Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39
(c) TÜBİTAK
doi:10.3906/mat-1406-32

Equivalencies between beta-shifts and S-gap shifts

Dawoud AHMADI DASTJERDI*, Somayyeh JANGJOOYE SHALDEHI
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

Received: 17.06.2014 • Accepted: 23.10.2014 • \quad Published Online: $23.02 .2015 \quad$ • Printed: 20.03 .2015

Abstract

Let X_{β} be a β-shift for $\beta \in(1,2]$ and $X(S)$ a S-gap shift for $S \subseteq \mathbb{N} \cup\{0\}$. We show that if X_{β} is SFT (resp. sofic), then there is a unique S-gap shift conjugate (resp. right-resolving almost conjugate) to this X_{β}, and if X_{β} is not SFT , then no S-gap shift is conjugate to X_{β}. For any synchronized X_{β}, an $X(S)$ exists such that X_{β} and $X(S)$ have a common synchronized 1-1 a.e. extension. For a nonsynchronized X_{β}, this common extension is just an almost Markov synchronized system with entropy preserving maps. We then compute the zeta function of X_{β} from the zeta function of that $X(S)$.

Key words: Shift of finite type, sofic, right-resolving, synchronized, finite equivalence, almost conjugacy, zeta function

1. Introduction

Two important classes of symbolic dynamics are β-shifts and S-gap shifts. Both are coded systems with applications in coding theory and number theory and a source of examples for symbolic dynamics. There have been some independent studies of these classes. See [7, 15, 18, 20] for β-shifts and [3, 7, 12] for S-gap shifts. There are some common properties between these two classes. For instance, both of them are at least halfsynchronized, and every subshift factor of them is intrinsically ergodic [7]. There are disparities as well: β-shifts are all mixings, though this is not true in general for a S-gap shift [12], and S-gap shifts are synchronized, which is not true for all β-shifts. Even among sofic β-shifts and S-gap shifts, which are our primary interest here, there are some major differences. An important class of sofic S-gap shifts are almost-finite-type (AFT) [3], but no β-shift is AFT [20].

We let $\beta \in(1,2]$ and search for an S-gap shift $X(S)$ that has some sort of equivalencies, such as conjugacy or right-resolving almost conjugacy, with our β-shift denoted by X_{β}. A main tool used here is almost conjugacy, introduced by Adler and Marcus [1], which is virtually a conjugacy between transitive points. This concept was defined for sofics and is now very much classic [13, 14]. It was then extended to nonsofics by Fiebig [8], and so our paper first deals with sofics and then nonsofics. Another tool is right-resolving, called deterministic in computer science, which is an important closing property in coded systems and in applications.

Here we summarize our results. Let $\beta \in(1,2]$ and let X_{β} be the associated β-shift. We will associate to X_{β} a unique S-gap shift denoted by $\operatorname{CORR}\left(X_{\beta}\right)$ and will show that when X_{β} is sofic, then X_{β} and $X(S)=\operatorname{CORR}\left(X_{\beta}\right)$ are right-resolving almost conjugate, and when X_{β} is SFT, they are conjugate as well (Theorem 4.7). On the other hand, for a given S-gap shift, there does not necessarily exist a β-shift holding

[^0]
AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

the same equivalencies with $\mathrm{X}(\mathrm{S})$. However, we give a necessary and sufficient condition on S to have this be true (Theorem 4.10).

In Subsection 3.2, we extend the results obtained for sofics to nonsofics. For instance, when X_{β} is synchronized, X_{β} and $\operatorname{CORR}\left(X_{\beta}\right)$ have a common synchronized 1-1 a.e. extension (Theorem 4.17). Additionally, in general, X_{β} and $\operatorname{CORR}\left(X_{\beta}\right)$ have a common extension, which is an almost Markov synchronized system whose maps are entropy-preserving (Theorem 4.18).

Theorem 5.1 gives the zeta function of X_{β} in terms of the zeta function of $\operatorname{CORR}\left(X_{\beta}\right)$ and Theorem 4.19 states that $\left\{\operatorname{CORR}\left(X_{\beta}\right): \beta \in(1,2]\right\}$ is a Cantor dust in the set of all S-gap shifts.

2. Background and notations

The notations have been taken from [14] and the proofs of the claims in this section can be found there. Let \mathcal{A} be an alphabet that is a nonempty finite set. The full \mathcal{A}-shift denoted by $\mathcal{A}^{\mathbb{Z}}$ is the collection of all bi-infinite sequences of symbols from \mathcal{A}. A block (or word) over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. The shift function σ on the full shift $\mathcal{A}^{\mathbb{Z}}$ maps a point x to the point $y=\sigma(x)$ whose i th coordinate is $y_{i}=x_{i+1}$.

Let $\mathcal{B}_{n}(X)$ denote the set of all admissible n-blocks. The language of X is the collection $\mathcal{B}(X)=$ $\bigcup_{n=0}^{\infty} \mathcal{B}_{n}(X)$. A word $v \in \mathcal{B}(X)$ is synchronizing if whenever $u v$ and $v w$ are in $\mathcal{B}(X)$, we have $u v w \in \mathcal{B}(X)$.

Let \mathcal{A} and \mathcal{D} be alphabets and X a shift space over \mathcal{A}. Fix integers m and n with $-m \leq n$. Define the $(m+n+1)$-block map $\Phi: \mathcal{B}_{m+n+1}(X) \rightarrow \mathcal{D}$ by

$$
\begin{equation*}
y_{i}=\Phi\left(x_{i-m} x_{i-m+1} \ldots x_{i+n}\right)=\Phi\left(x_{[i-m, i+n]}\right) \tag{2.1}
\end{equation*}
$$

where y_{i} is a symbol in \mathcal{D}. The map $\phi: X \rightarrow \mathcal{D}^{\mathbb{Z}}$ defined by $y=\phi(x)$ with y_{i} given by (2.1) is called the sliding block code with memory m and anticipation n induced by Φ. An onto sliding block code $\phi: X \rightarrow Y$ is called a factor code. In this case, we say that Y is a factor of X. The map ϕ is a conjugacy if it is invertible.

An edge shift, denoted by X_{G}, is a shift space that consists of all bi-infinite walks in a directed graph G. A labeled graph \mathcal{G} is a pair (G, \mathcal{L}) where G is a graph with edge set \mathcal{E}, vertex set \mathcal{V}, and the labeling $\mathcal{L}: \mathcal{E} \rightarrow \mathcal{A}$. Each $e \in \mathcal{E}$ starts at a vertex denoted by $i(e) \in \mathcal{V}$ and terminates at a vertex $t(e) \in \mathcal{V}$.

When the set of forbidden words is finite, the space is called a subshift of finite type (SFT). A sofic shift $X_{\mathcal{G}}$ is the set of sequences obtained by reading the labels of walks on G,

$$
X_{\mathcal{G}}=\left\{\mathcal{L}_{\infty}(\xi): \xi \in X_{G}\right\}=\mathcal{L}_{\infty}\left(X_{G}\right)
$$

We say that \mathcal{G} is a presentation or a cover of $X_{\mathcal{G}}$.
A labeled graph $\mathcal{G}=(G, \mathcal{L})$ is right-resolving if for each vertex I of G the edges starting at I carry different labels. A minimal right-resolving presentation of a sofic shift X is a right-resolving presentation of X having the fewest vertices among all right-resolving presentations of X. Any two minimal right-resolving presentations of an irreducible sofic shift must be isomorphic as labeled graphs [14, Theorem 3.3.18]. Thus, we can speak of "the" minimal right-resolving presentation of an irreducible sofic shift X; we call it the Fischer cover of X.

Let $w \in \mathcal{B}(X)$. The follower set $F(w)$ of w is defined by $F(w)=\{v \in \mathcal{B}(X): w v \in \mathcal{B}(X)\}$. A shift space X is sofic if and only if it has a finite number of follower sets [14, Theorem 3.2.10]. In this case, we have a labeled graph $\mathcal{G}=(G, \mathcal{L})$ called the follower set graph of X. The vertices of G are the follower sets and if $w a \in \mathcal{B}(X)$, then we draw an edge labeled a from $F(w)$ to $F(w a)$. If $w a \notin \mathcal{B}(X)$ then we do nothing.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

Now we review the concept of the Fischer cover for a not necessarily sofic system [9]. Let $x \in \mathcal{B}(X)$. Then $x_{+}=\left(x_{i}\right)_{i \in \mathbb{Z}^{+}}$(resp. $\left.x_{-}=\left(x_{i}\right)_{i<0}\right)$ is called right (resp. left) infinite X-ray. For a left infinite X-ray, say x_{-}, its follower set is $\omega_{+}\left(x_{-}\right)=\left\{x_{+} \in X^{+}: x_{-} x_{+}\right.$is a point in $\left.X\right\}$. Consider the collection of all follower sets $\omega_{+}\left(x_{-}\right)$as the set of vertices of a graph X^{+}. There is an edge from I_{1} to I_{2} labeled a if and only if there is an X-ray x_{-}such that $x_{-} a$ is an X-ray and $I_{1}=\omega_{+}\left(x_{-}\right), I_{2}=\omega_{+}\left(x_{-} a\right)$. This labeled graph is called the Krieger graph for X. If X is a synchronized system with synchronizing word α, the irreducible component of the Krieger graph containing the vertex $\omega_{+}(\alpha)$ is called the right Fischer cover of X. We are working only with coded synchronized systems, which are irreducible. In this situation, like irreducible sofics, the right Fischer cover is just called the Fischer cover.

