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doi:10.3906/mat-1406-57

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Coextended weak entwining structures
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Abstract: In this paper, we formulate the definition of coextended weak entwining structure in a strict monoidal category

with equalizers. For a coextended weak entwining structure (A,D,ψ, α) , we introduce the notions of weak (D,α)-cleft

extension and weak (D,α)-Galois extension (with normal basis), proving that weak (D,α)-Galois extensions with normal

basis are equivalent to weak (D,α)-cleft extensions.
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1. Introduction

The definition of the normal basis for extensions associated to a Hopf algebra H in a category of modules over

a commutative ring was introduced by Kreimer and Takeuchi in [14]. Using this notion, Doi and Takeuchi

characterized in [10] H -Galois extensions with normal basis in terms of H -cleft extensions. This result can be

extended for Hopf algebras living in symmetric closed categories [13] and, in [2, 3, 5], we can find a more general

formulation in the context of entwining structures, weak entwining structures, and lax entwining structures,

respectively.

The objective of the present paper is to prove similar results for the same kind of extensions associated

to an idempotent comonoid morphism α in a strict monoidal category C with equalizers. These extensions will

be called coextended weak entwining structures and, if α is the identity, they coincide with weak entwining

structures. The typical example of coextended weak entwining structure and cleft extensions in this setting can

be obtained by working with comonoid projections of weak Hopf algebras. If H , D are weak Hopf algebras in

C and f : H → D , g : D → H are comonoid morphisms such that g ◦ f = idH , we can define a quadruple

(H,D,ψ, α), where ψ = (H ⊗ (f ◦ µH)) ◦ (cH,H ⊗ H) ◦ (g ⊗ δH) and α = f ◦ g is a comonoid idempotent

morphism. There also exists an extension HD ↪→ D , with HD the equalizer of ϱD = (D ⊗ g) ◦ δD and

ζD = (µD ⊗ g) ◦ (D ⊗ (δD ◦ ηD)). The quadruple (H,D,ψ, α) is a coextended weak entwining structure, and

HD ↪→ D is an example of a cleft extension associated to this type of entwining structure. Note that (H,D,ψ)

is not a weak entwining structure, because ψ ◦ (D ⊗ ηH) = ((ΠRH ◦ g)⊗ α) ◦ δD with ΠRH the source morphism

of H . Actually, we have that (H,D,ψ) is a weak entwining structure iff α = idD , but in this case f , g are

isomorphisms.
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The organization of the paper is the following. In the second section, we introduce the notion of a

coextended weak entwining structure, and we obtain the main properties of these algebra structures. In

particular, we find a categorical isomorphism between the category of entwining modules associated to a

coextended weak entwining structure (A,D,ψ, α) and the category of entwining modules for a certain weak

entwining structure obtained from (A,D,ψ, α). In Section 3, we define the notion of cleft extension for a

coextended weak entwining structure, and we prove that this extension induces an example of weak crossed

product in the sense of [11]. This crossed product characterizes completely the cleft extension and is the

motivation for the definition of Galois extension with normal basis in this setting. Finally, in the last section,

we formulate the definition of weak (D,α)-Galois extension with normal basis for a coextended weak entwining

structure (A,D,ψ, α), and in Theorem 4.5 we characterize these extensions using the notion of cleftness

introduced in Section 3. If the morphism α is the identity, we recover the results proved in [2].

2. Coextended weak entwining structures

In what follows, (C,⊗,K) denotes an strict monoidal category with equalizers where ⊗ is the tensor product

and K the unit object. It is easy to prove that, if C admits equalizers, then every idempotent morphism splits,

i.e. for every morphism q : Y → Y such that q = q ◦ q , there exist an object Z (called the image of q ) and

morphisms i : Z → Y and p : Y → Z satisfying q = i ◦ p and p ◦ i = idZ .

A monoid in C is a triple A = (A, ηA, µA), where A is an object in C and ηA : K → A (unit),

µA : A⊗A→ A (product) are morphisms in C such that µA ◦ (A⊗ηA) = idA = µA ◦ (ηA⊗A), µA ◦ (A⊗µA) =
µA◦(µA⊗A). Given 2 monoids A = (A, ηA, µA) and B = (B, ηB, µB), f : A→ B is called a monoid morphism

if µB ◦ (f ⊗ f) = f ◦µA , f ◦ ηA = ηB . Also, if C is a braided monoidal category with braiding c and A , B are

monoids, so is A⊗B , where ηA⊗B = ηA ⊗ ηB and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

A comonoid in C is a triple D = (D, εD, δD), where D is an object in C and εD : D → K (counit),

δD : D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD ,

(δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. If D = (D, εD, δD) and E = (E, εE , δE) are comonoids, f : D → E is

called a comonoid morphism if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD. If C is a braided monoidal category

with braiding c and D , E are comonoids, D ⊗ E is a comonoid with counit εD⊗E = εD ⊗ εE and coproduct

δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Finally, if A is a monoid, D is a comonoid, and f, g : D → A are morphisms, the convolution product

of f and g , denoted by f ∗ g , is defined by

f ∗ g = µA ◦ (f ⊗ g) ◦ δD.

Definition 2.1 Let (A,D,ψ, α) be a quadruple, where A is a monoid, D a comonoid, ψ : D ⊗A→ A⊗D a

morphism, and α : D → D an idempotent comonoid morphism. We say that (A,D,ψ, α) is a coextended weak

entwining structure on C if the following identities hold:

(a1) ψ ◦ (D ⊗ µA) = (µA ⊗D) ◦ (A⊗ ψ) ◦ (ψ ⊗A),

(a2) (A⊗ δD) ◦ ψ = (ψ ⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗A),

(a3) ψ ◦ (D ⊗ ηA) = (e⊗D) ◦ δD ◦ α,

(a4) (A⊗ εD) ◦ ψ = µA ◦ (e⊗A),
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where e : D → A is the morphism defined by e = (A ⊗ εD) ◦ ψ ◦ (D ⊗ ηA) . The morphism ψ is called the

intertwining.

If the idempotent morphism is the identity, we obtain the notion of weak entwining structure introduced

by Caenepeel and De Groot [8] as a generalization of entwining structures defined by Brzezinski and Majid

[7]. Entwining structures are coextended weak entwining structures, where e = ηA ⊗ εD and α = idD . If

e = ηA ⊗ εD and α ̸= idD , we will say that (A,D,ψ, α) is a co-extended entwining structure. In this case,

ψ ◦ (D ⊗ ηA) = ηA ⊗ α,

and, as a consequence, the morphism

∆A⊗D = (µA ⊗D) ◦ (A⊗ (ψ ◦ (D ⊗ ηA))) : A⊗D → A⊗D

is equal to A⊗ α.

Proposition 2.2 Let (A,D,ψ, α) be a quadruple as in Definition 2.1. Then (a3) holds if and only if

ψ ◦ (D ⊗ ηA) = (e⊗ α) ◦ δD (1)

and
e ◦ α = e (2)

hold.

Proof Assume that (1) and (2) hold. Then

(e⊗D) ◦ δD ◦ α = ((e ◦ α)⊗ α) ◦ δD = (e⊗ α) ◦ δD = ψ ◦ (D ⊗ ηA)

and (a3) holds. Conversely, by (a3),

e = (A⊗ εD) ◦ ψ ◦ (D ⊗ ηA) = (e⊗ εD) ◦ δD ◦ α = e ◦ α,

and (2) holds. On the other hand, using (2), we obtain (1) because

ψ ◦ (D ⊗ ηA) = (e⊗D) ◦ δD ◦ α = ((e ◦ α)⊗ α) ◦ δD = (e⊗ α) ◦ δD.

2

Proposition 2.3 Let (A,D,ψ, α) be a coextended weak entwining structure. Then the equalities

µA ◦ (A⊗ e) ◦ ψ = (A⊗ εD) ◦ ψ, (3)

ψ = (A⊗ α) ◦ ψ, (4)

ψ = ψ ◦ (α⊗A) (5)

hold.
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Proof First, note that, by (a1), we obtain (3) because

µA ◦ (A⊗ e) ◦ ψ = (µA ⊗ εD) ◦ (A⊗ ψ) ◦ (ψ ⊗ ηA) = (A⊗ εD) ◦ ψ.

Moreover, (4) holds because

ψ

= (µA ⊗D) ◦ (A⊗ ψ) ◦ (ψ ⊗ ηA)

= (µA ⊗D) ◦ (A⊗ ((e⊗ α) ◦ δD)) ◦ ψ

= ((µA ◦ (A⊗ e) ◦ ψ)⊗ α) ◦ (A⊗ ψ) ◦ (δD ⊗A)

= (((A⊗ εD) ◦ ψ)⊗ α) ◦ (A⊗ ψ) ◦ (δD ⊗A)

= (A⊗ ((εD ⊗ α) ◦ δD)) ◦ ψ

= (A⊗ α) ◦ ψ,

where the first equality follows by (a1), the second by (a3), and the third and fifth by (a2); the fourth is a

consequence of (3), and the last one follows because D is a comonoid.

