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Abstract: We define a decomposition of transferable utility games based on shifting the worth of the grand coalition

so that the associated game has a nonempty core. We classify the set of all transferable utility games based on that

decomposition and analyze their structure. Using the decomposition and the notion of minimal balanced collections, we

give a set of necessary and sufficient conditions for a transferable utility game to have a singleton core.
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1. Introduction

In cooperative game theory, given a set of players, players cooperate in order to optimize their payoffs. A

transferable utility game (also called a cooperative game in characteristic function form with side payments)

with player set N is a function that assigns a real number to each coalition.

Many different solution concepts have been established to determine how the payoffs should be distributed

between the players in the case of cooperation. [3, 7, 8, 9, 11] are only a few examples of remarkable works in

the literature. One solution concept that has received a great deal of attention in the literature and is widely

accepted as the major stability notion in cooperative game theory is the core, which is defined by Gillies [5].

The core of a transferable utility game is the set of all feasible outcomes upon which no coalition can improve.

Yet, the core of a game can be empty. Shapley and Bondareva [2, 10] give a set of necessary and sufficient

conditions for a transferable utility game to have a nonempty core via balanced collections, which is known as

the Shapley–Bondareva theorem.

In this paper, we define a decomposition of transferable utility games based on shifting the worth of

the grand coalition so that the associated game has a nonempty core. We classify the set of all transferable

utility games according to this decomposition and analyze the structure of them. We give a set of necessary

and sufficient conditions for a transferable utility game to have a singleton core via balanced collections. We

show that most of the transferable utility games have some specific structure, namely, most of them can be

written as a sum of 2 games, one being the associated game that has a singleton core and the other being the

remaining, trivial game.
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2. Preliminaries

Given n ∈ N , let N := {1, . . . , n} denote the set of finite players. A transferable utility game (or simply a

game), with player set N is a function v : 2N → R such that v(∅) := 0. For each T ⊆ N , we refer to v(T ) as

the worth of coalition T . Let G denote the set of all games (with player set N ).

Nonempty subsets of the player set are called coalitions.

A vector x ∈ RN assigning payoff xi ∈ R to player i ∈ N is called a payoff vector. For a payoff vector

x ∈ RN and ∅ ≠ S ⊆ N , the total payoff of the players in coalition S is x(S) :=
∑

i∈S xi .

A payoff vector x is feasible if x(N) ≤ v(N), and stable if for each ∅ ̸= S ⊆ N ,

x(S) ≥ v(S). The set of all feasible and stable payoff vectors is called the core of the game v , denoted

by C(v); i.e.

C(v) := {x ∈ RN : x(N) ≤ v(N) and for each ∅ ̸= S ⊆ N, x(S) ≥ v(S)}.

The set of all games with nonempty cores is denoted by Gc , and the set of all games with empty cores is denoted

by Gc , i.e. Gc ≡ G \Gc .

It is well known that the core satisfies the following property, which is known as covariant under strategic

equivalence: If v, w ∈ G , α > 0, β ∈ RN , and w = αv + β , then C(w) = αC(v) + β. For the property, see for

example [9].

A collection {S1, . . . , Sk} of coalitions of N is balanced if there exists a collection of real numbers

λ1, . . . , λk ∈ [0, 1] such that for each i ∈ N ,
∑

j∈{1,...,k}:i∈Sj
λj = 1 . The numbers λ1, . . . , λk are called balanc-

ing coefficients. A balanced collection {S1, . . . , Sk} is a minimal balanced collection if no proper subcollection

is balanced.

3. A decomposition of games

In this section, we give the definition of the decomposition of games, and classify the set of all games based on

this decomposition.

Given a pair of games v, ṽ ∈ G , for each S ⊆ N , (v + ṽ)(S) := v(S) + ṽ(S) and

(v − ṽ)(S) := v(S)− ṽ(S) .

Given v ∈ G , for each r ∈ R , vr is defined as follows:

vr(S) :=

{
v(S) if S ⊂ N,
r if S = N.

(1)

Let Mv := {r ∈ R : C(vr) ̸= ∅} , and r∗ := minr∈Mv r .