Let $\phi=\Phi_{\infty}: X \rightarrow Y$ be a 1-block code. Then ϕ is right-resolving whenever $a b$ and $a c$ are 2-blocks in X with $\Phi(b)=\Phi(c)$, then $b=c$.

Let G and H be graphs. A graph homomorphism from G to H consists of a pair of maps $\partial \Phi: \mathcal{V}(G) \rightarrow$ $\mathcal{V}(H)$ and $\Phi: \mathcal{E}(G) \rightarrow \mathcal{E}(H)$ such that $\partial \Phi(i(e))=i(\Phi(e))$ and $\partial \Phi(t(e))=t(\Phi(e))$ for all $e \in \mathcal{E}(G)$. A graph homomorphism is a graph isomorphism if both $\partial \Phi$ and Φ are one-to-one and onto. Two graphs G and H are graph isomorphic (written $G \cong H$) if there is a graph isomorphism between them. Let $\mathcal{E}_{I}(G)$ be the set of all the edges in $\mathcal{E}(G)$ starting from $I \in \mathcal{V}(G)$. A graph homomorphism $\Phi: G \rightarrow H$ maps $\mathcal{E}_{I}(G)$ into $\mathcal{E}_{\partial \Phi(I)}(H)$ for each vertex I of G. Thus, $\phi=\Phi_{\infty}$ is right-resolving if and only if for every vertex I of G the restriction Φ_{I} of Φ to $\mathcal{E}_{I}(G)$ is one-to-one. If G and H are irreducible and ϕ is a right-resolving code from X_{G} onto X_{H}, then each Φ_{I} must be a bijection. Thus, for each vertex I of G and every edge $f \in \mathcal{E}_{\partial \Phi(I)}(H)$, there exists a unique "lifted" edge $e \in \mathcal{E}_{I}(G)$ such that $\Phi(e)=f$. This lifting property inductively extends to paths: for every vertex I of G and every path w in H starting at $\partial \Phi(I)$, there is a unique path π in G starting at I such that $\Phi(\pi)=w$.

Points x and x^{\prime} in X are left-asymptotic if there is an integer N for which $x_{(-\infty, N]}=x_{(-\infty, N]}^{\prime}$. A sliding block code $\phi: X \rightarrow Y$ is right-closing if whenever x, x^{\prime} are left-asymptotic and $\phi(x)=\phi\left(x^{\prime}\right)$, then $x=x^{\prime}$. Similarly, left-closing will be defined. A sliding block code is bi-closing if it is simultaneously rightclosing and left-closing. An irreducible sofic shift is called AFT if it has a biclosing presentation. The entropy of a shift space X is defined by $h(X)=\lim _{n \rightarrow \infty}(1 / n) \log \left|\mathcal{B}_{n}(X)\right|$.

3. General properties of S-gap shifts and β-shifts

3.1. S-gap shifts

To define a S-gap shift $X(S)$, fix $S=\left\{s_{i} \in \mathbb{N} \cup\{0\}: 0 \leq s_{i}<s_{i+1}, i \in \mathbb{N} \cup\{0\}\right\}$. Define $X(S)$ to be the set of all binary sequences for which 1 s occur infinitely often in each direction and such that the number of 0 s between successive occurrences of a 1 is in S. When S is infinite, we need to allow points that begin or end with an infinite string of 0 s . Note that $X(S)$ and $X\left(S^{\prime}\right)$ are conjugate if and only if one of the S and S^{\prime} is $\{0, n\}$ and the other $\{n, n+1, n+2, \ldots\}$ for some $n \in \mathbb{N}[3$, Theorem 4.1]. We consider $X(S)$ up to conjugacy and by convention $\{0, n\}$ is chosen. Now let $d_{0}=s_{0}$ and $\Delta(S)=\left\{d_{n}\right\}_{n}$ where $d_{n}=s_{n}-s_{n-1}$. Then an S-gap shift is SFT if and only if S is finite or cofinite, is AFT if and only if $\Delta(S)$ is eventually constant, and is sofic if and only if $\Delta(S)$ is eventually periodic [3]. Therefore, for sofic S-gap shifts we set

$$
\begin{equation*}
\Delta(S)=\left\{d_{0}, d_{1}, \ldots, d_{k-1}, \overline{g_{0}, g_{1}, \ldots, g_{l-1}}\right\}, \quad g=\sum_{i=0}^{l-1} g_{i} \tag{3.1}
\end{equation*}
$$

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

where $g_{j}=s_{k+j}-s_{k+j-1}, 0 \leq j \leq l-1$. Furthermore, k and l are the least integers such that (3.1) holds.
The Fischer cover of any irreducible sofic shift as well as S-gap shifts is the labeled subgraph of the follower set graph, which consists of the finite set of follower sets of synchronizing words as its vertices. For an S-gap shift this set is

$$
\begin{equation*}
\left\{F(1), F(10), \ldots, F\left(10^{n(S)}\right)\right\}, \tag{3.2}
\end{equation*}
$$

where $n(S)=\max S$ for $|S|<\infty$. If $|S|=\infty$, then $n(S)$ will be defined as follows.

1. For $k=1$ and $g_{l-1}>s_{0}$,
(a) if $g_{l-1}=s_{0}+1$, then $F\left(10^{s_{l-1}+1}\right)=F(1)$ and $n(S)=s_{l-1}$.
(b) if $g_{l-1}>s_{0}+1$, then $F\left(10^{g}\right)=F(1)$ and $n(S)=g-1$.
2. For $k \neq 1$, if $g_{l-1}>d_{k-1}$, then $F\left(10^{g+s_{k-2}+1}\right)=F\left(10^{s_{k-2}+1}\right)$ and $n(S)=g+s_{k-2}$.
3. For $k \in \mathbb{N}$, if $g_{l-1} \leq d_{k-1}$, then $F\left(10^{s_{k+l-2}+1}\right)=F\left(10^{s_{k-1}-g_{l-1}+1}\right)$ and $n(S)=s_{k+l-2}$.

For a view of the Fischer cover of a S-gap shift, we line up vertices in (3.2) horizontally starting from $F(1)$ on the left followed by $F(10)$ and then by $F\left(10^{2}\right)$, at last ending at $F\left(10^{n(S)}\right)$ as the far right vertex. In all cases, label 0 the edge starting from $F\left(10^{i}\right)$ and terminating at $F\left(10^{i+1}\right), 0 \leq i \leq n(S)-1$; also, label 1 all edges from $F\left(10^{s}\right)$ to $F(1)$ for $s \in S$ and $s<n(S)$.

The only remaining edges to be taken care of are those starting at $F\left(10^{n(S)}\right)$. In (1a), there are two edges from $F\left(10^{n(S)}\right)$ to $F(1)$; label one 0 and the other 1. In (1b), there is only one edge from $F\left(10^{n(S)}\right)$ to $F(1)$, which is labeled 0 . In case (2) (resp. (3)), label 0 the edge from $F\left(10^{n(S)}\right)$ to $F\left(10^{s_{k-2}+1}\right)$ (resp. $F\left(10^{s_{k-1}-g_{l-1}+1}\right)$) and label 1 the edge from $F\left(10^{n(S)}\right)$ to $F(1)$. For a more detailed treatment see [2].

3.2. β-shifts

Rényi [16] was the first who considered the β-shifts. These shifts are symbolic spaces with rich structures and applications in theory and practice. We present here a brief introduction to β-shifts from [20]. For a more detailed treatment, see [6].

