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Abstract: In this paper, we formulate the definition of coextended weak entwining structure in a strict monoidal category
with equalizers. For a coextended weak entwining structure (A4, D, 4, «), we introduce the notions of weak (D, «)-cleft
extension and weak (D), «)-Galois extension (with normal basis), proving that weak (D, a)-Galois extensions with normal
basis are equivalent to weak (D, «)-cleft extensions.

Key words: Monoidal category, coextended weak entwining structure, weak cleft extension, weak Galois extension,

normal basis

1. Introduction

The definition of the normal basis for extensions associated to a Hopf algebra H in a category of modules over
a commutative ring was introduced by Kreimer and Takeuchi in [14]. Using this notion, Doi and Takeuchi
characterized in [10] H-Galois extensions with normal basis in terms of H -cleft extensions. This result can be
extended for Hopf algebras living in symmetric closed categories [13] and, in [2, 3, 5], we can find a more general
formulation in the context of entwining structures, weak entwining structures, and lax entwining structures,
respectively.

The objective of the present paper is to prove similar results for the same kind of extensions associated
to an idempotent comonoid morphism « in a strict monoidal category C with equalizers. These extensions will
be called coextended weak entwining structures and, if « is the identity, they coincide with weak entwining
structures. The typical example of coextended weak entwining structure and cleft extensions in this setting can
be obtained by working with comonoid projections of weak Hopf algebras. If H, D are weak Hopf algebras in
Cand f: H— D, g: D — H are comonoid morphisms such that g o f = idy, we can define a quadruple
(H,D,¢,a), where ¢ = (H ® (f o pm)) o (ca,p ® H) o (9 ® 0y) and a = f o g is a comonoid idempotent
morphism. There also exists an extension Hp — D, with Hp the equalizer of op = (D ® g) o ép and
(p=(pp®g)o(D® (dponp)). The quadruple (H, D,v,a) is a coextended weak entwining structure, and
Hp — D is an example of a cleft extension associated to this type of entwining structure. Note that (H, D, )
is not a weak entwining structure, because ¢ o (D ®@ ny) = (1% o g) ® a) 0 §p with II& the source morphism
of H. Actually, we have that (H,D,v) is a weak entwining structure iff @ = idp, but in this case f, g are

isomorphisms.
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The organization of the paper is the following. In the second section, we introduce the notion of a
coextended weak entwining structure, and we obtain the main properties of these algebra structures. In
particular, we find a categorical isomorphism between the category of entwining modules associated to a
coextended weak entwining structure (A, D,1,a) and the category of entwining modules for a certain weak
entwining structure obtained from (A, D,,«). In Section 3, we define the notion of cleft extension for a
coextended weak entwining structure, and we prove that this extension induces an example of weak crossed
product in the sense of [11]. This crossed product characterizes completely the cleft extension and is the
motivation for the definition of Galois extension with normal basis in this setting. Finally, in the last section,
we formulate the definition of weak (D, a)-Galois extension with normal basis for a coextended weak entwining
structure (A, D,,«a), and in Theorem 4.5 we characterize these extensions using the notion of cleftness

introduced in Section 3. If the morphism « is the identity, we recover the results proved in [2].

2. Coextended weak entwining structures

In what follows, (C,®, K) denotes an strict monoidal category with equalizers where ® is the tensor product
and K the unit object. It is easy to prove that, if C admits equalizers, then every idempotent morphism splits,
i.e. for every morphism ¢ : Y — Y such that ¢ = q o ¢, there exist an object Z (called the image of ¢) and
morphisms i: Z — Y and p:Y — Z satisfying g =4i0op and poi =idy.

A monoid in C is a triple A = (A4,n4,14), where A is an object in C and ng : K — A (unit),
pa: A®A — A (product) are morphisms in C such that pyo(A®na) =idg = pao(Ma®A), pao(AQua) =
pao(ua®A). Given 2 monoids A = (4,14, 1a) and B = (B,np,up), f: A — B is called a monoid morphism
if upo(f®f)=fopa, fona=np. Also, if C is a braided monoidal category with braiding ¢ and A, B are
monoids, so is A ® B, where nagp =14 ® np and pags = (a @ pp) o (A® cp,a ® B).

A comonoid in C is a triple D = (D,ep,dp), where D is an object in C and ep : D — K (counit),
0p : D = D ® D (coproduct) are morphisms in C such that (ep ® D) odp = idp = (D ® ep) o ép,
(bp®D)odp = (D®dp)odp. If D = (D,ep,dép) and E = (E,eg,dg) are comonoids, f : D — F is
called a comonoid morphism if (f ® f)odp = dgo f, ego f = ep. If C is a braided monoidal category
with braiding ¢ and D, E are comonoids, D ® F is a comonoid with counit epgr = ep ® €g and coproduct
dpoe = (D®cp,r®E)o(ép ® k).

Finally, if A is a monoid, D is a comonoid, and f,g: D — A are morphisms, the convolution product
of f and g, denoted by f * g, is defined by

fxg=pao(f®g)odp.

Definition 2.1 Let (A, D, v, a) be a quadruple, where A is a monoid, D a comonoid, v : D@ A — A®D a
morphism, and «: D — D an idempotent comonoid morphism. We say that (A, D, a) is a coextended weak

entwining structure on C if the following identities hold:
(al) Yo (D@ pa)=(na®D)o(A®Y)o (@A),
(a2) (A®dp)op = ®D)o(D®y)o(ip® A),
(a3) Yo (D®na)=(e®D)odpoa,

(a4) (A®ep)op =paoc(e® A),
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where e : D — A is the morphism defined by e = (A®ep) oo (D ®na). The morphism 1 is called the
mtertwining.

If the idempotent morphism is the identity, we obtain the notion of weak entwining structure introduced
by Caenepeel and De Groot [3] as a generalization of entwining structures defined by Brzezinski and Majid
[7]. Entwining structures are coextended weak entwining structures, where e = n4 ® ep and « = idp. If

e=n4®ep and « # idp, we will say that (A, D,,a) is a co-extended entwining structure. In this case,
Yo (D®na)=na®a,
and, as a consequence, the morphism
Asgp = (pa® D)o (A® (Yo (D®na)): A®D - A®D
is equal to A ® a.
Proposition 2.2 Let (A, D,v,«) be a quadruple as in Definition 2.1. Then (a3) holds if and only if
Yo (D@na)=(e®a)odp (1)

and
eoa=e (2)

hold.
Proof Assume that (1) and (2) hold. Then

(e@D)odpoa=((ecoca)@a)odp =(e®a)odp =10 (DRn,)
and (a3) holds. Conversely, by (a3),
e=(A®ep)opo(D®na)=(e®@ep)odpoa=ceoaq,
and (2) holds. On the other hand, using (2), we obtain (1) because

Yo(Dena)=(e®@D)odpoa=((eoa)®@a)odp =(e®a)odp.

O
Proposition 2.3 Let (A, D, ), «a) be a coextended weak entwining structure. Then the equalities
pao(A®e)orp =(A®ep)oy, (3)
Y =(A®a)o, (4)
Y=1o(a®A) (5)

hold.
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Proof First, note that, by (al), we obtain (3) because

pao(A®e)oy=(na®ep)o(A®Y)o (¥ @na) =(A®ep)o.
Moreover, (4) holds because
(U
= (a® D)o (A® 1) o (Y @na)
=(pa®D)o(A® ((e®a)odp))or
=((pao(A®e)ov)@a)o(A@1)o (dp @A)
=((A®ep)oy)®@a)e (A®Y) o (6p ® A)
= (A® ((ep®a)odp)) oy
=(A®a)oy,

where the first equality follows by (al), the second by (a3), and the third and fifth by (a2); the fourth is a
consequence of (3), and the last one follows because D is a comonoid.