The equality (5) follows because

ψ

= ψ ◦ (D ⊗ (µA ◦ (ηA ⊗A))

= (µA ⊗D) ◦ (A⊗ ψ) ◦ ((ψ ◦ (D ⊗ ηA))⊗A)

= (µA ⊗D) ◦ (A⊗ ψ) ◦ (((e⊗D) ◦ δD ◦ α)⊗A)

= (((A⊗ εD) ◦ ψ)⊗D) ◦ (D ⊗ ψ) ◦ ((δD ◦ α)⊗A)

= (A⊗ ((εD ⊗ α) ◦ δD)) ◦ ψ ◦ (α⊗A)

= ψ ◦ (α⊗A),

where the first identity is a consequence of the unit properties, the second follows by (a1), the third relies

on (a3), and the fourth relies on (a4). Finally, in the fifth equality, we used (a2). 2

Note that by (4) and (5) we obtain that

(A⊗ ((D ⊗ α) ◦ δD)) ◦ ψ = (ψ ⊗D) ◦ (D ⊗ ψ) ◦ (((D ⊗ α) ◦ δD)⊗A) (6)

and
(A⊗ ((D ⊗ α) ◦ δD)) ◦ ψ = (ψ ⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗A). (7)

If α : D → D is an idempotent morphism of comonoids, there exist an object Dα and 2 morphisms

iα : Dα → D , pα : D → Dα such that iα ◦ pα = α and pα ◦ iα = idDα . Therefore, Dα is a comonoid with

counit and coproduct defined by

εDα = εD ◦ iα, δDα = (pα ⊗ pα) ◦ δD ◦ iα.
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As a consequence, the quadruple (Dα, D, iα, pα) is a comonoid projection. That is, iα and pα are comonoid

morphisms such that pα ◦ iα = idDα . Under these conditions, we have that the triple (A,Dα, ψ
α), where

ψα = (A⊗ pα) ◦ ψ ◦ (iα ⊗A) : Dα ⊗A→ A⊗Dα, (8)

is a weak entwining structure. Indeed, first note that by (5) and (a1) we obtain

(µA ⊗Dα) ◦ (A⊗ ψα) ◦ (ψα ⊗A)

= (µA ⊗ pα) ◦ (A⊗ (ψ ◦ (α⊗A))) ◦ ((ψ ◦ (iα ⊗A))⊗A)

= (µA ⊗ pα) ◦ (A⊗ ψ) ◦ ((ψ ◦ (iα ⊗A))⊗A)

= ψα ◦ (Dα ⊗ µA).

On the other hand, by (a2) and (5), we have

(ψα ⊗Dα) ◦ (Dα ⊗ ψα) ◦ (δDα ⊗A)

= (A⊗ pα ⊗ pα) ◦ (ψ ⊗D) ◦ (D ⊗ ψ) ◦ (((α⊗ α) ◦ δD ◦ iα)⊗A)

= (A⊗ pα ⊗ pα) ◦ (ψ ⊗D) ◦ (D ⊗ ψ) ◦ ((δD ◦ iα)⊗A)

= (A⊗ ((pα ⊗ pα) ◦ δD)) ◦ ψ ◦ (iα ⊗A)

= (A⊗ ((pα ⊗ pα) ◦ δD ◦ α)) ◦ ψ ◦ (iα ⊗A)

= (A⊗ δDα) ◦ ψα.

By (1) and the equality (2),

ψα ◦ (Dα ⊗ ηA) = (A⊗ pα) ◦ ψ ◦ (iα ⊗ ηA) = (e⊗ pα) ◦ δD ◦ iα = (eα ⊗Dα) ◦ δDα ,

where eα = (A⊗Dα) ◦ ψα ◦ (Dα ⊗A) = e ◦ iα . Finally, by (a4),

(A⊗ εDα
) ◦ ψα = (A⊗ εD) ◦ ψ ◦ (iα ⊗A) = µA ◦ ((e ◦ iα)⊗A) = µA ◦ (eα ⊗A).

Conversely, if (A,Dα,Γ) is a weak entwining structure, the quadruple (A,D, αΓ, α), where

αΓ = (A⊗ iα) ◦ Γ ◦ (pα ⊗A) : D ⊗A→ A⊗D, (9)

is a coextended weak entwining structure and, trivially, ( αΓ)α = Γ. Indeed, first note that

(µA ⊗D) ◦ (A⊗ αΓ) ◦ ( αΓ⊗A)

= (µA ⊗ iα) ◦ (A⊗ Γ) ◦ ((Γ ◦ (pα ⊗A))⊗A)

= αΓ ◦ (D ⊗ µA).

On the other hand,

( αΓ⊗D) ◦ (D ⊗ αΓ) ◦ (δD ⊗A)
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= (A⊗ iα ⊗D) ◦ (Γ⊗ iα) ◦ (Dα ⊗ Γ) ◦ (((pα ⊗ pα) ◦ δD)⊗A)

= (A⊗ iα ⊗D) ◦ (Γ⊗ iα) ◦ (Dα ⊗ Γ) ◦ ((δDα ◦ pα)⊗A)

= (A⊗ ((iα ⊗ iα) ◦ δDα)) ◦ Γ ◦ (pα ⊗A)

= (A⊗ δD) ◦ αΓ.

Finally,

αΓ ◦ (D ⊗ ηA) = (A⊗ iα) ◦ Γ ◦ (pα ⊗ ηA) = (u⊗ iα) ◦ δDα ◦ pα = ( αu⊗ α) ◦ δD,

where αu = u ◦ pα = (A⊗ εD) ◦ αΓ ◦ (D ⊗ ηA), and

(A⊗ εD) ◦α Γ = (A⊗ εDα) ◦ Γ ◦ (pα ⊗A) = µA ◦ ((u ◦ pα)⊗A) = µA ◦ ( αu⊗A).

With Entwco we will denote the category of coextended weak entwining structures, defined by the following.

• Objects: coextended weak entwining structures.

• Morphisms from the object (A,D,ψ, α) to the object (A′, D′, ψ′, α′): pairs (f, g), where f : A → A′ is

a morphism, g : D → D′ is a comonoid morphism, and the equalities

(f ⊗ g) ◦ ψ = ψ′ ◦ (g ⊗ f), (10)

α′ ◦ g = g′ ◦ α (11)

hold.

In a similar way, we define the category of weak entwining structures, denoted by Entw . In this case:

• Objects: weak entwining structures.

• Morphisms from the object (A,D,ψ) to the object (A′, D′, ψ′): pairs (f, g), where f : A → A′ is a

morphism, g : D → D′ is a comonoid morphism, and the equality (10) holds.

Obviously there exists an inclusion functor i : Entw → Entwco , where i((B,C,Γ)) = (B,C,Γ, idC) for the

objects, and i((f, g)) = (f, g) for the morphisms. There also exists a functor

F : Entwco → Entw

defined by

F ((A,D,ψ, α)) = (A,Dα, ψ
α)

on objects, and by

F ((f, g)) = (f, pα′ ◦ g ◦ iα)

on morphisms.

It is easy to show that i is left adjoint of F with unit defined by u(A,D,ψ,α) = (idA, pα) and counit

v = idEntw . Moreover, i is also right adjoint of F , with unit u′ = idEntw and counit v′(A,D,ψ,α) = (idA, iα).
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If T = i ◦ F , the pair (T, u) is an idempotent coaugmented functor because

uT ((A,D,ψ,α)) = u(A,Dα,ψα,idα) = (idA, idDα) = T ((idA, pα)) = T (u(A,D,ψ,α)).

Then, by Proposition 1.2 of [9], for every object (A,D,ψ, α), the morphism u(A,D,ψ,α) is initial among all

morphisms from (A,D,ψ, α) to objects isomorphic to T ((A′, D′, ψ′, α′)), for some (A′, D′, ψ′, α′).

Definition 2.4 Let (A,D,ψ, α) be a coextended weak entwining structure. We denote by MD
A (ψ, α) the

category whose objects are triples (M,ϕM , ρM ) , where (M,ϕM ) is a right A-module (i.e. ϕM ◦ (ϕM ⊗ A) =

ϕM ◦ (M ⊗µA) , idM = ϕM ◦ (M ⊗ηA)), (M,ρM ) is a right D -comodule (i.e. (ρM ⊗D)◦ρM = (M ⊗δD)◦ρM ,

(M ⊗ εD) ◦ ρM = idM ), and

ρM ◦ ϕM = (ϕM ⊗D) ◦ (M ⊗ ψ) ◦ (ρM ⊗A). (12)

The objects of MD
A (ψ, α) will be called coextended weak entwined modules, and a morphism in MD

A (ψ, α) is a

morphism of A-modules and D -comodules. If α = idD , MD
A (ψ, idD) is the category of weak entwined modules

introduced in [8]. In this case, MD
A (ψ, idD) will be denoted by MD

A (ψ) .

