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Abstract: This paper studies the spreading speed for a lattice differential equation with infinite distributed delay and

we find that the spreading speed coincides with the minimal wave speed of traveling waves. Here the model has been

proposed to describe a single species living in a 1D patch environment with infinite number of patches connected locally

by diffusion.
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1. Introduction

In biological invasions, the spreading speed (short for the asymptotic speed of spread/propagation) is a very

important notion, since it is used to describe the speed at which the geographic range of the species population

expands [14, 20, 22, 29, 36, 38]. The concept of the spreading speed was first introduced by Aronson and

Weinberger [2, 3] for reaction-diffusion equations and applied by Aronson [1] to an integrodifferential equation.

A general theory of spreading speeds has been developed for monotone semiflows [19, 20, 21, 33], for integral

and integrodifferential population models [8, 9, 29, 30, 31], for time-delayed reaction-diffusion equations [31, 37],

and for lattice differential equations [4, 34]. Recently, Hsu and Zhao [14] and Li et al. [18] extended the theory

of spreading speeds in nonmonotone integrodifference equations and Fang et al. [10] in nonmonotone discrete-

delayed lattice equations.

Lattice differential equations arise in many applied subjects, such as chemical reaction, image processing,

material science, and biology [7, 15, 17, 28]. In the models of lattice differential equations, the spatial structure

has a discrete character, and lattice dynamics have recently been extensively used to model biological problems

[4, 5, 6, 10, 12, 16, 22, 23, 25, 36] since the environment in which the species population lives may be discrete but

not continuous. In 2003, Weng et al. [34] considered a single-species population with two age classes distributed

over a patchy environment consisting of all integer nodes of a one-dimensional lattice, and they derived a time-

delayed lattice differential equation. For a fixed delay, Weng et al. [34] proved that the minimal wave speed of

traveling waves is also the spreading speed when the birth function satisfies the monostable assumption. In 2006,

Kyrychko et al. [16] derived a stage-structured model for a single species on a finite one-dimensional lattice,

provided that there was no migration into or from the lattice. Furthermore, they proved that the model has

a positivity-preserving property and that the positive equilibrium is globally stable by establishing comparison

principles for the cases where the birth function is increasing and where the birth function is nonmonotone. In
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2008, Cheng et al. [4] extended the model of Weng et al. [34] to a 2D lattice. They derived a lattice model

for a single species in a 2D patchy environment with infinite number of patches connected locally by diffusion

and global interaction by delay. In particular, they also showed that the minimal wave speed c∗(θ) coincides

with the asymptotic speed of spread for any fixed direction θ . Then, in 2010, Cheng et al. [5] established

the asymptotic stability of traveling wave fronts when the immature population is not mobile. Also in 2010,

Fang et al. [10] considered a nonmonotone time-delayed lattice system with global interaction, using Schauder’s

fixed-point theorem and limiting process, and they obtained the existence of traveling waves. Moreover, they

also found that the minimal wave speed of traveling waves coincided with the spreading speed. Other related

results on lattice models can be found in the works of Cheng et al. [6], Gourley and Wu [12], Ma et al. [22],

Ma and Zou [23], Weng et al. [36], and the references therein.

Note that not all individuals in a population necessarily always mature at the same age, and the time

from birth to maturity may be rather imperfectly known or it might vary from individual to individual, as

described by Gourley and So [11]. Therefore, it was observed that distributed delays are more reasonable

than discrete delays in modeling maturation periods. The works of Weng and Wu [35] also studied a nonlocal

reaction-diffusion population model with general distributive maturity. In our previous paper [25], we used

arguments similar to those of So et al. [27] and Weng et al. [34], and we derived a lattice model with infinite

distributed delay in a 2D patchy environment to describe the growth of a single-species population. We proved

the existence of traveling wave solutions when the birth rate is large enough that each can sustain a positive

equilibrium.

In our previous paper [25], using discrete Fourier transformation and inverse discrete Fourier transfor-

mation, we derived a lattice model with infinite distributed delay to describe the growth of a single-species

population in a 2D patchy environment. The corresponding lattice model in 1D form can be written as

dwk(t)

dt
=D[wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+
1

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)b
(
wk+l(t− a)

)
e−daf(a)da

]
, (1.1)

where α = Da and

βα(l) = Re

∫ π

−π

eilω−4α sin2 ω
2 dω = 2e−ν

∫ π

0

cos(lω)eν cosωdω, (ν := 2α) (1.2)

for any l ∈ Z . In (1.1), wk(t) is the total mature population at the kth patch at time t , and D and d

are the diffusion coefficient and the death rate, respectively. b(·) : R+ → R+ is the birth function, and the

probability density function f(a) ∈ L1 ([0,+∞),R+) describes the probability of maturing at age a and satisfies∫∞
0
f(d)da = 1, f(a)da being the probability, given that an individual matures, of its maturation time being

between a and a+da , with da infinitesimal. The purpose of this paper is to establish the theory of spreading

speeds for system (1.1).

The following lemma gives the properties of βα(l).

Lemma 1.1 Let βα(l) be given in (1.2). Then:

(i) βα(l) = βα(|l|), ∀ l ∈ Z ;
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(ii) 1
2π

∑∞
l=−∞ βα(l) = 1 ;

(iii) βα(l) ≥ 0 if α = 0 and l ∈ Z; βα(l) > 0 if α > 0 and l ∈ Z ;

(iv) 1
2π

∑∞
l=−∞ βα(l)e

−λl < +∞ for any λ > 0 .