We briefly discuss the existence of r∗ . It is well known that games with nonempty cores, that is Gc , is

characterized by the Shapley–Bondareva theorem:

“For each v ∈ G , C(v) ̸= ∅ if and only if for each minimal balanced collection {S1, . . . , Sk} with balancing

coefficients λ1, . . . , λk , inequality
∑k

i=1 λiv(Si) ≤ v(N) holds.”

Let B be the set of all minimal balanced collections of the player set N , except the minimal balanced

collection {N}. For each B ∈ B , say B = {S1, . . . , Sk} with balancing coefficients λ1, . . . , λk ,
∑k

j=1 λjv(Sj) ≤

maxB∈B
∑

Sj∈B λjv(Sj). By the Shapley–Bondareva theorem, one can easily check r∗ = minr∈Mv
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r = maxB∈B
∑

Sj∈B λjv(Sj). In other words, the value r∗ is a ‘boundary value’ with the property that for

each r ≥ r∗ , the game vr has a nonempty core and for each r < r∗ , the game vr has an empty core.

We call the game vr∗ the minimal game associated with the game v . Note that for each game there is a

unique minimal game associated with that game, but not vice versa.

Given v ∈ G , we define a new game w as follows:

w(S) :=

{
0 if S ⊂ N,

|v(N)− vr∗(N)| if S = N.

Given v ∈ G , v := vr∗ ⊕ |w| is called the decomposition associated with the game v where

vr∗ ⊕ |w| =
{

vr∗ + w if v(N) ≥ vr∗(N),
vr∗ − w if v(N) < vr∗(N).

If v ∈ Gc , then the decomposition associated with the game v is called the decomposition of the game v .

If v ∈ Gc , then the minimal game associated with v is called the root game associated with the game v (root

game of v ). Note that the idea of root game of a game is also used by Calleja et al. [4], where they introduce

and characterize the aggregate monotonic core. Our definition of ‘root game of v ’ is the same as their definition

of ‘root game associated to the game v ’.

If the root game of v is itself, then it is called a root game, that is, if v is a root game, then v = vr∗ +w

is the decomposition of v with vr∗ ≡ v and for each S ⊆ N , w(S) = 0. The set of all root games is denoted

by Gr .

Remark 1 Given v ∈ G , via Eq. (1) , one observes that Gr is a small subset of G . For comparing their

sizes, we can formalize the class of all games and the class of all root games as follows: Consider any labeling

S1, . . . , S2N−2, S2N−1 of the nonempty subsets of the player set N such that S2N−1 corresponds to N , i.e.

S2N−1 = N . Let f be a function that assigns the (2N − 1)-tuple (v(S1), . . . , v(S2N−2), v(S2N−1)) ∈ R2N−1 to

each v ∈ G . The function f shows that there is a one-to-one correspondence between the games in G and the

elements in R2N−1 . Similarly, let fr be a function that assigns the (2N − 2)-tuple (v(S1), . . . , v(S2N−2)) ∈

R2N−2 to each vr∗ ∈ Gr . The function fr shows that there is a one-to-one correspondence between the games

in Gr and the elements in R2N−2 . Thus, the dimension of Gr is one less than the dimension of G .

While it is a small class, Gr allows us to understand the structure of G . For that, we classify G into

groups with the help of the following classification of Gr .

Gr is divided into 2 disjoint groups depending on the size of their cores.

(i) Gsin : The set of all root games each of which has a single vector in its core is denoted by Gsin , that is,

Gsin := {v ∈ Gr : |C(v)| = 1}.

(ii) Gmul : The set of all root games each of which has more than one vector in its core is denoted by Gmul ,

that is, Gmul := {v ∈ GN
r : |C(v)| > 1}.

Note that Gr = Gsin ∪Gmul where Gsin ∩Gmul = ∅ . Figure 1 shows the classification of Gr .
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Figure 1. Summary of classification of Gr .

Now we classify the set of all games depending on their associated minimal games. First, G is divided

into the two disjoint groups, Gc and Gc . Next, Gc is divided into 2 disjoint groups depending on the size of

cores of root games.

(i) Gs : The set of all games with nonempty cores each of which has a singleton in the core of its root game

is denoted by Gs , that is, Gs := {v ∈ Gc : v = vr∗ ⊕ w ⇒ vr∗ ∈ Gsin}.

Note that Gsin ⊂ Gs.

(ii) Gm : The set of all games with nonempty cores each of which has more than one element in the core of

its root game is denoted by Gm , that is, Gm := {v ∈ Gc : v = vr∗ ⊕ w ⇒ vr∗ ∈ Gmul}.