If (M,ϕM , ρM ) is a coextended weak entwined module, by (a1), we obtain that

∆M⊗D = (ϕM ⊗D) ◦ (M ⊗ (ψ ◦ (D ⊗ ηA))) :M ⊗D →M ⊗D (13)

is an idempotent morphism, and by (a3) we have

∆M⊗D = (ϕM ⊗D) ◦ (M ⊗ ((e⊗D) ◦ δD ◦ α)) (14)

and by (2)

∆M⊗D = ((ϕM ◦ (M ⊗ e))⊗ α) ◦ (M ⊗ δD). (15)

Using (a2), it is also easy to show that

∆M⊗A = (M ⊗ ((A⊗ εD) ◦ ψ)) ◦ (ρM ⊗A) :M ⊗A→M ⊗A (16)

is an idempotent morphism and, by (a4), we have the equality

∆M⊗A = (M ⊗ (µA ◦ (e⊗A))) ◦ (ρM ⊗A). (17)

Proposition 2.5 Let (A,D,ψ, α) be a coextended weak entwining structure. For any (M,ϕM , ρM ) in MD
A (ψ, α)

the following identities hold:

ϕM ◦ (M ⊗ e) ◦ ρM = idM , (18)

ρM = (M ⊗ α) ◦ ρM . (19)

Proof The equality (18) follows by (12), and (19) holds because

ρM

= ρM ◦ ϕM ◦ (M ⊗ ηA)

= (ϕM ⊗D) ◦ (M ⊗ ψ) ◦ (ρM ⊗ ηA)
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= (ϕM ⊗ α) ◦ (M ⊗ ((e⊗D) ◦ δD)) ◦ ρM

= ((ϕM ◦ (M ⊗ e) ◦ ρM )⊗ α) ◦ ρM

= (M ⊗ α) ◦ ρM ,

where the first equality follows by the unit properties, the second by (12), the third by (1), and the fourth

by the comodule condition, while the last one relies on (18). 2

Proposition 2.6 Let (A,D,ψ, α) be a coextended weak entwining structure. The categories MD
A (ψ, α) and

MDα

A (ψα) are isomorphic.

Proof Define the functors

Fα : MD
A (ψ, α) → MDα

A (ψα)

and

Gα : MDα

A (ψα) → MD
A (ψ, α)

by

Fα((M,ϕM , ρM )) = (M,ϕM , ρ
α
M = (M ⊗ pα) ◦ ρM ),

Gα((N,φN , ϱN )) = (N,φN ,
αϱN = (N ⊗ iα) ◦ ρN )

on objects, and by the identity, on morphisms. Then, by (19), we obtain that Gα ◦ Fα = idMD
A (ψ,α) , and by

the properties of iα , pα , the identity Fα ◦Gα = idMDα
A (ψα) holds. 2

Example 2.7 Weak Hopf algebras (monoids) are generalizations of Hopf algebras and were introduced by Böhm

et al. in [4]. The definition is as follows:

A weak Hopf algebra H , in a symmetric monoidal category C with symmetry isomorphism c , is a monoid

(H, ηH , µH) and comonoid (H, εH , δH) , such that the following axioms hold:

(b1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H .

(b2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH)⊗H).

(b3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (µH ◦ cH,H)⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(b4) There exists a morphism λH : H → H in C (called the antipode of H ) verifiying:

(b4-1) idH ∗ λH = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H).

(b4-2) λH ∗ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)).

(b4-3) λH ∗ idH ∗ λH = λH .
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As a consequence of this definition, a weak Hopf algebra is a Hopf algebra if and only if the morphism

δH (coproduct) is unit-preserving (i.e. ηH ⊗ ηH = δH ◦ ηH ), or if and only if the counit is a monoid morphism

(i.e. εH ◦ µH = εH ⊗ εH ).

If H is a weak Hopf algebra, the antipode λH is unique, antimultiplicative, and anticomultiplicative and

leaves the unit and the counit invariant, i.e. λH ◦µH = µH ◦(λH⊗λH)◦cH,H , δH ◦λH = cH,H ◦(λH⊗λH)◦δH ,
λH ◦ ηH = ηH , εH ◦ λH = εH .

If we define the morphisms ΠLH (target), ΠRH (source), Π
L

H , and Π
R

H by

ΠLH = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H) : H → H,

ΠRH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)) : H → H,

Π
L

H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗H) : H → H,

Π
R

H = ((εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH)) : H → H,

it is straightforward to show that they are idempotent (see [4]).

Let (H,H,Γ) be the triple where Γ = (H⊗µH)◦(cH,H⊗H)◦(H⊗δH) . Then (H,H,Γ) is a weak entwining

structure with u = ΠRH . This entwining structure is a particular instance of the following: Let H be a weak Hopf

algebra and let (A, ρA) be a monoid, which is also a right H -comodule, such that µA⊗H ◦ (ρA⊗ ρA) = ρA ◦µA .
We call A a right H -comodule monoid if any of the following equivalent conditions hold:

(c1) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ (µH ◦ cH,H)⊗H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH),

(c2) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ µH ⊗H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH),

(c3) (A⊗Π
R

H) ◦ ρA = (µA ⊗H) ◦ (A⊗ ρA) ◦ (A⊗ ηA),

(c4) (A⊗ΠLH) ◦ ρA = ((µA ◦ cA,A)⊗H) ◦ (A⊗ ρA) ◦ (A⊗ ηA),

(c5) (A⊗Π
R

H) ◦ ρA ◦ ηA = ρA ◦ ηA,

(c6) (A⊗ΠLH) ◦ ρA ◦ ηA = ρA ◦ ηA.

Under these conditions, (A,H,Γ = (A ⊗ µH) ◦ (cH,A ⊗ H) ◦ (H ⊗ ρA)) is a weak entwining structure,

and (A,µA, ϱA) ∈ MH
A (Γ) . Then, if (H,D, f, g) is a comonoid projection, that is, D is a comonoid and

f : H → D , g : D → H are comonoid morphisms such that g ◦ f = idH , we have that α = f ◦ g : D → D is

an idempotent comonoid morphism such that Dα = H , pα = g and iα = f . As a consequence, (A,D, αΓ =

(A⊗ f) ◦ Γ ◦ (g ⊗A), α) is a coextended weak entwining structure, and (A,µA, ρA = (A⊗ f) ◦ ϱA) is an object

in MD
A (

αΓ, α) . By Proposition 2.6, the categories MD
A (

αΓ, α) and MH
A (Γ) are isomorphic.

Interesting examples of comonoid projections between weak Hopf algebras appear associated to exact

factorizations of groupoids. First, note that, as group algebras are the natural examples of Hopf algebras,

groupoid algebras provide examples of weak Hopf algebras. Recall that a groupoid G is simply a small category

where all morphisms are isomorphisms. In this example, we consider finite groupoids, i.e. groupoids with a

finite number of objects. The set of objects of G , called also the base of G , will be denoted by G0 , and the set
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of morphisms by G1 . The identity morphism on x ∈ G0 will be denoted by idx , and for a morphism σ : x→ y

in G1 , we write s(σ) and t(σ) , respectively, for the source and the target of σ .

Let G be a groupoid and let R be a commutative ring. The groupoid algebra is the direct product in

R-Mod

RG =
⊕
σ∈G1

Rσ,

with the product of 2 morphisms being equal to their composition, if the latter is defined and 0 otherwise, i.e.

µRG(τ ⊗ σ) = τ ◦ σ if s(τ) = t(σ) and µRG(τ ⊗ σ) = 0 if s(τ) ̸= t(σ) . The unit element is 1RG =
∑
x∈G0

idx .

The algebra RG is a cocommutative weak Hopf algebra, with coproduct δRG , counit εRG , and antipode λRG ,

given by the following formulas: δRG(σ) = σ⊗σ, εRG(σ) = 1, λRG(σ) = σ−̇1. The target and source morphisms

are ΠLRG(σ) = idt(σ), Π
R
RG(σ) = ids(σ) , and λRG ◦ λRG = idRG , i.e. the antipode is involutory.

A wide subgroupoid U of a groupoid G is a a subcategory of G , provided with a functor F : U → G that

is the identity on the objects, and induces inclusions homU (x, y) ⊂ homG(x, y) , i.e. it has the same base, and

(perhaps) fewer arrows.

Let G be a groupoid. An exact factorization of G is a pair of wide subgroupoids of G , U , and V , such

that for any σ ∈ G1 , there exist unique σV ∈ V1 , σU ∈ U1 , such that σ = σU ◦ σV . Following the notation

of [15], we denote G by U ▷◁ V , because in Theorems 2.10 and 2.15 of [15] it was proven that the notion of a

groupoid with exact factorization is equivalent to the notion of a matched pair of groupoids and to the notion

of a vacant double groupoid. Any groupoid G with an exact factorization U ▷◁ V induces a nontrivial example

of a comonoid projection between weak Hopf algebras. Put H = RV and D = RG and define f : H → D by

f(σ) = σ and g : D → H by g(τ) = τV . It is then easy to show that f is a monoid-comonoid morphism and

g ◦ f = idH . Moreover, g is a comonoid morphism, and it does not satisfy the condition of monoid morphism

(see Example 3.3 of [12]).

Proposition 2.8 Let (A,D,ψ, α) be a coextended weak entwining structure. Let ρA : A → A ⊗ D be a

morphism such that (A,µA, ρA) belongs to MD
A (ψ, α) . If for all (M,ϕM , ρM ) ∈ MD

A (ψ, α) we denote by MD

the equalizer of ρM and ζM = (ϕM ⊗D) ◦ (M ⊗ (ρA ◦ ηA)) and by iDM the injection of MD in M , we have the

following:

i) The triple (AD, ηAD
, µAD

) is a monoid, where ηAD
: K → AD and µAD

: AD ⊗ AD → AD are the

factorizations of ηA and µA ◦ (iDA ⊗ iDA ) , respectively, through the equalizer iDA .

ii) The pair (MD, ϕMD ) is a right AD -module, where ϕMD : MD ⊗ AD → MD is the factorization of

ϕM ◦ (iDM ⊗ iDA ) through the equalizer iDM .

