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Abstract: Let Xβ be a β -shift for β ∈ (1, 2] and X(S) a S -gap shift for S ⊆ N ∪ {0} . We show that if Xβ is SFT

(resp. sofic), then there is a unique S -gap shift conjugate (resp. right-resolving almost conjugate) to this Xβ , and if

Xβ is not SFT, then no S -gap shift is conjugate to Xβ . For any synchronized Xβ , an X(S) exists such that Xβ and

X(S) have a common synchronized 1-1 a.e. extension. For a nonsynchronized Xβ , this common extension is just an

almost Markov synchronized system with entropy preserving maps. We then compute the zeta function of Xβ from the

zeta function of that X(S) .
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1. Introduction

Two important classes of symbolic dynamics are β -shifts and S -gap shifts. Both are coded systems with

applications in coding theory and number theory and a source of examples for symbolic dynamics. There have

been some independent studies of these classes. See [7, 15, 18, 20] for β -shifts and [3, 7, 12] for S -gap shifts.

There are some common properties between these two classes. For instance, both of them are at least half-

synchronized, and every subshift factor of them is intrinsically ergodic [7]. There are disparities as well: β -shifts

are all mixings, though this is not true in general for a S -gap shift [12], and S -gap shifts are synchronized,

which is not true for all β -shifts. Even among sofic β -shifts and S -gap shifts, which are our primary interest

here, there are some major differences. An important class of sofic S -gap shifts are almost-finite-type (AFT)

[3], but no β -shift is AFT [20].

We let β ∈ (1, 2] and search for an S -gap shift X(S) that has some sort of equivalencies, such as

conjugacy or right-resolving almost conjugacy, with our β -shift denoted by Xβ . A main tool used here is

almost conjugacy, introduced by Adler and Marcus [1], which is virtually a conjugacy between transitive points.

This concept was defined for sofics and is now very much classic [13, 14]. It was then extended to nonsofics by

Fiebig [8], and so our paper first deals with sofics and then nonsofics. Another tool is right-resolving, called

deterministic in computer science, which is an important closing property in coded systems and in applications.

Here we summarize our results. Let β ∈ (1, 2] and let Xβ be the associated β -shift. We will associate

to Xβ a unique S -gap shift denoted by CORR(Xβ) and will show that when Xβ is sofic, then Xβ and

X(S) =CORR(Xβ) are right-resolving almost conjugate, and when Xβ is SFT, they are conjugate as well

(Theorem 4.7). On the other hand, for a given S -gap shift, there does not necessarily exist a β -shift holding
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the same equivalencies with X(S). However, we give a necessary and sufficient condition on S to have this be

true (Theorem 4.10).

In Subsection 3.2, we extend the results obtained for sofics to nonsofics. For instance, when Xβ is syn-

chronized, Xβ and CORR(Xβ) have a common synchronized 1-1 a.e. extension (Theorem 4.17). Additionally,

in general, Xβ and CORR(Xβ) have a common extension, which is an almost Markov synchronized system

whose maps are entropy-preserving (Theorem 4.18).

Theorem 5.1 gives the zeta function of Xβ in terms of the zeta function of CORR(Xβ) and Theorem

4.19 states that {CORR(Xβ) : β ∈ (1, 2]} is a Cantor dust in the set of all S -gap shifts.

2. Background and notations

The notations have been taken from [14] and the proofs of the claims in this section can be found there. Let A
be an alphabet that is a nonempty finite set. The full A-shift denoted by AZ is the collection of all bi-infinite

sequences of symbols from A . A block (or word) over A is a finite sequence of symbols from A . The shift

function σ on the full shift AZ maps a point x to the point y = σ(x) whose ith coordinate is yi = xi+1 .

Let Bn(X) denote the set of all admissible n -blocks. The language of X is the collection B(X) =∪∞
n=0 Bn(X). A word v ∈ B(X) is synchronizing if whenever uv and vw are in B(X), we have uvw ∈ B(X).

Let A and D be alphabets and X a shift space over A . Fix integers m and n with −m ≤ n . Define

the (m+ n+ 1)-block map Φ : Bm+n+1(X) → D by

yi = Φ(xi−mxi−m+1...xi+n) = Φ(x[i−m,i+n]), (2.1)

where yi is a symbol in D . The map ϕ : X → DZ defined by y = ϕ(x) with yi given by (2.1) is called the

sliding block code with memory m and anticipation n induced by Φ. An onto sliding block code ϕ : X → Y is

called a factor code. In this case, we say that Y is a factor of X . The map ϕ is a conjugacy if it is invertible.

An edge shift, denoted by XG , is a shift space that consists of all bi-infinite walks in a directed graph

G . A labeled graph G is a pair (G,L) where G is a graph with edge set E , vertex set V , and the labeling

L : E → A . Each e ∈ E starts at a vertex denoted by i(e) ∈ V and terminates at a vertex t(e) ∈ V .

When the set of forbidden words is finite, the space is called a subshift of finite type (SFT). A sofic shift

XG is the set of sequences obtained by reading the labels of walks on G ,

XG = {L∞(ξ) : ξ ∈ XG} = L∞(XG).

We say that G is a presentation or a cover of XG .

A labeled graph G = (G,L) is right-resolving if for each vertex I of G the edges starting at I carry

different labels. A minimal right-resolving presentation of a sofic shift X is a right-resolving presentation of

X having the fewest vertices among all right-resolving presentations of X . Any two minimal right-resolving

presentations of an irreducible sofic shift must be isomorphic as labeled graphs [14, Theorem 3.3.18]. Thus, we

can speak of “the” minimal right-resolving presentation of an irreducible sofic shift X ; we call it the Fischer

cover of X .

Let w ∈ B(X). The follower set F (w) of w is defined by F (w) = {v ∈ B(X) : wv ∈ B(X)}. A shift

space X is sofic if and only if it has a finite number of follower sets [14, Theorem 3.2.10 ]. In this case, we have

a labeled graph G = (G,L) called the follower set graph of X . The vertices of G are the follower sets and if

wa ∈ B(X), then we draw an edge labeled a from F (w) to F (wa). If wa ̸∈ B(X) then we do nothing.
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Now we review the concept of the Fischer cover for a not necessarily sofic system [9]. Let x ∈ B(X).