The equality (5) follows because
(U
=v¢o(D® (nac(na®A)
= (na® D)o (A®)o((Yo(D@na))® A
= (ua®D)o(A®1w) o (((e®D)odpoa)® A)
= ((A®ep)oy) @ D)o (D@1)o((6poa)® A)
=(A®((ep®a)odp))oto(a®A)
— Yo (a® A),

where the first identity is a consequence of the unit properties, the second follows by (al), the third relies
on (a3), and the fourth relies on (a4). Finally, in the fifth equality, we used (a2). O
Note that by (4) and (5) we obtain that

(A®(D®a)odp))o=(@D)o(Dey)o((D®a)odp)® A) (6)

and
(A® (D®a)odp))oy =(p®@D)o (D)o (dp® A). (7)

If «: D — D is an idempotent morphism of comonoids, there exist an object D, and 2 morphisms
ia : Do = D, po : D — D, such that i, o p, = o and p, 0i, = idp,. Therefore, D, is a comonoid with
counit and coproduct defined by

€D, — €D Olq, 5Da = (pa ®pa) 00p 0ig.
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As a consequence, the quadruple (Dg, D,i4,ps) is a comonoid projection. That is, i, and p, are comonoid

morphisms such that p, 04, = idp, . Under these conditions, we have that the triple (A, Dy, %), where
Y =(AQpa) oo (ia®A): Da @A — AR D,, (8)
is a weak entwining structure. Indeed, first note that by (5) and (al) we obtain
(1a ® Dq) o (A®¢%) o (™ ® A)
= (ha @ pa) o (A® (Yo (a@ A)))o (Yo (ia®A)® A)
= (1A ®pa) o (AR Y) o (Yo (ia ® A)) © A)
= 9% 0 (Da ® pa).
On the other hand, by (a2) and (5), we have
(¥ ® Da) 0 (Do ® ¢*) 0 (6p, ® A)
= (A®pa ®@pa)o (P @D)o (D)o (((a®a)odpoia)®A)
= (A®pa ®pa)o (P @ D)o (D)o ((0p i) ® A)
= (A ((Pa ©Ppa) 0 D)) 0 P 0 (ia @ A)
= (A® ((Pa ®pa) 0 dp o)) otpo(ia ® A)
= (A®dp,) o™
By (1) and the equality (2),
Y0 (Da®na) =(A®pa)otpo(ia®na) = (e®pa)odp0oia = (ea ® Dy)odp,,
where e, = (A® Dy) op® o (D, ® A) = eoi,. Finally, by (ad),
(A@ep,) ot = (ABED) 0o (ia @ A) = 14 0 (€ 0a) & A) = 14 0 (ca & A).
Conversely, if (A4, D,,I") is a weak entwining structure, the quadruple (A, D, “T', ), where
T=(ARig)oTo(pa®A):DRA— AR D, (9)
is a coextended weak entwining structure and, trivially, ( *T')* = T". Indeed, first note that
(a®D)o(A® “T)o(*T'® A)
= (ha ®ia) o (AQT) o (o (pa ® A)) ® A)
= T o (D® pa).
On the other hand,

(*T®D)o(D® °T)o (dp® A)
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— (A®ia® D)o (T @ia) o (Do &T) 0 (((Pa ©Pa) 0 0p) ® A)
= (A®ia ® D)o (I'®ia) o (Da @) 0 ((6p, 0pa) ® A)
= (A® ((ia @ia) ©0p,)) o T'0 (pa @ A)
=(A®dp)o °T.
Finally,
“To(D®na)=(A®ia)ol'o(pa ®na) = (u®ia)odp, ©pa = (“u®a)odp,
where “u=wuop, =(A®ep)o *T'o(D®n4), and
(A®ep)o®I'=(A@ep,)olo(pa @A) = pac((uopa) ® A) = pao(“u® A).
With Ent}) we will denote the category of coextended weak entwining structures, defined by the following.
e Objects: coextended weak entwining structures.

e Morphisms from the object (A, D,v,a) to the object (A’, D’,¢)',&'): pairs (f,g), where f: A — A’ is

a morphism, g : D — D’ is a comonoid morphism, and the equalities

(foglop=190o(g®f), (10)

adog=goa (11)
hold.

In a similar way, we define the category of weak entwining structures, denoted by Ent™. In this case:

e Objects: weak entwining structures.

e Morphisms from the object (A, D,v) to the object (A’,D’,¢)'): pairs (f,g), where f : A — A’ is a
morphism, g: D — D’ is a comonoid morphism, and the equality (10) holds.

Obviously there exists an inclusion functor ¢ : Ent" — Ent,.,,

where i((B,C,T)) = (B,C,T',id¢) for the
objects, and i((f,g)) = (f,g) for the morphisms. There also exists a functor

F:&nt.) — Ent"’

defined by
F((A,D,¢,a)) = (A, Dq, v%)

on objects, and by
F((fag)) = (fapoz’ ogoia)

on morphisms.
It is easy to show that 4 is left adjoint of F' with unit defined by wa,p y.a) = (ida,pa) and counit

v = idgppw . Moreover, ¢ is also right adjoint of F', with unit u’' = idg,;» and counit vEA Dopa) = (ida,ia)-
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If T=1i0F, the pair (T,u) is an idempotent coaugmented functor because
UT((A,D,h,0)) = W(A, Do o ids) = (ida,idp,) = T((ida,pa)) = T(u(a,Dp,0))-

Then, by Proposition 1.2 of [J], for every object (A, D,, ), the morphism w4 p o) is initial among all
morphisms from (A, D,,a) to objects isomorphic to T'((A4’, D’,v¢’,a/)), for some (A’, D', ¢)',a').

Definition 2.4 Let (A,D,v,a) be a coextended weak entwining structure. We denote by MZE (1, a) the
category whose objects are triples (M, dar, par), where (M, ¢pr) is a right A-module (i.e. ¢pro (o @ A) =
dpo(Mpa), idy = drpro(M@na)), (M, pa) is a right D -comodule (i.e. (prpr@D)oppy = (M ®0p)opn,
(M ®ep)opy =idy ), and

pr 0 b = (¢ @ D) o (M @) o (prr ® A). (12)
The objects of MZ (¢, ) will be called coextended weak entwined modules, and a morphism in ME (1, ) is a
morphism of A-modules and D -comodules. If o = idp, ME (1,idp) is the category of weak entwined modules

introduced in [S]. In this case, ME (1, idp) will be denoted by MZE ().
If (M, dar,pm) is a coextended weak entwined module, by (al), we obtain that

Apygp = (o @ D)o (M@ (Yo (D®na))): M@D —- M®D (13)
is an idempotent morphism, and by (a3) we have
Apep = (¢ ® D)o (M @ ((e® D)o dp o a)) (14)

and by (2)
Apep = ((pm o (M ®e)) @ a)o (M ®dp). (15)

Using (a2), it is also easy to show that

Apga= (M@ ((A®ep)oy))o(py @A) M@A— M® A (16)

is an idempotent morphism and, by (a4), we have the equality

Anrsa = (M ® (1140 (e ® A)) o (o ® A). (17)

Proposition 2.5 Let (4, D,v,a) be a coextended weak entwining structure. For any (M, ¢ar, par) in ME (1, a)
the following identities hold:

dmo(M®e)opy =idy, (18)

ot = (M )0 pa. (19)
Proof The equality (18) follows by (12), and (19) holds because
PM
= pm o pp o (M @na)

= (¢pm ® D)o (M @) o (prr ®1a)
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=(pu @ a)o (M@ ((e®D)odp))opm
= (¢ o (M ®e)opu)®a)opy
:(M®a)opM,

where the first equality follows by the unit properties, the second by (12), the third by (1), and the fourth

by the comodule condition, while the last one relies on (18). O

Proposition 2.6 Let (A, D,,a) be a coextended weak entwining structure. The categories MXE (1, a) and
M () are isomorphic.
Proof Define the functors

Fo: MR (¥, 0) & M= (1%

and

Go : ME=(4*) - ME (¥, )

Fa((Ma(bMapM)) = (Ma(bMap(]x\/[ = (M@pa)OpM),
Ga((N,on,on)) = (N, on, “on = (N ®1a) o pn)

on objects, and by the identity, on morphisms. Then, by (19), we obtain that G, o F,, = idMg(w,a)v and by
the properties of in, pa, the identity Fy, o Go = id, pa () holds. O
A

Example 2.7 Weak Hopf algebras (monoids) are generalizations of Hopf algebras and were introduced by Bohm
et al. in [/]. The definition is as follows:

A weak Hopf algebra H , in a symmetric monoidal category C with symmetry isomorphism c , is a monoid

(H,ng,pm) and comonoid (H,egy,0n), such that the following axioms hold:

(b1) 6 opm = (g ® pu) °0HRH.