Proof The proof for this proposition is the one used in the weak entwining setting to get a similar result (see

Proposition 1.5 of [1]). 2

Proposition 2.9 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Then, for all (M,ϕM , ρM ) ∈ MD
A (ψ, α) , the following identity holds:

ρM ◦ ϕM ◦ (iDM ⊗A) = (ϕM ⊗D) ◦ (iDM ⊗ ρA). (20)
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Proof By (12) and the module condition,

ρM ◦ ϕM ◦ (iDM ⊗A)

= (ϕM ⊗D) ◦ (M ⊗ ψ) ◦ ((ρM ◦ iDM )⊗A)

= (ϕM ⊗D) ◦ (ϕM ⊗ ψ) ◦ (iDM ⊗ (ρA ◦ ηA)⊗A)

= (ϕM ⊗D) ◦ (iDM ⊗ ((µA ⊗D) ◦ (A⊗ ψ) ◦ ((ρA ◦ ηA)⊗A)))

= (ϕM ⊗D) ◦ (iDM ⊗ (ρA ◦ µA ◦ (ηA ⊗A)))

= (ϕM ⊗D) ◦ (iDM ⊗ ρA),

and the proof is complete. 2

3. Cleft extensions for coextended weak entwining structures

The aim of this section is to introduce the notion of cleft extension for coextended weak entwining structures.

As a particular instance, we will obtain the definition of weak cleft extension as defined in [1].

Proposition 3.1 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Then, if h : D → A is a right D -comodule morphism for ρD = δD , the following identity holds:

h ∗ e = h. (21)

Moreover, if the coaction for D is ϱD = (D⊗α)◦δD , (21) holds. Also, if h is a morphism of right D -comodules

for ρD = δD and ρA , it is a morphism of right D -comodules for ϱD = (D ⊗ α) ◦ δD and ρA .

Proof The equality follows by (18). If we change the coaction of D , by (2), we obtain the same equality and

the last assertion follows by (19), composing with A⊗ α in the equality ρA ◦ h = (h⊗D) ◦ δD . 2

Definition 3.2 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. By RegWR
α (D,A) we denote the set of morphisms h ∈ HomC(D,A) such that there exists a morphism

h−1 ∈ HomC(D,A) (the left weak α-inverse of h) satisfying

(h−1 ∗ h) ◦ α = e. (22)

First, note that (22) is equivalent to

(h−1 ◦ α) ∗ (h ◦ α) = e, (23)

and if α = idD we recover the set RegWR(D,A) introduced in [1].

On the other hand, by Regα(D,A) we denote the set of morphisms h : D → A such that there exists a

morphism h−1 : D → A (the left α-inverse of h) satisfying (h−1 ∗h) ◦α = (h ∗h−1) ◦α = εD ⊗ ηA . Of course,

if (A,D,ψ, α) is a coextended entwining structure, Regα(D,A) ⊂ RegWR
α (D,A) . In this setting, if α = idD

we recover the classical set of regular morphisms Reg(D,A) .
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As a consequence of this definition, if h ∈ RegWR
α (D,A) , then h′ = h ◦ α ∈ RegWR

α (D,A) with

h′−1 = h−1 ◦ α because, by (2),

(h−1 ◦ α) ∗ (h ◦ α) = (h−1 ∗ h) ◦ α = e ◦ α = e

and h′◦α = h′ , h′−1◦α = h′−1 . We can then assume without loss of generality that when we choose an element

h ∈ RegWR
α (D,A) , it satisfies

h ◦ α = h, h−1 ◦ α = h−1. (24)

Finally, we have that if h ∈ RegWR
α (D,A) , with left weak α-inverse h−1 , then hα = h ◦ iα ∈

RegWR(Dα, A) with left weak inverse (hα)−1 = h−1 ◦ iα . Conversely, if l ∈ RegWR(Dα, A) with left weak

inverse l−1 , αl = l ◦ pα ∈ RegWR
α (D,A) with left weak α-inverse ( αl)−1 = l−1 ◦ pα . Finally, note that

α(hα) = h and ( αl)α = l .

Proposition 3.3 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Let h ∈ RegWR
α (D,A) . Then, if h is a morphism of right D -comodules for ϱD = (D ⊗ α) ◦ δD , the

interwining ψ is completely determined in the following form:

ψ = (µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (((h−1 ⊗ h) ◦ δD)⊗A), (25)

and equivalently

ψ = (µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (((h−1 ⊗ h) ◦ δD ◦ α)⊗A). (26)

Proof Indeed:

(µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (((h−1 ⊗ h) ◦ δD)⊗A)

= (µA ⊗D) ◦ (A⊗ ((µA ⊗D) ◦ (A⊗ ψ) ◦ (ρA ⊗A))) ◦ (((h−1 ⊗ h) ◦ δD)⊗A)

= (µA ⊗D) ◦ (h−1 ⊗ ((µA ◦ (h⊗A))⊗D) ◦ (D ⊗D ⊗ (ψ ◦ (α⊗A))) ◦ (D ⊗ δD ⊗A) ◦ (δD ⊗A)

= ((µA ◦ ((h−1 ∗ h)⊗A))⊗D) ◦ (D ⊗ (ψ ◦ (α⊗A))) ◦ (δD ⊗A)

= ((µA ◦ (e⊗A))⊗D) ◦ (D ⊗ (ψ ◦ (α⊗A))) ◦ (δD ⊗A)

= ((µA ◦ (e⊗A))⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗A)

= (((A⊗ εD) ◦ ψ)⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗A)

= (A⊗ ((εD ⊗D) ◦ δD)) ◦ ψ

= ψ.

In the last equalities, the first one follows for the entwining module condition for A , the second one by the

comodule morphism condition for h , and the third one by the coassociativity of δD . The fourth one follows

because h ∈ RegWR
α (D,A), and the fifth one follows by (5). The sixth equality relies on (a4), and the seventh

follows by (a2). Finally, the last one follows by the counit properties.

The equality (26) follows from (25), using (24). 2
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ALONSO ÁLVAREZ et al./Turk J Math

Definition 3.4 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8.

We say that AD ↪→ A is a weak (D,α)-cleft extension if there exists a morphism h ∈ RegWR
α (D,A) of right

D -comodules for ϱD = (D ⊗ α) ◦ δD , such that the equality

ψ ◦ (D ⊗ h−1) ◦ δD ◦ α = ζA ◦ (e ∗ h−1) ◦ α (27)

holds. Note that by (2), (5), and (24), the equality (27) can be rewritten as

ψ ◦ (D ⊗ h−1) ◦ δD = ζA ◦ (e ∗ h−1). (28)

Then, if α = idD , we have the notion of weak D -cleft extension introduced in [1].

Furthermore, if g = e ∗ h−1 we have

g ∗ h = (e ∗ h−1) ∗ h = e ∗ (h−1 ∗ h) = e ∗ e = e,

e ∗ g = e ∗ (e ∗ h−1) = (e ∗ e) ∗ h−1 = e ∗ h−1 = g

and

ψ ◦ (D ⊗ g) ◦ δD

= (µA ◦D) ◦ (A⊗ ψ) ◦ ((ψ ◦ (D ⊗ e) ◦ δD)⊗ h−1) ◦ δD

= (µA ◦D) ◦ (A⊗ ψ) ◦ (((ψ ⊗ εD) ◦ (D ⊗ ψ) ◦ (δD ⊗ ηA))⊗ h−1) ◦ δD

= (µA ◦D) ◦ (A⊗ ψ) ◦ ((ψ ◦ (D ⊗ ηA))⊗ h−1) ◦ δD

= ψ ◦ (D ⊗ h−1) ◦ δD

= ζA ◦ g,

where the first equality follows by the coassociativity of δD , the second by the definition of e , the third by (a2)

and the counit properties, the fourth by (a1) and the unit properties, and, finally, the last by (28).

Therefore, we can also assume without loss of generality that

e ∗ h−1 = h−1, (29)

and then (27) is equivalent to

ψ ◦ (D ⊗ h−1) ◦ δD = ζA ◦ h−1. (30)

The morphism h will be called a cleaving morphism for the extension AD ↪→ A .

Proposition 3.5 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. If AD ↪→ A is a weak (D,α)-cleft extension with cleaving morphism h and (M,ϕM , ρM ) ∈ MD
A (ψ, α) ,

the morphism

qDM = ϕM ◦ (A⊗ h−1) ◦ ρM :M →M

satisfies the equality

ϕM ◦ (qDM ⊗ (qDA ◦ ηA)) = qDM ◦ qDM . (31)
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As a consequence, if M = A , we have

µA ◦ (qDA ⊗ (qDA ◦ ηA)) = qDA ◦ qDA (32)

and

qDA ◦ h = h ∗ h−1. (33)

Proof The equality (31) follows by (30) because, if (M,ϕM , ρM ) ∈ MD
A (ψ, α), we have

qDM ◦ qDM

= ϕM ◦ (M ⊗ h−1) ◦ (ϕM ⊗D) ◦ (M ⊗ ψ) ◦ (ρM ⊗A) ◦ (M ⊗ h−1) ◦ ρM

= ϕM ◦ (M ⊗ (µA ◦ (A⊗ h−1) ◦ ψ ◦ (D ⊗ h−1) ◦ δD)) ◦ ρM

= ϕM ◦ (M ⊗ (µA ◦ (A⊗ h−1) ◦ ζA ◦ h−1) ◦ ρM

= ϕM ◦ (M ⊗ (µA ◦ (µA ⊗ h−1) ◦ (h−1 ⊗ (ρA ◦ ηA)))) ◦ ρM

= ϕM ◦ (qDM ⊗ (qDA ◦ ηA)).