Then x+ = (xi)i∈Z+ (resp. x− = (xi)i<0 ) is called right (resp. left) infinite X -ray. For a left infinite X -ray,

say x− , its follower set is ω+(x−) = {x+ ∈ X+ : x−x+ is a point in X} . Consider the collection of all follower

sets ω+(x−) as the set of vertices of a graph X+ . There is an edge from I1 to I2 labeled a if and only if there

is an X -ray x− such that x−a is an X -ray and I1 = ω+(x−), I2 = ω+(x−a). This labeled graph is called the

Krieger graph for X . If X is a synchronized system with synchronizing word α , the irreducible component of

the Krieger graph containing the vertex ω+(α) is called the right Fischer cover of X . We are working only with

coded synchronized systems, which are irreducible. In this situation, like irreducible sofics, the right Fischer

cover is just called the Fischer cover.

Let ϕ = Φ∞ : X → Y be a 1-block code. Then ϕ is right-resolving whenever ab and ac are 2-blocks in

X with Φ(b) = Φ(c), then b = c .

Let G and H be graphs. A graph homomorphism from G to H consists of a pair of maps ∂Φ : V(G) →
V(H) and Φ : E(G) → E(H) such that ∂Φ(i(e)) = i(Φ(e)) and ∂Φ(t(e)) = t(Φ(e)) for all e ∈ E(G). A graph

homomorphism is a graph isomorphism if both ∂Φ and Φ are one-to-one and onto. Two graphs G and H are

graph isomorphic (written G ∼= H ) if there is a graph isomorphism between them. Let EI(G) be the set of all

the edges in E(G) starting from I ∈ V(G). A graph homomorphism Φ : G → H maps EI(G) into E∂Φ(I)(H)

for each vertex I of G . Thus, ϕ = Φ∞ is right-resolving if and only if for every vertex I of G the restriction

ΦI of Φ to EI(G) is one-to-one. If G and H are irreducible and ϕ is a right-resolving code from XG onto

XH , then each ΦI must be a bijection. Thus, for each vertex I of G and every edge f ∈ E∂Φ(I)(H), there

exists a unique “lifted” edge e ∈ EI(G) such that Φ(e) = f . This lifting property inductively extends to paths:

for every vertex I of G and every path w in H starting at ∂Φ(I), there is a unique path π in G starting at

I such that Φ(π) = w .

Points x and x′ in X are left-asymptotic if there is an integer N for which x(−∞, N ] = x′
(−∞, N ] . A

sliding block code ϕ : X → Y is right-closing if whenever x, x′ are left-asymptotic and ϕ(x) = ϕ(x′), then

x = x′ . Similarly, left-closing will be defined. A sliding block code is bi-closing if it is simultaneously right-

closing and left-closing. An irreducible sofic shift is called AFT if it has a biclosing presentation. The entropy

of a shift space X is defined by h(X) = limn→∞(1/n) log |Bn(X)| .

3. General properties of S -gap shifts and β -shifts

3.1. S -gap shifts

To define a S -gap shift X(S), fix S = {si ∈ N ∪ {0} : 0 ≤ si < si+1, i ∈ N ∪ {0}} . Define X(S) to be the

set of all binary sequences for which 1s occur infinitely often in each direction and such that the number of 0s

between successive occurrences of a 1 is in S . When S is infinite, we need to allow points that begin or end

with an infinite string of 0s. Note that X(S) and X(S
′
) are conjugate if and only if one of the S and S

′
is

{0, n} and the other {n, n+1, n+2, . . .} for some n ∈ N [3, Theorem 4.1]. We consider X(S) up to conjugacy

and by convention {0, n} is chosen. Now let d0 = s0 and ∆(S) = {dn}n where dn = sn − sn−1 . Then an

S -gap shift is SFT if and only if S is finite or cofinite, is AFT if and only if ∆(S) is eventually constant, and

is sofic if and only if ∆(S) is eventually periodic [3]. Therefore, for sofic S -gap shifts we set

∆(S) = {d0, d1, . . . , dk−1, g0, g1, . . . , gl−1}, g =
l−1∑
i=0

gi (3.1)
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where gj = sk+j − sk+j−1, 0 ≤ j ≤ l − 1. Furthermore, k and l are the least integers such that (3.1) holds.

The Fischer cover of any irreducible sofic shift as well as S -gap shifts is the labeled subgraph of the

follower set graph, which consists of the finite set of follower sets of synchronizing words as its vertices. For an

S -gap shift this set is

{F (1), F (10), . . . , F (10n(S))}, (3.2)

where n(S) = maxS for |S| < ∞ . If |S| = ∞ , then n(S) will be defined as follows.

1. For k = 1 and gl−1 > s0 ,

(a) if gl−1 = s0 + 1, then F (10sl−1+1) = F (1) and n(S) = sl−1 .

(b) if gl−1 > s0 + 1, then F (10g) = F (1) and n(S) = g − 1.

2. For k ̸= 1, if gl−1 > dk−1 , then F (10g+sk−2+1) = F (10sk−2+1) and n(S) = g + sk−2 .

3. For k ∈ N , if gl−1 ≤ dk−1 , then F (10sk+l−2+1) = F (10sk−1−gl−1+1) and n(S) = sk+l−2 .

For a view of the Fischer cover of a S -gap shift, we line up vertices in (3.2) horizontally starting from F (1) on

the left followed by F (10) and then by F (102), at last ending at F (10n(S)) as the far right vertex. In all cases,

label 0 the edge starting from F (10i) and terminating at F (10i+1), 0 ≤ i ≤ n(S) − 1; also, label 1 all edges

from F (10s) to F (1) for s ∈ S and s < n(S).

The only remaining edges to be taken care of are those starting at F (10n(S)). In (1a), there are two

edges from F (10n(S)) to F (1); label one 0 and the other 1. In (1b), there is only one edge from F (10n(S))

to F (1), which is labeled 0. In case (2) (resp. (3)), label 0 the edge from F (10n(S)) to F (10sk−2+1) (resp.