(b2) egopmo(pp ®H) = (en @en)o (kg @ pu)o (H® oy @ H)
=(en®em)o(up @um)o (HR (camody)® H).

(v3) Gu@H)odgony = (H@py @ H)o 0y @) o (N @nu)
= (H® (pgocun)©H)o(6n @dn)o (nu @nu).

(b4) There exists a morphism Ag : H — H in C (called the antipode of H ) verifiying:

(b4-1) idg x A\g = ((egopnr) ® H)o (H®chm)o (g onm) @ H).
(b4-2) Mg xidyg = (H®@ (egopm))o(cuuy @ H)o(H® (6g onm)).-
(b4-3) AH *’LdH * )\H = )\H.
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As a consequence of this definition, a weak Hopf algebra is a Hopf algebra if and only if the morphism
8u (coproduct) is unit-preserving (i.e. ng @ Ny = dg ong ), or if and only if the counit is a monoid morphism
(i.e. egopg =eg em ).

If H is a weak Hopf algebra, the antipode \g is unique, antimultiplicative, and anticomultiplicative and
leaves the unit and the counit invariant, i.e. Agopy = proAg®@Ag)ocu.m, dmodg = cuao(Ag®@Ag)odm,

AHONH =1NH, EHOAH = €H.

If we define the morphisms 1% (target), TIE (source), ﬁIL{, and ﬁﬁ by
Iy = ((em o pn) @ H) o (H @ cpr) o (0g o) @ H) : H — H,

I =(H® (egopn))o(cuy®H)o(H® (0gony)): H— H,

T, = (@ (e 0 ) o (G o) @ H) - H > H,

ﬁH:((EHOMH)®H)O(H®(§H077H))ZH—)H,

it is straightforward to show that they are idempotent (see [/]).
Let (H,H,T') be the triple where I’ = (HQupy )o(cu,u®H)o(H®dy). Then (H,H,T') is a weak entwining
structure with uw = T . This entwining structure is a particular instance of the following: Let H be a weak Hopf

algebra and let (A, pa) be a monoid, which is also a right H -comodule, such that pagm o (pa @ pa) = paopia.

We call A a right H -comodule monoid if any of the following equivalent conditions hold:

(c1) (pa®H)opaona=(A® (uuochn)®H)o(pa®dm)o (na®nm),
(c2) (pa®@H)opaona=(A@puy ®H)o(pa®dy)o (na@nu),

(¢3) (A®TIg) o pa=(ua®H)o (A pa)o (AGna),

(¢4) (A@Tg)opa= ((naocaa)@H)o(A®pa)o (A®mna),

(¢5) (A®Tlg)opaons=paoia,

(c6) (A@TIy)opaona=paona.

Under these conditions, (A, H,I' = (A® pm) o (caa® H)o (H ® pa)) is a weak entwining structure,
and (A, pa,04) € MIH(). Then, if (H,D,f,g) is a comonoid projection, that is, D is a comonoid and
f:H—= D, g: D — H are comonoid morphisms such that go f =idy, we have that « = fog: D — D is
an idempotent comonoid morphism such that Do, = H, po = g and i, = f. As a consequence, (A, D, °T =
(A® floT o(g® A),a) is a coextended weak entwining structure, and (A, pa, pa = (A® f)opa) is an object
in ME (T, ). By Proposition 2.6, the categories ME( °T,a) and M (T) are isomorphic.

Interesting examples of comonoid projections between weak Hopf algebras appear associated to exact
factorizations of groupoids. First, note that, as group algebras are the natural examples of Hopf algebras,
groupoid algebras provide examples of weak Hopf algebras. Recall that a groupoid G is simply a small category
where all morphisms are isomorphisms. In this example, we consider finite groupoids, i.e. groupoids with a
finite number of objects. The set of objects of G, called also the base of G, will be denoted by Gy, and the set
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of morphisms by G1. The identity morphism on x € Gy will be denoted by id, , and for a morphism o :x —y
in Gy, we write s(o) and t(o), respectively, for the source and the target of o .

Let G be a groupoid and let R be a commutative ring. The groupoid algebra is the direct product in

R-Mod
RG = @ Ro,
ceGy

with the product of 2 morphisms being equal to their composition, if the latter is defined and 0 otherwise, i.e.
pre(T®@0) =700 if s(1) =t(0) and pra(T ®@0o) =0 if s(1) # t(0). The unit element is 1rc =, ¢, s -
The algebra RG is a cocommutative weak Hopf algebra, with coproduct dgra, counit erg, and antipode Agg ,
given by the following formulas: Src(0) = 0®0, cra(o) =1, Ara(0) = o~ L. The target and source morphisms
are Ik (o) = idy(qy, E.(0) = ids(s), and Arg © Arg = idrq, i.e. the antipode is involutory.

A wide subgroupoid U of a groupoid G is a a subcategory of G, provided with a functor F : U — G that
is the identity on the objects, and induces inclusions homy (x,y) C homg(x,y), i.e. it has the same base, and
(perhaps) fewer arrows.

Let G be a groupoid. An exact factorization of G is a pair of wide subgroupoids of G, U, and V, such
that for any o € Gy, there exist unique oy € Vi, oy € Uy, such that 0 = oy o oy . Following the notation
of [15], we denote G by U <1V, because in Theorems 2.10 and 2.15 of [15] it was proven that the notion of a
groupoid with exact factorization is equivalent to the notion of a matched pair of groupoids and to the notion
of a vacant double groupoid. Any groupoid G with an exact factorization U <1V induces a nontrivial example
of a comonoid projection between weak Hopf algebras. Put H = RV and D = RG and define f : H — D by
flo)=0 and g: D — H by g(t) = 7y . It is then easy to show that f is a monoid-comonoid morphism and
go f=ridg. Moreover, g is a comonoid morphism, and it does not satisfy the condition of monoid morphism

(see Example 3.3 of [12]).

Proposition 2.8 Let (A, D, a) be a coextended weak entwining structure. Let py : A - AR D be a
morphism such that (A, pa,pa) belongs to ME (1, a). If for all (M, ¢, par) € ME (Y, a) we denote by Mp
the equalizer of par and Cpr = (par @ D) o (M ® (paona)) and by i&; the injection of Mp in M, we have the
following:

i) The triple (Ap,Na,,pay) 1S a monoid, where na, : K — Ap and pa, : Ap ® Ap — Ap are the

factorizations of na and pa o (i§ ®@48), respectively, through the equalizer i% .

it) The pair (Mp,dnp,) is a right Ap-module, where ¢pr, : Mp @ Ap — Mp is the factorization of
du o (15 ®i8) through the equalizer i%) .

Proof The proof for this proposition is the one used in the weak entwining setting to get a similar result (see
Proposition 1.5 of [1]). O

Proposition 2.9 Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. Then, for all (M, ¢, prr) € ME (¢, ), the following identity holds:

par o gar o (iny ® A) = (par © D) o (i @ pa). (20)
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Proof By (12) and the module condition,
paro o (i © A)
= (¢m ® D)o (M @) o ((pu o ify) ® A)
= (¢m ® D) o (dar @) o (i ® (pa 0 na) ® A)
= (¢m ® D) o (i @ (na @ D) o (A® ) o ((paona) ® A)))
= (¢n @ D)o (i ® (paopao(na® A)))
= (¢ ® D) o (if; ® pa),

and the proof is complete. O

3. Cleft extensions for coextended weak entwining structures

The aim of this section is to introduce the notion of cleft extension for coextended weak entwining structures.