Note that Gmul ⊂ Gm.

Note also that if v ∈ Gs , then there is a unique element, say x , such that C(vr∗) = {x} , and

C(v) = {x+ (a1, . . . , an) : ∀i ∈ {1, . . . , n}, ai ≥ 0 and
∑n

i+1 ai = v(N)− vr∗(N)} .

Lastly, the set of all games with empty cores, that is Gc , is divided into 2 disjoint groups depending on

the size of cores of their associated minimal games.

(i) Gs : The set of all games with empty cores each of which has a singleton in the core of its associated

minimal game is denoted by Gs , that is, Gs := {v ∈ Gc : v = vr∗ ⊕ w ⇒ vr∗ ∈ Gsin}.

(ii) Gm : The set of all games with empty cores each of which has more than one element in the core of its

associated minimal game is denoted by Gm , that is, Gm := {v ∈ Gc : v = vr∗ ⊕ w ⇒ vr∗ ∈ Gmul}.

Figure 2 shows the classification of all games.

Since each v ∈ G has a unique minimal game associated with v , the set of all games (for a fixed N or

as N varies), can be partitioned into equivalence classes according to this. For each pair of games v, v̂ , let

the decompositions of v and v̂ be v = vr∗ ⊕ |w| and v̂ = v̂r∗ ⊕ |ŵ| , respectively. For example, one can define

an equivalence relation between 2 games v and v̂ , denoted by vRv̂ , if C(vr∗) = C(v̂r∗). Two games v and

v̂ belong to the same equivalence class, if vRv̂ . A similar argument of partitioning the set of all games into

equivalence is also used in [1], where they use their partitioning to study the core of combined games.

Remark 2 Our classification of the set of all games is based on the core and the root game of a game. A

similar argument can be used for other classifications of the set of all games by changing the worth of some

203



DERYA/Turk J Math

..G.

Gc

..

Gm

.

v = vr∗ − w

.

|C(vr∗)| > 1

..
Gs

.

v = vr∗
− w

.

|C(vr
∗ )| =

1

.
C(v) = ∅

..

Gc

..
Gm.

v = vr∗ + w

.

|C(vr∗)| > 1
..

Gs

.

v = vr∗
+ w

.

|C(vr
∗ )| =

1

.

C(
v)

̸= ∅

.

Figure 2. Summary of classification of G .

other coalition instead of the grand coalition. In general, similar to Eq. (1), given v ∈ G and ∅ ≠ T ⊆ N , for

each r ∈ R , let v(r,T ) be defined as follows:

v(r,T )(S) :=

{
v(S) if T ̸= S ⊆ N,
r if S = T.

Let M(v,T ) := {r ∈ R : C(v(r,T )) ̸= ∅} , and r∗T := minr∈M(v,T )
r. Note that vr∗N = vr∗ . Now, using

vr∗T instead of vr∗ for any ∅ ̸= T ⊂ N , other classifications of the set of all games can done similar to our

classification in Figure 2. Here, we are working with vr∗ , because geometrically, the change in the core is given

by a hyperplane, while it will be given by a region bounded by a hyperplane otherwise.

4. Structure of games

In this section, we examine the class of all games defined in Section 3 in terms of minimal balanced collections.

First, we give the geometric intuition behind our theorems.

Geometrically, it is not hard to see that nearly all the games in Gc are in Gs . Let a game that has a

nonempty core be given. Roughly, if one shifts/changes the worth of the grand coalition as much as possible

to obtain the root game of the given game, then the probability of ending up with a single point is higher than

that of ending up with a line segment (or a hyperplane segment). In other words, the probability of getting a

root game in Gsin is higher than that of getting a root game in Gmul .

As an example, consider N = {1, 2, 3} and the game v(12) = 1, v(123) = 5, and v(S) = 0 otherwise.

Note that C(v) = {(a + b, (1 − a) + c, d) : 0 ≤ a ≤ 1, 0 ≤ b, c, d and b + c + d = 4}. Figure 3 below shows the

cores of vr for r = {1, 2, 3, 4, 5}. Note that v1 corresponds to vr∗ , and C(vr∗) = {(a, 1− a, 0 : 0 ≤ a ≤ 1)} is a

line segment; thus v ∈ Gm.