F (10sk−1−gl−1+1)) and label 1 the edge from F (10n(S)) to F (1). For a more detailed treatment see [2].

3.2. β -shifts

Rényi [16] was the first who considered the β -shifts. These shifts are symbolic spaces with rich structures and

applications in theory and practice. We present here a brief introduction to β -shifts from [20]. For a more

detailed treatment, see [6].

When t is a real number we denote by ⌊t⌋ the largest integer smaller than t . Let β be a real number

greater than 1. Set

1β = a1a2a3 · · · ∈ {0, 1, . . . , ⌊β⌋}N,

where a1 = ⌊β⌋ and

ai = ⌊βi(1− a1β
−1 − a2β

−2 − · · · − ai−1β
−i+1)⌋

for i ≥ 2. The sequence 1β is the expansion of 1 in the base β ; that is, 1 =
∑∞

i=1 aiβ
−i . Let ≤ be the

lexicographic ordering of (N ∪ {0})N . The sequence 1β has the property that

σk1β ≤ 1β , k ∈ N, (3.3)

where σ denotes the shift on (N∪{0})N . It is a result of Parry [15] that this property characterizes the elements

of (N ∪ {0})N , which are the β -expansion of 1 for some β > 1. Furthermore, it follows from (3.3) that

Xβ = {x ∈ {0, 1, . . . , ⌊β⌋}Z : x[i,∞) ≤ 1β , i ∈ Z} (3.4)
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... . . ... . . ... . . ... a1.

a1−1

. ai−1. ai.
ai−1

. an. an+1.

an+1−1

. an+p−1.

an+p

.

an+p−1

Figure 1. A typical Fischer cover of a strictly sofic β -shift for 1β = a1a2 · · · an(an+1 · · · an+p)
∞ , β ∈ (1, 2] . The edges

heading to α1 exist if ai = 1.

..α1. . . .. αi. . . .. αn. . . .. a1.

a1−1

. ai−1. ai.

ai−1

. an−1. an.

an−1

Figure 2. A typical Fischer cover of a nonsofic β -shift for 1β = a1a2 · · · , β ∈ (1, 2] . The edges ending at α1 exist if

ai = 1.

is a shift space of {0, 1, . . . , ⌊β⌋}Z , called the β -shift. The β -shift is SFT if and only if the β -expansion of

1 is finite and it is sofic if and only if the β -expansion of 1 is eventually periodic [4]. Moreover, any β -shift

is half-synchronized. See [9] for definition and properties of a half-synchronized system. Note that all half-

synchronized system have a Fischer cover. We consider β ∈ (1, 2], where in this case Fischer covers for a sofic

and nonsofic β -shift are as in Figures 1 and 2, respectively.

4. Equivalencies between a beta-shift and an S -gap shift

We look for some sort of equivalencies for a given Xβ and some S -gap shift. We use these equivalencies to do

some computations for Xβ . Sofics and nonsofics are treated differently.

4.1. Sofic case

A sliding block code ϕ : X → Y is finite-to-one if there is M ∈ N such that for all y ∈ Y , |ϕ−1(y)| ≤ M .

Shift spaces X and Y are finitely equivalent if there is an SFT, say W , together with finite-to-one factor

codes ϕX : W → X and ϕY : W → Y . One calls W a common extension and ϕX , ϕY the legs. The triple

(W,ϕX , ϕY ) is a finite equivalence between X and Y . Call a finite equivalence between sofic shifts in which

both legs are right-resolving (resp. right-closing) a right-resolving finite equivalence (resp. right-closing finite

equivalence).

Let G and H be two irreducible graphs. Write that H ⪯ G if XH is a right-resolving factor of XG and

let RG be the collection of graph-isomorphism classes of graphs H for which H ⪯ G . This ordering naturally

determines an ordering that we still call ⪯ on RG . It turns out that there is a smallest element MG in this

partial ordering (RG, ⪯).

Now we recall from [14] how MG can be constructed. Let V = V(G) be the set of vertices of G and let

us define a nested sequence of equivalence relations ∼n on V for n ≥ 0 and denote by Pn the partition of V
into ∼n equivalence classes. To define ∼n , first let I ∼0 J for all I, J ∈ V . For n ≥ 1, let I ∼n J if and
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only if for each class (or atom) P ∈ Pn−1 the total number of edges from I to vertices in P equals the total

number of edges from J to vertices in P . Note that the partitions Pn are nested: each atom in Pn is a union

of atoms in Pn+1 .

We have V finite and Pn nested, so the Pn s will be equal for all sufficiently large n , and we denote by

P the limiting partition. Then P will be the set of states of MG . To prevent confusion between MG and G ,

we call a vertex in MG “state” and of G just “vertex”.

Since for all large enough n , P = Pn = Pn+1 , for each pair P, Q ∈ P there is k such that for each

I ∈ P there are exactly k edges in G from I to vertices in Q . We then assign k edges in MG from P to Q .

Therefore, to have MG , for each n , we refine the atoms of Pn , and when Pn = P , then for each P, Q ∈ P
and I, J ∈ P , the total number of paths from I and J to vertices in Q and also the length of these paths

(with respect to G) for both I and J are equal.

Briefly we have P0 = V(G). Furthermore, ∼1 partitions vertices by their out-degrees where for Xβ and

X = X(S), ∼1 partitions vertices into two atoms, one atom containing the vertices with out-degree one and

the other with out-degree two. If P ̸= P1 , for the next step, if P ∈ P1 is refined, then it is the turn for Q to

be refined where Q ∈ P1 is any atom having edges terminating to vertices in P .

Theorem 4.1 [14, Theorem 8.4.7] Suppose that X and Y are irreducible sofic shifts. Let GX and GY denote

the underlying graphs of their Fischer covers respectively. Then X and Y are right-resolving finitely equivalent

if and only if MGX
∼= MGY

. Moreover, the common extension can be chosen to be irreducible.