For the proof of Lemma 1.1, we refer to Lemma 2.1 and (3.6) in the work of Weng et al. [34].

Remark 1.2 Here we note that the kernel function 1
2πβα(l) in (1.2) was exactly derived in [25] by using

the discrete Fourier transformation and inverse discrete Fourier transformation, which is similar to those in

[4, 34, 36]. It should be pointed out that the properties listed by Lemma 1.1 are sufficient for this paper and

the main results of this paper remain valid for general kernel functions under similar assumptions. Ma et al.

[22] considered the following lattice differential system:

u′n(t) = D
∑

i∈Z\{0}

J(i)[un−i(t)− un(t)]− dun(t) +
∑
i∈Z

K(i)b (un−i(t− r), )

and they established the asymptotic speed of propagation and traveling wave fronts, where K is a general kernel

function and is just requested to satisfy the following assumptions: (i) K(i) = K(−i) ≥ 0 for all i ∈ Z\{0} ; (ii)∑
i∈ZK(i) = 1; (iii)

∑
i∈ZK(i)e−λi < +∞ for any λ ∈ R . Moreover, the kernel function J was also requested

to satisfy the above three assumptions. Using the same argument in this paper, we can prove that Theorems

3.3, 3.8, and 3.9 still hold even if we replace the kernel function 1
2πβα(l) in (1.2) with the above kernel function

K(i).

This paper is organized as follows: in Section 2, we present some preliminaries. In Section 3, we establish

the existence of the spreading speed for initial-value problem (1.1) and (2.1) for both monotone and nonmonotone

birth functions, and we prove that the spreading speed coincides with the minimal wave speed of the nontrivial

traveling waves. When the birth function b(w) is monotone, we prove that the positive equilibrium is stable if

it exists. Finally, we apply our results to a Nicholson blowfly model.

2. Preliminaries

In this paper, we always denote C+
K(−∞, T ] = C((−∞, T ], [0,K]), C+

K(−∞,∞) = C((−∞,∞), [0,K]) , where

K and T are positive constants. Assume that the birth function b : R+ → R+ satisfies the following conditions:

(H1
b ) b is local Lipschitz continuous and

(i) b(0) = 0;

(ii) there exists sufficiently large K0 > 0 such that dw > f̄(d)b(w) for w > K0 , where f̄(d) =∫∞
0
e−daf(a)da .

Definition 2.1 ([10, Definition 2.1]) For any function uk : R+ × Z → R+ , a number c∗ > 0 is called the

spreading speed if lim sup
t→∞,|k|≥ct

uk(t) = 0 for every c > c∗ , and there exists some ε > 0 such that lim inf
t→∞,|k|≤ct

uk(t) ≥

ε for every c ∈ (0, c∗).

For an initial condition

W 0(t) =
{
w0

k(t)
}
k∈Z , w

0
k(t) ∈ C+

K(−∞, 0], k ∈ Z, (2.1)
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we consider the following initial-value problem:
dwk(t)

dt = D[wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+ 1
2π

∑∞
l=−∞

[ ∫∞
0
βα(l)b

(
wk+l(t− a)

)
e−daf(a)da

]
, t > 0,

wk(t) = w0
k(t), t ≤ 0.

(2.2)

For convenience, let

Ak(w)(s) = D[wk+1(s) + wk−1(s)],

Bk(w)(s) =
1

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)b
(
wk+l(s− a)

)
e−daf(a)da

]
.

The initial-value problem (2.2) can then be rewritten as:{
wk(t) = e−δtwk(0) +

∫ t

0
e−δ(t−s)

(
Ak(w)(s) + Bk(w)(s)

)
ds, t > 0,

wk(t) = w0
k(t), t ≤ 0,

(2.3)

where δ = 2D + d .

Now we establish the existence and uniqueness of solutions to the initial-value problem (2.3) and the

comparison principle.

Theorem 2.2 Assume that (H1
b ) holds, let K > K0 , and b(·) is nondecreasing on [0,K] . Then for any given

function

W 0(t) =
{
w0

k(t)
}
k∈Z , w

0
k(t) ∈ C+

K(−∞, 0], k ∈ Z,

the initial-value problem (2.3) has a unique solution W (t) = {wk(t)}k∈Z with wk(t) ∈ C+
K(−∞,+∞).

Proof For each fixed T ∈ (0,∞) and W 0 = {w0
k}k∈Z with w0

k ∈ C+
K(−∞, 0], we define

ST =
{
W = {wk}k∈Z | wk ∈ C+

K(−∞, T ], wk(t) = w0
k(t), t ∈ (−∞, 0]

}
.

Define an operator FT = {FT
k }k∈Z by

FT
k [W ](t) =

{
e−δtwk(0) +

∫ t

0
e−δ(t−s)

(
Ak(w)(s) + Bk(w)(s)

)
ds, t ≥ 0,

w0
k(t), t ≤ 0,

where W ∈ ST . Obviously, FT [W ](t) is continuous for t ∈ (−∞, T ] . Then for any t ∈ [0, T ] and k ∈ Z , we

have

0 ≤ FT
k [W ](t) ≤ e−δtK +

[
2DK + f̄(d)b(K)

] ∫ t

0

e−δ(t−s)ds ≤ K.

Therefore, FT (ST ) ⊆ ST .