On the other hand, by the comodule morphism condition for h and (24), we obtain

qDA ◦ h = µA ◦ (h⊗ (h−1 ◦ α)) ◦ δD = h ∗ h−1.

2

Proposition 3.6 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Let h ∈ RegWR
α (D,A) be a morphism of right D -comodules for ϱD = (D ⊗ α) ◦ δD . Let qDM be the

morphism introduced in the previous proposition. The following assertions are equivalent:

(i) For every (M,ϕM , ρM ) ∈ MD
A (ψ, α) the morphism qDM factorizes through the equalizer iDM ; that is, there

exists a unique morphism pDM :M →MD such that pDM ◦ iDM = qDM .

(ii) The morphism qDA factorizes through the equalizer iDA ; that is, there exists a unique morphism pDA : A→
AD such that pDA ◦ iDA = qDA .

(iii) AD ↪→ A is a weak (D,α)-cleft extension with cleaving morphism h .

Proof Trivially (i) ⇒ (ii). If (ii) holds, we have that AD ↪→ A is a weak (D,α)-cleft extension with cleaving

morphism h , because

ψ ◦ (D ⊗ h−1) ◦ δD

= (µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (((h−1 ⊗ h) ◦ δD)⊗A) ◦ (D ⊗ h−1) ◦ δD

= (µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (h−1 ⊗ h⊗ h−1)) ◦ (D ⊗ δD) ◦ δD

= (µA ⊗D) ◦ (A⊗ (ρA ◦ µA)) ◦ (h−1 ⊗ h⊗ (h−1 ◦ α))) ◦ (D ⊗ δD) ◦ δD

187
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= (µA ⊗D) ◦ (h−1 ⊗ (ρA ◦ qDA ◦ h)) ◦ δD

= (µA ⊗D) ◦ (h−1 ⊗ (ζA ◦ qDA ◦ h)) ◦ δD

= ζA ◦ (h−1 ∗ (qDA ◦ h))

= ζA ◦ (h−1 ∗ (h ∗ h−1))

= ζA ◦ ((h−1 ∗ h) ∗ h−1)

= ζA ◦ (e ∗ h−1)

= ζA ◦ h−1,

where the first equality follows by (25), the second and the eighth by the coassociativity of δD , and the third

by (24). In the fourth equality we used the comodule morphism condition for h , and the fifth one relies on (ii).

The sixth equality is a consequence of the associativity of µA , and the seventh follows by (33). Finally, the

ninth and the tenth equalities follow by the properties of h−1 .

If (iii) holds, we obtain (i), because using that (M,ϕM , ρM ) ∈ MD
A (ψ, α), we have that

ρM ◦ qDM

= (ϕM ⊗D) ◦ (M ⊗ ψ) ◦ (ρM ⊗ h−1) ◦ ρM

= (ϕM ⊗D) ◦ (M ⊗ (ψ ◦ (D ⊗ h−1) ◦ δD)) ◦ ρM

= (ϕM ⊗D) ◦ (M ⊗ (ζA ◦ h−1)) ◦ ρM

= ζM ◦ qDM ,

and the proof is complete. 2

Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8, and

assume that AD ↪→ A is a weak (D,α)-cleft extension with cleaving morphism h . By Proposition 2.6,

the triple (A,µA, ρ
α
A = (A ⊗ pα) ◦ ρA) is an object in MDα

A (ψα). Let ADα be the equalizer of ραA and

ζαA = (µA ⊗Dα) ◦ (A⊗ (ραA ◦ ηA)). Then there exists a morphism βA : AD → ADα such that

iDα

A ◦ βA = iDA . (34)

On the other hand, by (19), we know that (A ⊗ iα) ◦ ραA = ρA , (A ⊗ iα) ◦ ζαA = ζA and, as a consequence, if

A⊗− preserves equalizers, there exists a morphism β′
A : ADα → AD such that iDA ◦ β′

A = iDα

A . Moreover,

iDA ◦ β′
A ◦ βA = iDα

A ◦ βA = iDA , iDα

A ◦ βA ◦ β′
A = iDA ◦ β′

A = iDα

A ,

and this implies that β′
A is the inverse of βA . Therefore, ADα and AD are isomorphic as monoids.

If h is the cleaving morphism for AD ↪→ A , then hα = h ◦ iα ∈ RegWR(Dα, A) with left weak inverse

(hα)−1 = h−1 ◦ iα (see Definition (3.2)), and hα is a morphism of right Dα -comodules because

(A⊗ pα) ◦ ρA ◦ hα = (h⊗ pα) ◦ ϱD ◦ iα = (hα ⊗Dα) ◦ δDα .
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Finally, for (hα)−1 we have

ψα ◦ (Dα ⊗ (hα)−1) ◦ δDα = (A⊗ pα) ◦ ψ ◦ (D ⊗ h−1) ◦ δD ◦ iα = (A⊗ pα) ◦ ζA ◦ h−1 ◦ iα = ζαA ◦ (hα)−1,

and then ADα ↪→ A is a weak D -cleft extension for (A,Dα, ψ
α) with cleaving morphism hα .

Conversely, assume that (A, ϱA) is a right Dα -comodule such that (A,µA, ϱA) is an object in MDα

A (ψα).

By Proposition 2.6, the triple (A,µA,
αϱA = (A⊗iα)◦ϱA) is an object in MD

A (ψ, α). Let ADα be the equalizer

of ϱA and ζA = (µA ⊗Dα) ◦ (A⊗ (ϱA ◦ ηA)). Then there exists a morphism πA : ADα → AD such that

iDα

A = iDA ◦ πA, (35)

where iDA is the equalizer morphism of αϱA and αζA = (µA ⊗ D) ◦ (A ⊗ (αϱA ◦ ηA)). On the other hand, if

A ⊗ − preserves equalizers, we have ϱA ◦ iDA = ζA ◦ iDA , because (A ⊗ iα) ◦ ϱA ◦ iDA = (A ⊗ iα) ◦ ζA ◦ iDA , and

then there exists a morphism π′
A : AD → ADα such that iDα

A ◦ π′
A = iDA . Moreover, π′

A ◦ πA = idADα
and

πA ◦ π′
A = idAD

. Therefore, ADα
and AD are isomorphic as monoids.

By Definition 3.2, if l ∈ RegWR(Dα, A) with left weak inverse l−1 , αl = l ◦ pα ∈ RegWR
α (D,A) with

left weak α -inverse ( αl)−1 = l−1 ◦ pα . Moreover, if l is a morphism of right Dα comodules, we have that αl

is a morphism of right D -comodules for ϱD = (D ⊗ α) ◦ δD . Indeed:

αϱA ◦ αl = ( αl ⊗ α) ◦ δD ◦ α = ( αl ⊗ α) ◦ δD = ( αl ⊗D) ◦ ϱD.

Finally,

ψ ◦ (D ⊗ ( αl)−1) ◦ δD = (A⊗ α) ◦ ψ ◦ (α⊗ ( αl)−1) ◦ δD = (A⊗ iα) ◦ ψα ◦ (Dα ⊗ l−1) ◦ δDα ◦ pα

= (µA ⊗ iα) ◦ (( αl)−1 ⊗ (ϱA ◦ ηA)) = αζA ◦ ( αl)−1),

and then, if ADα ↪→ A is a weak Dα -cleft extension for (A,Dα, ψ
α) with cleaving morphism l , we have that

AD ↪→ A is a weak (D,α)-cleft extension for (A,D,ψ, α) with cleaving morphism αl .

Example 3.7 Let H be a weak Hopf algebra and let (A, ρA) be a right H -comodule monoid. By example

(2.7), we know that (A,H,Γ = (A⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ ρA)) is a weak entwining structure. Let D be a

weak Hopf algebra and let (H,D, f, g) be a comonoid projection. Then for α = f ◦g we have that (A,D,α Γ, α)

is a coextended weak entwining structure and (αΓ)α = Γ. If AH ↪→ A is a weak H -cleft extension for (A,H,Γ)

with cleaving morphism l : H → A , we have that AD ↪→ A is a weak (D,α)-cleft extension for (A,D,α Γ, α)

with cleaving morphism αl = l ◦ g . Also, if A ⊗ − preserves equalizers, AH ⋍ AD as monoids. In particular,

if (H,H,Γ = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)) is the weak entwining estructure associated to H , we have

that HH = HL = Im(ΠLH) and HL ↪→ H is a weak H -cleft extension with cleaving morphism l = idH and

l−1 = λH . Then HD ↪→ D is a (D,α)-cleft extension for (H,D,α Γ, α) with cleaving morphism αl = g and

(αl)−1 = λH ◦ g . Finally, if H ⊗− preserves equalizers, HL ⋍ HD as monoids.

Proposition 3.8 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8, and assume that AD ↪→ A is a weak (D,α)-cleft extension with cleaving morphism h . Then the following

equality holds:

ϕMD
◦ (MD ⊗ pDA ) = pDM ◦ ϕM ◦ (iDM ⊗A), (36)
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for all (M,ϕM , ρM ) ∈ MD
A (ψ, α) .