As another example, consider N = {1, 2, 3} and the game v(1) = v(2) = 0.5, v(123) = 5, and v(S) = 0

otherwise. Note that C(v) = {(0.5+ b, 0.5+ c, d) : 0 ≤ b, c, d and b+ c+ d = 4}. Figure 4 shows the cores of vr

for r = {1, 2, 3, 4, 5}. Note that v1 corresponds to vr∗ , and C(vr∗) = {(0.5, 0.5, 0)} is a singleton; thus v ∈ Gs.
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Figure 3. Left to right: C(vr) for r = {1, 2, 3, 4, 5} .
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Figure 4. Left to right: C(vr) for r = {1, 2, 3, 4, 5} .

In general, given v ∈ Gc , let R be the region defined by the collection of the inequalities

(x(S) ≥ v(S))∅≠S⊂N . For each r ∈ R , let Pr denote the hyperplane x(N) = r. Note that for each r ∈ R ,

the normal vector of Pr is (1, . . . , 1). Remember that C(v) = R ∩ Pv(N) . Moreover, in order to find the root

game of v , one looks for the minimum value of r ∈ R such that R ∩ Pr ̸= ∅, which in fact is denoted by r∗.

Note that vr∗ ∈ Gmul if there is a line segment (or a hyperplane segment) on the boundary of R with the

normal vector (1, . . . , 1), and vr∗ ∈ Gsin otherwise. Geometrically, given v ∈ Gc , the probability of having a

line segment (or a hyperplane segment) on the boundary of R with the normal vector (1, . . . , 1) is nearly zero.

Thus, probabilistic measure of the set Gmul is zero. Therefore, nearly all of the games in Gc are in Gs . Similar

geometric results hold for the set Gc .

Our next results in this paper explain the above geometric reasonings more precisely by minimal balanced

collections. They allow us to compare the cardinalities of the sets and understand the structure of games more

precisely.
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The first theorem concerns the games in Gr . It is pretty straightforward to drive the next theorem by

the (strong version of) Shapley–Bondarev theorem. Yet, it gives an obvious characterization of the games in

Gr , and helps us to consider the latter theorems given in this section.

Theorem 1 v ∈ Gr if and only if the following conditions hold:

(i) for each minimal balanced collection {S1, . . . , Sk} with balancing coefficients λ1, . . . , λk , inequality

k∑
j=1

λjv(Sj) ≤ v(N) (2)

holds,

(ii) there is at least one minimal balanced collection different than {N} , say {S1, . . . , Sk} with balancing

coefficients λ1, . . . , λk , inequality (2) is an equality; that is
∑k

j=1 λjv(Sj) = v(N).

The proof of the theorem is easy and thus omitted.

Next, we give necessary and sufficient conditions for the set of games each of which has a single element

in it is core, i.e. for Gsin . The result leads also to sufficient conditions for Gmul . Using these results, we

compare the cardinalities of the set of games given via decomposition.

We first analyze the special case |N | = 3.

For N = {1, 2, 3} , the minimal balanced collections that are different than {N} are

{{1}, {2, 3}} , {{2}, {1, 3}} , {{3}, {1, 2}} , {{1}, {2}, {3}} and {{1, 2}, {1, 3}, {2, 3}} .

Theorem 2 Let the player set be N = {1, 2, 3} . v ∈ Gmul if and only if the inequality (2) of Theorem 1 is

a strict inequality at the minimal balanced collections {{1}, {2}, {3}} and {{1, 2}, {1, 3}, {2, 3}} , and it is an

equality at only one of the minimal balanced collections below:

(i) {{1}, {2, 3}} , (ii) {{2}, {1, 3}} , (iii) {{3}, {1, 2}}.

Proof We know Gmul ⊂ Gr ; thus by Theorem 1, to have v ∈ Gmul , we only need to show that the

inequality (2) of Theorem 1 is an equality at only one of the minimal balanced collections given in the theorem.

For N = {1, 2, 3} , the minimal balanced collections that are different than {N} are {{1}, {2, 3}} , {{2}, {1, 3}} ,
{{3}, {1, 2}} , {{1}, {2}, {3}} and {{1, 2}, {1, 3}, {2, 3}} .

We consider the cases one by one.