A point in X is doubly transitive if every word in B(X) occurs infinitely often to the left and to the right of

its representation. Shift spaces X and Y are almost conjugate if there is a shift of finite type W and 1-1 a.e.

factor codes ϕX : W → X and ϕY : W → Y (1-1 a.e. means that any doubly transitive point has exactly

one pre-image). Call an almost conjugacy between sofic shifts in which both legs are right-resolving (resp.

right-closing) a right-resolving almost conjugacy (resp. right-closing almost conjugacy).

Let r-r and r-c stand for right-resolving and right-closing, respectively. We summarize the relations among

the mentioned properties in the following diagram.

conjugacy
⇓

r-r almost conjugacy ⇒ r-c almost conjugacy ⇒ almost conjugacy
⇓ ⇓ ⇓

r-r finite equivalence ⇒ r-c finite equivalence ⇒ finite equivalence

(4.1)

There are examples to show that in general the converse to the above implications is not necessarily true [14].

Definition 4.2 Let m ∈ N and let w = w0w1 . . . wp−1 = (w0w1 . . . wq−1)
m be a block of length p . The least

period of w is the smallest integer q such that m = p
q . The block w is primitive if its least period equals its

length p .

Now we will picture the graph MG of X(S). First suppose |S| < ∞ . Let S = {s0, s1, . . . , sk−1} ⊆ N0 , k > 1

and
D(S) = d1d2 · · · dk−2(dk−1 + s0 + 1) (4.2)

where di = si − si−1 , 1 ≤ i ≤ k − 1. Note that if I, J ∈ V(G) are in the same state of MG , then both I and

J have the same out-degree, which is one or two. The out-degree of any vertex F (10si), 0 ≤ i ≤ k − 1 is two,

217



AHMADI DASTJERDI and JANGJOOYE SHALDEHI/Turk J Math

except the last one. Hence, di , 1 ≤ i ≤ k − 2 measures the distance between any two vertices with out-degree

two.

To pick the next vertex after F (10sk−2) with out-degree two, we continue to the right to F (10sk−1) and

then along the graph to F (1), and then again to the right to F (10s0), which is after dk−1 + s0 + 1 steps.

Theorem 4.3 Let |S| < ∞ . Then D(S) is primitive if and only if MG
∼= G .

Proof Suppose that D(S) is not primitive. Let V = V(MG) be the set of states of MG . By the Fischer cover

of X(S), each state in MG then consists of m = |S|−1
q vertices of graph G where q is the least period D(S)

and |V| =
∑q

i=1 di = sq − s0 . In fact, if V = {Pi : 0 ≤ i ≤ sq − s0 − 1} , then

Pi = {F (10s0+i), F (10s0+i+|V|), . . . , F (10s0+i+(m−1)|V| mod u)}

where u = sk−1 + 1. Since |V| = sq − s0 < sk−1 + 1 = |V(G)| , MG ̸∼= G .

Now suppose that MG ̸∼= G . There are thus at least two different vertices of G , say I = F (10p) and

J = F (10q), such that I and J are in the same state of MG . Assume p < q . There exists an edge from I

(resp. J ) to F (10(p+1)) (resp. F (10(q+1) mod u)). Therefore, by the fact that I and J are equivalent, we

have that the vertices F (10(p+1)) and F (10(q+1) mod u) are equivalent. By the same reasoning, for each i ≥ 2,

F (10(p+i) mod u) and F (10(q+i) mod u) are equivalent. Therefore, D(S) is not primitive. 2

Theorem 4.4 Let X(S) be a sofic S -gap shift with |S| = ∞ and the Fischer cover G = (G,L) . Then

MG
∼= G .

Proof We consider our three cases appearing for |S| = ∞ in Subsection 3.1. We claim that the last vertex

F (10n(S)) is not equivalent with any other vertex. Otherwise, we will show that at least one of k or l will not

be the least integer in (3.1). Thus, the state of MG containing this last vertex contains only this vertex, which

in turn implies that other states of MG also have one vertex. Therefore, MG
∼= G .

We prove our claim for the most involved case, i.e. case (3). First suppose there is a vertex

v0 = F (10t0) ∼ F (10n(S)), sk−1 − gl−1 + 1 ≤ t0 < n(S). (4.3)

In fact, if t0 < sk−1 − gl−1 + 1, then k is not the least integer in (3.1). Without loss of generality as-

sume that this t0 is the largest integer with this property. Recall that there is an edge from F (10n(S)) to

F (10sk−1−gl−1+1); it is thus convenient to set t1 := n(S), t1 + 1 := sk−1 − gl−1 + 1 and v1 := F (10n(S)).

By (4.3), v2 := F (10t1+1) ∼ F (10t0+1), and moving horizontally to the right, vi+1 := F (10t1+i) ∼ F (10t0+i),

i ≥ 2. Moreover, none of F (10t0+i) will be equivalent to v0 , for this would violate the way we have picked

t0 . If v2 ∼ v0 we are done, for then l will not be the least integer. Observe that there are only finitely many

vertices; therefore, there must be vi ̸∼ v0 , 2 ≤ i < p , and vp ∼ v0 . Applying the same reasoning, we deduce

that again l is not the least integer. 2

Theorems 4.3 and 4.4 imply the following.

Corollary 4.5 Let X(S) be a sofic S -gap shift with the Fischer cover G = (G,L) . Then any state of MG has

the same number of vertices of G .
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When |S| < ∞ , there may be cases with MG ̸∼= G . The difference with |S| = ∞ is that for |S| < ∞ , the last

vertex F (10n(S)) always has out-degree one with label 1, while for |S| = ∞ , the label of the edge starting from

the vertex with out-degree one is 0.

Now let X be a sofic shift with the Fischer cover G = (G,L). By definition, L∞ is then right-resolving,

and it is also almost invertible [14, Proposition 9.1.6]. Thus:

Lemma 4.6 Suppose X and Y are sofic with Fischer covers GX = (GX ,LX) and GY = (GY ,LY ) respectively

and such that GX
∼= GY . Then X and Y will be right-resolving almost conjugate with legs LX∞ : W → X

and LY ∞ : W → Y where W is SFT such that W ∼= GX
∼= GY .