When t is a real number we denote by $\lfloor t\rfloor$ the largest integer smaller than t. Let β be a real number greater than 1. Set

$$
1_{\beta}=a_{1} a_{2} a_{3} \cdots \in\{0,1, \ldots,\lfloor\beta\rfloor\}^{\mathbb{N}},
$$

where $a_{1}=\lfloor\beta\rfloor$ and

$$
a_{i}=\left\lfloor\beta^{i}\left(1-a_{1} \beta^{-1}-a_{2} \beta^{-2}-\cdots-a_{i-1} \beta^{-i+1}\right)\right\rfloor
$$

for $i \geq 2$. The sequence 1_{β} is the expansion of 1 in the base β; that is, $1=\sum_{i=1}^{\infty} a_{i} \beta^{-i}$. Let \leq be the lexicographic ordering of $(\mathbb{N} \cup\{0\})^{\mathbb{N}}$. The sequence 1_{β} has the property that

$$
\begin{equation*}
\sigma^{k} 1_{\beta} \leq 1_{\beta}, \quad k \in \mathbb{N}, \tag{3.3}
\end{equation*}
$$

where σ denotes the shift on $(\mathbb{N} \cup\{0\})^{\mathbb{N}}$. It is a result of Parry [15] that this property characterizes the elements of $(\mathbb{N} \cup\{0\})^{\mathbb{N}}$, which are the β-expansion of 1 for some $\beta>1$. Furthermore, it follows from (3.3) that

$$
\begin{equation*}
X_{\beta}=\left\{x \in\{0,1, \ldots,\lfloor\beta\rfloor\}^{\mathbb{Z}}: x_{[i, \infty)} \leq 1_{\beta}, i \in \mathbb{Z}\right\} \tag{3.4}
\end{equation*}
$$

Figure 1. A typical Fischer cover of a strictly sofic β-shift for $1_{\beta}=a_{1} a_{2} \cdots a_{n}\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}, \beta \in(1,2]$. The edges heading to α_{1} exist if $a_{i}=1$.

Figure 2. A typical Fischer cover of a nonsofic β-shift for $1_{\beta}=a_{1} a_{2} \cdots, \beta \in(1,2]$. The edges ending at α_{1} exist if $a_{i}=1$.
is a shift space of $\{0,1, \ldots,\lfloor\beta\rfloor\}^{\mathbb{Z}}$, called the β-shift. The β-shift is SFT if and only if the β-expansion of 1 is finite and it is sofic if and only if the β-expansion of 1 is eventually periodic [4]. Moreover, any β-shift is half-synchronized. See [9] for definition and properties of a half-synchronized system. Note that all halfsynchronized system have a Fischer cover. We consider $\beta \in(1,2]$, where in this case Fischer covers for a sofic and nonsofic β-shift are as in Figures 1 and 2, respectively.

4. Equivalencies between a beta-shift and an S-gap shift

We look for some sort of equivalencies for a given X_{β} and some S-gap shift. We use these equivalencies to do some computations for X_{β}. Sofics and nonsofics are treated differently.

4.1. Sofic case

A sliding block code $\phi: X \rightarrow Y$ is finite-to-one if there is $M \in \mathbb{N}$ such that for all $y \in Y,\left|\phi^{-1}(y)\right| \leq M$. Shift spaces X and Y are finitely equivalent if there is an SFT, say W, together with finite-to-one factor codes $\phi_{X}: W \rightarrow X$ and $\phi_{Y}: W \rightarrow Y$. One calls W a common extension and ϕ_{X}, ϕ_{Y} the legs. The triple $\left(W, \phi_{X}, \phi_{Y}\right)$ is a finite equivalence between X and Y. Call a finite equivalence between sofic shifts in which both legs are right-resolving (resp. right-closing) a right-resolving finite equivalence (resp. right-closing finite equivalence).

Let G and H be two irreducible graphs. Write that $H \preceq G$ if X_{H} is a right-resolving factor of X_{G} and let \mathcal{R}_{G} be the collection of graph-isomorphism classes of graphs H for which $H \preceq G$. This ordering naturally determines an ordering that we still call \preceq on \mathcal{R}_{G}. It turns out that there is a smallest element M_{G} in this partial ordering (\mathcal{R}_{G}, \preceq).

Now we recall from [14] how M_{G} can be constructed. Let $\mathcal{V}=\mathcal{V}(G)$ be the set of vertices of G and let us define a nested sequence of equivalence relations \sim_{n} on \mathcal{V} for $n \geq 0$ and denote by \mathcal{P}_{n} the partition of \mathcal{V} into \sim_{n} equivalence classes. To define \sim_{n}, first let $I \sim_{0} J$ for all $I, J \in \mathcal{V}$. For $n \geq 1$, let $I \sim_{n} J$ if and
only if for each class (or atom) $P \in \mathcal{P}_{n-1}$ the total number of edges from I to vertices in P equals the total number of edges from J to vertices in P. Note that the partitions \mathcal{P}_{n} are nested: each atom in \mathcal{P}_{n} is a union of atoms in \mathcal{P}_{n+1}.

We have \mathcal{V} finite and \mathcal{P}_{n} nested, so the \mathcal{P}_{n} s will be equal for all sufficiently large n, and we denote by \mathcal{P} the limiting partition. Then \mathcal{P} will be the set of states of M_{G}. To prevent confusion between M_{G} and G, we call a vertex in M_{G} "state" and of G just "vertex".

Since for all large enough $n, \mathcal{P}=\mathcal{P}_{n}=\mathcal{P}_{n+1}$, for each pair $P, Q \in \mathcal{P}$ there is k such that for each $I \in P$ there are exactly k edges in G from I to vertices in Q. We then assign k edges in M_{G} from P to Q.

Therefore, to have M_{G}, for each n, we refine the atoms of \mathcal{P}_{n}, and when $\mathcal{P}_{n}=\mathcal{P}$, then for each $P, Q \in \mathcal{P}$ and $I, J \in P$, the total number of paths from I and J to vertices in Q and also the length of these paths (with respect to G) for both I and J are equal.

Briefly we have $\mathcal{P}_{0}=\mathcal{V}(G)$. Furthermore, \sim_{1} partitions vertices by their out-degrees where for X_{β} and $X=X(S), \sim_{1}$ partitions vertices into two atoms, one atom containing the vertices with out-degree one and the other with out-degree two. If $\mathcal{P} \neq \mathcal{P}_{1}$, for the next step, if $P \in \mathcal{P}_{1}$ is refined, then it is the turn for Q to be refined where $Q \in \mathcal{P}_{1}$ is any atom having edges terminating to vertices in P.

Theorem 4.1 [14, Theorem 8.4.7] Suppose that X and Y are irreducible sofic shifts. Let G_{X} and G_{Y} denote the underlying graphs of their Fischer covers respectively. Then X and Y are right-resolving finitely equivalent if and only if $M_{G_{X}} \cong M_{G_{Y}}$. Moreover, the common extension can be chosen to be irreducible.

A point in X is doubly transitive if every word in $\mathcal{B}(X)$ occurs infinitely often to the left and to the right of its representation. Shift spaces X and Y are almost conjugate if there is a shift of finite type W and 1-1 a.e. factor codes $\phi_{X}: W \rightarrow X$ and $\phi_{Y}: W \rightarrow Y$ (1-1 a.e. means that any doubly transitive point has exactly one pre-image). Call an almost conjugacy between sofic shifts in which both legs are right-resolving (resp. right-closing) a right-resolving almost conjugacy (resp. right-closing almost conjugacy).

Let r-r and r-c stand for right-resolving and right-closing, respectively. We summarize the relations among the mentioned properties in the following diagram.

$$
\begin{array}{cllll}
& & & & \text { conjugacy } \\
& & & \Downarrow \\
\text { r-r almost conjugacy } & \Rightarrow & \text { r-c almost conjugacy } & \Rightarrow & \text { almost conjugacy } \tag{4.1}\\
\Downarrow & \Downarrow & & \Downarrow \\
\text { r-r finite equivalence } & \Rightarrow & \text { r-c finite equivalence } & \Rightarrow & \text { finite equivalence }
\end{array}
$$

There are examples to show that in general the converse to the above implications is not necessarily true [14].

Definition 4.2 Let $m \in \mathbb{N}$ and let $w=w_{0} w_{1} \ldots w_{p-1}=\left(w_{0} w_{1} \ldots w_{q-1}\right)^{m}$ be a block of length p. The least period of w is the smallest integer q such that $m=\frac{p}{q}$. The block w is primitive if its least period equals its length p.

Now we will picture the graph M_{G} of $X(S)$. First suppose $|S|<\infty$. Let $S=\left\{s_{0}, s_{1}, \ldots, s_{k-1}\right\} \subseteq \mathbb{N}_{0}, k>1$ and

$$
\begin{equation*}
\mathcal{D}(S)=d_{1} d_{2} \cdots d_{k-2}\left(d_{k-1}+s_{0}+1\right) \tag{4.2}
\end{equation*}
$$

where $d_{i}=s_{i}-s_{i-1}, 1 \leq i \leq k-1$. Note that if $I, J \in \mathcal{V}(G)$ are in the same state of M_{G}, then both I and J have the same out-degree, which is one or two. The out-degree of any vertex $F\left(10^{s_{i}}\right), 0 \leq i \leq k-1$ is two,

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

except the last one. Hence, $d_{i}, 1 \leq i \leq k-2$ measures the distance between any two vertices with out-degree two.