As a particular instance, we will obtain the definition of weak cleft extension as defined in [1].

Proposition 3.1 Let (A,D,v,«a) be a coextended weak entwining structure in the conditions of Proposition

2.8. Then, if h: D — A s a right D-comodule morphism for pp = dp, the following identity holds:

hxe=h. (21)
Moreover, if the coaction for D is opp = (D®a«a)odp, (21) holds. Also, if h is a morphism of right D -comodules
for pp =0p and pa, it is a morphism of right D -comodules for op = (D ® a) odp and pa.

Proof The equality follows by (18). If we change the coaction of D, by (2), we obtain the same equality and
the last assertion follows by (19), composing with A ® « in the equality psoh = (h® D)o dp. O

Definition 3.2 Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. By RegV®(D,A) we denote the set of morphisms h € Home(D, A) such that there exists a morphism
h=' € Home (D, A) (the left weak «-inverse of h) satisfying

(htsh)oa=e. (22)
First, note that (22) is equivalent to
(htoa)* (hoa)=ce, (23)

and if a = idp we recover the set RegWV®(D, A) introduced in [1].

On the other hand, by Reg,(D,A) we denote the set of morphisms h: D — A such that there exists a
morphism h™' : D — A (the left a-inverse of h) satisfying (h™txh)oa = (hxh Y oa =ep®@na. Of course,
if (A,D,,a) is a coextended entwining structure, Reg,(D,A) C RegW®(D, A). In this setting, if o = idp

we recover the classical set of reqular morphisms Reg(D, A).
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As a consequence of this definition, if h € RegV*(D,A), then h' = hoa € RegV%(D,A) with
W=t =h=1toa because, by (2),

(hloa)*x(hoa)=(h"'s*h)oa=coa=c¢

and W oa=h', h'~loa=h"1. We can then assume without loss of generality that when we choose an element
h € Reg!V (D, A), it satisfies
hoa=h, hmloa=h"" (24)

Finally, we have that if h € Reg!V®(D,A), with left weak o-inverse h™', then h® = hoi, €

RegW B (D,, A) with left weak inverse (h*)™! = h™' oi,. Conversely, if | € Reg"V (D, A) with left weak
inverse 171, %l = lop, € RegWB(D, A) with left weak a-inverse ( *1)~' = 1=t op,. Finally, note that
*(h*) =h and (*1)*=1.

Proposition 3.3 Let (A, D,y,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. Let h € RegWf(D,A). Then, if h is a morphism of right D -comodules for op = (D ® a) o ép, the

interwining ¥ is completely determined in the following form:

¥ =(ua®D)o(A® (paopa))o (" @h)odp)® A), (25)

and equivalently
Y= (ua®D)o(A® (paopa))o (™ @h)odpoa)® A). (26)
Proof Indeed:

(ha® D)o (A® (paopa))o (B~ @h)odp) @ A)
=(pa®D)o(A® ((na®D)o(A® )0 (pa® A)))o (A~ @ h)odp)® A)
= (ua®@D)o(h' @ ((nao(h®A)®@D)o(DRD® (ho(a®A)))o(D®dp®A)o(5p @ A)
= ((pao ((h™"xh) @A) @ D)o (D@ (¢ o (a @ A))) o (6p © A)
= ((pac(e®A)®D)o (D@ (Yo (a®A))o(ip®A)
= ((ao(e®A))®D)o(D&1)o (dp® A)
=((A®ep) o) @ D)o (D®¥)o (dp ® A)
= (A® ((ep®D)odp)) o
= 4.

In the last equalities, the first one follows for the entwining module condition for A, the second one by the
comodule morphism condition for A, and the third one by the coassociativity of dp. The fourth one follows
because h € Reg?V%(D, A), and the fifth one follows by (5). The sixth equality relies on (a4), and the seventh
follows by (a2). Finally, the last one follows by the counit properties.

The equality (26) follows from (25), using (24). O
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Definition 3.4 Let (A, D, v, a) be a coextended weak entwining structure in the conditions of Proposition 2.8.

We say that Ap < A is a weak (D, q)-cleft extension if there exists a morphism h € RegV (D, A) of right

«

D -comodules for op = (D ® a) o dp, such that the equality
Ypo(D@h ™ Hodpoa=C_so(exh Hoa (27)
holds. Note that by (2), (5), and (24), the equality (27) can be rewritten as
Ypo(D@h ™ odp=Cao(exh™). (28)

Then, if a =idp, we have the notion of weak D -cleft extension introduced in [1].

Furthermore, if g = ex h™' we have
grh=(exh™)sxh=ex(h'xh)=exe=ce,
exg=ecx(exh™ ) =(exe)xh t=exht=g

and
Yo (D®g)odp

= (paoD)o(A®Y)o((ho(D®e)odp)®h™")odp

= (paoD)o(A®Y)o (W ®ep)o(D@Y)o(6p®na)) ®h~1)odp

= (uaoD)o(A®@y)o((¥o(D®@na))@h™!)odp

=1Yo(D®h )odp

=Ca0y,

where the first equality follows by the coassociativity of ép, the second by the definition of e, the third by (a2)
and the counit properties, the fourth by (al) and the unit properties, and, finally, the last by (28).

Therefore, we can also assume without loss of generality that
exh 1 =h"1, (29)
and then (27) is equivalent to
Yo(D@h Y)odp=Caoh ™t (30)
The morphism h will be called a cleaving morphism for the extension Ap — A.

Proposition 3.5 Let (A, D,v,a) be a coextended weak entwining structure in the conditions of Proposition

2.8. If Ap — A is a weak (D,q)-cleft extension with cleaving morphism h and (M, érr, prr) € ME (4, ),

the morphism
Y =omo(Ah™ Nopy: M — M
satisfies the equality
éar o (aiy ® (45 ©na)) = iy © i (31)
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As a consequence, if M = A, we have

pao(gf @ (gX ona)) = qf o g% (32)
and
g oh=hxh"1. (33)
Proof The equality (31) follows by (30) because, if (M, ¢ar, par) € ME (3, @), we have
qir © qir
=¢uo(M@h™t)o(¢py ®D)o(M@p)o(py ®A)o (M@)o pu
= o (M® (pao(A2h Yoo (D®h™)o0dp))opu
=omo (M@ (pao(A®@h ) oCaoh ™) opy
=¢po(M® (pao(pa®@h™)o(h™' @ (pacna))))opu
= dar o (air @ (g 0 na)).

On the other hand, by the comodule morphism condition for h and (24), we obtain

dfoh=pao(h®(h o)) odp=hxh"t

Proposition 3.6 Let (A, D,y,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. Let h € RegWB(D,A) be a morphism of right D-comodules for op = (D ® a) o dp. Let gk be the

morphism introduced in the previous proposition. The following assertions are equivalent:

(i) For every (M, da, par) € ME (1, ) the morphism ¢ factorizes through the equalizer i%) ; that is, there

erists a unique morphism pﬁ : M — Mp such that pAD,[ ) iAD4 = qﬂ.

i) The morphism g% factorizes through the equalizer 1% ; that is, there exists a unique morphism p% : A —
A A A

Ap such that pf oif) = ¢%.

(iii) Ap — A is a weak (D, a)-cleft extension with cleaving morphism h.