Theorem 4.7 Let Xβ be a sofic β -shift for β ∈ (1, 2] . Then there is S ⊆ N0 such that Xβ and X(S)

are right-resolving almost conjugate. The set S will be explicitly determined in terms of coefficients of 1β .

Moreover, if Xβ is SFT, then X(S) can be chosen to be conjugate to Xβ .

Proof For a given sofic β -shift, β ∈ (1, 2], we claim that there is S ⊆ N0 such that the S -gap shift X(S)

and Xβ have the same underlying graph for their Fischer covers. By Lemma 4.6, Xβ and X(S) will then be

right-resolving almost conjugate.

Let 1β = a1a2 · · · an(an+1 · · · an+p)
∞ and {i1, i2, . . . , it} ⊆ {1, 2, . . . , n} where aiv = 1 for 1 ≤ v ≤ t .

Note that i1 is always 1. Similarly, let {j1, j2, . . . , ju} ⊆ {n + 1, . . . , n + p} where ajw = 1 for 1 ≤ w ≤ u .

We consider two cases:

1. Xβ is SFT. In this case, (an+1 · · · an+p)
∞ = 0∞ and an = 1, so it = n and X(S) with

S = {0, i2 − 1, . . . , it−1 − 1, it − 1} (4.4)

is the required S -gap shift, as has been claimed. Since both Xβ and X(S) are SFT with the same

underlying graph G for their Fischer covers, they are both conjugate to XG [14, Theorem 3.4.17], and so

conjugate to each other.

2. Xβ is strictly sofic. Then (an+1 · · · an+p)
∞ ̸= 0∞ . Relabel any edge on Gβ ending at the first vertex for

1 and other edges for 0. The shift space corresponding to this labeling is an S -gap shift where

S = {0, i2 − 1, . . . , it − 1, j1 − 1, . . . , ju − 1, j1 + p− 1, . . .}. (4.5)

(observe that then

∆(S) = {0, i2 − 1, . . . , it − it−1, j1 − it, j2 − j1, . . . , ju − ju−1, j1 − ju + p}, (4.6)

which shows that X(S) is sofic [3, Theorem 3.4]).

Rewrite ∆(S) in (4.6) as

∆(S) = {0, d1, . . . , dt, g0, . . . , gu−1}.

We claim that GS = (GS , LS) is follower-separated. Otherwise, there are two cases.

(a) There is 1 ≤ i ≤ t such that dt+1−j = gu−j , 1 ≤ j ≤ i . Then Gβ = (Gβ ,Lβ) is not follower-separated

and so it is not the Fischer cover of Xβ , which is absurd.
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(b) g0g2 · · · gu−1 is not primitive. This implies that an+1 · · · an+p is not primitive, which is again absurd.

This establishes the claim and S is completely determined.

2

Now the following is immediate.

Corollary 4.8 Let Xβ be a sofic β -shift whose underlying graph of its Fischer cover is G . Then MG
∼= G .

Proof Suppose MG ̸∼= G . For this Xβ , find the S -gap shift satisfying the conclusion of Theorem 4.7. Then

by Theorem 4.4, this X(S) (as well as our Xβ ) must be SFT and D(S) is not primitive. However, this will

not allow us to have (3.3), which is a necessary condition. 2

Lemma 4.9 Let |S| = ∞ and let X(S) be a sofic shift satisfying (1a) in Subsection 3.1. Then there does not

exist any β -shift being right-resolving finite equivalent with X(S) .

Proof Suppose there is some β ∈ (1, 2] such that X(S) and Xβ are right-resolving finite equivalent and

GS = (GS ,LS) and Gβ = (Gβ ,Lβ) are the Fischer covers of X(S) and Xβ , respectively. By Theorem 4.4 and

Corollary 4.8, GS
∼= Gβ . Then Gβ is the underlying graph of GS and 1β = (a1a2 · · · an)∞ .

Now by hypothesis, gl−1 = 1, so 1 /∈ S and this implies that a2 = 0 while a1 = an = 1. This means

(a1a2 · · · an)∞ does not satisfy (3.3), and we are done. 2

Let X(S) be an S -gap shift where s0 = 0 and di = si − si−1 , i ∈ N and also D(S) as (4.2). Define

d1d2d3 · · · =
{

(d1d2 · · · (dk−1 + 1))N = (D(S))N, |S| = k;
d1d2 · · · , |S| = ∞.

(4.7)

Theorem 4.10 Suppose X(S) is a sofic shift where s0 = 0 . Then X(S) is right-resolving almost conjugate

to a β -shift if and only if

dndn+1 · · · ≥ d1d2 · · · (4.8)

for all n ≥ 1 .

Proof Let β ∈ (1, 2] with 1β = a1a2 · · · be so that X(S) and Xβ are right-resolving almost conjugate. This

means they are right-resolving finite equivalent. First suppose MGS
∼= GS . By Corollary 4.8, GS

∼= Gβ and so

(4.8) follows from the fact that a1a2 · · · satisfies (3.3).

If MGS
̸∼= GS , then by Theorems 4.3 and 4.4, |S| < ∞ . Thus, Xβ is right-resolving finite equivalent to

X(S′) with S′ = {0, s1, . . . , (sq − 1)} and D(S) = D(S′)m where m = |S|−1
q as in the proof of Theorem 4.3.

Moreover, MGS′
∼= GS′ , which gives again d′nd

′
n+1 · · · ≥ d′1d

′
2 · · · for all n ≥ 1. Now this fact reflects to D(S)

and (4.8) holds.

To prove the sufficiency, suppose that GS = (GS ,LS) is the Fischer cover of X(S) and V = V(GS) the

set of vertices of GS . Relabel GS by labeling 0 any edge terminating at vertex F (1) and any edge whose

initial vertex has out-degree 1, and assign 1 all other edges.

Recall that we have lined up the vertices horizontally from F (1) on the left to F (10n(S)) on the right.

