f +g)(W)|| < |T(f) W)+ |T(9)(y)|| for any f,g € L(X, E) and any y from a dense subset of
Y, then all ¢,, y € BY, are subadditive.

As usual (see [3,9]), the support of u, (resp., ¢,), y € BY, is defined to be the set supp(uy,) (resp.,
supp(py)) of all z € BX such that for every neighborhood U of z in X there is f € L(X,FE) with
BfI(BX —U) =0 and py(f) # 0 (resp., ¢u(f) # 0). It follows from the definition that a point z € X
does not belong to supp(g,) if there exists its neighborhood U in X such that for every f € L(X, E) with
BfI(BX —U) =0 we have pu(f) = 0. This implies that supp(,) are closed in SX . Similarly, supp(yp,) are also
closed in BX , and obviously supp(yp,) C supp(u,) for every y € BY . Let us observe that supp(yy) = supp(iy)
forall y e Y.

We say that a family A C C(X, E) separates the points of BX if for every x € SX there exists f € A
with ||| (Bf)(z) ||| # 0 (for example, this is true if A = C(X,F) or A= C*(X,F)). Denote also by Ker(T)
the set {f € L(X,E) : T(f) = 0}. According to Corollary 2.3(i) below, Ker(T) contains the constant function
0 provided that T is subadditive.

Everywhere below we suppose that L(X,E) and L(Y,F) have the following properties: there exist
subsets A C C*(X) and B C C*(Y) such that

e L(X,E) is an A-module and L(Y,F)) is a B-module;

e for any finite open cover v = {Uy,..,U} of X (resp., of Y") there exist functions {hy, .., ht} from A
(resp., from B) such that {hq,..,hx} form a partition of unity subordinated to ~y.

Our first result is the following theorem:

Theorem 1.1 Let T : L(X,E) — L(Y, F) be a subadditive separating map such that T(L(X, E)) separate the
points of BY . Then the support map Sy : BY — BX, Sy (y) = supp(py), is single-valued and continuous. If,
in addition, L(X,E) separates the points of X and Ker(T) =0, then Sy (8Y) = pX.

Corollary 1.2 Let L(X,E) and L(Y,F) separate the points of SX and BY , respectively. If T : L(X,E) —
L(Y,F) is a subadditive biseparating bijection such that T~' is also subadditive, then the supporting map
Sy : BY — BX is a homeomorphism.

In our next results the requirement for 7-! to be subadditive is weakened. We show that any subadditive
separating map T : L(X,E) — L(Y,F) is strongly separating, where T is strongly separating if for any
f,9€ L(X,E)

8Y

N e = @ implies «T()) | NeT(@) " = o.
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If T=! in Corollary 1.2 is strongly separating (instead of being subadditive and separating), we still have that
X and BY are homeomorphic:

Theorem 1.3 Let L(X, E) and L(Y,F) separate the points of BX and BY , respectively. If T : L(X,E) —
L(Y, F) is a subadditive separating bijection such that T—1 is strongly separating, then the supporting map
Sy : BY — BX is a homeomorphism.

Question 1.4 Is it true that the realcompactifications vX and vY are homeomorphic provided there exists a
map T : L(X,E) = L(Y, F) satisfying the requirements from Corollary 1.2 7

It follows from Corollary 1.2 that the above question has a positive answer provided both X and Y are
first countable (then SX being homeomorphic to BY implies that X and vY are also homeomorphic; see
[6]). According to a result of Araujo [1, Theorem 3.1], the above question also has a positive answer if T' is
additive.

2. Proof of Theorem 1.1 and Corollary 1.2
Everywhere in this section, we assume that T : L(X, E) — L(Y, F) is a fixed subadditive map.

We extend the operations a + b and |a — b| on [0,00] by defining oo + a = o for every a € [0, 00],

|oo —a| = Ja — oo| = oo for a € [0,00) and |oo — 00| = 0.

Lemma 2.1 For all y € BY and f,g € L(X, E) we have |¢,(f) — ¢y(9)| < max{e,(f —g),0,(g— f)}.

Proof This inequality follows directly from subadditivity of the functions ¢, . O

Lemma 2.2 Suppose y € BY and U is a neighborhood of supp(p,) in BX. Then ¢,(f) = 0 for every
feL(X,E) with Bf =0 on U.