Proof Trivially (i) = (ii). If (ii) holds, we have that Ap — A is a weak (D, «)-cleft extension with cleaving
morphism h, because

Ypo(D®@h™)odp
= (na® D)o (A® (paopa))o((h~'@h)odp)®@A)o(D@h™')odp
=(ua®@D)o(A®@ (paopa))o(h t@h@h 1)) o(D®dp)odp

— (14 ® D)o (A® (paopa)) o (" ©h & (h™ o)) o (D@ dp) o dp
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= (na® D)o (h™'® (paoqf oh))odp
= (pa®@D)o(h™' ®(Ca0qf oh))odp
=Cao(h™tx(qf oh))

=Cao(h~t % (hxh~1))
=Cao((h~t*h)*xh™1)
=(ao(exh™1)

=(ao0h™,

where the first equality follows by (25), the second and the eighth by the coassociativity of dp, and the third
by (24). In the fourth equality we used the comodule morphism condition for h, and the fifth one relies on (ii).
The sixth equality is a consequence of the associativity of p4, and the seventh follows by (33). Finally, the
ninth and the tenth equalities follow by the properties of A~ 1.

If (iii) holds, we obtain (i), because using that (M, ¢, par) € ME (1, ), we have that
par o g%

= (¢ @ D)o (M @) o (ppr @ h™) 0 pu

= (@ ®@D)o(M® o (D®h™')odp))opu

= (¢ @ D)o (M@ (Caoh™t))opy

= (o 4y,

and the proof is complete. O

Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition 2.8, and

assume that Ap <— A is a weak (D,«)-cleft extension with cleaving morphism h. By Proposition 2.6,
the triple (A,pa,p% = (A ® pa) © pa) is an object in ME*(y*). Let Ap, be the equalizer of p% and
(3 =(ua®Dy)o (AR (p% ona)). Then there exists a morphism 4 : Ap — Ap_ such that

Do o Ba =if. (34)

On the other hand, by (19), we know that (A ® i) 0 p% = pa, (AQ®i,) 0% = (4 and, as a consequence, if

A ® — preserves equalizers, there exists a morphism 3, : Ap. — Ap such that i2 o 8, = i?>. Moreover
p q ) P A o A A A )

. .D! . -D . 7.D
i 0Bl ofa=i3"0fa=i, iz ofacfl =i} 0By =ij",

and this implies that 8/, is the inverse of S4. Therefore, Ap, and Ap are isomorphic as monoids.

If h is the cleaving morphism for Ap < A, then h® = hoi, € Reg"W(D,, A) with left weak inverse

(h*)=t = h=1 o, (see Definition (3.2)), and h® is a morphism of right D, -comodules because

(A®pa)opaoh®=(h®py)oopoia=(h*®D,)odp,.
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Finally, for (h*)~! we have
Yo (Do ® (ha)il) 06p, =(A®pa)orpo (D ®h71) 00poia=(A®pa)oCao h™toiy = Cao (ha)ila

and then Ap, — A is a weak D-cleft extension for (A, D,,¥*) with cleaving morphism h*.

Conversely, assume that (A, 04) is a right D, -comodule such that (A, pa, 04) is an object in Mg‘* ().
By Proposition 2.6, the triple (A, 4, “04 = (A®i4)004) is an object in ME (1, a). Let Ap,_ be the equalizer
of o4 and €4 = (pa ® Do) 0 (A® (04 0na)). Then there exists a morphism 74 : Ap, — Ap such that

i =i oma, (35)

where i) is the equalizer morphism of ®p4 and “C4 = (ua ® D) o (A ® (“04 ©n4)). On the other hand, if
A ® — preserves equalizers, we have g4 0if} = (4 045, because (A ®i,) 004 0if = (A®iy) o0 (a0il, and
then there exists a morphism 7y : Ap — Ap,_ such that ifa o)y = if. Moreover, 7y o my = ida, and
maony =ida, . Therefore, Ap, and Ap are isomorphic as monoids.

By Definition 3.2, if | € Reg"#(D,,, A) with left weak inverse 71, %l =1lop, € RegW (D, A) with

left weak a-inverse (*1)~! =1~!op,. Moreover, if [ is a morphism of right D, comodules, we have that I

is a morphism of right D-comodules for op = (D ® a) 0 dp. Indeed:
“op0 “l=(*®a)odpoa=(*l®@a)oép = (*®D)oop.
Finally,
bo (D& ()™ odp = (A®a)oto(a® () )odp = (AGia) 0% o (Do ®17) 0 dp, 0pa

= (na @ia) o ((“D7' @ (0a0na)) = *Cao (D7),
and then, if Ap, — A is a weak D, -cleft extension for (A, D,,v¥*) with cleaving morphism [, we have that

Ap — A is a weak (D, «a)-cleft extension for (A, D,,a) with cleaving morphism .

Example 3.7 Let H be a weak Hopf algebra and let (A, p4) be a right H-comodule monoid. By example
(2.7), we know that (A, H,I' = (A® up)o (cya® H)o(H ®pa)) is a weak entwining structure. Let D be a
weak Hopf algebra and let (H, D, f,g) be a comonoid projection. Then for @ = fog we have that (A, DT, «)
is a coextended weak entwining structure and (°T)* =T. If Ay < A is a weak H -cleft extension for (A, H,T')
with cleaving morphism [ : H — A, we have that Ap < A is a weak (D, a)-cleft extension for (4, D,*T", )
with cleaving morphism *l =1[lo g. Also, if A ® — preserves equalizers, Ay = Ap as monoids. In particular,
if (HH,T = (H® pug)o (caug®H)o(H®Ody)) is the weak entwining estructure associated to H, we have
that Hg = H, = Im(HIL_I) and H; — H is a weak H -cleft extension with cleaving morphism [ = idy and
I=' = Ag. Then Hp < D is a (D, a)-cleft extension for (H,D,*T,«) with cleaving morphism ¢/ = g and

(*l)~t = Ay o g. Finally, if H ® — preserves equalizers, H;, = Hp as monoids.

Proposition 3.8 Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition
2.8, and assume that Ap — A is a weak (D, «a)-cleft extension with cleaving morphism h. Then the following

equality holds:
$p © (Mp @ p) = pyy o dur o (i ® A), (36)
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fOT’ all (M3¢MMDM) S Mg(w7a)

Proof Using that i]\D4 is an equalizer morphism, we obtain (36), because:

iﬁopﬁogf)Mo(iﬁ@A)

= ¢u o (pu @ h™1) o (M @) o ((par o ifyy) ® A)

= ¢u o (b @h1) o (M@)o ((Cuoify) ® A)

= ¢ o (ify ® (ao(pa@h=") o (A1) o ((paona) ® A)))
= ¢ o (if ® a7)

= iD o gur, o (Mp ® pP).

The first equality follows by (12), the second by the properties of the equalizer morphism i¥;, and the
third by the module structure of M and the associativity of p4. In the fourth, we apply (12) for A, and the
last one follows by the definition of ¢ar, . O

Proposition 3.9 Let (A, D, v, a) be a coextended weak entwining structure in the conditions of Proposition 2.8.

Suppose that Ap — A is a weak (D, «)-cleft extension with cleaving morphism h. Define, for M € ME (, ) :
wy =dpro (i @h): Mp®D — M

and
Wiy = P @ D)opy: M — Mp @ D.

The following assertions hold:

(i) The morphisms wyr and W', are morphisms of right D -comodules for the coaction gppep = Mp ® op .
Moreover, they satisfy war owh, = idy and then Qp = wiyown : Mp ® D — Mp ® D is an idempotent

morphism.
1) In particular, if we consider M = A, we have that wa and W'y are also morphisms of left Ap-modules
A
for oapep = pap, ®D and o4 = pao (i @ A).
Proof (i) By (20) the morphism w); satisfies

prowy = (¢ar @ D) o (iyy @ (paoh)) = (¢ @ D) o (iyy @ (h @ D) o gp)) = (wy @ D) 0 0@

and then it is a morphism of right D-comodules. Also, w), is a morphism of right D-comodules by (19).
Indeed:
orpep 0wy = (P ® D® a) o (M ®dp) o par = (P ® D) © par) ® @) 0 pus

= (((phy ® D) 0 par) @ D) 0 par = (why @ D) o pas.