Proof Using that iDM is an equalizer morphism, we obtain (36), because:

iDM ◦ pDM ◦ ϕM ◦ (iDM ⊗A)

= ϕM ◦ (ϕM ⊗ h−1) ◦ (M ⊗ ψ) ◦ ((ρM ◦ iDM )⊗A)

= ϕM ◦ (ϕM ⊗ h−1) ◦ (M ⊗ ψ) ◦ ((ζM ◦ iDM )⊗A)

= ϕM ◦ (iDM ⊗ (µA ◦ (µA ⊗ h−1) ◦ (A⊗ ψ) ◦ ((ρA ◦ ηA)⊗A)))

= ϕM ◦ (iDM ⊗ qDA )

= iDM ◦ ϕMD
◦ (MD ⊗ pDA ).

The first equality follows by (12), the second by the properties of the equalizer morphism iDM , and the

third by the module structure of M and the associativity of µA . In the fourth, we apply (12) for A , and the

last one follows by the definition of ϕMD
. 2

Proposition 3.9 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8.

Suppose that AD ↪→ A is a weak (D,α)-cleft extension with cleaving morphism h . Define, for M ∈ MD
A (ψ, α) :

ωM = ϕM ◦ (iDM ⊗ h) :MD ⊗D →M

and

ω′
M = (pDM ⊗D) ◦ ρM :M →MD ⊗D.

The following assertions hold:

(i) The morphisms ωM and ω′
M are morphisms of right D -comodules for the coaction ϱMD⊗D =MD ⊗ ϱD .

Moreover, they satisfy ωM ◦ω′
M = idM and then ΩM = ω′

M ◦ωM :MD ⊗D →MD ⊗D is an idempotent

morphism.

(ii) In particular, if we consider M = A , we have that ωA and ω′
A are also morphisms of left AD -modules

for φAD⊗D = µAD ⊗D and φA = µA ◦ (iDA ⊗A) .

Proof (i) By (20) the morphism ωM satisfies

ρM ◦ ωM = (ϕM ⊗D) ◦ (iDM ⊗ (ρA ◦ h)) = (ϕM ⊗D) ◦ (iDM ⊗ ((h⊗D) ◦ ϱD)) = (ωM ⊗D) ◦ ϱMD⊗D,

and then it is a morphism of right D -comodules. Also, ω′
M is a morphism of right D -comodules by (19).

Indeed:

ϱMD⊗D ◦ ω′
M = (pDM ⊗D ⊗ α) ◦ (M ⊗ δD) ◦ ρM = (((pDM ⊗D) ◦ ρM )⊗ α) ◦ ρM

= (((pDM ⊗D) ◦ ρM )⊗D) ◦ ρM = (ω′
M ⊗D) ◦ ρM .

On the other hand, by (18) we have

ωM ◦ ω′
M = ϕM ◦ (M ⊗ e) ◦ ρM = idM ,
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and then ΩM is idempotent.

(ii) If M = A we have

φA ◦ (AD ⊗ ωA) = µA ◦ ((µA ◦ (iDA ⊗ iDA ))⊗ h) = ωA ◦ φAD⊗D,

and by (20) and (36), the identities

ω′
A ◦ φA = ((pDA ◦ µA)⊗D) ◦ (iDA ⊗ ρA) = µAD

◦ (AD ⊗ ω′
A)

hold. Therefore, ωA and ω′
A are morphisms of left AD -modules. 2

Proposition 3.10 In the conditions of Proposition 3.9, denote by MD × D the image of the idempotent

morphism ΩM and consider the right D -comodule structure ϱMD×D = (rM ⊗D) ◦ (MD⊗ϱD) ◦ sM , where rM ,

sM are the projection and the injection related to ΩM . Then there exists an isomorphism bM :M →MD ×D

of right D -comodules. Finally, if M = A , bA is also a morphism of left AD -modules for the left AD -module

structure of AD ×D given by φAD×D = rA ◦ (µAD ⊗D) ◦ (AD ⊗ sA) .

Proof Let bM :M →MD ×D be the morphism defined by

bM = rM ◦ ω′
M .

Then bM is an isomorphism with inverse b−1
M = ωM ◦ sM . Indeed, by Proposition 3.9

bM ◦ b−1
M = rM ◦ ΩM ◦ sM = idMD×D,

b−1
M ◦ bM = ωM ◦ ω′

M ◦ ωM ◦ ω′
M = idM .

On the other hand, bM is a morphism of right D -comodules because:

ϱMD×D ◦ bM = (rM ⊗D) ◦ (MD ⊗ ((D ⊗ α) ◦ δD)) ◦ ω′
M = (bM ⊗ α) ◦ ρM = (bM ⊗D) ◦ ρM .

Finally, by (36) and (20) we obtain that bA is a morphism of left AD -modules because:

φAD×D ◦ (AD ⊗ bA) = rA ◦ ((µAD
◦ (AD ⊗ pDA ))⊗D) ◦ (AD ⊗ ρA)

= rA ◦ ((pDA ◦ µA ◦ (iDA ⊗A))⊗D) ◦ (AD ⊗ ρA) = rA ◦ (pDA ⊗D) ◦ ρA ◦ µA ◦ (iDA ⊗A) = bA ◦ φA.

2

Remark 3.11 Note that, in the conditions of Proposition 3.9, the morphism ω′
M is a morphism of right D -

comodules for the coaction ρMD⊗D = MD ⊗ δD . As a consequence, bM is a morphism of right D -comodules

for ρMD×D = (rM ⊗D) ◦ (MD ⊗ δD) ◦ sM .

Proposition 3.12 In the conditions of Proposition 3.9, the morphism

ϕA = µA ◦ (µA ⊗ h−1) ◦ (h⊗ ψ) ◦ (δD ⊗A)
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factorizes through the equalizer iAD . Moreover, if ϕ′A is this factorization, we have the following equalities:

ϕ′A = pDA ◦ µA ◦ (h⊗A), (37)

µAD ◦ (ϕ′A ⊗ ϕ′A) ◦ (D ⊗ ψ ⊗A) ◦ (δD ⊗A⊗A) = ϕ′A ◦ (D ⊗ µA). (38)

Finally, if we define the morphism ϕAD : D ⊗AD → AD by ϕAD = ϕ′A ◦ (D ⊗ iDA ), we obtain:

µAD
◦ (ϕ′A ⊗ ϕAD

) ◦ (D ⊗ ψ ⊗AD) ◦ (δD ⊗ iDA ⊗AD) = ϕAD
◦ (D ⊗ µAD

). (39)

Proof By (5) and (a3), the proof is similar to the one used to prove Proposition 1.15 of [1]. 2

Proposition 3.13 In the conditions of Proposition 3.9, the morphism σA : D ⊗D → A defined by

σA = ϕA ◦ (D ⊗ h),

where ϕA is the morphism introduced in the previous proposition, factorizes through the equalizer iAD . Moreover,

if σAD is this factorization, then

σAD
= pAD ◦ µA ◦ (h⊗ h). (40)

Proof By (5), the proof is similar to the one used to prove Proposition 1.17 of [1]. 2

In the conditions of Proposition 3.9, we have that bA is an isomorphism of algebras, where the algebra

structure is the one induced by bA :

ηAD×D = bA ◦ ηA, µAD×D = bA ◦ µA ◦ (b−1
A ⊗ b−1

A ). (41)

In the next proposition we obtain that µAD×D can be identified in another way as a weak crossed product

(see [11] for the definition and main properties of weak crossed products).

Proposition 3.14 In the conditions of Proposition 3.9, (AD, D, ψ
AD

D , σAD

D ) with

ψAD

D = (ϕ′A ⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗ iAD), σAD

D = (ϕ′A ⊗D) ◦ (D ⊗ ψ) ◦ (δD ⊗ h),

is a quadruple such that the associated idempotent morphism

∇AD⊗D = (µAD
⊗D) ◦ (A⊗ (ψAD

D ◦ (D ⊗ ηAD
))) : AD ⊗D → AD ⊗D

is ΩA , and satisfies the twisted and cocycle condition (see Definitions 3.5 and 3.6 of [11]).

Moreover, if mAD×D denotes the associative product induced by the quadruple

(AD, D, ψ
AD

D , σAD

D ),

we have that mAD×D = µAD×D , where µAD×D is the product defined in (41).

Proof First note that, by (37) and (5),

ψAD

D = ((pDA ◦ µA)⊗D) ◦ (h⊗ (ψ ◦ (α⊗A))) ◦ (δD ⊗ iDA ) = ω′
A ◦ µA ◦ (h⊗ iDA ),
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ALONSO ÁLVAREZ et al./Turk J Math

and similarly

σAD

D = ω′
A ◦ µA ◦ (h⊗ h).

Then, using that ω′
A is a morphism of left AD -modules,

∇AD⊗D = φAD⊗D ◦ (AD ⊗ (ω′
A ◦ h)) = ω′

A ◦ φA ◦ (AD ⊗ h) = ΩA,

and, as a consequence, σAD

D ◦ ∇AD⊗D = σAD

D ◦ ΩA = σAD

D .