To pick the next vertex after $F\left(10^{s_{k-2}}\right)$ with out-degree two, we continue to the right to $F\left(10^{s_{k-1}}\right)$ and then along the graph to $F(1)$, and then again to the right to $F\left(10^{s_{0}}\right)$, which is after $d_{k-1}+s_{0}+1$ steps.

Theorem 4.3 Let $|S|<\infty$. Then $\mathcal{D}(S)$ is primitive if and only if $M_{G} \cong G$.
Proof Suppose that $\mathcal{D}(S)$ is not primitive. Let $\mathcal{V}=\mathcal{V}\left(M_{G}\right)$ be the set of states of M_{G}. By the Fischer cover of $X(S)$, each state in M_{G} then consists of $m=\frac{|S|-1}{q}$ vertices of graph G where q is the least period $\mathcal{D}(S)$ and $|\mathcal{V}|=\sum_{i=1}^{q} d_{i}=s_{q}-s_{0}$. In fact, if $\mathcal{V}=\left\{P_{i}: 0 \leq i \leq s_{q}-s_{0}-1\right\}$, then

$$
P_{i}=\left\{F\left(10^{s_{0}+i}\right), F\left(10^{s_{0}+i+|\mathcal{V}|}\right), \ldots, F\left(10^{s_{0}+i+(m-1)|\mathcal{V}| \bmod u}\right)\right\}
$$

where $u=s_{k-1}+1$. Since $|\mathcal{V}|=s_{q}-s_{0}<s_{k-1}+1=|\mathcal{V}(G)|, M_{G} \neq G$.
Now suppose that $M_{G} \neq G$. There are thus at least two different vertices of G, say $I=F\left(10^{p}\right)$ and $J=F\left(10^{q}\right)$, such that I and J are in the same state of M_{G}. Assume $p<q$. There exists an edge from I (resp. J) to $F\left(10^{(p+1)}\right.$) (resp. $F\left(10^{(q+1) \bmod u}\right)$). Therefore, by the fact that I and J are equivalent, we have that the vertices $F\left(10^{(p+1)}\right)$ and $F\left(10^{(q+1)} \bmod u\right)$ are equivalent. By the same reasoning, for each $i \geq 2$, $F\left(10^{(p+i)} \bmod u\right)$ and $F\left(10^{(q+i)} \bmod u\right)$ are equivalent. Therefore, $\mathcal{D}(S)$ is not primitive.

Theorem 4.4 Let $X(S)$ be a sofic S-gap shift with $|S|=\infty$ and the Fischer cover $\mathcal{G}=(G, \mathcal{L})$. Then $M_{G} \cong G$.
Proof We consider our three cases appearing for $|S|=\infty$ in Subsection 3.1. We claim that the last vertex $F\left(10^{n(S)}\right)$ is not equivalent with any other vertex. Otherwise, we will show that at least one of k or l will not be the least integer in (3.1). Thus, the state of M_{G} containing this last vertex contains only this vertex, which in turn implies that other states of M_{G} also have one vertex. Therefore, $M_{G} \cong G$.

We prove our claim for the most involved case, i.e. case (3). First suppose there is a vertex

$$
\begin{equation*}
v_{0}=F\left(10^{t_{0}}\right) \sim F\left(10^{n(S)}\right), \quad s_{k-1}-g_{l-1}+1 \leq t_{0}<n(S) \tag{4.3}
\end{equation*}
$$

In fact, if $t_{0}<s_{k-1}-g_{l-1}+1$, then k is not the least integer in (3.1). Without loss of generality assume that this t_{0} is the largest integer with this property. Recall that there is an edge from $F\left(10^{n(S)}\right)$ to $F\left(10^{s_{k-1}-g_{l-1}+1}\right)$; it is thus convenient to set $t_{1}:=n(S), t_{1}+1:=s_{k-1}-g_{l-1}+1$ and $v_{1}:=F\left(10^{n(S)}\right)$. By (4.3), $v_{2}:=F\left(10^{t_{1}+1}\right) \sim F\left(10^{t_{0}+1}\right)$, and moving horizontally to the right, $v_{i+1}:=F\left(10^{t_{1}+i}\right) \sim F\left(10^{t_{0}+i}\right)$, $i \geq 2$. Moreover, none of $F\left(10^{t_{0}+i}\right)$ will be equivalent to v_{0}, for this would violate the way we have picked t_{0}. If $v_{2} \sim v_{0}$ we are done, for then l will not be the least integer. Observe that there are only finitely many vertices; therefore, there must be $v_{i} \nsim v_{0}, 2 \leq i<p$, and $v_{p} \sim v_{0}$. Applying the same reasoning, we deduce that again l is not the least integer.
Theorems 4.3 and 4.4 imply the following.
Corollary 4.5 Let $X(S)$ be a sofic S-gap shift with the Fischer cover $\mathcal{G}=(G, \mathcal{L})$. Then any state of M_{G} has the same number of vertices of G.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

When $|S|<\infty$, there may be cases with $M_{G} \not \approx G$. The difference with $|S|=\infty$ is that for $|S|<\infty$, the last vertex $F\left(10^{n(S)}\right)$ always has out-degree one with label 1 , while for $|S|=\infty$, the label of the edge starting from the vertex with out-degree one is 0 .

Now let X be a sofic shift with the Fischer cover $\mathcal{G}=(G, \mathcal{L})$. By definition, \mathcal{L}_{∞} is then right-resolving, and it is also almost invertible [14, Proposition 9.1.6]. Thus:

Lemma 4.6 Suppose X and Y are sofic with Fischer covers $\mathcal{G}_{X}=\left(G_{X}, \mathcal{L}_{X}\right)$ and $\mathcal{G}_{Y}=\left(G_{Y}, \mathcal{L}_{Y}\right)$ respectively and such that $G_{X} \cong G_{Y}$. Then X and Y will be right-resolving almost conjugate with legs $\mathcal{L}_{X \infty}: W \rightarrow X$ and $\mathcal{L}_{Y \infty}: W \rightarrow Y$ where W is SFT such that $W \cong G_{X} \cong G_{Y}$.

Theorem 4.7 Let X_{β} be a sofic β-shift for $\beta \in(1,2]$. Then there is $S \subseteq \mathbb{N}_{0}$ such that X_{β} and $X(S)$ are right-resolving almost conjugate. The set S will be explicitly determined in terms of coefficients of 1_{β}. Moreover, if X_{β} is SFT, then $X(S)$ can be chosen to be conjugate to X_{β}.

Proof For a given sofic β-shift, $\beta \in(1,2]$, we claim that there is $S \subseteq \mathbb{N}_{0}$ such that the S-gap shift $X(S)$ and X_{β} have the same underlying graph for their Fischer covers. By Lemma 4.6, X_{β} and $X(S)$ will then be right-resolving almost conjugate.

Let $1_{\beta}=a_{1} a_{2} \cdots a_{n}\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}$ and $\left\{i_{1}, i_{2}, \ldots, i_{t}\right\} \subseteq\{1,2, \ldots, n\}$ where $a_{i_{v}}=1$ for $1 \leq v \leq t$. Note that i_{1} is always 1. Similarly, let $\left\{j_{1}, j_{2}, \ldots, j_{u}\right\} \subseteq\{n+1, \ldots, n+p\}$ where $a_{j_{w}}=1$ for $1 \leq w \leq u$. We consider two cases:

1. X_{β} is SFT. In this case, $\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}=0^{\infty}$ and $a_{n}=1$, so $i_{t}=n$ and $X(S)$ with

$$
\begin{equation*}
S=\left\{0, i_{2}-1, \ldots, i_{t-1}-1, i_{t}-1\right\} \tag{4.4}
\end{equation*}
$$

is the required S-gap shift, as has been claimed. Since both X_{β} and $X(S)$ are SFT with the same underlying graph G for their Fischer covers, they are both conjugate to X_{G} [14, Theorem 3.4.17], and so conjugate to each other.
2. X_{β} is strictly sofic. Then $\left(a_{n+1} \cdots a_{n+p}\right)^{\infty} \neq 0^{\infty}$. Relabel any edge on G_{β} ending at the first vertex for 1 and other edges for 0 . The shift space corresponding to this labeling is an S-gap shift where

$$
\begin{equation*}
S=\left\{0, i_{2}-1, \ldots, i_{t}-1, j_{1}-1, \ldots, j_{u}-1, j_{1}+p-1, \ldots\right\} \tag{4.5}
\end{equation*}
$$