Assume that the inequality (2) of Theorem 1 is an equality at {{1}, {2}, {3}} ; then v(1) + v(2) + v(3) =

v(123). Then, for x ∈ C(v), obviously, for each i ∈ N , xi = v(i). Thus, v ∈ Gsin . Therefore, to have

v ∈ Gmul , the inequality (2) of Theorem 1 cannot be an equality at {{1}, {2}, {3}}.
Now, assume that the inequality (2) of Theorem 1 is an equality at {{1, 2}, {1, 3}, {2, 3}} . Then

v(12) + v(13) + v(23) = 2v(123). For x ∈ C(v), we know

x1 + x2 ≥ v(12),

x1 + x3 ≥ v(13),

x2 + x3 ≥ v(23).
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By adding them, we get 2v(1, 2, 3) ≥ 2[x1 + x2 + x3] ≥ v(12) + v(13) + v(23) = 2v(123). However, for each

i, j, k ∈ N , we have xi + xj = v(ij). Therefore,1 1 0
1 0 1
0 1 1

x1

x2

x3

 =

v(12)v(13)
v(23)


which has a unique solution, because the determinant of the 3 × 3 matrix on the left-hand side is nonzero.

Therefore, to have v ∈ Gmul , the inequality (2) of Theorem 1 cannot be an equality at {{1, 2}, {1, 3}, {2, 3}}.
Now, assume that the inequality (2) of Theorem 1 is an equality at any 2 of the balanced collections,

{{1}, {2, 3}} , {{2}, {1, 3}} and {{3}, {1, 2}} . Without loss in generality, let the inequality (2) of Theorem 1 be

an equality at {{1}, {2, 3}} and {{2}, {1, 3}}. Then v(1) + v(23) = v(123) = v(2) + v(13). Now, for x ∈ C(v),

we have x1 ≥ v(1) and x2 + x3 ≥ v(23), but by adding them up and using the previous equality, we get

x1 = v(1). Similarly, x2 = v(2). Then, since x1 + x2 + x3 = v(123), we have x3 uniquely determined as well.

Thus, v ∈ Gsin. Hence, the inequality (2) of Theorem 1 cannot be an equality at any 2 (or 3) of the balanced

collections, {{1}, {2, 3}} , {{2}, {1, 3}} and {{3}, {1, 2}} . Thus, given v ∈ Gr , to have a game v ∈ Gmul , due

to symmetry, the only possibilities are to have an equality at only one of the minimal balanced collections:

(i) {{1}, {2, 3}} , (ii) {{2}, {1, 3}} , (iii) {{3}, {1, 2}}. 2

By the negation of this theorem combined with Theorem 1, we also get a characterization of Gsin for

N = {1, 2, 3} .
For the case |N | = 3: For N = {1, 2, 3} , there are 5 different balanced collections different than {N} .

Thus, there are 25−1 = 31 possible cases that the inequality (2) of Theorem 1 is an equality (since equality can

hold at a unique minimal balanced collection or at multiple minimal balanced collections). Thus, by Theorem 2,

given v ∈ Gr , the probability of v being in Gmul is 3/31 ≈ 0.1 and the probability of v being in Gsin is

28/31 ≈ 0.9. Thus in fact, given v ∈ Gc , the probability of v being in Gs is approximately 0.9.

Before giving our general result for any |N | ≥ 3, we first study the special case |N | = 4, which provides

insight into the general case.

For N = {1, 2, 3, 4} , the minimal balanced collections different than {N} up to symmetries are given by

Table 1.

Table 1. Minimal balanced collections for N = {1, 2, 3, 4} (up to symmetries)

Type Collection Balancing coefficients Number

1 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} 1/3, 1/3, 1/3, 1/3 1
2 {1, 2, 3}, {1, 4}, {2, 4}, {3, 4} 2/3, 1/3, 1/3, 1/3 4
3 {1, 2, 3}, {1, 4}, {2, 4}, {3} 1/2, 1/2, 1/2, 1/2 12
4 {1, 2}, {1, 3}, {2, 3}, {4} 1/2, 1/2, 1/2, 1 4
5 {1}, {2}, {3}, {4} 1, 1, 1, 1 1
6 {1, 2, 3}, {1, 2, 4}, {3, 4} 1/2, 1/2, 1/2 6
7 {1, 2}, {3}, {4} 1, 1, 1 6
8 {1, 2, 3}, {4} 1, 1 4
9 {1, 2}, {3, 4} 1, 1 3

Total: 41

Table 1 shows all the minimal balanced collections different than {N} = {{1, 2, 3, 4}} , their corresponding
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balancing coefficients, and the number of minimal balanced collections of that type considering its symmetries.