On the other hand, by (18) we have

wyowhy = oo (M ®e)opy =idy,
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and then Q;; is idempotent.
(ii) If M = A we have

pao(Ap@wa)=pao((pao (i ®i3)) ®h)=waopapep,
and by (20) and (36), the identities
Wiy owa=((pFopa)®D)o (i} ®pa)=pa, o (Ap ®w))

hold. Therefore, w4 and w'y are morphisms of left Ap-modules. O

Proposition 3.10 In the conditions of Proposition 3.9, denote by Mp x D the image of the idempotent
morphism Q and consider the right D -comodule structure oprpxp = (rp @ D)o (Mp ® op) o sy, where 1y,
sy are the projection and the injection related to Qpy. Then there exists an isomorphism by : M — Mp x D
of right D -comodules. Finally, if M = A, ba is also a morphism of left Ap-modules for the left Ap-module
structure of Ap x D given by wap,xp =140 (ua, ® D)o (Ap ® sa).

Proof Let by : M — Mp x D be the morphism defined by

A
bM =TM OWpy-
Then by; is an isomorphism with inverse b;j = wys o sps . Indeed, by Proposition 3.9
bar o by = rar o Qs o sar = idnp D,

b&lobM:wMowMowMowg\/I:idM.

On the other hand, by, is a morphism of right D-comodules because:
oMpxpoby =(ry@D)o(Mp®(D®a)odp))owy = (by @a)o py = (byr @ D)o pay.
Finally, by (36) and (20) we obtain that b4 is a morphism of left Ap-modules because:
PapxD©(Ap ®ba) =ra0 ((tap o (Ap @pR)) ® D)o (Ap ® pa)

=rao((phopac (il ®A)®D)o(Ap@pa)=rao(pf@D)opaopao (il ®A)=baopa

Remark 3.11 Note that, in the conditions of Proposition 3.9, the morphism w}, is a morphism of right D-
comodules for the coaction pyrp,ep = Mp ® dp. As a consequence, by is a morphism of right D-comodules

for PMpxD = (’I’M ®D) o (MD ®5D) O Spr.
Proposition 3.12 In the conditions of Proposition 3.9, the morphism
¢pa=pao(pa®@h ") o(h@y)o (bp® A)
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factorizes through the equalizer i% 4. Moreover, if ¢'y is this factorization, we have the following equalities:

¢y =pRopac(h®A), (37)

0 (¢ ®@Py)o(DRYRA) o (lp@ARA)=¢)y 0 (DR pa). (38)

Finally, if we define the morphism ¢a, : D@ Ap — Ap by da, = ¢4 o (D ®iL), we obtain:

0 (¢4 ®pa,)o(D®Y®Ap)o (6p ®if ® Ap) =ap, o (D@ piay,). (39)

Proof By (5) and (a3), the proof is similar to the one used to prove Proposition 1.15 of [1]. O

Proposition 3.13 In the conditions of Proposition 3.9, the morphism o4 : D ® D — A defined by
oa=¢a0(D®@h),

where ¢4 is the morphism introduced in the previous proposition, factorizes through the equalizer i) - Moreover,

if o4, s this factorization, then
L =ppopao(h@h). (40)
Proof By (5), the proof is similar to the one used to prove Proposition 1.17 of [1]. O

In the conditions of Proposition 3.9, we have that b4 is an isomorphism of algebras, where the algebra
structure is the one induced by b4:

Napxp =baona, fapxp=baopao(by' @byh). (41)

In the next proposition we obtain that w4, xp can be identified in another way as a weak crossed product

(see [11] for the definition and main properties of weak crossed products).
Proposition 3.14 In the conditions of Proposition 5.9, (Ap, D, z/JD ,UD P with

p” = (84 ®D)o(D®Y)o(p®ip), 0p” = (¢4 ®D)o(D@)o(dp@h),
s a quadruple such that the associated idempotent morphism

Vapep = (ap, ® D)o (A® (WP o (D®@na,))): Ap®D — Ap ® D

is Qa, and satisfies the twisted and cocycle condition (see Definitions 3.5 and 3.6 of [11]).

Moreover, if ma,xp denotes the associative product induced by the quadruple

(ADaD wD ao-D )7

we have that mapxp = apxD, where wa,xp s the product defined in (41).

Proof First note that, by (37) and (5),
U5 = ((pR opa) @ D)o (h® (Yo (a® A)))o (bp ®i}) =wopao (h@if),
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and similarly

opP =wjopao(h®h).

Then, using that w’, is a morphism of left Ap-modules,
Vapep = ¢Papep © (Ap ® (Wyoh)) =wjopso(Ap ®h) = Qa,
and, as a consequence, agD oVapep = agD oy = UgD .

The quadruple (Ap, D 1/) D ,JD P) satisfies the twisted condition because, by the left Ap-module con-

dition for v’y and the associativity of pa, we have:
(4ap © D)o (Ap ® 0?) o (¥3° © D) o (D & )
— o a0 (wa 0wy 0 p1a) ® A) o (h® (1B h) 0wy o o (h @ iR))
=wyopao(h®waowyopso(h®i})))
— o puae (o (h@h) @ ik)
— o puae((waow)opuao(h®h)©id)
— (A ® D) o (Ap ® U)o (07 @ Ap).
Similarly,
(1ap ® D)o (Ap @ opP) o (p” ® D) o (D @ oy?)
=wjyopao((paoc(h®@h))®h)
= (pap, ® D)o (Ap ® oppP) o (0P @ D),
and (Ap,D A IS .oh ) satisfies the cocycle condition. Therefore, by Proposition 3.8 of [11], the product
Mapxp =740 (ftap @ D)o (ap, ® opP) o (Ap @YpP @ D)o (54 @ 54)

is associative and ma,xp = pa,xp because, by the left Ap-module condition for w’; and the associativity of
HA ,

(Bap @ D)o (pa, @ op”) o (Ap @ YpP @ D) = wyopiao(wa@wa).

4. Galois extensions for coextended weak entwining structures

Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition 2.8. Let AOD
be the image of the idempotent morphism Ajgp defined in (13), and let iagp : AOD — A ® D and
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pagp : A® D — AOD be the morphisms satisfying Aagp = itagp © Pagp and pagp © tagp = idanp-
Under these conditions,

AasgD
A®D T A®D
idA®D

TA®D

AOD

is an equalizer diagram. Let t4 : A® A — A ® D be the morphism defined by t4 = (u4a ® D)o (A® pa). By
the associativity of pa, (12), and the properties of 14, we have that

Asgpota=(pa®@D)o (ua @) o (AR pa®@na)

= (A ® D)o (A® ((ua® D)o (A@ )0 (pa @na))) = ta.
Therefore, there exists a unique morphism (called the lifted canonical morphism) r4gp : A ®@ A — AOD, such
that iqagp oTagp = ta, and equivalently, ragp = pagp ota.
On the other hand, it is obvious that (A, o4 = pa o (i§ ® A)) is a left Ap-module and (4,¢’, =
pao(A®iR)) is a right Ap-module. With n4 we denote the coequalizer morphism of A ® ¢4 and ¢/, ® A.

A®pa na
ARAp® A AR A A®a, A
PL®A
As in 1.5 of [2], we can prove that the morphism ragp satisfies
iagD ©TAzD © (A®pa) =iagp o Tagp © (¢4 ® A) (42)

and, as a consequence, there exists a unique morphism (called the canonical morphism)
Ya:A®a, A— AOD,

such that y4 0na = ragp.