Proof For every x ¢ supp(p,) take a neighborhood U(z) of z in X such that ¢,(g) = 0 provided
g € L(X,E) and Sg|(8X —U(x)) = 0. We can suppose that all U(z) coincide with the interior of their closures
in X and are disjoint from supp(y,). Take a finite cover v = {U,U(z;) : 1 =1,2,..,k} of X and a real-
valued function {h,h;};<x from A forming a partition of unity subordinated to 7. Now, suppose Sf(U) =0
for some f € L(X,FE). Set go = h-f and g; = h; - f. Since L(X,FE) is an A-module, g; € L(X,E) for
all i = 0,1,..,k. Obviously, go = 0. Moreover, g;|(X —U(z;)) =0, ¢ = 1,,.,k, and because X — U(x;) is
dense in X — U(z;), we have Bg;|(6X — U(x;)) = 0. Hence, ¢,(g;) = 0 for all ¢ = 1,..,k. Finally, since

f=>{g::i=1,..,k}, the subadditivity of ¢, implies ¢, (f) <> {@y(g:) : ¢ =1..,k}. Therefore, p,(f)=0.
O

Corollary 2.3 The following conditions are satisfied:
(1) T(0) =0;

(i1) if o,(f) # 0, where y € BY and f € L(X,E), then supp(p,) intersects the closure in BX of the set
c(Bf) ={z € BX : (Bf)(2) # 0};
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(111) if U C BX is open and f,g € L(X, E) are 2 functions with f(z) = g(x) for all x € U, then ¢, (f) = py(g)
for all y € BY such that supp(py) C U.

Proof The first 2 items follow directly from Lemma 2.2. Since the functions f — g and g — f are 0 on U,
the third item follows from Lemmas 2.1 and 2.2. O

Recall that a set-valued map F : Y — X is called lower semicontinuous (br., Isc) if F~1(V)={y €Y :
F(y)N'V # (0} is open in Y for every open V C X.

Lemma 2.4 The set-valued map supp(py) : BY — BX is Isc.

Proof Suppose z € supp(p,) NU for some y € Y and an open U C X . Take an open set W C X
such that # € W and W C U. Since z € supp(yp,), there exists f € L(X,E) with B8f(BX — W) = 0 and
0y (f) # 0. Let c,(f) = {2z € BY : p.(f) # 0}. Obviously, c¢,(f) is open in SY and contains y. If there is
z € ¢y,(f) such that supp(p.) NU = @, then supp(yp.) C BX — W. Thus, by Lemma 2.2, ¢.(f) = 0, which
contradicts z € ¢, (f). Therefore, supp(p.) NU # O for all z € c,(f). O

Lemma 2.5 If L(X, E) separates the points of BX and Ker(T) =0, then J{supp(py) : y € BY'} is dense in
BX.

Proof Suppose P = U{supp(ypy) :y € BY } # X and take an open set U C X such that U NP = @ and
X —U isdense in X —U. According to the properties of A, there exists h € A and z € UNX with h(z) #0
and h(BX —U) = 0. On the other hand, since L(X, F) separates the points of 5X, there is g € L(X, E) with
Bg(x) #0. Then f=g-h e L(X,E) and f # 0. Moreover, 3f is 0 on the set 3X — U. Hence, according to
Lemma 2.2, ¢, (f) =0 for every y € Y. This implies T'(f) = 0, which contradicts Ker(T) = 0. O

Lemma 2.6 If T(L(X,E)) separates the points of Y, then supp(ypy) # @ for all y € BY .

Proof Suppose supp(p,) = @ for some y € Y. As in the proof of Lemma 2.2, we can choose a finite open
cover v = {U;;i = 1,..,k} of BX such that each U; has the following property: ¢,(g) = 0 provided Bg is 0
on the set X —U;. If {h; : i =1,..,k} C A is a partition of unity subordinated to v, then ¢,(f-h;) =0
for all f € L(X,E) and ¢ < k. Consequently, ¢,(f) =0 for all f € L(X,E) (see the proof of Lemma 2.2).
On the other hand, because T(L(X, E)) separates the points of BY, ¢,(fo) # 0 for some fy € L(X,FE), a
contradiction. O

The next lemma is the first one in this section using that 7' is separating (observe that the subadditivity
of T is not used).

Lemma 2.7 If T is separating, then each supp(py), y € BY , contains at most one point.

Proof Since supp(yy,) C supp(py), it suffices to show that supp(u,) consists of no more than one point.
Suppose supp(uy) contains 2 different points z1 and x for some y € BY . Let Uy, Us be disjoint open subsets
of pX with z; € U;, i = 1,2. Then, according to the definition of supp(su,), there exist fi, fo € L(X,FE)
such that 8f;|(6X —U;) = 0 and py(fi) # 0, ¢ = 1,2. Consider the sets V; = {z € 8Y : B(T(f:))(z) # 0}.
Obviously, V7 and V; are open in SY and both contain y. Therefore, V3 N V5 meets Y. On the other hand,
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VinY =¢(T(f;)), i =1,2. Hence, c(T(f1)) Ne(T(f2)) # @, which contradicts the fact that ¢(f1) Nc(fz) =@

and T is separating. O

Proof of Theorem 1.1.