Since there exist 41 different minimal balanced collections in total different than {N} , there exist 241 − 1

possible cases that the inequality (2) of Theorem 1 can be an equality and thus can satisfy the conditions of

Theorem 1.

For |N | = 4, given a game v ∈ Gr , one can check that if the inequality (2) of Theorem 1 is an equality for

any of the minimal balanced collections that is of type i , i ∈ {1, 2, 3, 4, 5} , then |C(v)| = 1, and thus v ∈ Gsin.

Similarly, if the inequality (2) of Theorem 1 is an equality for only 1 minimal balanced collection that is either

type 6 or 7 or 8 or 9, then |C(v)| > 1; thus v ∈ GN
mul. For example, if the only equality is at {1, 2}, {3}, {4} ,

because of the dependence of the payoffs of player 1 and player 2, |C(v)| > 1.

The above information in the last 2 paragraphs gives us the following. If |N | = 4 and v ∈ Gr , then the

probability of v being in Gmul is less than (219 − 1)/(241 − 1) ≈ 2.3× 10−7, and the probability of v being in

Gsin is approximately 1 − (2.3 × 10−7) ≈ 1. Thus in fact, when |N | = 4, given v ∈ Gc , the probability of v

being in Gs is approximately 1 − (2.3 × 10−7) ≈ 1. In other words, for |N | = 4, nearly all the games in Gc

have the structure v = vr∗ + w , where vr∗ ∈ Gsin and w ∈ Gz .

This gives us the information that given v ∈ Gc it is more likely to have v ∈ Gs ; thus, by definition of the

core, there is a unique payoff vector, say xv ∈ R4 such that C(vr∗) = {xv} , and C(v) = {xv + (a1, a2, a3, a4) :

0 ≤ a1, a2, a3, a4,
∑4

i=1 ai = v(N)− vr∗(N)}.
In light of the case N = {1, 2, 3, 4} discussed above, we have the following general result.

Theorem 3 Let v ∈ Gr . If v ∈ Gsin , then for each pair i, j ∈ N , there is at least one minimal bal-

anced collection different than {N} , say Pij = {S1, . . . , Sk} with balancing coefficients λ1, . . . , λk satisfying∑k
l=1 λlv(Sl) = v(N) , at which there is at least one coalition S ∈ Pij such that i ∈ S , but j ̸∈ S.

Proof Let v ∈ Gr . Without loss in generality, let C(v) = {x} = {(x1, . . . , xn)} such that for each pair

i, j ∈ N , xi + xj ̸= 0.∗ For each pair i, j ∈ N , let

Aij := {S ⊂ N : i ∈ S, j ̸∈ S} ,
Bij := {S ⊂ N : i ̸∈ S, j ∈ S} ,
Cij := {S ⊂ N : i, j ̸∈ S} ,
Dij := {S ⊆ N : i, j ∈ S} .

Note that any subset of N is in Aij ∪Bij ∪ Cij ∪Dij , and Aij , Bij , Cij , Dij are pairwise disjoint.

For each pair i, j ∈ N , define wij ∈ GN as follows:

wij(S) :=


v(S)− x(S) + xi if S ∈ Aij ,
v(S)− x(S) + xj if S ∈ Bij ,

v(S)− x(S) if S ∈ Cij ,
v(S)− x(S) + xi + xj if S ∈ Dij .

Note, since x ∈ C(v), for each S ∈ Aij , wij(S) ≤ xi ; for each S ∈ Bij , wij(S) ≤ xj ; for each

S ∈ Cij , wij(S) ≤ 0; for each S ∈ Dij , wij(S) ≤ xi + xj , and wij(N) = xi + xj .