For any W ∈ ST and λ > 0, we define a norm ∥ · ∥λ by ∥W∥λ := sup
t∈[0,T ],k∈Z

|wk(t)|e−λt, and for any

W, W̄ ∈ ST , let gk(t) = wk(t)− w̄k(t) and G(t) = {gk(t)}k∈Z . For t ∈ (0, T ] , we then have

FT
k [W ] (t)− FT

k

[
W̄

]
(t) =

∫ t

0

e−δ(t−s)
(
Ak(g)(s) + Bk(w)(s)− Bk(w̄)(s)

)
ds.
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Therefore, ∣∣FT
k [W ] (t)− FT

k

[
W̄

]
(t)

∣∣ e−λt

≤D
∫ t

0

e−λse−λ(t−s)
[
|gk+1(s)|+ |gk−1(s)|

]
ds+

1

2π

∞∑
l=−∞

βα(l)

∫ t

0

e−λse−λ(t−s)

∫ s

0

LK |gk+l(s− a)| f(a)e−dadads

≤2D

λ
∥G∥λ(1− e−λt) +

f̄(d)LK

λ
∥G∥λ(1− e−λt),

where LK is a Lipschitz constant. Since

lim
λ→∞

[
2D

λ
∥G∥λ(1− e−λt) +

f̄(d)LK

λ
∥G∥λ(1− e−λt)

]
= 0,

we have that FT is a contracting map in (ST , ∥ · ∥λ) if λ > 0 is sufficiently large. Since (ST , ∥ · ∥λ) is a Banach

space, by the Banach fixed point theorem, FT has a unique fixed point W in ST . This shows that initial-value

problem (2.3) has a unique solution on [0, T ] for any T > 0.

By the arbitrariness of T , we can conclude that the initial-value problem (2.3) has a unique solution on

[0,∞). This completes the proof of Theorem 2.2. 2

Next we establish the comparison theorem for initial-value problem (2.3). Assume that

X =

{
u = {ui}i∈Z ∈ RZ ∣∣ sup

i∈Z
|ui| < +∞

}
with the norm |u|X = supi∈Z |ui| . Let X+ = RZ

+ , and then X+ is a positive closed cone in X . The partial

order relation ≤X is generated by X+ in a Banach lattice X . If we set T (t) = e−δt , then T (t) is a C0 linear

semigroup in X , and T (t) is strongly positive.

Let h : (−∞, 0] → [1,+∞) satisfy the following conditions:

(i) h is a continuous, nonincreasing function and h(0) = 1;

(ii) h(s+θ)
h(s) → 1 uniformly for s ∈ (−∞, 0) as θ → 0+ ;

(iii) h(s) → +∞ as s→ −∞ .

A typical function satisfying the above conditions is e−λs , where λ is a positive constant. Define

Ch =

{
ϕ ∈ C ((−∞, 0], X)

∣∣∣∣ ϕh ∈ UC ((−∞, 0]) , sup
s≤0

|ϕ(s)|X
h(s)

<∞
}

with the norm |ϕ|C = sups≤0
|ϕ(s)|X
h(s) , ϕ ∈ Ch , where UC ((−∞, 0]) is the space of uniformly continuous functions

on (−∞, 0]. Let

C+
h =

{
ϕ ∈ Ch

∣∣ ϕ(s) ∈ X+
}
,

C+
h generate a partial order relation ≤C in Ch .

For any continuous function W : (−∞, b) → X, we define Wt(s) = W (t + s), where b > 0 and s ∈ (−∞, 0].

Notice that Wt ∈ C((−∞, 0], X).
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For any K > 0, define

XK = {u = {ui}i∈Z ∈ X | 0 ≤ ui ≤ K, i ∈ Z} ,

Ch,K = {ϕ ∈ Ch | 0 ≤ ϕi(s) ≤ K, i ∈ Z, s ≤ 0} ,

D = [0,∞)×XK , D(t) = XK , ∀ t ∈ [0,∞),

D = [0,∞)× Ch,K ,D(t) = Ch,K , ∀ t ∈ [0,∞),

and then conditions (D1)–(D3) [26, Section 4] are satisfied. It is easy to verify Ch,K = C+
K(−∞, 0].

Define F : C+
h → X+ by F (Φ) = {Fk(Φ)}k∈Z , where Φ = {ϕk}k∈Z ∈ C+

h and

Fk(Φ) = D [ϕk+1(0) + ϕk−1(0)] +
1

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)b
(
ϕk+l(−a)

)
e−daf(a)da

]
.

For W 0 ∈ D(0), that is W 0 ∈ Ch,K , the initial-value problem (2.3) has an equivalent form as follows:{
W (t) = T (t)W (0) +

∫ t

0
T (t− s)F (Ws)ds, t > 0,

W (t) =W 0(t), t ≤ 0.
(2.4)

Definition 2.3 A continuous function V : (−∞, b) → X is called an upper (a lower) solution of initial-value

problem (2.4) if

V (t) ≥ (≤)T (t)V (0) +

∫ t

0

T (t− s)F (Vs)ds, 0 < t < b.

If V is an upper and a lower solution, then V is a solution of initial-value problem (2.4) on [0, b).

Theorem 2.4 (Comparison principle) Assume that (H1
b ) holds, and the birth function b(·) is nondecreasing

on [0,K] , where K > K0 . For a pair of upper and lower solutions W+(t) =
{
w+

i (t)
}
i∈Z ∈ C(R, X) and

W−(t) =
{
w−

i (t)
}
i∈Z ∈ C(R, X) of initial-value problem (2.4) , if 0 ≤ w−

i (t) ≤ w+
i (t) ≤ K for i ∈ Z and

t ≤ 0 , then we have 0 ≤ w−
i (t) ≤ w+

i (t) ≤ K for i ∈ Z and t > 0 .