On the other hand, 4 is a morphism of right D-comodules, where PA®A, A ARa, A = (A®a,
A) ® C is the factorization of (n4 ® D)o (A ® pa) through the coequalizer na, i.e. pag, a is the unique
morphism such that pag, a4 ona = (na @ D) o (A® pa), and pagp : AUD — AOD ® D is defined
by oaop = (pagp ® D) o (A ® gp) oiagp. Moreover, 4 is a morphism of right D-comodules with
pa0p = (Pagp ® D) o (A ® 6p) oiagp. Finally, if A @ — preserves coequalizers, 74 is a morphism of
left A-modules where pag, 4:A®(A®a, A) = A®a, A is the factorization of n4 o (ua ® A) through the
coequalizer A®@mna,ie. pag,, a is the unique morphism such that pag, a0 (A®na) =nso(ua®A), and

YAOD - A®ADD — AOD is defined by YAOD = PARD © (MA@D) O(A@iA@)D).

Definition 4.1 Let (A, D, v, «) be a coextended weak entwining structure in the conditions of Proposition 2.8.
We say that Ap — A is a weak (D, a)-Galois extension if the canonical morphism v4 is an isomorphism.

If a =idp, the notion of weak (D, «)-Galois extension is the one defined for weak entwined structures
in [2] with the name of weak D -Galois extension (in this last definition the condition of A ® — preserving
coequalizers was required, but it is only necessary if we want ya to be a morphism of left A-modules). This kind

of extension was introduced by Brzeziriski in [0] for weak entwining structures in a category of modules over a
commutative Ting.
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Proposition 4.2 Let (A,D,v,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. Let (A, Dy, ™) be the weak entwining structure, where ® is the morphism defined in (8). If Ap — A
is a weak (D, a)-Galois extension, then Ap, — A is a weak D, -Galois extension, where p% = (AR pa) o pa.
Conversely, let (A, D,,T') be a weak entwining structure and let (A, 04) be a right D, -comodule such that
(A, p1a,04) is an object in ME=(T'). If Ap, — A is a weak D, -Galois extension, we have that Ap — A is a
weak (D, o) -Galois extension for (A, D,*T,«), where ®T' is the morphism defined in (9).

Proof Let Afyp :A® Dy — A® D, be the morphism defined by A%y, = (A®pa) o Aagp o (AR iq).

Then the equality
Aflgp, = (ha ® Do) o (A® (¢ 0 (Do ®14)) (43)

holds. Let AUID,, be the image of A%y , andlet p%op , i%gp. be the projection and the injection associated
to AGgp, - By (4) and (5) it is easy to show that
V3 = pagp © (A®iq) 0i%gp, : AODy — AOD
is an isomorphism, with inverse
(%)™ =phep, © (A®ps) oiagp : ADD — AOD,,
such that
vi©rigp, = Pasp © (A®ia) 0 Adgp, 0 (A®pa) o (na® D)o (A® pa) = rasp,

where 7%, is the lifted canonical morphism associated to t4 = (14 ® Do) o (A® p%).

Consider (A, % = pao (iY* ® A)), (A,¢'§ = pao (A®i*)), and let ng be the coequalizer morphism
of A® ¢9 and ¢ ® A, ie.
A® p%
A®Ap, ® A AR A
pYa®A

is a coequalizer diagram. Then the existence of the isomorphism 4 : Ap — Ap,_ satisfying (34) implies that

i

A®ADQ A

there exists a unique isomorphism d% : A ®4, A — A ®a4,_ A such that df ons = nj, where na is the
coequalizer morphism of the morphisms ¢4 and ¢’y defined in the previous page. Then, if ¥4 : A®4, A —

AOD,, is the canonical morphism for the extension associated to (A, D4, %), we have
-1 -1
Yaodiona=7iond =rigp, = (Vi) oraep = (Vi) ©yacna,

and this implies that 7§ 0 d% = (v%) ™' o ya, where 4 is the canonical morphism of the extension associated
to (A, D, 9, ). Thus, if 74 is an isomorphism, 7% is an isomorphism.

Conversely, let “Agp : A®D — A®D be the morphism defined by *“A gp = (A®iq)oA gD, o(ARDy ).
Then *A gp = (ta ® D)o (A® (°T o (D ®mn4)). Let AOD be the image of *Aagp, and let *pagp, YiaeD

be the projection and the injection associated to “Agp. The morphism

“va =pagp, © (AR py) o “iagp : AOD — AOD,,
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is an isomorphism, with inverse
(“va)"' = “pagp o (A®iys) 0iagp, : AOD, — AOD,

such that ®ragpo “va = Tagp, . Consider (A,% 4 = pao (il ® A)), (A, “¢’y = pao(A®iR)), and let *ny
be the coequalizer morphism of A® %4 and “¢/, ® A, ie.
AR YA «
ARAp® A AR A
W, ®A

is a coequalizer diagram. Then the existence of the isomorphism 74 : Ap, — Ap satisfying (35) implies that

na

ARap A

there exists a unique isomorphism “d, : A ®ap, A — A®y, A such that “dgong = “na, where ny is the
coequalizer of w4 = prao(i)* ® A) and ¢y = pao(A®i*). Then, if *y4: A®4, A — AOD is the canonical
morphism for the extension associated to (A4, D,*T, ), we have that v4 o (*da)~' = w4 0® ya, where 74 is

the canonical morphism of the extension associated to (A, Dy, T"). Thus, if 74 is an isomorphism, ®vy,4 is an

isomorphism. O

Definition 4.3 Let (A, D, 9, a) be a coextended weak entwining structure in the conditions of Proposition 2.8.
Let Ap — A be a weak (D, ) -Galois extension. We will say that Ap — A satisfies the normal basis property
(or Ap — A is a coextended weak (D,«)-Galois extension with normal basis) if there exists an idempotent
morphism of left Ap -modules and right D -comodules 114 : Ap @ D — Ap ® D, for vap,gep = pta, @ D and
pPapeD = Ap ® op, such that

My =(Ap®a)olly =140 (Ap ® a), (44)

and an isomorphism of left Ap-modules and right D -comodules ga : A — Ap® D, where ApX D is the image
of IlI4 and

$ALRD =TA°PALeD © (ADp ®54), paprp = (ra®@D)opa,ep o sa,

being sp : ApXD = Ap®D and ry : Ap ® D — Ap x D the morphisms such that sa ora = Il4 and
TA0S8SA = idAD®D-
Note that, if o = idp, we can recall the definition of weak D -Galois extension with normal basis

introduced in [2] for weak Galois extensions associated to a weak entwining structure (A, D,v).

Proposition 4.4 Let (A, D,v,a) be a coextended weak entwining structure in the conditions of Proposition
2.8. Let (A, Dy, %) be the weak entwining structure where ® is the morphism defined in (8). If Ap — A is
a weak (D, ) -Galois extension with normal basis, then Ap, — A is a weak D, -Galois extension with normal
basis, where p% = (A ® pa) o pa. Conversely, let (A, D,,T') be a weak entwining structure, and let (A, 04)
be a right D, -comodule such that (A,pa,04) is an object in Mﬁ“ . If Ap, — A is a weak D, -Galois
extension with normal basis, we have that Ap — A is a weak (D,«)-Galois extension with normal basis for
(A, D,*T, «), where “T is the morphism defined in (9).

Proof Assume that Ap < A is a weak (D, «)-Galois extension with normal basis. Then, by Proposition

4.2, Ap, — A is a weak D, -Galois extension for the weak entwining structure (A4, D, %), where ¢ is the
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morphism defined in (8) and p% = (A® py) o pa. Let B4 : Ap — Ap_ be the isomorphism satisfying (34). By
(44), the morphism
1% = (Ba ®pa) olla 0 (B ®ia): Ap, ® Do — Ap, ® Dq

is idempotent. It is also a morphism of left Ap_-modules, because B4 is an algebra morphism and II4 is a
morphism of left Ap-modules. Moreover, by (44) and the right D-comodule condition for II4, we obtain that
I1§ is a morphism of right D, -comodules.