(observe that then

$$
\begin{equation*}
\Delta(S)=\left\{0, i_{2}-1, \ldots, i_{t}-i_{t-1}, j_{1}-i_{t}, \overline{j_{2}-j_{1}, \ldots, j_{u}-j_{u-1}, j_{1}-j_{u}+p}\right\} \tag{4.6}
\end{equation*}
$$

which shows that $X(S)$ is sofic [3, Theorem 3.4]).
Rewrite $\Delta(S)$ in (4.6) as

$$
\Delta(S)=\left\{0, d_{1}, \ldots, d_{t}, \overline{g_{0}, \ldots, g_{u-1}}\right\}
$$

We claim that $\mathcal{G}_{S}=\left(G_{S}, \mathcal{L}_{S}\right)$ is follower-separated. Otherwise, there are two cases.
(a) There is $1 \leq i \leq t$ such that $d_{t+1-j}=g_{u-j}, 1 \leq j \leq i$. Then $\mathcal{G}_{\beta}=\left(G_{\beta}, \mathcal{L}_{\beta}\right)$ is not follower-separated and so it is not the Fischer cover of X_{β}, which is absurd.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

(b) $g_{0} g_{2} \cdots g_{u-1}$ is not primitive. This implies that $a_{n+1} \cdots a_{n+p}$ is not primitive, which is again absurd.

This establishes the claim and S is completely determined.

Now the following is immediate.
Corollary 4.8 Let X_{β} be a sofic β-shift whose underlying graph of its Fischer cover is G. Then $M_{G} \cong G$.
Proof Suppose $M_{G} \not \approx G$. For this X_{β}, find the S-gap shift satisfying the conclusion of Theorem 4.7. Then by Theorem 4.4, this $X(S)$ (as well as our X_{β}) must be SFT and $\mathcal{D}(S)$ is not primitive. However, this will not allow us to have (3.3), which is a necessary condition.

Lemma 4.9 Let $|S|=\infty$ and let $X(S)$ be a sofic shift satisfying (1a) in Subsection 3.1. Then there does not exist any β-shift being right-resolving finite equivalent with $X(S)$.
Proof Suppose there is some $\beta \in(1,2]$ such that $X(S)$ and X_{β} are right-resolving finite equivalent and $\mathcal{G}_{S}=\left(G_{S}, \mathcal{L}_{S}\right)$ and $\mathcal{G}_{\beta}=\left(G_{\beta}, \mathcal{L}_{\beta}\right)$ are the Fischer covers of $X(S)$ and X_{β}, respectively. By Theorem 4.4 and Corollary 4.8, $G_{S} \cong G_{\beta}$. Then G_{β} is the underlying graph of \mathcal{G}_{S} and $1_{\beta}=\left(a_{1} a_{2} \cdots a_{n}\right)^{\infty}$.

Now by hypothesis, $g_{l-1}=1$, so $1 \notin S$ and this implies that $a_{2}=0$ while $a_{1}=a_{n}=1$. This means $\left(a_{1} a_{2} \cdots a_{n}\right)^{\infty}$ does not satisfy (3.3), and we are done.
Let $X(S)$ be an S-gap shift where $s_{0}=0$ and $d_{i}=s_{i}-s_{i-1}, i \in \mathbb{N}$ and also $\mathcal{D}(S)$ as (4.2). Define

$$
d_{1} d_{2} d_{3} \cdots=\left\{\begin{array}{cl}
\left(d_{1} d_{2} \cdots\left(d_{k-1}+1\right)\right)^{\mathbb{N}}=(\mathcal{D}(S))^{\mathbb{N}}, & |S|=k \tag{4.7}\\
d_{1} d_{2} \cdots, & |S|=\infty
\end{array}\right.
$$

Theorem 4.10 Suppose $X(S)$ is a sofic shift where $s_{0}=0$. Then $X(S)$ is right-resolving almost conjugate to a β-shift if and only if

$$
\begin{equation*}
d_{n} d_{n+1} \cdots \geq d_{1} d_{2} \cdots \tag{4.8}
\end{equation*}
$$

for all $n \geq 1$.
Proof Let $\beta \in(1,2]$ with $1_{\beta}=a_{1} a_{2} \cdots$ be so that $X(S)$ and X_{β} are right-resolving almost conjugate. This means they are right-resolving finite equivalent. First suppose $M_{G_{S}} \cong G_{S}$. By Corollary $4.8, G_{S} \cong G_{\beta}$ and so (4.8) follows from the fact that $a_{1} a_{2} \cdots$ satisfies (3.3).

If $M_{G_{S}} \not \not G_{S}$, then by Theorems 4.3 and $4.4,|S|<\infty$. Thus, X_{β} is right-resolving finite equivalent to $X\left(S^{\prime}\right)$ with $S^{\prime}=\left\{0, s_{1}, \ldots,\left(s_{q}-1\right)\right\}$ and $\mathcal{D}(S)=\mathcal{D}\left(S^{\prime}\right)^{m}$ where $m=\frac{|S|-1}{q}$ as in the proof of Theorem 4.3. Moreover, $M_{G_{S^{\prime}}} \cong G_{S^{\prime}}$, which gives again $d_{n}^{\prime} d_{n+1}^{\prime} \cdots \geq d_{1}^{\prime} d_{2}^{\prime} \cdots$ for all $n \geq 1$. Now this fact reflects to $\mathcal{D}(S)$ and (4.8) holds.

To prove the sufficiency, suppose that $\mathcal{G}_{S}=\left(G_{S}, \mathcal{L}_{S}\right)$ is the Fischer cover of $X(S)$ and $\mathcal{V}=\mathcal{V}\left(G_{S}\right)$ the set of vertices of G_{S}. Relabel G_{S} by labeling 0 any edge terminating at vertex $F(1)$ and any edge whose initial vertex has out-degree 1, and assign 1 all other edges.

Recall that we have lined up the vertices horizontally from $F(1)$ on the left to $F\left(10^{n(S)}\right)$ on the right. First let $|S|<\infty$ and $a_{1} a_{2} \cdots a_{n(S)}$ be the assigned label of the horizontal path from $F(1)$ to the last vertex

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

with $a_{i}=0$ or 1 as determined above. Then (4.8) implies that $a_{1} a_{2} \cdots a_{n(S)} 1$ is the β-expansion of 1 for some $\beta \in(1,2]$ and \mathcal{G}_{β} is the Fischer cover of X_{β}.

When $|S|=\infty$, assign the label $a_{1} a_{2} \cdots a_{n(S)}$ to the horizontal path from $F(1)$ to the last vertex and label $a_{n(S)+1}$ to the edge starting from $F\left(10^{n(S)}\right)$ and terminating at $F\left(10^{n(S)+1}\right)$. Again, (4.8) implies that $a_{1} a_{2} \cdots a_{n}\left(a_{n+1} \cdots a_{n(S)+1}\right)^{\infty}$ is the β-expansion of 1 for some $\beta \in(1,2]$ where the index n depends on S. Then \mathcal{G}_{β} is the Fischer cover of X_{β} (one needs similar arguments as in the proof of Theorem 4.7 to see this fact). Thus, Lemma 4.6 implies that $X(S)$ and X_{β} are right-resolving almost conjugate.

Remark $4.11 X_{\beta}$ can be explicitly determined in terms of S. If $S=\left\{0, s_{1}, \ldots, s_{k-1}\right\}$, then it is sufficient to set $1_{\beta}=a_{1} a_{2} \cdots a_{s_{k-1}+1}$ such that $a_{1}=a_{s_{i}+1}=1,1 \leq i \leq k-1$. When $|S|=\infty$, different cases of Subsection 3.1 must be considered. Case (1a) has been ruled out by Lemma 4.9, so other cases will be considered.
(1b) If $k=1$ and $g_{l-1}>1$, then $F\left(10^{g}\right)=F(1)$, so $1_{\beta}=a_{1} a_{2} \cdots a_{g}$ such that $a_{s_{i}+1}=1,0 \leq i \leq l-1$.
(2) If $k \neq 1$ and $g_{l-1}>d_{k-1}$, then $F\left(10^{g+s_{k-2}+1}\right)=F\left(10^{s_{k-2}+1}\right)$, so $1_{\beta}=a_{1} a_{2} \cdots a_{s_{k-2}+1}\left(a_{s_{k-2}+2} \cdots\right.$ $\left.a_{g+s_{k-2}+1}\right)^{\infty}$ for which $a_{s_{i}+1}=1,0 \leq i \leq k+l-2$.
(3) If $g_{l-1} \leq d_{k-1}$, then $F\left(10^{s_{k+l-2}+1}\right)=F\left(10^{s_{k-1}-g_{l-1}+1}\right)$, so

$$
1_{\beta}=a_{1} a_{2} \cdots a_{s_{k-1}-g_{l-1}+1}\left(a_{s_{k-1}-g_{l-1}+2} \cdots a_{s_{k+l-2}+1}\right)^{\infty}
$$

for which $a_{s_{i}+1}=1,0 \leq i \leq k+l-2$ and $a_{s_{k+l-2}+1}=1$.
Now we show that the conclusion of Theorem 4.7 about conjugacy is not true in non-SFT cases. Recall that when X is a shift space with nonwandering part $R(X)$, we can consider the shift space

$$
\partial X=\{x \in R(X): x \text { contains no words that are synchronizing for } R(X)\}
$$

which is called the derived shift space of X. The derived shift space is a conjugacy invariant.
Theorem 4.12 A non-SFT β-shift is not conjugate to a S-gap shift for any $S \subseteq \mathbb{N}_{0}$.
Proof All the S-gap shifts are synchronized; therefore, a possible conjugacy happens between synchronized β and S-gap shifts and so we assume that our non-SFT β-shift is synchronized.