For each pair i, j ∈ N , let x̃ij := (x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . xn) . For each S ⊆ N , v(S) =

wij(S) + x̃ij(S). Since core is a solution concept satisfying covariant under strategic equivalence property,

∗If xi + xj = 0, then nothing will change in the proof. In fact, we take xi + xj ̸= 0 just for clarity of the proof.
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C(v) = C(wij) + x̃ij . Thus, C(wij) = {x − x̃ij}. Now, one can easily see that there is at least one minimal

balanced collection different than {N} , say P̃ij = {S1, . . . , Sk} with balancing coefficients λ1, . . . , λk satisfying∑k
l=1 λlwij(Sl) = wij(N), at which there is at least one coalition S ∈ P̃ij such that i ∈ S , but j ̸∈ S , because

otherwise |C(wij)| ̸= 1 . We claim that P̃ij satisfies the condition given in the conclusion of the theorem. For

that, we prove the following lemma.

Lemma 1 Let v ∈ Gsin , i, j ∈ N , wij be the game defined as above and P = {S1, . . . , Sk} be a mini-

mal balanced collection with balancing coefficients λ1, . . . , λk . Now,
∑k

j=1 λlwij(Sl) = w(N) if and only if∑k
j=1 λlv(Sl) = v(N) .

Proof Let the hypothesis of the lemma hold. Note by definition of wij and definition of balancedness, we

have ∑
Sl∈Pij

λlwij(Sl) =
∑

Sl∈Pij∩Aij

λlwij(Sl) +
∑

Sl∈Pij∩Bij

λlwij(Sl) +
∑

Sl∈Pij∩Cij

λlwij(Sl) +
∑

Sl∈Pij∩Dij

λlwij(Sl)

=
∑

Sl∈Pij∩(Aij∪Bij∪Cij∪Dij)

λl(v(Sl) − x(Sl)) + xi

∑
Sl∈Pij∩(Aij∪Dij)

λl + xj

∑
Sl∈Pij∩(Bij∪Dij)

λl

=
∑

Sl∈Pij

λlv(Sl) −
∑

Sl∈Pij

λlx(Sl) + xi

∑
Sl∈Pij :i∈Sl

λl + xj

∑
Sl∈Pij :j∈Sl

λl

=
∑

Sl∈Pij

λlv(Sl) − x(N) + xi + xj

=
∑

Sl∈Pij

λlv(Sl) − v(N) + w(N).

The above equality gives us the desired result of the lemma. 2

Finally, using the above lemma, for each pair i, j ∈ N , P̃ij satisfies the necessary condition given in the

theorem. 2

Theorem 3 provides a necessary condition for a singleton core in root games, but it is not a sufficient

condition, as the next example shows.

First, we need some definitions. Let v ∈ Gr be a game that satisfies the conclusion of Theorem 3. BCv

will denote the set of all minimal balanced collections that satisfy the condition given in the conclusion of

Theorem 3. Formally, for each pair i, j ∈ N , i ̸= j , define the set Bv
ij ⊆ B as follows: P = {S1, . . . , Sk} ∈ Bv

ij

(with balancing coefficients λ1, . . . , λk ) if
∑k

l=1 λlv(Sl) = v(N), and if there is at least one coalition S ∈ P
such that i ∈ S , but j ̸∈ S . For each pair i, j ∈ N, i ̸= j , we have Bij ̸= ∅ , because v satisfies the conclusion

of Theorem 3. Now, let BCv :=
∪

i,j∈N, i ̸=j Bv
ij . Note that Bv

ij = Bv
ji , and BCv is well defined only for v that

satisfies the conclusion of Theorem 3.

Example 1 Consider N = {1, 2, 3, 4} and the game v(12) = v(13) = v(24) = v(34) = 1, v(1234) = 2, and

v(S) = 0 otherwise.

Consider the minimal balanced collections P1 = {{1, 2}, {3, 4}} and P2 = {{1, 3}, {2, 4}} (both with

balancing coefficients 1 and 1).

For P1 , we have v(12) + v(34) = v(1234), and for P2 , we have v(13) + v(24) = v(1234).

Note that B12 = {P2} , B13 = {P1} , B14 = {P1,P2} , B23 = {P1,P2} , B24 = {P1} , B34 = {P2} . Thus,

BCv = {P1,P2}.
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Yet, C(v) = {(a, 1− a, 1− a, a) : 0 ≤ a ≤ 1} . Thus, v ∈ Gmul ⊂ Gr .