Proof We can easily verify that F is Lipschitz continuous in Ch,K . Since b(·) is nondecreasing on [0,K] ,

then for any Ψ,Φ ∈ Ch,K and Ψ ≥C Φ, we have Fk(Ψ)−Fk(Φ) ≥ 0. Therefore, F (Ψ) ≥X F (Φ), which implies

that F : Ch,K → X+ is quasimonotone, that is

lim
ρ→0

1

ρ
dist

((
Ψ(0)− Φ(0)

)
+ ρ

[
F (Ψ)− F (Φ)

]
, X+

)
= 0.

If we define S(t, s) and T (t, s) [26, Equation (4.1)] by S(t, s) = T (t, s) = T (t− s) = e−δ(t−s) , where t > s ≥ 0,

then using [26, Theorem 5.2], we have

W+(t) ≥X W (t;W+) ≥X W (t;W−) ≥X W−(t), ∀ t > 0,

where W (t;W+) and W (t;W−) are solutions of initial-value problem (2.3) with W+(t) = {w+
k (t)}k∈Z and

W−(t) = {w−
k (t)}k∈Z, t ∈ (−∞, 0], respectively. Therefore, we obtain w+

k (t) ≥ w−
k (t) for any t ≥ 0 and k ∈ Z.

This completes the proof. 2
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3. Spreading speed

In this section, we study the spreading speed of solutions of initial-value problem (1.1) and (2.1). Here we

consider two cases: the birth function b is monotone and nonmonotone. The main idea comes from Zhao and
Xiao [38] and Fang et al. [10].

3.1. Monotone birth function

In this subsection, we always assume that the birth function b : R+ → R+ satisfies the following assumptions:

(H2
b ) b is local Lipschitz continuous, b′(0) exists, and

(i) b(0) = 0, b′(0)f̄(d) > d , b(w) ≤ b′(0)w , ∀ w ∈ R+ ;

(ii) f̄(d)b(w) = dw admits a unique positive solution w∗ > 0 and b is nondecreasing on [0, w∗] ;

(iii) there exist constants ρ ∈ (0, 1], M0 > 0, and η ∈ (0, w∗) such that b′(0)w − b(w) < M0w
1+ρ for

w ∈ (0, η);

(iv) b(w)f̄(d) > dw for w ∈ (0, w∗).

Before studying equation (1.1), we consider the following lattice differential equation with finite dis-

tributed delay:

dwk(t)

dt
=D[wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+
1

2π

∞∑
l=−∞

[∫ τ

0

βα(l)b
(
wk+l(t− a)

)
e−daf(a)da

]
, (3.1)

where τ is a positive parameter. (H2
b ) ensures that there exists τ0 > 0 so large that for any τ > τ0 , equation

dw − b(w)
∫ τ

0
e−daf(a)da = 0 has a unique positive root w = w∗

τ ∈ (0, w∗] , and furthermore lim
τ→∞

w∗
τ = w∗ .

Denote C = C([−τ, 0], X), C+ = C([−τ, 0], X+), and denote

C[0,K] = {ϕ ∈ C : 0 ≤ ϕi(s) ≤ K, s ∈ [−τ, 0], i ∈ Z} .

For any continuous function W (t) = {wk(t)}k∈Z : [−τ,∞) → X , we define Wt ∈ C , t ∈ [0,∞), with

Wt(s) =W (t+ s), s ∈ [−τ, 0].
Defining F = {Fk}k∈Z : C[0,K] → X by

Fk(φ) = D [φk+1(0) + φk−1(0)] +
1

2π

∞∑
l=−∞

[∫ τ

0

βα(l)b
(
φk+l(−a)

)
e−daf(a)da

]
,

equation (3.1) can be rewritten as:

dwk(t)

dt
= −δwk(t) + Fk(Wt), ∀ t > 0, k ∈ Z,

where δ = 2D + d . Since b(·) is increasing on [0, w∗] , by Martin and Smith [24, Corollary 5] (the discussion

is similar to Cheng et al. [4, Theorem 3.1]), equation (3.1) has a unique solution W (t;φ) for any initial data

φ ∈ C[0,w∗] . Furthermore, the solution semiflow of equation (3.1) is order-preserving on C[0,w∗] .
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Define

∆τ (λ, c) :=D
(
eλ + e−λ − 2

)
− cλ− d+ b′(0)

∫ τ

0

[
1

2π

∞∑
l=−∞

βα(l)e
λl

]
e−(cλ+d)af(a)da

=D
(
eλ + e−λ − 2

)
− cλ− d+ b′(0)

∫ τ

0

e2α(coshλ−1)−(cλ+d)af(a)da.

Similar to our previous paper [25, Lemma 3.2], we find that the system ∆τ (λ, c) = 0, ∂
∂λ∆τ (λ, c) = 0 has a

positive root (λ∗τ , c
∗
τ ).

For equation (3.1), the following results come from Fang et al. [10, Theorem 3.3], which imply that the

minimal wave speed c∗τ is also the spreading speed.

Lemma 3.1 Let τ ≥ τ0 , and then the following hold true:

(i) assuming that φ = {φk}k∈Z ∈ C[0,w∗
τ ]
, if there exists N0 ∈ N such that φk(s) = 0 for any |k| > N0 and

s ∈ [−τ, 0] , then limt→∞,|k|≥ct wk(t) = 0 for any c > c∗τ ;

(ii) assuming that φ = {φk}k∈Z ∈ C[0,w∗
τ ]
, if φ(s) ̸≡ 0 for any s ∈ [−τ, 0] , then limt→∞,|k|≤ct wk(t) = w∗

τ for

any 0 < c < c∗τ .