Suppose that there is $S \subseteq \mathbb{N}_{0}$ such that $\varphi: X(S) \rightarrow X_{\beta}$ is a conjugacy map. By [19, Proposition 4.5], we then must have $\varphi(\partial X(S))=\partial X_{\beta}$. Since 1 is a synchronizing word for any S-gap shift, and $X(S)$ is not SFT, $\partial X(S)=\left\{0^{\infty}\right\}$ (for a SFT S-gap shift, $\partial X(S)=\emptyset$). To prove the theorem, we show that

$$
\begin{equation*}
\varphi\left(\left\{0^{\infty}\right\}\right) \neq \partial X_{\beta} \tag{4.9}
\end{equation*}
$$

Recall that the ω-limit set of the sequence 1_{β} under the shift map is the derived shift space ∂X_{β} of X_{β} [20, Theorem 2.8]. First assume that X_{β} has the specification property. There then exists some $n \geq 0$ such that 0^{n} is not a factor of 1_{β} [5], so 0^{n} is a synchronizing word for X_{β} [5, Proposition 2.5.2] and $0^{\infty} \notin \partial X_{\beta}$. Therefore, $\partial X_{\beta} \cap P_{1}\left(X_{\beta}\right)=\emptyset\left(P_{1}\left(X_{\beta}\right)\right.$ denotes the set of fixed points for $\left.X_{\beta}\right)$ while $\varphi\left(0^{\infty}\right) \in P_{1}\left(X_{\beta}\right)$ and $\varphi\left(0^{\infty}\right) \in \varphi(\partial X(S))=\partial X_{\beta}$, and (4.9) holds.

If X_{β} does not have specification, then $\left\{0^{\infty}, 10^{\infty}\right\} \subseteq \omega\left(1_{\beta}\right)=\partial X_{\beta}$ and again (4.9) holds.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

Corollary 4.13 Let X_{β} be SFT and $X\left(S_{0}\right)$ the unique S-gap shift conjugate to X_{β} (Theorem 4.7). Then X_{β} $i s$:

1. right-resolving almost conjugate to $X\left(S_{0}\right)$,
2. right-resolving finite equivalent to infinitely many S-gap shifts $\left(X\left(S_{n}\right)\right)_{n \in \mathbb{N}}$ with $\mathcal{D}\left(S_{n}\right)=\left(\mathcal{D}\left(S_{0}\right)\right)^{n+1}$, $n \in \mathbb{N}$,
3. right-resolving almost conjugate to a unique strictly sofic S-gap shift.

If X_{β} is strictly sofic, then it is right-resolving almost conjugate to a unique S-gap shift.
Proof Let X_{β} be SFT and let $1_{\beta}=a_{1} a_{2} \cdots a_{n-1} a_{n}$ and

$$
\left\{i_{1}, i_{2}, \ldots, i_{t}\right\} \subseteq\{1,2, \ldots, n\}
$$

where $a_{i_{j}}=1,1 \leq j \leq t$. We will relabel the Fischer cover of X_{β} for possible presentation of a S-gap shift.
One of such SFT S-gap shifts is $X\left(S_{0}\right)$, characterized in the proof of Theorem 4.7. By that theorem, X_{β} and $X\left(S_{0}\right)$ are right-resolving almost conjugate and conjugate, which gives (1). For (2), relabel $\Delta\left(S_{0}\right)=$ $\left\{0, i_{2}-1, i_{3}-i_{2}, \ldots, i_{t}-i_{t-1}\right\}$ as $\Delta\left(S_{0}\right)=\left\{0, d_{1}, \ldots, d_{t-1}\right\}$ and observe that $\mathcal{D}\left(S_{0}\right)=d_{1} \cdots d_{t-2}\left(d_{t-1}+1\right)$. Set

$$
S_{1}=\left(S_{0} \backslash\left\{i_{t}-1\right\}\right) \cup\left(i_{t}+S_{0}\right)
$$

Then $\mathcal{D}\left(S_{1}\right)=\left(\mathcal{D}\left(S_{0}\right)\right)^{2}$ is not primitive and we have $M_{G_{S_{1}}} \cong M_{G_{S_{0}}}$.
Now for $j \in \mathbb{N}$, let $s_{i_{j}}=\max \left\{s: s \in S_{j-1}\right\}$ and use an induction argument to see that for

$$
\begin{equation*}
S_{j}=\left(S_{j-1} \backslash\left\{s_{i_{j}}\right\}\right) \cup\left(\left(s_{i_{j}}+1\right)+S_{0}\right) \tag{4.10}
\end{equation*}
$$

$\mathcal{D}\left(S_{j}\right)=\left(\mathcal{D}\left(S_{0}\right)\right)^{j+1}$ and $M_{G_{S_{j}}} \cong M_{G_{S_{0}}}$.
To prove (3), note that there is a strictly sofic S-gap shift with $k=1$ and $g_{l-1}>1$ as in Subsection 3.1 where $S=\left\{0, i_{2}-1, \ldots, i_{t-1}-1, i_{t}, i_{t}+i_{2}-1, \ldots\right\}$. The element i_{t} appears in S because the edge starting from the last vertex and terminating at the first vertex is labeled 0. In fact,

$$
\Delta(S)=\left\{0, \overline{i_{2}-1, i_{3}-i_{2}, \ldots, i_{t-1}-i_{t-2}, i_{t}-i_{t-1}+1}\right\}
$$

Hence, X_{β} and $X(S)$ have the same underlying graph for their Fischer covers and, by Lemma 4.6, they are right-resolving almost conjugate.

If there is another S-gap shift such that X_{β} and $X(S)$ are right-resolving finite equivalent, then $M_{G_{\beta}} \cong M_{G_{S}}$ and so $M_{G_{S_{0}}} \cong M_{G_{S}}$. Now Theorems 4.3 and 4.4 imply that $|S|<\infty$ and $\mathcal{D}(S)$ is not primitive, which in turn implies that $\mathcal{D}(S)=\left(\mathcal{D}\left(S_{0}\right)\right)^{m}$ for some $m \in \mathbb{N}$. Therefore, $S=S_{m-1}$ as defined in (4.10).

Now suppose X_{β} is strictly sofic. A typical Fischer cover of X_{β} is shown in Figure 1. The existence of a loop in the first vertex from the left implies that it is the vertex $F(1)$ in the Fischer cover of the S-gap shift. By Fischer cover of S-gap shifts [2], there is only one $X(S)$ with Fischer cover as appears in Figure 1.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

4.2. Nonsofic case

Thus far for sofics, we have used Diagram (4.1) to get some equivalencies between a sofic X_{β} and some S-gap shifts. However, the most considered equivalencies between two nonsofic subshifts are when they have a common extension with some nice properties and, in particular, when the legs are 1-1 a.e. This sort of equivalencies was considered by Fiebig in [8]. For instance, for two synchronized systems X and Y, she proves that they have a common synchronized 1-1 a.e. extension if and only if $D(X)$ and $D(Y)$ are hyperbolic conjugate if and only if $D\left(X_{G_{X}}\right)$ and $D\left(Y_{G_{Y}}\right)$ are hyperbolic conjugate where $D(X)$ denotes the set of doubly transitive points in X. This hyperbolic conjugacy is automatically at hand when G_{X} and G_{Y} are isomorphic. This assertion motivates the following construction and definition.

Let G_{β} be the underlying graph of the Fischer cover of $X_{\beta}, \beta \in(1,2]$ and α_{1} the starting vertex of G_{β} (see Figure 2). Relabel G_{β} by labeling 1 any edge terminating at vertex α_{1} and 0 all other edges to get an S-gap shift with the same underlying graph as X_{β}. Note that this relabeled graph is follower-separated for our $X(S)$ and is in fact the Fischer cover for $X(S)$.