Suppose T is a subadditive separating map such that T(L(X, E)) separate the points of Y. It follows from
Lemma 2.6 and Lemma 2.7 that supp(y,) consists of exactly one point for every y € BY, and we define
Sy (y) = supp(py). By Lemma 2.4, Sy is continuous (recall that every single-valued lsc map is continuous). If,
in addition, L(X, F) separates the points of fX and Ker(T) = 0, then Sy (8Y) is dense in SX (see Lemma
2.5). Hence, Sy (8Y) = 8X. O

Proof of Corollary 1.2.
For any = € X we define the map 1, : L(Y, F) — [0,00], ¢x(g) = |[B(T~*(9))()]l|, where [[. || : BE —
[0, 00] is the continuous extension of the norm ||.|| of E considered as a function from FE into [0,00). Because

T and T~' are subadditive and separating, by Theorem 1.1, both Sy: Y — AX and Sx: 8X — BY,
Sx(xz) = supp(¢,), are single-valued and continuous surjections.

We claim that Sx(Sy(y)) =y for all y € Y. Indeed, if yo # Sx(Sy (y0)) = y1 for some yy € Y, we
take disjoint open sets U and V in BY with yo € U and y; € V. Since y; € supp(vy,), where o = Sy (yo),
there exists a function g € L(Y, F) such that ¢(8g) C V and 4, (g9) # 0. Thus, 3(T~(g))(zo) # 0. We choose
a function f € L(Y, F) with ||| 8f(yo) ||| # 0. Because ¢ = supp(ipy,), by Lemma 2.3(ii), zo € c(B(T-1(f)).
This implies ¢(3(T~1(g))) Nec(B(T~1(f))) # @. Consequently, c(T~1(g)) Nc(T~1(f))) # @, which contradicts
that T~ is separating and ¢(f) Nec(g) = @. Therefore, Sy is a homeomorphism. O

3. Proof of Theorem 1.3
Proposition 3.1 Any subadditive separating surjection T : L(X,E) — L(Y, F), where L(Y,F) separates the
points of BY , is strongly separating.

Proof Suppose (f)ﬁX ﬂ@ﬁx = @ for some f,g € L(X, E), but there exists yo € c(T(f))BY N c(T(g))ﬂY

According to Lemmas 2.4, 2.6, and 2.7, the map supp(p,): Y — SX is well-defined and continuous. We are

—BX
going to show that supp(ypy,) € c(f )ﬂ . Indeed, otherwise there would be a neighborhood U of 3y in 8Y such

that supp(yy) € mﬁx for all y € U. Take a point y; € U Ne(T(f)). Then supp(py,) ¢mﬁx = c(ﬁf)BX.

On the other hand, by Corollary 2.3(ii), supp(yy,) € c(ﬁf)ﬁx. Hence, supp(gy,) € (f)BX. Similarly,

——BX .
supp(y,) € ¢(g) , which completes the proof. O

Proof of Theorem 1.3
Proof By Theorem 1.1, the supporting map Sy is a single-valued continuous surjection. Therefore, we need

only to prove that Sy is one-to-one. Suppose S;l(ﬂco) contains 2 different points y; and y, for some zg € X .

Then there exist 2 functions g1, g2 € L(Y, F') such that |||(8¢:)(v:)|l| #0, i = 1,2, and c(ﬂgl)ﬁyﬂc(ﬁgQ)BY =0.
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Since T~! is strongly separating, we have c(ﬁfl)BX N C(BfQ)BX = @, where f; = T (g;). Obviously,
— BX

0y (fi) = (Bgi)(yi). Thus, by Corollary 2.3(ii), zo belongs to c(ﬁfi)ﬁ , @ = 1,2, a contradiction. There-

fore, Sy is bijective. O

The next proposition establishes a sufficient condition for 7' to be subadditive.

Proposition 3.2 If M CY is dense and ||T(f+g)(W)|| < T+ |T(9)(y)|| for any f,g € L(X,E) and
any y € M, then T is subadditive.

Proof Fix y € Y and f,g € L(X, E), and take a net {y,} in M converging to y. Then for each o we

have ||T(f + g)(wa)ll < [IT(f)(ya)ll + [1T(9)(ya)l|. This implies ¢y (f 4+ g) < ¢y (f) + ¢y(g) because the net
{T'(h)(ya)} converges to BT(h)(y) for any h € L(X, E) and the map [||.||| is continuous on SF. O

Finally, we provide an example of a subadditive biseparating map between 2 function spaces, which is
not additive.

Example 3.3 There exists a subadditive biseparating map T: C(R) — C(R), which is not additive.

Proof Define the map ¢: R — R by ¢(z) = /z if z > 0 and ¢(z) = —/—z if z < 0. It is easily seen
that ¢ is subadditive and surjective, but not additive. Then the map T: C(R) — C(R), T(f)(z) = ¢(f(x)), is
subadditive and injective. Since T'(f)(xz) =0 if and only if f(z) =0, T is biseparating. O
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