We now consider the spreading speed of initial-value problem (1.1) and (2.1). Assume that (λ∗, c∗) is a

unique positive solution of the following system [25, Lemma 3.2]:

∆(λ, c) = 0,
∂

∂λ
∆(λ, c) = 0,

where

∆(λ, c) =D
(
eλ + e−λ − 2

)
− cλ− d+ b′(0)

∫ ∞

0

[
1

2π

∞∑
l=−∞

βα(l)e
λl

]
e−(cλ+d)af(a)da

=D
(
eλ + e−λ − 2

)
− cλ− d+ b′(0)

∫ ∞

0

e2α(coshλ−1)−(cλ+d)af(a)da

is the characteristic equation of equation (1.1).

Proposition 3.2 lim
τ→∞

(λ∗τ , c
∗
τ ) = (λ∗, c∗).

Proof For fixed λ ≥ 0 and c ≥ 0, ∆τ (λ, c) and c∗τ are both strictly increasing for τ > 0. It is easy to see

that for any λ > 0,

∆(λ, c∗τ ) = ∆τ (λ, c
∗
τ ) + b′(0)

∫ ∞

τ

exp
{
2α(coshλ− 1)− (c∗τλ+ d)a

}
f(a)da > 0.
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Using [25, Lemma 3.2], we have c∗τ < c∗ for ∀ τ > 0. Denote c∗∞ := lim
τ→∞

c∗τ , and then c∗∞ ≤ c∗. We now prove

that lim sup
τ→∞

λ∗τ = λ∗∞ < +∞ . Suppose that lim sup
τ→∞

λ∗τ = +∞ . Since

∆τ (λ
∗
τ , c

∗
τ ) =D

(
eλ

∗
τ + e−λ∗

τ − 2
)
− c∗τλ

∗
τ − d

+ b′(0)

∫ τ

0

exp
{
2α(coshλ∗τ − 1)− (c∗τλ

∗
τ + d)a

}
f(a)da

≥D
(
eλ

∗
τ + e−λ∗

τ − 2
)
− c∗∞λ

∗
τ − d

+ b′(0)

∫ τ

0

exp
{
2α(coshλ∗τ − 1)− (c∗∞λ

∗
τ + d)a

}
f(a)da,

we obtain lim sup
τ→∞

∆τ (λ
∗
τ , c

∗
τ ) = +∞ , a contradiction with ∆τ (λ

∗
τ , c

∗
τ ) ≡ 0. Therefore, lim sup

τ→∞
λ∗τ = λ∗∞ < +∞ .

Assuming that lim
τ→∞

λ∗τ = λ∗∞ (taking a subsequence if necessary), then one has

∆
(
λ∗∞, c

∗
∞
)
= 0 and

∂

∂λ
∆
(
λ∗∞, c

∗
∞
)
= 0.

By the uniqueness of the solution of ∆(λ, c) = 0 and ∂
∂λ∆(λ, c) = 0, we obtain (λ∗∞, c

∗
∞) = (λ∗, c∗). This

completes the proof. 2

The following theorem shows that c∗ is the spreading speed of equation (1.1) with initial data having

compact support.

Theorem 3.3 Assume that (H2
b ) holds. Let W (t) = {wk(t)}k∈Z be the solution of equation (1.1) with

W 0(t) = {w0
k(t)}k∈Z , where w

0
k(t) ∈ C((−∞, 0], [0, w∗]) . Then:

(i) if there exist M > 0 and N ∈ N such that w0
k(t) = 0 for any t ∈ (−∞,−M ] and |k| > N , then

lim
t→∞,|k|≥ct

wk(t) = 0 for any c > c∗ ;

(ii) if W 0(t) ̸≡ 0 for any t ∈ (−∞, 0] , then lim
t→∞,|k|≤ct

wk(t) = w∗ for any 0 < c < c∗ .

Proof (i) It is easy to verify that ∆(λ, c) < 0 if c > c∗ > 0 and λ > 0. For z = 1 or −1 and some β > 0,

we define W̄ (t) = {w̄k(t)}k∈Z , where w̄k(t) := min
{
w∗, βeλ(ct−zk)

}
. Since b(w) ≤ b′(0)w for any w > 0, we

obtain

1

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)b
(
w̄k+l(t− a)

)
e−daf(a)da

]

≤ b′(0)

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)w̄k+l(t− a)e−daf(a)da

]
.
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Let uk(t) := βeλ(ct−zk) ; combining with βα(l) = βα(−l), it is not difficult to prove that U(t) = {uk(t)}k∈Z is

an upper solution of the following linearized equation:

duk(t)

dt
=D[uk+1(t) + uk−1(t)− 2uk(t)]− duk(t)+

b′(0)

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)uk+l(t− a)e−daf(a)da

]
.

As a consequence, we have e−δtw0
k(0) +

∫ t

0
e−δ(t−s) (Ak(w̄)(s) + Bk(w̄)(s)) ds ≤ βeλ(ct−zk). In addition, it is

obvious that e−δtw0
k(0)+

∫ t

0
e−δ(t−s) (Ak(w̄)(s) + Bk(w̄)(s)) ds ≤ w∗. Therefore, W̄ (t) = {w̄k(t)}k∈Z is an upper

solution of equation (1.1).