First let |S| < ∞ and a1a2 · · · an(S) be the assigned label of the horizontal path from F (1) to the last vertex
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with ai = 0 or 1 as determined above. Then (4.8) implies that a1a2 · · · an(S)1 is the β -expansion of 1 for some

β ∈ (1, 2] and Gβ is the Fischer cover of Xβ .

When |S| = ∞ , assign the label a1a2 · · · an(S) to the horizontal path from F (1) to the last vertex and

label an(S)+1 to the edge starting from F (10n(S)) and terminating at F (10n(S)+1). Again, (4.8) implies that

a1a2 · · · an(an+1 · · · an(S)+1)
∞ is the β -expansion of 1 for some β ∈ (1, 2] where the index n depends on S .

Then Gβ is the Fischer cover of Xβ (one needs similar arguments as in the proof of Theorem 4.7 to see this

fact). Thus, Lemma 4.6 implies that X(S) and Xβ are right-resolving almost conjugate. 2

Remark 4.11 Xβ can be explicitly determined in terms of S . If S = {0, s1, . . . , sk−1} , then it is sufficient to

set 1β = a1a2 · · · ask−1+1 such that a1 = asi+1 = 1 , 1 ≤ i ≤ k−1 . When |S| = ∞ , different cases of Subsection

3.1 must be considered. Case (1a) has been ruled out by Lemma 4.9, so other cases will be considered.

(1b) If k = 1 and gl−1 > 1 , then F (10g) = F (1) , so 1β = a1a2 · · · ag such that asi+1 = 1 , 0 ≤ i ≤ l− 1 .

(2) If k ̸= 1 and gl−1 > dk−1 , then F (10g+sk−2+1) = F (10sk−2+1) , so 1β = a1a2 · · · ask−2+1(ask−2+2 · · ·
ag+sk−2+1)

∞ for which asi+1 = 1 , 0 ≤ i ≤ k + l − 2 .

(3) If gl−1 ≤ dk−1 , then F (10sk+l−2+1) = F (10sk−1−gl−1+1) , so

1β = a1a2 · · · ask−1−gl−1+1(ask−1−gl−1+2 · · · ask+l−2+1)
∞

for which asi+1 = 1 , 0 ≤ i ≤ k + l − 2 and ask+l−2+1 = 1 .

Now we show that the conclusion of Theorem 4.7 about conjugacy is not true in non-SFT cases. Recall that

when X is a shift space with nonwandering part R(X), we can consider the shift space

∂X = {x ∈ R(X) : x contains no words that are synchronizing for R(X)},

which is called the derived shift space of X . The derived shift space is a conjugacy invariant.

Theorem 4.12 A non-SFT β -shift is not conjugate to a S -gap shift for any S ⊆ N0 .

Proof All the S -gap shifts are synchronized; therefore, a possible conjugacy happens between synchronized

β and S -gap shifts and so we assume that our non-SFT β -shift is synchronized.

Suppose that there is S ⊆ N0 such that φ : X(S) → Xβ is a conjugacy map. By [19, Proposition 4.5],

we then must have φ(∂X(S)) = ∂Xβ . Since 1 is a synchronizing word for any S -gap shift, and X(S) is not

SFT, ∂X(S) = {0∞} (for a SFT S -gap shift, ∂X(S) = ∅). To prove the theorem, we show that

φ({0∞}) ̸= ∂Xβ . (4.9)

Recall that the ω -limit set of the sequence 1β under the shift map is the derived shift space ∂Xβ of Xβ [20,

Theorem 2.8]. First assume that Xβ has the specification property. There then exists some n ≥ 0 such that

0n is not a factor of 1β [5], so 0n is a synchronizing word for Xβ [5, Proposition 2.5.2] and 0∞ ̸∈ ∂Xβ .

Therefore, ∂Xβ ∩ P1(Xβ) = ∅ (P1(Xβ) denotes the set of fixed points for Xβ ) while φ(0∞) ∈ P1(Xβ) and

φ(0∞) ∈ φ(∂X(S)) = ∂Xβ , and (4.9) holds.

If Xβ does not have specification, then {0∞, 10∞} ⊆ ω(1β) = ∂Xβ and again (4.9) holds. 2
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Corollary 4.13 Let Xβ be SFT and X(S0) the unique S -gap shift conjugate to Xβ (Theorem 4.7). Then Xβ

is:

1. right-resolving almost conjugate to X(S0) ,

2. right-resolving finite equivalent to infinitely many S -gap shifts (X(Sn))n∈N with D(Sn) = (D(S0))
n+1 ,

n ∈ N ,

3. right-resolving almost conjugate to a unique strictly sofic S -gap shift.

If Xβ is strictly sofic, then it is right-resolving almost conjugate to a unique S -gap shift.

Proof Let Xβ be SFT and let 1β = a1a2 · · · an−1an and

{i1, i2, . . . , it} ⊆ {1, 2, . . . , n}

where aij = 1, 1 ≤ j ≤ t . We will relabel the Fischer cover of Xβ for possible presentation of a S -gap shift.

One of such SFT S -gap shifts is X(S0), characterized in the proof of Theorem 4.7. By that theorem,

Xβ and X(S0) are right-resolving almost conjugate and conjugate, which gives (1). For (2), relabel ∆(S0) =

{0, i2 − 1, i3 − i2, . . . , it − it−1} as ∆(S0) = {0, d1, . . . , dt−1} and observe that D(S0) = d1 · · · dt−2(dt−1 + 1).

Set

S1 = (S0 \ {it − 1}) ∪ (it + S0).

Then D(S1) = (D(S0))
2 is not primitive and we have MGS1

∼= MGS0
.

Now for j ∈ N , let sij = max{s : s ∈ Sj−1} and use an induction argument to see that for

Sj = (Sj−1 \ {sij}) ∪ ((sij + 1) + S0), (4.10)

D(Sj) = (D(S0))
j+1 and MGSj

∼= MGS0
.