Definition 4.14 We say that $X(S)$ is the corresponding S-gap shift to a β-shift and is denoted by $C O R R\left(X_{\beta}\right)$, $\beta \in(1,2]$ if $X(S)$ has the same underlying graph for its Fischer cover as X_{β}.

Similarly, for $X(S)$ satisfying (4.8), a unique X_{β} exists such that X_{β} has the same underlying graph for its Fischer cover as $X(S)$ and is denoted by $X_{\beta}=C O R R(X(S))$. This X_{β} is called the corresponding β-shift to $X(S)$.

Remark $4.15 X_{\beta}$ and $\operatorname{CORR}\left(X_{\beta}\right)$ have all equivalencies given in Diagram (4.1) when they are both SFT and all except conjugacy when they are strictly sofic.

Theorem $4.16 h\left(X_{\beta}\right)=h\left(\operatorname{CORR}\left(X_{\beta}\right)\right), \beta \in(1,2]$.
Proof Entropy is an invariant for all the properties given in Diagram (4.1), so when X_{β} is sofic, the proof is obvious (Theorem 4.7).

Now let X_{β} be a nonsofic shift and let $1_{\beta}=a_{1} a_{2} \cdots$. We have $a_{i}=1$ if and only if $i-1 \in S$, but for $1_{\beta}=\sum_{i=1}^{\infty} a_{i} \beta^{-i}, h\left(X_{\beta}\right)=\log \beta$ and $h(X(S))=\log \lambda$ where λ is a nonnegative solution of $\sum_{n \in S} x^{-(n+1)}=1$ [17], so $h\left(X_{\beta}\right)=h\left(\operatorname{CORR}\left(X_{\beta}\right)\right)$.
Since G_{β} (resp. G_{S}) and $G_{\operatorname{CORR}\left(X_{\beta}\right)}$ (resp. $\left.G_{\operatorname{CORR}(X(S))}\right)$ are isomorphic, the presaid result in [8] implies that:

Theorem 4.17 1. A synchronized X_{β} and $\operatorname{CORR}\left(X_{\beta}\right)$ have a common synchronized 1-1 a.e. extension.
2. Suppose $\operatorname{CORR}(X(S))$ is synchronized. Then $X(S)$ and $\operatorname{CORR}(X(S))$ have a common synchronized 1-1 a.e. extension if and only if (4.8) holds.

Now we look for some equivalencies for the nonsynchronized case. Let X and Y be two coded systems. Then there is a coded system Z factoring onto X and Y with entropy-preserving maps if and only if $h(X)=h(Y)$. In particular, Z can be chosen to be an almost Markov synchronized system [8, Theorem 2.1], so by Theorem 4.16 this is true for any $X=X_{\beta}$ and $Y=\operatorname{CORR}\left(X_{\beta}\right), \beta \in(1,2]$. We thus have:

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

Theorem 4.18 1. A X_{β} and $C O R R\left(X_{\beta}\right)$ have a common almost Markov synchronized extension with entropy-preserving legs.
2. $A X(S)$ and $\operatorname{CORR}(X(S))$ have a common almost Markov synchronized extension with entropy-preserving legs if and only if (4.8) holds.

Now we investigate the frequency of corresponding S-gap shifts in the space of all S-gap shifts by using the topology of S-gap shifts given in [3]. This topology is obtained by assigning a real number $x_{S}=\left[d_{0} ; d_{1}, d_{2}, \ldots\right]$, where $\left[d_{0} ; d_{1}, d_{2}, \ldots\right]$ is the continued fraction expansion of x_{S}, to any $X(S)$ with $d_{0}=s_{0}$ and $d_{n}=s_{n}-s_{n-1}$. By that, a one-to-one correspondence between the S-gap shifts up to conjugacy and $\mathcal{R}=\mathbb{R} \geq 0 \backslash\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, up to homeomorphism, will be established and the subspace topology of \mathcal{R} together with its measure structure will be induced on the space of all S-gap shifts.

Theorem 4.19 Let \mathcal{S} be the set of all S-gap shifts corresponding to some X_{β}. Then \mathcal{S} is a Cantor dust (a nowhere dense perfect set) on the space of all S-gap shifts. Entropy is a complete invariant for the conjugacy classes of \mathcal{S}.

Proof First suppose $X(S)$ does not satisfy (4.8) and $x_{S}=\left[d_{0} ; d_{1}, \ldots\right]$ corresponds to $X(S)$ [3]. Let N be the least integer such that $d_{N} d_{N+1} \cdots<d_{1} d_{2} \cdots$ and set $\gamma_{i}:=\left[d_{0} ; d_{1}, \ldots, d_{i}\right], i \in \mathbb{N}_{0}$. If N is even, set $U=\left(\gamma_{N}, \gamma_{N+1}\right)$, and otherwise, $U=\left(\gamma_{N+1}, \gamma_{N}\right)$. Then no points of U satisfy (4.8) and so none are corresponding S-gap shifts. This shows that \mathcal{S} is closed.

Now let $X(S) \in \mathcal{S}$ and V be a neighborhood of x_{S}. Note that two real numbers are close if sufficiently large numbers of their first partial quotients in their continued fraction expansion are equal. We can select two points $x_{S^{\prime}}, x_{S^{\prime \prime}} \in V$ such that $X\left(S^{\prime}\right)$ satisfies (4.8) and $X\left(S^{\prime \prime}\right)$ does not satisfy (4.8). This implies that all points of \mathcal{S} are limit points of themselves and \mathcal{S} is nowhere dense.

The second part follows from the fact that the entropy is a complete invariant for the conjugacy classes of β-shifts.

5. Applications

By [11, Theorem 4.22], for every $\beta>1$ there exists $1<\beta^{\prime}<2$ such that X_{β} and $X_{\beta^{\prime}}$ are flow equivalent. However, any two flow equivalent shift spaces have the same Bowen-Franks groups. Therefore, by Theorem 4.7 and [2, Theorems 4.1 and 4.2], which gives a complete account of the Bowen-Franks groups of sofic S-gap shifts, we also have a complete characterization of such groups for sofic β-gap shifts for $\beta>1$.

An adjacency matrix for a sofic shift can be read from the underlying graph of its Fischer cover. Thus, the adjacency matrix of a X_{β} and its right-resolving almost-conjugate $X(S)$ are the same by Theorem 4.7. We already have a formula for the characteristic polynomial of a sofic S-gap shift from [2, Theorem 2.2] and hence for a sofic X_{β} as well.

For a dynamical system (X, T), let p_{n} be the number of periodic points in X having period n. When $p_{n}<\infty$, the zeta function $\zeta_{T}(t)$ is defined as

$$
\zeta_{T}(t)=\exp \left(\sum_{n=1}^{\infty} \frac{p_{n}}{n} t^{n}\right)
$$

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

The zeta functions of β-shifts have been determined in [10]. Here we will give the zeta function of $\zeta_{\sigma_{\beta}}$ in terms of $\zeta_{\sigma_{S}}$ where $X(S)=\operatorname{CORR}\left(X_{\beta}\right)$.

Let X_{β} be sofic and $1_{\beta}=a_{1} a_{2} \cdots a_{n}\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}$ such that

$$
\left\{i_{1}=1, i_{2}, \ldots, i_{t}\right\} \subseteq\{1,2, \ldots, n\}, \quad \text { and }\left\{j_{1}, j_{2}, \ldots, j_{u}\right\} \subseteq\{n+1, \ldots, n+p\}
$$

where $a_{i_{v}}=a_{j_{w}}=1$ for $1 \leq v \leq t, 1 \leq w \leq u$. Now we have the following.
Theorem 5.1 Let $X(S)=C O R R\left(X_{\beta}\right)$ for some $\beta \in(1,2]$. If X_{β} is SFT, then

$$
\begin{equation*}
\zeta_{\sigma_{\beta}}(r)=\zeta_{\sigma_{S}}(r) \tag{5.1}
\end{equation*}
$$

If X_{β} is not SFT, then

$$
\begin{equation*}
\zeta_{\sigma_{\beta}}(r)=(1-r) \zeta_{\sigma_{S}}(r) \tag{5.2}
\end{equation*}
$$

Furthermore, in the case of SFT,

$$
\begin{equation*}
\zeta_{\sigma_{\beta}}(r)=\frac{1}{1-r^{i_{1}}-r^{i_{2}}-\cdots-r^{i_{t}}} \tag{5.3}
\end{equation*}
$$

and for strictly sofic cases,

$$
\begin{equation*}
\zeta_{\sigma_{\beta}}(r)=\frac{1}{\left(1-r^{i_{1}}-r^{i_{2}}-\cdots-r^{i_{t}}\right)\left(1-r^{p}\right)-\left(r^{j_{1}}+\cdots+r^{j_{u}}\right)} \tag{5.4}
\end{equation*}
$$