For c > c∗ , choose c̄ ∈ (c∗, c). In our previous paper [25, Lemma 3.2], there existed λ̄ > 0 such

that ∆(λ̄, c̄) < 0. Since w0
k(t) has compact support, we choose β > 0 large enough such that w0

k(t) ≤

βeλ̄(c̄t−zk), ∀ k ∈ Z, t ∈ (−∞, 0], z = 1 or − 1. The comparison principle (Theorem 2.4) implies that

wk(t) ≤ w̄k(t) ≤ βeλ̄(c̄t−zk), ∀ k ∈ Z, t ∈ [0,∞), z = 1 or − 1. Let z = |k|
k and k ̸= 0, and then

wk(t) ≤ βeλ̄(c̄t−|k|), ∀ k ∈ Z, t ∈ [0,∞). As above, we obtain lim
t→∞,|k|≥ct

wk(t) = 0 for c > c∗ .

(ii) Let c ∈ (0, c∗), choosing ĉ ∈ (c, c∗). Since c∗τ → c∗ as τ → ∞ , there exists τ∗ > 0 such

that for any τ > τ∗ we have c∗τ ∈ (ĉ, c∗). For any given τ ≥ τ∗ , let W̃ (t; τ) = {w̃k(t; τ)}k∈Z where

w̃k(t; τ) := min{w0
k(t), w

∗
τ}, ∀ k ∈ Z, t ∈ [−τ, 0]. Notice that 0 ≤ wk(t) ≤ w∗

τ and W (t) = {wk(t)}k∈Z is

a solution of equation (1.1) with initial data W 0 . Therefore, W (t) is an upper solution of equation (3.1). From

the comparison principle (Theorem 2.4) we have that

wk(t) ≥ w̃k(t; W̃
0), ∀ k ∈ Z, t ∈ [0,∞),

where W̃ (t; W̃ 0) = {w̃k(t; W̃
0)}k∈Z is a solution of equation (3.1) with initial data W̃ 0(s; τ). Using Lemma 3.1

(ii), we have w∗ ≥ lim
t→∞,|k|≤ct

wk(t) ≥ lim
t→∞,|k|≤ct

w̃k(t; W̃
0) = w∗

τ for any τ > τ∗ . By the arbitrariness of τ and

lim
τ→∞

w∗
τ = w∗ , then lim

t→∞,|k|≤ct
wk(t) = w∗. This completes the proof. 2

Define Xλ = {u ∈ RZ : sup
k∈Z

|uk|e−λ|k| < +∞} with supremum norm ∥u∥Xλ
= sup

k∈Z
|uk|e−λ|k|, where

λ > 0 is a fixed constant.

Theorem 3.4 Assume that (H2
b ) holds. Let W (t) = {wk(t)}k∈Z be the solution of equation (1.1) with

W 0(t) = {w0
k(t)}k∈Z , where w0

k(t) ∈ C((−∞, 0], [0, w∗]) , W 0(t) ̸≡ 0 for any t ∈ (−∞, 0] . Then the positive

equilibrium w∗ of equation (1.1) is stable under the norm ∥ · ∥Xλ
.

Proof We only need to show that lim
t→∞

∥wk(t) − w∗∥Xλ
= 0. Choosing c ∈ (0, c∗), from Theorem 3.3 (ii) for

any ε > 0 there exists T ′ > 0 such that

sup
|k|≤ct

|wk(t)− w∗|e−λ|k| <
ε

2
for t > T ′.
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Since |wk(t)− w∗| ≤ w∗ , there exists N > 0 such that |wk(t)− w∗|e−λ|k| ≤ w∗e−λ|k| < ε
2 for all |k| > N , and

since there exists T ′′ > 0 such that ct > N as t > T ′′ , we have

sup
|k|≥ct

|wk(t)− w∗|e−λ|k| ≤ sup
|k|>N

|wk(t)− w∗|e−λ|k| <
ε

2
for t > T ′′.

For any ε > 0, let T = max{T ′, T ′′} , and then we obtain

∥wk(t)− w∗∥Xλ
= sup

k∈Z
|wk(t)− w∗|e−λ|k|

≤ sup
|k|≤ct

|wk(t)− w∗|e−λ|k| + sup
|k|>ct

|wk(t)− w∗|e−λ|k| < ε

for t > T . This completes the proof. 2

3.2. Nonmonotone birth function

In this subsection, we consider the spreading speed of solution of initial-value problem (1.1) and (2.1) when b

is nonmonotone. For convenience, we define b±(w) as follows:

b+(w) := max
v∈[0,w]

b(v), b−(w) := min
v∈[w,w∗

+]
b(v).

Note that the constructions of b+ and b− appeared in [29] for the first time. After that, similar techniques

were also adopted by Fang et al. [10], Ma et al. [22], and Wang and Li [32]. Assume that the birth function b

satisfies the following assumptions:

(H3
b ) b : R+ → R+ is local Lipschitz continuous and

(i) b(0) = 0, b′(0)f̄(d) > d , b′′(0) exists, b(w) ≤ b′(0)w for ∀ w > 0;

(ii) f̄(d)b+(w) = dw has a unique positive solution w∗
+ ;

(iii) there exist positive constants ρ ∈ (0, 1], M0 > 0 and η ∈ (0, w∗
+) such that b′(0)w− b(w) < M0w

1+ρ

and b±(w) = b(w) for w ∈ (0, η).

It is easy to see that b− and b+ are nondecreasing and satisfy b−(w) ≤ b(w) ≤ b+(w) for w ∈ [0, w∗
+] .