The quadruple (AD, D, ψ
AD

D , σAD

D ) satisfies the twisted condition because, by the left AD -module con-

dition for ω′
A and the associativity of µA , we have:

(µAD
⊗D) ◦ (AD ⊗ σAD

D ) ◦ (ψAD

D ⊗D) ◦ (D ⊗ ψAD

D )

= ω′
A ◦ µA ◦ ((ωA ◦ ω′

A ◦ µA)⊗A) ◦ (h⊗ ((iDA ⊗ h) ◦ ω′
A ◦ µA ◦ (h⊗ iDA )))

= ω′
A ◦ µA ◦ (h⊗ (ωA ◦ ω′

A ◦ µA ◦ (h⊗ iDA )))

= ω′
A ◦ µA ◦ ((µA ◦ (h⊗ h))⊗ iDA )

= ω′
A ◦ µA ◦ ((ωA ◦ ω′

A ◦ µA ◦ (h⊗ h))⊗ iDA )

= (µAD
⊗D) ◦ (AD ⊗ ψAD

D ) ◦ (σAD

D ⊗AD).

Similarly,

(µAD
⊗D) ◦ (AD ⊗ σAD

D ) ◦ (ψAD

D ⊗D) ◦ (D ⊗ σAD

D )

= ω′
A ◦ µA ◦ ((µA ◦ (h⊗ h))⊗ h)

= (µAD
⊗D) ◦ (AD ⊗ σAD

D ) ◦ (σAD

D ⊗D),

and (AD, D, ψ
AD

D , σAD

D ) satisfies the cocycle condition. Therefore, by Proposition 3.8 of [11], the product

mAD×D = rA ◦ (µAD ⊗D) ◦ (µAD ⊗ σAD

D ) ◦ (AD ⊗ ψAD

D ⊗D) ◦ (sA ⊗ sA)

is associative and mAD×D = µAD×D because, by the left AD -module condition for ω′
A and the associativity of

µA ,

(µAD
⊗D) ◦ (µAD

⊗ σAD

D ) ◦ (AD ⊗ ψAD

D ⊗D) = ω′
A ◦ µA ◦ (ωA ⊗ ωA).

2

4. Galois extensions for coextended weak entwining structures

Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8. Let A□D
be the image of the idempotent morphism ∆A⊗D defined in (13), and let iA⊗D : A□D → A ⊗ D and

193
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pA⊗D : A ⊗ D → A□D be the morphisms satisfying ∆A⊗D = iA⊗D ◦ pA⊗D and pA⊗D ◦ iA⊗D = idA□D .

Under these conditions,

- -
-A□D A⊗D

iA⊗D
∆A⊗D

idA⊗D

A⊗D

is an equalizer diagram. Let tA : A⊗ A → A⊗D be the morphism defined by tA = (µA ⊗D) ◦ (A⊗ ρA). By

the associativity of µA , (12), and the properties of ηA , we have that

∆A⊗D ◦ tA = (µA ⊗D) ◦ (µA ⊗ ψ) ◦ (A⊗ ρA ⊗ ηA)

= (µA ⊗D) ◦ (A⊗ ((µA ⊗D) ◦ (A⊗ ψ) ◦ (ρA ⊗ ηA))) = tA.

Therefore, there exists a unique morphism (called the lifted canonical morphism) rA⊗D : A⊗A→ A□D , such

that iA⊗D ◦ rA⊗D = tA , and equivalently, rA⊗D = pA⊗D ◦ tA .

On the other hand, it is obvious that (A,φA = µA ◦ (iDA ⊗ A)) is a left AD -module and (A,φ′
A =

µA ◦ (A⊗ iDA )) is a right AD -module. With nA we denote the coequalizer morphism of A⊗ φA and φ′
A ⊗A .

-
- -

A⊗ φA

φ′
A ⊗A

nA
A⊗AD ⊗A A⊗A A⊗AD

A

As in 1.5 of [2], we can prove that the morphism rA⊗D satisfies

iA⊗D ◦ rA⊗D ◦ (A⊗ φA) = iA⊗D ◦ rA⊗D ◦ (φ′
A ⊗A) (42)

and, as a consequence, there exists a unique morphism (called the canonical morphism)

γA : A⊗AD
A→ A□D,

such that γA ◦ nA = rA⊗D.

On the other hand, γA is a morphism of right D -comodules, where ρA⊗AD
A : A ⊗AD A → (A ⊗AD

A) ⊗ C is the factorization of (nA ⊗ D) ◦ (A ⊗ ρA) through the coequalizer nA , i.e. ρA⊗AD
A is the unique

morphism such that ρA⊗AD
A ◦ nA = (nA ⊗ D) ◦ (A ⊗ ρA), and ρA□D : A□D → A□D ⊗ D is defined

by ϱA□D = (pA⊗D ⊗ D) ◦ (A ⊗ ϱD) ◦ iA⊗D . Moreover, γA is a morphism of right D -comodules with

ρA□D = (pA⊗D ⊗ D) ◦ (A ⊗ δD) ◦ iA⊗D . Finally, if A ⊗ − preserves coequalizers, γA is a morphism of

left A -modules where φA⊗AD
A : A⊗ (A⊗AD A) → A⊗AD A is the factorization of nA ◦ (µA ⊗A) through the

coequalizer A⊗ nA , i.e. φA⊗AD
A is the unique morphism such that φA⊗AD

A ◦ (A⊗ nA) = nA ◦ (µA ⊗A), and

φA□D : A⊗A□D → A□D is defined by φA□D = pA⊗D ◦ (µA ⊗D) ◦ (A⊗ iA⊗D).

Definition 4.1 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8.

We say that AD ↪→ A is a weak (D,α)-Galois extension if the canonical morphism γA is an isomorphism.

If α = idD , the notion of weak (D,α)-Galois extension is the one defined for weak entwined structures

in [2] with the name of weak D -Galois extension (in this last definition the condition of A ⊗ − preserving

coequalizers was required, but it is only necessary if we want γA to be a morphism of left A-modules). This kind

of extension was introduced by Brzeziński in [6] for weak entwining structures in a category of modules over a

commutative ring.
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Proposition 4.2 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Let (A,Dα, ψ
α) be the weak entwining structure, where ψα is the morphism defined in (8). If AD ↪→ A

is a weak (D,α)-Galois extension, then ADα ↪→ A is a weak Dα -Galois extension, where ραA = (A⊗ pα) ◦ ρA .
Conversely, let (A,Dα,Γ) be a weak entwining structure and let (A, ϱA) be a right Dα -comodule such that

(A,µA, ϱA) is an object in MDα

A (Γ) . If ADα
↪→ A is a weak Dα -Galois extension, we have that AD ↪→ A is a

weak (D,α)-Galois extension for (A,D,α Γ, α) , where αΓ is the morphism defined in (9).

Proof Let ∆α
A⊗Dα

: A⊗Dα → A⊗Dα be the morphism defined by ∆α
A⊗Dα

= (A⊗ pα) ◦∆A⊗D ◦ (A⊗ iα).

Then the equality

∆α
A⊗Dα

= (µA ⊗Dα) ◦ (A⊗ (ψα ◦ (Dα ⊗ ηA)) (43)

holds. Let A□Dα be the image of ∆α
A⊗Dα

, and let pαA⊗Dα
, iαA⊗Dα

be the projection and the injection associated

to ∆α
A⊗Dα

. By (4) and (5) it is easy to show that

vαA = pA⊗D ◦ (A⊗ iα) ◦ iαA⊗Dα
: A□Dα → A□D

is an isomorphism, with inverse

(vαA)
−1 = pαA⊗Dα

◦ (A⊗ pα) ◦ iA⊗D : A□D → A□Dα,

such that

vαA ◦ rαA⊗Dα
= pA⊗D ◦ (A⊗ iα) ◦∆α

A⊗Dα
◦ (A⊗ pα) ◦ (µA ⊗D) ◦ (A⊗ ρA) = rA⊗D,

where rαA⊗Dα
is the lifted canonical morphism associated to tαA = (µA ⊗Dα) ◦ (A⊗ ραA).

Consider (A,φαA = µA ◦ (iDα

A ⊗A)), (A,φ′α
A = µA ◦ (A⊗ iDα

A )), and let nαA be the coequalizer morphism

of A⊗ φαA and φ′α
A ⊗A , i.e.

-
- -

A⊗ φαA

φ′α
A ⊗A

nαA
A⊗ADα ⊗A A⊗A A⊗ADα

A

is a coequalizer diagram. Then the existence of the isomorphism βA : AD → ADα satisfying (34) implies that

there exists a unique isomorphism dαA : A ⊗AD A → A ⊗ADα
A such that dαA ◦ nA = nαA , where nA is the

coequalizer morphism of the morphisms φA and φ′
A defined in the previous page. Then, if γαA : A⊗ADα

A →
A□Dα is the canonical morphism for the extension associated to (A,Dα, ψ

α), we have

γαA ◦ dαA ◦ nA = γαA ◦ nαA = rαA⊗Dα
= (vαA)

−1 ◦ rA⊗D = (vαA)
−1 ◦ γA ◦ nA,

and this implies that γαA ◦ dαA = (vαA)
−1 ◦ γA , where γA is the canonical morphism of the extension associated

to (A,D,ψ, α). Thus, if γA is an isomorphism, γαA is an isomorphism.