Proof First let X_{β} be an SFT shift. Also let $S=\left\{0, i_{2}-1, \ldots, i_{t-1}-1, i_{t}-1\right\}$; then by Theorem (4.7), $X(S)=\operatorname{CORR}\left(X_{\beta}\right)$. Since X_{β} and $X(S)$ are conjugate, they have the same zeta function, that is:

$$
\zeta_{\sigma_{\beta}}(r)=\frac{1}{f_{S}\left(r^{-1}\right)}=\frac{1}{1-r^{i_{1}}-r^{i_{2}}-\cdots-r^{i_{t}}}
$$

where $f_{S}(x)=1-\sum_{s_{n} \in S} \frac{1}{x^{s_{n}+1}}$ [2, Theorem 2.3].
Now suppose X_{β} is a strictly sofic shift and let $1_{\beta}=a_{1} a_{2} \cdots a_{n}\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}$. An arbitrary periodic point $x \in X_{\beta}$ has one presentation in \mathcal{G}_{β} unless

$$
x=\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}
$$

where then it has exactly two presentations. This fact can be deduced from the proof of [11, Proposition 4.7]. Thus, if $m=p k(k \in \mathbb{N})$, then every point in X_{β} of period m is the image of exactly one point in $X_{G_{\beta}}$ of the same period, except p points in the cycle of $\left(a_{n+1} \cdots a_{n+p}\right)^{\infty}$, which are the image of two points of period m. As a result, $p_{m}\left(\sigma_{\mathcal{G}_{\beta}}\right)=p_{m}\left(\sigma_{G_{\beta}}\right)-p$ where $p_{m}=\left|P_{m}\right|$ and P_{m} is the set of periodic points of period m. When p does not divide $m, p_{m}\left(\sigma_{\mathcal{G}_{\beta}}\right)=p_{m}\left(\sigma_{G_{\beta}}\right)$. Therefore,

$$
\begin{aligned}
\zeta_{\sigma_{\beta}}(r) & =\exp \left(\sum_{\substack{m=1 \\
p l m}}^{\infty} \frac{p_{m}\left(\sigma_{G_{\beta}}\right)}{m} r^{m}+\sum_{\substack{m=1 \\
p \mid m}}^{\infty} \frac{p_{m}\left(\sigma_{G_{\beta}}\right)-p}{m} r^{m}\right) \\
& =\exp \left(\sum_{m=1}^{\infty} \frac{p_{m}\left(\sigma_{G_{\beta}}\right)}{m} r^{m}-p \sum_{\substack{m=1 \\
p \mid m}}^{\infty} \frac{r^{m}}{m}\right) \\
& =\zeta_{\sigma_{G_{\beta}}}(r) \times\left(1-r^{p}\right)
\end{aligned}
$$

However, $G_{\beta} \cong G_{S}$ for S as in (4.5). Therefore, by [2, Theorem 2.3],

$$
\begin{aligned}
\zeta_{\sigma_{G_{\beta}}}(r) & =\frac{1}{\left(1-r^{p}\right) f_{S}\left(r^{-1}\right)} \\
& =\frac{1}{\left(1-r^{i_{1}}-r^{i_{2}}-\cdots-r^{i_{t}}\right)\left(1-r^{p}\right)-\left(r^{j_{1}}+\cdots+r^{j_{u}}\right)}
\end{aligned}
$$

It remains to consider the case when X_{β} is not sofic. We claim that $P_{n}(X(S))=P_{n}\left(X_{\beta}\right)+1$ for all $n \in \mathbb{N}$.
Observe that one may assume that the initial vertex of π, a cycle in the graph of G_{β}, is α_{1} as in Figure 2. Now let $x=v^{\infty} \in P_{n}\left(X_{\beta}\right)$ with $v=v_{1} \cdots v_{n} \in \mathcal{B}_{n}\left(X_{\beta}\right)$. Pick π_{β} a cycle in G_{β} such that $v=\mathcal{L}_{\beta}\left(\pi_{\beta}\right)$ and set π_{S} to be the associated cycle to π_{β} in G_{S}, and let $w=\mathcal{L}_{S}\left(\pi_{S}\right)$. Then $w^{\infty} \in P_{n}(X(S))$. Now define $\varphi_{n}: P_{n}\left(X_{\beta}\right) \backslash P_{1}\left(X_{\beta}\right) \rightarrow P_{n}(X(S)) \backslash P_{1}(X(S))$ for all $n \geq 2$ such that $\varphi_{n}\left(v^{\infty}\right)=w^{\infty}$. Clearly, φ_{n} is well-defined. It is also one-to-one; otherwise, for $w^{\infty} \in P_{n}(X(S))$, there are two different cycles π_{S} and γ_{S} such that $w=\mathcal{L}_{S}\left(\pi_{S}\right)=\mathcal{L}_{S}\left(\gamma_{S}\right)$.

However, any 1 in w is characterized by one passing of π_{S} and γ_{S} through α_{1}, so $\pi_{S}=\gamma_{S}$ and φ_{n} is one-to-one. Now the claim follows by the fact that $P_{1}\left(X_{\beta}\right)=\left\{0^{\infty}\right\}$ and $P_{1}(X(S))=\left\{0^{\infty}, 1^{\infty}\right\}$. Hence:

$$
\begin{aligned}
\zeta_{\sigma_{S}}(r) & =\exp \left(\sum_{m=1}^{\infty} \frac{p_{m}\left(\sigma_{G_{S}}\right)}{m} r^{m}\right) \\
& =\exp \left(\sum_{m=1}^{\infty} \frac{p_{m}\left(\sigma_{G_{\beta}}\right)+1}{m} r^{m}\right)=\zeta_{\sigma_{G_{\beta}}}(r) \times \frac{1}{1-r}
\end{aligned}
$$

References

[1] Adler R, Marcus B. Topological Entropy and Equivalence of Dynamical Systems. Providence, RI, USA: American Mathematical Society, 1979.
[2] Ahmadi Dastjerdi D, Jangjoo S. Computations on sofic S-gap shifts. Qual Theory Dyn Syst 2013; 12: 393-406.
[3] Ahmadi Dastjerdi D, Jangjoo S. Dynamics and topology of S-gap shifts. Topol Appl 2012; 159: 2654-2661.
[4] Bassino F. Beta-expansions for cubic Pisot numbers. Lect Notes Comp Sci 2002; 2286: 141-152.
[5] Bertrand-Mathis A. Developpement en base θ; repartition modulo un de la suite $\left(x \theta^{n}\right)_{n \geq 0}$; langages codes et θ-shift. Bull Soc Math France 1986; 114: 271323 (in French).
[6] Blanchard F. β-Expansions and symbolic dynamics. Theor Comput Sci 1989; 65: 131-141.
[7] Climenhaga V, Thompson DJ. Intrinsic ergodicity beyond specification: β-Shifts, S-gap shifts, their factors. Isr J Math 2012; 192: 785-817.
[8] Fiebig D. Common extensions and hyperbolic factor maps for coded systems. Ergod Theor Dyn Syst 1995; 15: 517-534.
[9] Fiebig D, Fiebig U. Covers for coded systems. Contemp Math 1992; 135: 139-179.
[10] Flatto L, Lagarias JC, Poonen B. The zeta function of the beta transformation. Ergod Theor Dyn Syst 1994; 14: 237-266.
[11] Johansen R. On flow equivalence of sofic shifts. PhD, University of Copenhagen, Copenhagen, Denmark, 2011.

AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

[12] Jung U. On the existence of open and bi-continuous codes. T Am Math Soc 2011; 363: 1399-1417.
[13] Kitchens B. Symbolic Dynamics. Berlin, Germany: Springer, 1997.
[14] Lind D, Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge, UK: Cambridge University Press, 1995.
[15] Parry W. On the β-expansions of real numbers. Acta Math Acad Sci Hungar 1960; 11: 401-416.
[16] Rényi A. Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hungar 1957; 8: 477-493.
[17] Spandl C. Computing the topological entropy of shifts. Math Log Quart 2007; 53: 493-510.
[18] Thompson DJ. Irregular sets, the β-transformation and the almost specification property. T Am Math Soc 2012; 364: 5395-5414.
[19] Thomsen K. On the structure of a sofic shift space. T Am Math Soc 2004; 356: 3557-3619.
[20] Thomsen K. On the structure of β-shifts. Algebraic and topological dynamics. Contemp Math 2005; 385: 321-332.

[^0]: *Correspondence: dahmadi1387@gmail.com
 2010 AMS Mathematics Subject Classification: 37B10, 37Bxx, 54H20, 37B40.