If b is nondecreasing, then b± = b and (H3
b ) reduces to (H2

b ). If f̄(d)b(w) = dw has a unique positive solution

w∗ , then f̄(d)b(w) > dw for 0 < w < w∗ , f̄(d)b(w) < dw for w > w∗ and (H3
b )(ii) holds. (H3

b )(iii) implies

that both f̄(d)b−(w) = dw and f̄(d)b(w) = dw have minimum positive solutions in [0, w∗
+] , denoted by w∗

−

and w∗ , respectively. If b satisfies (H3
b ), then b± satisfy (H2

b ). In the following, we always assume that w∗
−

and w∗ are the minimum positive solutions of f̄(d)b−(w) = dw and f̄(d)b(w) = dw in [0, w∗
+] , respectively. In

particular, b′+(0) = b′−(0) = b′(0).

We consider the following two auxiliary equations:

d

dt
wk(t) =D [wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+
1

2π

∞∑
l=−∞

∫ ∞

0

βα(l)b+
(
wk+l(t− a)

)
e−daf(a)da (3.2)
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and

d

dt
wk(t) =D [wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+
1

2π

∞∑
l=−∞

∫ ∞

0

βα(l)b−
(
wk+l(t− a)

)
e−daf(a)da. (3.3)

Applying Theorem 2.2 to equations (3.2) and (3.3), respectively, we obtain that equation (3.2) has a global

solution W+(t;ϕ) = {w+,k(t;ϕ)}k∈Z with initial data ϕ ∈ C[0,w∗
+] , equation (3.3) has a global solution

W−(t;ϕ) = {w−,k(t;ϕ)}k∈Z with initial data ϕ ∈ C[0,w∗
+] , and 0 ≤ w−,k(t;ϕ) ≤ w+,k(t;ϕ) ≤ w∗

+ for t > 0.

Define F± : Ch,w∗
+
→ X+ by F±(Φ) = {F±

k (Φ)}k∈Z, where

F±
k (Φ) = D[ϕk+1(0) + ϕk−1(0)] +

1

2π

∞∑
l=−∞

∫ ∞

0

βα(l)b±
(
ϕk+l(−a)

)
e−daf(a)da

and Φ = {ϕk}k∈Z ∈ [0, w∗
+] . Also define S±(t, s) = T (t, s) = T (t− s) = e(2D+d)t . Notice that b+(w) ≥ b(w) ≥

b−(w) for w ∈ [0, w∗
+] and b±(·) are nondecreasing, by Ruan and Wu [26, Theorem5.1]; we obtain the following

theorem:

Theorem 3.5 Assume that (H3
b ) holds. We also assume w0

−,k(t), w
0
k(t), w

0
+,k(t) ∈ C((−∞, 0], [0, w∗

+]) . If

w0
−,k(t) ≤ w0

k(t) ≤ w0
+,k(t) for any t ∈ (−∞, 0] , then the initial-value problem (1.1) with (2.1) has a solution

{wk(t,W
0)}k∈Z on (0,+∞) such that w−,k(t,W

0
−) ≤ wk(t,W

0) ≤ w+,k(t,W
0
+) for ∀ t > 0, k ∈ Z , where

{w−,k(t,W
0
−}k∈Z is a solution of equation (3.3) with initial data W 0

−(t) = {w0
−,k(t)} , and {w+,k(t,W

0
+)}k∈Z is

a solution of equation (3.2) with initial data W 0
+(t) = {w0

+,k(t)}k∈Z .

Applying Theorem 3.3 to equations (3.2) and (3.3), respectively, we obtain the following two lemmas:

Lemma 3.6 Assume that (H3
b ) holds. Let W 0

+(t) = {w0
+,k(t)}k∈Z , where w0

+,k(t) ∈ C((−∞, 0], [0, w∗
+]) , and

let W+(t) = {w+,k(t)}k∈Z be a solution of equation (3.2) with initial data W 0
+(t) . Then:

(i) if there exist M > 0 and N ∈ N such that w0
+,k(t) = 0 for any t ∈ (−∞,−M ] and |k| > N , then

lim
t→∞,|k|≥ct

w+,k(t) = 0 for any c > c∗ ;

(ii) if W 0
+(t) ̸≡ 0 for any t ∈ (−∞, 0] , then lim

t→∞,|k|≤ct
w+,k(t) = w∗

+ for any 0 < c < c∗ .

Lemma 3.7 Assume that (H3
b ) holds. Let W 0

−(t) = {w0
−,k(t)}k∈Z , where w0

−,k(t) ∈ C((−∞, 0], [0, w∗
−]) , and

let W−(t) = {w−,k(t)}k∈Z be a solution of equation (3.3) with initial data W 0
−(t) . Then:

(i) if there exist M > 0 and N ∈ N such that w0
−,k(t) = 0 for any t ∈ (−∞,−M ] and |k| > N , then

lim
t→∞,|k|≥ct

w−,k(t) = 0 for any c > c∗ ;

(ii) if W 0
−(t) ̸≡ 0 for any t ∈ (−∞, 0] , then lim

t→∞,|k|≤ct
w−,k(t) = w∗

− for any 0 < c < c∗.
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Now we establish the spreading speed of solutions of initial-value problem (1.1) and (2.1).

Theorem 3.8 Assume that (H3
b ) holds. Let W 0(t) = {w0

k(t)}k∈Z , where w
0
k(t) ∈ C((−∞, 0], [0, w∗

+]) , and let

W (t) = {wk(t)}k∈Z be a solution of equation (1.1) with initial data W 0(t) . Then:

(i) if there exist M > 0 and N ∈ N such that w0
k(t) = 0 for any t ∈ (−∞,−M ] and |k| > N , then

lim
t→∞,|k|≥ct

wk(t) = 0 for any c > c∗ ;

(ii) if W 0(t) ̸≡ 0 for any t ∈ (−∞, 0] , then w∗
− ≤ lim inf

t→∞,|k|≤ct
wk(t) ≤ lim sup

t→∞,|k|≤ct

wk(t) ≤ w∗
+ for any 0 < c < c∗ .