To prove (3), note that there is a strictly sofic S -gap shift with k = 1 and gl−1 > 1 as in Subsection 3.1

where S = {0, i2 − 1, . . . , it−1 − 1, it, it + i2 − 1, . . .} . The element it appears in S because the edge starting

from the last vertex and terminating at the first vertex is labeled 0. In fact,

∆(S) = {0, i2 − 1, i3 − i2, . . . , it−1 − it−2, it − it−1 + 1}.

Hence, Xβ and X(S) have the same underlying graph for their Fischer covers and, by Lemma 4.6, they are

right-resolving almost conjugate.

If there is another S -gap shift such that Xβ and X(S) are right-resolving finite equivalent, then

MGβ
∼= MGS

and so MGS0

∼= MGS
. Now Theorems 4.3 and 4.4 imply that |S| < ∞ and D(S) is not

primitive, which in turn implies that D(S) = (D(S0))
m for some m ∈ N . Therefore, S = Sm−1 as defined in

(4.10).

Now suppose Xβ is strictly sofic. A typical Fischer cover of Xβ is shown in Figure 1. The existence of a

loop in the first vertex from the left implies that it is the vertex F (1) in the Fischer cover of the S -gap shift.

By Fischer cover of S -gap shifts [2], there is only one X(S) with Fischer cover as appears in Figure 1. 2
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4.2. Nonsofic case

Thus far for sofics, we have used Diagram (4.1) to get some equivalencies between a sofic Xβ and some S -gap

shifts. However, the most considered equivalencies between two nonsofic subshifts are when they have a common

extension with some nice properties and, in particular, when the legs are 1-1 a.e. This sort of equivalencies

was considered by Fiebig in [8]. For instance, for two synchronized systems X and Y , she proves that they

have a common synchronized 1-1 a.e. extension if and only if D(X) and D(Y ) are hyperbolic conjugate if and

only if D(XGX
) and D(YGY

) are hyperbolic conjugate where D(X) denotes the set of doubly transitive points

in X . This hyperbolic conjugacy is automatically at hand when GX and GY are isomorphic. This assertion

motivates the following construction and definition.

Let Gβ be the underlying graph of the Fischer cover of Xβ , β ∈ (1, 2] and α1 the starting vertex of Gβ

(see Figure 2). Relabel Gβ by labeling 1 any edge terminating at vertex α1 and 0 all other edges to get an

S -gap shift with the same underlying graph as Xβ . Note that this relabeled graph is follower-separated for our

X(S) and is in fact the Fischer cover for X(S).

Definition 4.14 We say that X(S) is the corresponding S -gap shift to a β -shift and is denoted by CORR(Xβ) ,

β ∈ (1, 2] if X(S) has the same underlying graph for its Fischer cover as Xβ .

Similarly, for X(S) satisfying (4.8), a unique Xβ exists such that Xβ has the same underlying graph

for its Fischer cover as X(S) and is denoted by Xβ = CORR (X(S)) . This Xβ is called the corresponding

β -shift to X(S) .

Remark 4.15 Xβ and CORR(Xβ) have all equivalencies given in Diagram (4.1) when they are both SFT and

all except conjugacy when they are strictly sofic.

Theorem 4.16 h(Xβ) = h(CORR(Xβ)), β ∈ (1, 2] .

Proof Entropy is an invariant for all the properties given in Diagram (4.1), so when Xβ is sofic, the proof is

obvious (Theorem 4.7).

Now let Xβ be a nonsofic shift and let 1β = a1a2 · · · . We have ai = 1 if and only if i− 1 ∈ S , but for

1β =
∑∞

i=1 aiβ
−i , h(Xβ) = log β and h(X(S)) = log λ where λ is a nonnegative solution of

∑
n∈S x−(n+1) = 1

[17], so h(Xβ) = h(CORR(Xβ)). 2

Since Gβ (resp. GS ) and GCORR(Xβ) (resp. GCORR(X(S)) ) are isomorphic, the presaid result in [8] implies

that:

Theorem 4.17 1. A synchronized Xβ and CORR(Xβ) have a common synchronized 1-1 a.e. extension.

2. Suppose CORR(X(S)) is synchronized. Then X(S) and CORR(X(S)) have a common synchronized

1-1 a.e. extension if and only if (4.8) holds.

Now we look for some equivalencies for the nonsynchronized case. Let X and Y be two coded systems. Then

there is a coded system Z factoring onto X and Y with entropy-preserving maps if and only if h(X) = h(Y ).

In particular, Z can be chosen to be an almost Markov synchronized system [8, Theorem 2.1], so by Theorem

4.16 this is true for any X = Xβ and Y = CORR(Xβ), β ∈ (1, 2]. We thus have:
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Theorem 4.18 1. A Xβ and CORR(Xβ) have a common almost Markov synchronized extension with

entropy-preserving legs.

2. A X(S) and CORR(X(S)) have a common almost Markov synchronized extension with entropy-preserving

legs if and only if (4.8) holds.

Now we investigate the frequency of corresponding S -gap shifts in the space of all S -gap shifts by using the

topology of S -gap shifts given in [3]. This topology is obtained by assigning a real number xS = [d0; d1, d2, ...] ,

where [d0; d1, d2, ...] is the continued fraction expansion of xS , to any X(S) with d0 = s0 and dn = sn−sn−1 .

By that, a one-to-one correspondence between the S -gap shifts up to conjugacy and R = R≥0 \ { 1
n : n ∈ N} ,

up to homeomorphism, will be established and the subspace topology of R together with its measure structure

will be induced on the space of all S -gap shifts.

Theorem 4.19 Let S be the set of all S -gap shifts corresponding to some Xβ . Then S is a Cantor dust (a

nowhere dense perfect set) on the space of all S -gap shifts. Entropy is a complete invariant for the conjugacy

classes of S .

Proof First suppose X(S) does not satisfy (4.8) and xS = [d0; d1, . . .] corresponds to X(S) [3]. Let N

be the least integer such that dNdN+1 · · · < d1d2 · · · and set γi := [d0; d1, . . . , di] , i ∈ N0 . If N is even,

set U = (γN , γN+1), and otherwise, U = (γN+1, γN ). Then no points of U satisfy (4.8) and so none are

corresponding S -gap shifts. This shows that S is closed.