Let A X D, be the image of 1I%, and let s% : Ap, XD, — Ap, ® D, and 74 : Ap, ® D — Ap_ XD,
be the morphisms such that s§ orq =1I% and r§ os§ =ida, mp,. The morphism uy =1%o (84 ®pa)osa:

Ap® D — Ap, ® D, is an isomorphism with inverse (u%)™! =174 o (ﬂgl ®1iq) 0 s4 and, as a consequence,
the morphism ¢4 = u4 oga : A = Ap, W D,, where g4 is the isomorphism associated to Ap — A, is an

isomorphism. Moreover, it is a morphism of left Ap_-modules because:
giova
=ugogaopac(y @A)
=140 (Ba@pa)ollao(pa, @D)o (B3 @ (sa0ga))
=750 ((Baopap) @pa)o (81" © (s409a))
=r3o(pap, ®Dy)o(Ap, @ ((Ba®pa)osaocga))
=73 0 (kap, @ Do) o (Ap, @ (11 o (Ba ®pa) 054 09a))
= Pap,&D, © (AD, ® g3)-

In the previous calculus, the first equality follows by (34), the second one is a consequence of the left
Ap-module condition for g4, and the third one relies on the same condition for I14. In the fourth one we
used that 54 is a monoid morphism, and the fifth one follows because II9 is a morphism of left Ap_-modules.
Finally, the last equality follows by definition.

Moreover, g4 is a morphism of right D,-comodules. Indeed:
(93 ® Da) o p

= ((r3 o (Ba®pa)osacga)®pa)opa

= ((ra o (Ba®pa)olla) ®pa) o (Ap ®dp)osaoga

= (13 ®Da) o (B® (dp, ©pa)) 054094

= (ri ® Da) o (Ap, ®6p,) o (B®pa)osaoga

= PAp, KD, ©95%-

The first and fifth equalities follow by the definitions, the second one follows because g4 is a morphism of right
D-comodules, in the third one we use that II4 is a morphism of right D-comodules, and the fourth one relies

on the right D,-comodule condition for II.
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Thus, Ap, — A is a weak D, -Galois extension with normal basis.

Conversely, let (A, D,,T') be a weak entwining structure and let (A, 04) be a right D,-comodule such
that (A, pa,04) is an object in M;*(T'). Let Ap, — A be a weak D,-Galois extension with normal basis
with idempotent II4 : Ap, ® D, — Ap, ® D, and associated isomorphism g4 : A - Ap_ K D, . Let m4 the

unique monoid isomorphism satisfying (35). The morphism
Iy = (7TA®ia)oHAo(ﬂ'Zl ®pa)  Ap®D = Ap® D

is idempotent, satisfies (44), and is a morphism of left Ap-modules and right D-comodules. Moreover,
YUup = %ryo (ﬂzl ® in) 0 S4 is an isomorphism and “gs = “ugo0gsa : A — Ap K D is an isomorphism
of left Ap-modules and right D-comodules. Therefore, Ap < A is a weak (D,«a)-Galois extension with
normal basis for (A4, D,*T, «). O

Theorem 4.5 Let (A, D,v,«) be a coextended weak entwining structure in the conditions of Proposition 2.8.

The following are equivalent.
(i) Ap — A is a weak (D, )-cleft extension.

(i) Ap — A is a weak (D, «)-Galois extension and satisfies the normal basis condition.
Proof (i) = (ii). If Ap — A is a weak (D,a)-cleft extension, Ap, — A is a weak D-cleft extension
for (A, D4,v®). Then, by Theorem 2.11 of [2], Ap, — A is a weak (D, a)-Galois extension for (A, Dy, %)
and satisfies the normal basis condition (note that in Theorem 2.11 of [2] the condition ” A ® — preserve
coequalizers” can be dropped). Therefore, by Propositions 4.2 and 4.4, Ap < A is a weak (D, «)-Galois
extension for (A, D,,«) and satisfies the normal basis condition.

The proof for (ii) = (i) is similar and the details are left to the reader. O

Acknowledgments

The authors want to express their appreciation to the referee for his/her valuable comments.
The authors were supported by Ministerio de Economia y Competitividad and by Feder funds (Project

MTM2013-43687-P: Homologia, homotopia e invariantes categdricos en grupos y dlgebras no asociativas).

References

[1] Alonso Alvarez JN, Ferndndez Vilaboa JM, Gonzalez Rodriguez R, Rodriguez Raposo AB. Weak C'-cleft extensions,
weak entwining structures and weak Hopf algebras. J Algebra 2005; 284: 679-704.

[2] Alonso Alvarez JN, Fernéndez Vilaboa JM, Gonzélez Rodriguez R, Rodriguez Raposo AB. Weak C-cleft extensions
and weak Galois extensions. J Algebra 2006; 299: 276-293.

[3] Alonso Alvarez JN, Ferndndez Vilaboa JM, Gonzilez Rodriguez R, Soneira Calvo C. Lax entwining structures,
groupoid algebras and cleft extensions. Bull Brazilian Math Soc 2014; 45: 133-178.

[4] Bohm G, Nill F, Szlachdnyi K. Weak Hopf algebras, I. Integral theory and C*-structure. J Algebra 1999; 221:
385-438.

198


http://dx.doi.org/10.1016/j.jalgebra.2004.07.043
http://dx.doi.org/10.1016/j.jalgebra.2004.07.043
http://dx.doi.org/10.1016/j.jalgebra.2005.09.012
http://dx.doi.org/10.1016/j.jalgebra.2005.09.012
http://dx.doi.org/10.1007/s00574-014-0044-z
http://dx.doi.org/10.1007/s00574-014-0044-z

[13]
[14]

[15]

ALONSO ALVAREZ et al./Turk J Math

Brzezinski T. On modules associated to coalgebra Galois extensions. J Algebra 1999; 215: 290-317.

Brzezinski T. The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type
properties. Alg Rep Theory 2002; 5: 389-410.

Brzezinski T, Majid S. Coalgebra bundles. Com Math Phys 1998; 191: 467-492.
Caenepeel S, de Groot, E. Modules over weak entwining structures. Contemp Math 2000; 267: 31-54.

Casacuberta C. On structures preserved by idempotent transformations of groups and homotopy types. Contemp
Math 2000; 262: 2244-2261.

Doi Y, Takeuchi M. Cleft comodule algebras for a bialgebra. Comm Algebra 1986; 14: 801-817.

Ferndndez Vilaboa JM, Gonzilez Rodriguez R, Rodriguez Raposo AB. Preunits and weak crossed products. J Pure
Appl Algebra 2009; 213: 39-68.

Fernandez Vilaboa JM, Gonzédlez Rodriguez R, Rodriguez Raposo AB. Weak crossed biproducts and weak projec-
tions. Sci China Math 2012; 55: 1321-1526.

Ferndndez Vilaboa JM, Villanueva Novoa, E. A characterization of the cleft comodule triples. Comm Algebra 1988;
16: 613-622.

Kreimer HF, Takeuchi M. Hopf algebras and Galois extensions of an algebra. Indiana Univ Math J 1981; 30:
675—691.

Mackenzie S. Double Lie algebroids and second-order geometry I. Adv Math 1992; 94: 180-239.

199


http://dx.doi.org/10.1006/jabr.1998.7738
http://dx.doi.org/10.1023/A:1020139620841
http://dx.doi.org/10.1023/A:1020139620841
http://dx.doi.org/10.1090/conm/267/04263
http://dx.doi.org/10.1007/s11425-012-4379-x
http://dx.doi.org/10.1007/s11425-012-4379-x
http://dx.doi.org/10.1080/00927878808823589
http://dx.doi.org/10.1080/00927878808823589
http://dx.doi.org/10.1512/iumj.1981.30.30052
http://dx.doi.org/10.1512/iumj.1981.30.30052
http://dx.doi.org/10.1016/0001-8708(92)90036-K

	Introduction
	Coextended weak entwining structures
	Cleft extensions for coextended weak entwining structures
	Galois extensions for coextended weak entwining structures