Proof Let Φ(t) = {ϕk(t)}k∈Z , where ϕk(t) = min
{
w0

k(t), w
∗
−
}
, t ∈ (−∞, 0]. Theorem 3.5 implies that

w−,k(t; Φ) ≤ wk(t;W
0) ≤ w+,k(t;W

0), ∀ t > 0, k ∈ Z.

Consequently, applying Lemma 3.6 and Lemma 3.7 yields the results. This completes the proof. 2

Theorem 3.9 For any 0 < c < c∗ , equation (1.1) has no traveling wave solution (ϕ, c) that satisfies ϕ ∈ C[0,w∗
+]

with lim inf
s→−∞

ϕ(s) < w∗
− .

Proof Suppose that for some c0 ∈ (0, c∗), equation (1.1) has a traveling wave solution (ϕ, c0) with

lim inf
s→−∞

ϕ(s) < w∗
− . Let c0 < c1 < c2 < c∗, c1 < 2c0 and [c1t] is the integer part of c1t . If we set

m(t) := −[c1t] + c0t and Ik := [k/c1, (k + 1)/c1) for k ≥ 0, we obtain that m(t) is continuous and increasing

on each Ik , sup
t∈Ik

m(t) > sup
t∈Ik+1

m(t) > inf
t∈Ik

m(t), and lim
k→∞

inf
t∈Ik

m(t) = −∞ . Therefore,

{m(t) : t ≥ 0} =
∞∪
k=0

{m(t) : t ∈ Ik} =
∞∪
k=0

[
inf
t∈Ik

m(t), sup
t∈Ik

m(t)
)
= (−∞, c0/c1].

Since ϕ ̸≡ 0, we can find a constant ξ0 ∈ R such that ϕ(ξ0) > 0. Choosing j0 ∈ Z such that t0 := (ξ0+j0)/c0 ≥
0, we define ψ := {ψj}j∈Z , where ψj(θ) = ϕ

(
j + c0(t0 + θ)

)
for θ ∈ (−∞, 0]. Then ψ−j0(0) = ϕ(ξ0) > 0 and

hence ψ ̸≡ 0. Let {wk(t;ψ)}j∈Z be a solution of equation (1.1) with initial data ψ . The existence and uniqueness

of the solutions imply that wk(t;ψ) ≡ ϕ
(
j + c0(t+ t0)

)
for t ≥ 0. According to Theorem 3.8 (ii), we have

w∗
− ≤ lim inf

t→∞,|k|≤c2t
wk(t;ψ) = lim inf

t→∞,|k|≤c2t
ϕ
(
j + c0(t+ t0)

)
= lim inf

t→∞,|k|≤c2t
ϕ(j + c0t).

Letting j = −[c1t] , from the above inequality, we obtain

w∗
− ≤ lim inf

t→∞
ϕ
(
− [c1t] + c0t

)
= lim inf

t→∞
ϕ
(
m(t)

)
= lim inf

s→−∞
ϕ(s) < w∗

−.

This is a contradiction. The proof is complete. 2

Remark 3.10 In our previous paper [25], we proved that equation (1.1) has a traveling wave solution if c > c∗ .

Using a limiting argument, we get that equation (1.1) has a traveling wave solution if c = c∗ . Combining with

Theorem 3.9, we prove that c∗ is also the minimal wave speed; that is, the spreading speed coincides with the

minimal wave speed.
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3.3. Application

In this subsection, we apply our results to a Nicholson blowfly model derived by Gurney et al. [13]. Taking

b(w) = pwe−rw and f(a) = 2√
π
e−a2

, where p and r are positive constants, equation (1.1) becomes

dwk(t)

dt
=D[wk+1(t) + wk−1(t)− 2wk(t)]− dwk(t)

+
1

2π

∞∑
l=−∞

[∫ ∞

0

βα(l)
(
pwk+l(t− a)e−rwk+l(t−a)

)
e−da

( 2√
π
e−a2

)
da

]
. (3.4)

Let

f̄(d) =

∫ ∞

0

e−daf(a)da = e
d2

4

(
1− 2√

π

∫ d
2

0

e−x2

dx
)

and

w∗ =
1

r
ln

(p
d
f̄(d)

)
.

Using the same arguments as in our previous paper [25, Section 3.3], it is easy to verify that the birth function

b(w) = pwe−rw in the Nicholson blowfly model satisfies assumptions (H1
b ), (H

2
b ) and (H3

b ) when the parameters

are in appropriate ranges. The proof is similar to our previous paper [25, section 3.3] and we omit it here, only

listing the results. We consider two cases:

Case (i): 1 < p
d f̄(d) ≤ e . In this case we can confirm that the assumption (H2

b ) holds. Consequently,

applying Theorem 3.3 and Remark 3.10 yields that the spreading speed for initial-value problem (3.4) and (2.1)

exists and it coincides with the minimal wave speed.

Case (ii): p
d f̄(d) > e . Similar to Case (i), in this case we can easily show that the assumption (H3

b )

holds. Applying Theorem 3.8 and Remark 3.10, we have that the spreading speed for initial-value problem (3.4)

and (2.1) exists and it coincides with the minimal wave speed.
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