Now let X(S) ∈ S and V be a neighborhood of xS . Note that two real numbers are close if sufficiently

large numbers of their first partial quotients in their continued fraction expansion are equal. We can select two

points xS′ , xS′′ ∈ V such that X(S′) satisfies (4.8) and X(S′′) does not satisfy (4.8). This implies that all

points of S are limit points of themselves and S is nowhere dense.

The second part follows from the fact that the entropy is a complete invariant for the conjugacy classes

of β -shifts. 2

5. Applications

By [11, Theorem 4.22], for every β > 1 there exists 1 < β′ < 2 such that Xβ and Xβ′ are flow equivalent.

However, any two flow equivalent shift spaces have the same Bowen–Franks groups. Therefore, by Theorem

4.7 and [2, Theorems 4.1 and 4.2], which gives a complete account of the Bowen–Franks groups of sofic S -gap

shifts, we also have a complete characterization of such groups for sofic β -gap shifts for β > 1.

An adjacency matrix for a sofic shift can be read from the underlying graph of its Fischer cover. Thus,

the adjacency matrix of a Xβ and its right-resolving almost-conjugate X(S) are the same by Theorem 4.7. We

already have a formula for the characteristic polynomial of a sofic S -gap shift from [2, Theorem 2.2] and hence

for a sofic Xβ as well.

For a dynamical system (X,T ), let pn be the number of periodic points in X having period n . When

pn < ∞ , the zeta function ζT (t) is defined as

ζT (t) = exp

( ∞∑
n=1

pn
n
tn

)
.
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The zeta functions of β -shifts have been determined in [10]. Here we will give the zeta function of ζσβ
in terms

of ζσS
where X(S) = CORR(Xβ).

Let Xβ be sofic and 1β = a1a2 · · · an(an+1 · · · an+p)
∞ such that

{i1 = 1, i2, . . . , it} ⊆ {1, 2, . . . , n}, and {j1, j2, . . . , ju} ⊆ {n+ 1, . . . , n+ p}

where aiv = ajw = 1 for 1 ≤ v ≤ t , 1 ≤ w ≤ u . Now we have the following.

Theorem 5.1 Let X(S) = CORR(Xβ) for some β ∈ (1, 2] . If Xβ is SFT, then

ζσβ
(r) = ζσS

(r). (5.1)

If Xβ is not SFT, then

ζσβ
(r) = (1− r)ζσS (r). (5.2)

Furthermore, in the case of SFT,

ζσβ
(r) =

1

1− ri1 − ri2 − · · · − rit
, (5.3)

and for strictly sofic cases,

ζσβ
(r) =

1

(1− ri1 − ri2 − · · · − rit)(1− rp)− (rj1 + · · ·+ rju)
. (5.4)

Proof First let Xβ be an SFT shift. Also let S = {0, i2 − 1, . . . , it−1 − 1, it − 1} ; then by Theorem (4.7),

X(S) = CORR(Xβ). Since Xβ and X(S) are conjugate, they have the same zeta function, that is:

ζσβ
(r) =

1

fS(r−1)
=

1

1− ri1 − ri2 − · · · − rit

where fS(x) = 1−
∑

sn∈S
1

xsn+1 [2, Theorem 2.3].

Now suppose Xβ is a strictly sofic shift and let 1β = a1a2 · · · an(an+1 · · · an+p)
∞. An arbitrary periodic

point x ∈ Xβ has one presentation in Gβ unless

x = (an+1 · · · an+p)
∞,

where then it has exactly two presentations. This fact can be deduced from the proof of [11, Proposition 4.7].

Thus, if m = pk (k ∈ N), then every point in Xβ of period m is the image of exactly one point in XGβ
of

the same period, except p points in the cycle of (an+1 · · · an+p)
∞ , which are the image of two points of period

m . As a result, pm(σGβ
) = pm(σGβ

) − p where pm = |Pm| and Pm is the set of periodic points of period m .

When p does not divide m , pm(σGβ
) = pm(σGβ

). Therefore,

ζσβ
(r) = exp

 ∞∑
m=1
p ̸|m

pm(σGβ
)

m
rm +

∞∑
m=1
p|m

pm(σGβ
)− p

m
rm



= exp

 ∞∑
m=1

pm(σGβ
)

m
rm − p

∞∑
m=1
p|m

rm

m


= ζσGβ

(r)× (1− rp).
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However, Gβ
∼= GS for S as in (4.5). Therefore, by [2, Theorem 2.3],

ζσGβ
(r) =

1

(1− rp)fS(r−1)

=
1

(1− ri1 − ri2 − · · · − rit)(1− rp)− (rj1 + · · ·+ rju)
.

It remains to consider the case when Xβ is not sofic. We claim that Pn(X(S)) = Pn(Xβ) + 1 for all n ∈ N .

Observe that one may assume that the initial vertex of π , a cycle in the graph of Gβ , is α1 as in Figure

2. Now let x = v∞ ∈ Pn(Xβ) with v = v1 · · · vn ∈ Bn(Xβ). Pick πβ a cycle in Gβ such that v = Lβ(πβ)

and set πS to be the associated cycle to πβ in GS , and let w = LS(πS). Then w∞ ∈ Pn(X(S)). Now

define φn : Pn(Xβ) \ P1(Xβ) → Pn(X(S)) \ P1(X(S)) for all n ≥ 2 such that φn(v
∞) = w∞ . Clearly, φn is

well-defined. It is also one-to-one; otherwise, for w∞ ∈ Pn(X(S)), there are two different cycles πS and γS

such that w = LS(πS) = LS(γS).

However, any 1 in w is characterized by one passing of πS and γS through α1 , so πS = γS and φn is

one-to-one. Now the claim follows by the fact that P1(Xβ) = {0∞} and P1(X(S)) = {0∞, 1∞} . Hence:

ζσS
(r) = exp

( ∞∑
m=1

pm(σGS
)

m
rm

)

= exp

( ∞∑
m=1

pm(σGβ
) + 1

m
rm

)
= ζσGβ

(r)× 1

1− r
.

2
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