The example shows that the conclusion of Theorem 3 is not enough for a sufficient condition, yet it gives

us the intuition for sufficiency. For a sufficient condition, let v ∈ Gr satisfy the conclusion of Theorem 3. Let

Ev := {∅ ̸= S ⊂ N : S ∈ P,P ∈ BCv} . Now, for each S ∈ Ev , let δS = (δ1, . . . , δn) where δi =

{
1 if i ∈ S
0 if i ̸∈ S

.

Note that for each ∅ ̸= T ⊆ N , x(S) = δS · x . Without loss in generality, let Ev = {T1, . . . , Tm}.
Now, define

Av =

 δT1

...
δTm

 , xt =

x1

...
xn

 , bv =

 v(T1)
...

v(Tm)

 ,

where Av is a m × n matrix, xt is the n × 1 matrix formed by writing x ∈ C(v) as a column matrix, and

bv is a m × 1 matrix. Note that Ev ; thus, Av and bv are well defined, because v satisfies the conclusion of

Theorem 3. If x ∈ C(v) and P = {S1, . . . , Sk} ∈ BCv with balancing coefficients λ1, . . . , λk , then we have

λ1x(S1) ≥ λ1v(S1)
...

λ1x(Sl) ≥ λ1v(Sl)
...

+
λ1x(Sk) ≥ λ1v(Sk)

x(N) =
∑k

l=1 λlx(Sl) ≥
∑k

l=1 λlv(Sl) = v(N) = x(N).

Thus, for each T ∈ Ev , we have x(T ) = v(T ). Hence, Avx
t = bv . Thus, if the solution of the system

of equations given by Avx
t = bv is unique, then x is the only element in C(v), i.e. v ∈ Gsin. Hence, we have

shown the following.

Theorem 4 Let v ∈ Gr . If for each pair i, j ∈ N , there is at least one minimal balanced collection different

than {N} , say Pij = {S1, . . . , Sk} with balancing coefficients λ1, . . . , λk satisfying
∑k

l=1 λlv(Sl) = v(N) , at

which there is at least one coalition S ∈ Pij such that i ∈ S , but j ̸∈ S and if Avx
t = bv has a unique solution,

then v ∈ Gsin.

In light of Theorem 3, for Gmul , we also have the following result.

Theorem 5 Let v ∈ Gr. If the condition

• there is at least one pair i, j ∈ N , for each minimal balanced collection P = {S1, . . . , Sk} with balancing

coefficients λ1, . . . , λk satisfying
∑k

l=1 λlv(Sl) = v(N) , if i ∈ S ∈ P , then j ∈ S,

holds, then v ∈ Gmul.

The proof of the theorem is omitted, because the theorem is simply the contrapositive of Theorem 3

combined with the fact that Gr = Gsin ∪Gmul where Gsin ∩Gmul ̸= ∅ .
In light of Theorems 3 and 5, similar to the case in |N | = 4, given v ∈ Gc , the probability of v being

in Gs is approximately 1. Also note that, as |N | increases, this probability tends to 1 more rapidly. Thus,
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nearly all games that are in Gc are in Gs , and thus they have the structure v = vr∗ + w , where vr∗ ∈ Gsin

and w ∈ Gz . Similar results hold for the set of games in Gc , i.e. nearly all games that are in Gc are in Gs ,

and thus they have the structure v = vr∗ − w , where vr∗ ∈ Gsin and w ∈ Gz .

Lastly, we discuss the importance of our results for core selective allocation rules. An allocation rule

for transferable utility games is a function that assigns a payoff vector to each game in G . An allocation rule

is core selective if it assigns an element from C(v) when v ∈ Gc . Many core selective allocation rules have

been constructed to determine which core element should be chosen whenever the core is nonempty. Given

v = vr∗ + w ∈ Gc , by our findings, we see that with a high probability v is in Gs . In that case, there exists a

unique payoff vector, {x} = C(vr∗), which is a common element for any core selective allocation rule whenever

the allocation rule is additive†. Thus, when we restrict ourselves to the games in Gs , additive core selective

allocation rules will differ only at the selection of a payoff vector from C(w). Let Γ be an additive core selective

allocation rule that is also egalitarian on w , i.e. Γ(w) = w(N)
|N | . Then Γ corresponds to the well-known allocation

rule, the per-capita nucleolus defined by Grotte [6], when we restrict ourselves to Gs . In general, our results

in this paper also give information about these allocation rules. A more extensive study about the relations

between our results and allocation rules is part of an ongoing project.
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