Conversely, let α∆A⊗D : A⊗D → A⊗D be the morphism defined by α∆A⊗D = (A⊗iα)◦∆A⊗Dα◦(A⊗pα).
Then α∆A⊗D = (µA ⊗D) ◦ (A⊗ (αΓ ◦ (D⊗ ηA)). Let A□D be the image of α∆A⊗D , and let αpA⊗D , αiA⊗D

be the projection and the injection associated to α∆A⊗D . The morphism

αvA = pA⊗Dα ◦ (A⊗ pα) ◦ αiA⊗D : A□D → A□Dα
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is an isomorphism, with inverse

(αvA)
−1 = αpA⊗D ◦ (A⊗ iα) ◦ iA⊗Dα : A□Dα → A□D,

such that αrA⊗D ◦ αvA = rA⊗Dα
. Consider (A,α φA = µA ◦ (iDA ⊗A)), (A, αφ′

A = µA ◦ (A⊗ iDA )), and let αnA

be the coequalizer morphism of A⊗ αφA and αφ′
A ⊗A , i.e.

-
- -

A⊗α φA

αφ′
A ⊗A

αnA
A⊗AD ⊗A A⊗A A⊗AD

A

is a coequalizer diagram. Then the existence of the isomorphism πA : ADα → AD satisfying (35) implies that

there exists a unique isomorphism αdA : A⊗ADα
A → A⊗AD

A such that αdA ◦ nA = αnA , where nA is the

coequalizer of φA = µA ◦ (iDα

A ⊗A) and φ′
A = µA ◦ (A⊗ iDα

A ). Then, if αγA : A⊗AD
A→ A□D is the canonical

morphism for the extension associated to (A,D,α Γ, α), we have that γA ◦ (αdA)−1 = αvA ◦α γA , where γA is

the canonical morphism of the extension associated to (A,Dα,Γ). Thus, if γA is an isomorphism, αγA is an

isomorphism. 2

Definition 4.3 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8.

Let AD ↪→ A be a weak (D,α)-Galois extension. We will say that AD ↪→ A satisfies the normal basis property

(or AD ↪→ A is a coextended weak (D,α)-Galois extension with normal basis) if there exists an idempotent

morphism of left AD -modules and right D -comodules ΠA : AD ⊗D → AD ⊗D , for φAD⊗D = µAD ⊗D and

ρAD⊗D = AD ⊗ ϱD , such that

ΠA = (AD ⊗ α) ◦ΠA = ΠA ◦ (AD ⊗ α), (44)

and an isomorphism of left AD -modules and right D -comodules gA : A→ AD⊠D , where AD⊠D is the image

of ΠA and

φAD⊠D = rA ◦ φAD⊗D ◦ (AD ⊗ sA), ρAD⊠D = (rA ⊗D) ◦ ρAD⊗D ◦ sA,

being sA : AD ⊠ D → AD ⊗ D and rA : AD ⊗ D → AD × D the morphisms such that sA ◦ rA = ΠA and

rA ◦ sA = idAD⊠D.

Note that, if α = idD , we can recall the definition of weak D -Galois extension with normal basis

introduced in [2] for weak Galois extensions associated to a weak entwining structure (A,D,ψ) .

Proposition 4.4 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition

2.8. Let (A,Dα, ψ
α) be the weak entwining structure where ψα is the morphism defined in (8). If AD ↪→ A is

a weak (D,α)-Galois extension with normal basis, then ADα ↪→ A is a weak Dα -Galois extension with normal

basis, where ραA = (A ⊗ pα) ◦ ρA . Conversely, let (A,Dα,Γ) be a weak entwining structure, and let (A, ϱA)

be a right Dα -comodule such that (A,µA, ϱA) is an object in MDα

A (Γ) . If ADα ↪→ A is a weak Dα -Galois

extension with normal basis, we have that AD ↪→ A is a weak (D,α)-Galois extension with normal basis for

(A,D,α Γ, α) , where αΓ is the morphism defined in (9).

Proof Assume that AD ↪→ A is a weak (D,α)-Galois extension with normal basis. Then, by Proposition

4.2, ADα ↪→ A is a weak Dα -Galois extension for the weak entwining structure (A,Dα, ψ
α), where ψα is the
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morphism defined in (8) and ραA = (A⊗ pα) ◦ ρA . Let βA : AD → ADα be the isomorphism satisfying (34). By

(44), the morphism

ΠαA = (βA ⊗ pα) ◦ΠA ◦ (β−1
A ⊗ iα) : ADα ⊗Dα → ADα ⊗Dα

is idempotent. It is also a morphism of left ADα -modules, because βA is an algebra morphism and ΠA is a

morphism of left AD -modules. Moreover, by (44) and the right D -comodule condition for ΠA , we obtain that

ΠαA is a morphism of right Dα -comodules.

Let Aα ⊠Dα be the image of ΠαA , and let sαA : ADα ⊠Dα → ADα ⊗Dα and rαA : ADα ⊗D → ADα ⊠Dα

be the morphisms such that sαA ◦ rαA = ΠαA and rαA ◦ sαA = idADα⊠Dα
. The morphism uαA = rαA ◦ (βA⊗ pα) ◦ sA :

AD ⊠D → ADα ⊠Dα is an isomorphism with inverse (uαA)
−1 = rA ◦ (β−1

A ⊗ iα) ◦ sαA and, as a consequence,

the morphism gαA = uαA ◦ gA : A → ADα ⊠ Dα , where gA is the isomorphism associated to AD ↪→ A , is an

isomorphism. Moreover, it is a morphism of left ADα -modules because:

gαA ◦ φαA

= uαA ◦ gA ◦ φA ◦ (β−1
A ⊗A)

= rαA ◦ (βA ⊗ pα) ◦ΠA ◦ (µAD ⊗D) ◦ (β−1
A ⊗ (sA ◦ gA))

= rαA ◦ ((βA ◦ µAD
)⊗ pα) ◦ (β−1

A ⊗ (sA ◦ gA))

= rαA ◦ (µADα
⊗Dα) ◦ (ADα ⊗ ((βA ⊗ pα) ◦ sA ◦ gA))

= rαA ◦ (µADα
⊗Dα) ◦ (ADα ⊗ (ΠαA ◦ (βA ⊗ pα) ◦ sA ◦ gA))

= φADα⊠Dα
◦ (ADα ⊗ gαA).

In the previous calculus, the first equality follows by (34), the second one is a consequence of the left

AD -module condition for gA , and the third one relies on the same condition for ΠA . In the fourth one we

used that βA is a monoid morphism, and the fifth one follows because ΠαA is a morphism of left ADα -modules.

Finally, the last equality follows by definition.

Moreover, gαA is a morphism of right Dα -comodules. Indeed:

(gαA ⊗Dα) ◦ ραA

= ((rαA ◦ (βA ⊗ pα) ◦ sA ◦ gA)⊗ pα) ◦ ρA

= ((rαA ◦ (βA ⊗ pα) ◦ΠA)⊗ pα) ◦ (AD ⊗ δD) ◦ sA ◦ gA

= (rαA ⊗Dα) ◦ (β ⊗ (δDα ◦ pα)) ◦ sA ◦ gA

= (rαA ⊗Dα) ◦ (ADα ⊗ δDα) ◦ (β ⊗ pα) ◦ sA ◦ gA

= ρADα⊠Dα
◦ gαA.

The first and fifth equalities follow by the definitions, the second one follows because gA is a morphism of right

D -comodules, in the third one we use that ΠA is a morphism of right D -comodules, and the fourth one relies

on the right Dα -comodule condition for ΠαA .
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Thus, ADα ↪→ A is a weak Dα -Galois extension with normal basis.

Conversely, let (A,Dα,Γ) be a weak entwining structure and let (A, ϱA) be a right Dα -comodule such

that (A,µA, ϱA) is an object in MDα

A (Γ). Let ADα ↪→ A be a weak Dα -Galois extension with normal basis

with idempotent ΠA : ADα ⊗Dα → ADα ⊗Dα and associated isomorphism gA : A→ ADα ⊠Dα . Let πA the

unique monoid isomorphism satisfying (35). The morphism

αΠA = (πA ⊗ iα) ◦ΠA ◦ (π−1
A ⊗ pα) : AD ⊗D → AD ⊗D

is idempotent, satisfies (44), and is a morphism of left AD -modules and right D -comodules. Moreover,

αuA = αrA ◦ (π−1
A ⊗ iα) ◦ sA is an isomorphism and αgA = αuA ◦ gA : A → AD ⊠ D is an isomorphism

of left AD -modules and right D -comodules. Therefore, AD ↪→ A is a weak (D,α)-Galois extension with

normal basis for (A,D,α Γ, α). 2

Theorem 4.5 Let (A,D,ψ, α) be a coextended weak entwining structure in the conditions of Proposition 2.8.

The following are equivalent.

(i) AD ↪→ A is a weak (D,α)-cleft extension.

(ii) AD ↪→ A is a weak (D,α)-Galois extension and satisfies the normal basis condition.

Proof (i) ⇒ (ii). If AD ↪→ A is a weak (D,α)-cleft extension, ADα ↪→ A is a weak D -cleft extension

for (A,Dα, ψ
α). Then, by Theorem 2.11 of [2], ADα ↪→ A is a weak (D,α)-Galois extension for (A,Dα, ψ

α)

and satisfies the normal basis condition (note that in Theorem 2.11 of [2] the condition ”A ⊗ − preserve

coequalizers” can be dropped). Therefore, by Propositions 4.2 and 4.4, AD ↪→ A is a weak (D,α)-Galois

extension for (A,D,ψ, α) and satisfies the normal basis condition.

The proof for (ii) ⇒ (i) is similar and the details are left to the reader. 2
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