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Abstract: We consider a job market in which preferences of players are represented by linearly increasing valuations.

The set of players is divided into two disjoint subsets: a set of workers and a set of firms. The set of workers is further

divided into subsets, which represent different categories or classes in everyday life. We consider that firms have vacant

posts for all such categories. Each worker wants a job for a category to which he/she belongs. Firms have freedom to

hire more than one worker from any category. A worker can work in only one category for at most one firm. We prove

the existence of a stable outcome for such a market. The college admission problem by Gale and Shapley is a special

case of our model.
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1. Introduction

Most theoretical work on bipartite matching traces its history to the papers of Gale and Shapley [6] and Shapley

and Shubik [11]. In bipartite matching, we have two disjoint sets, F and W . The main purpose is to match

the elements of F to the elements of W . Matching between elements of the same set is forbidden in bipartite

matching markets. For convenience, we use the term “player” for an element in F ∪W . If we match exactly

one player of set F to exactly one player of the set W , then the matching is called “one-to-one” matching. If

a group of players of one set is matched to one player of the other set, such a matching is called “many-to-one”

matching. If there is freedom for players of both sets to be matched with as many players of the opposite set

as they want, such matching is called “many-to-many” matching.

The motivation of the remarkable paper by Gale and Shapley [6] was to find a rational criterion for

matching students with colleges that respected the preferences of both groups. They formulated the model

without side payments. Each college has a complete preference list of those students whom the college is willing

to admit as well as a quota giving an upper bound to the number of students that can be admitted. The original

approach was to first consider a special case, in which each college could accept only one student. Due to the

resemblance of this special case to the marriage of a man and a woman, this model is known as the “marriage

model”. In [6], Gale and Shapley proposed an algorithm for finding a “stable” matching, in which no man and

no woman are matched to an unacceptable mate, and no man and no woman who are not matched to each other

would both prefer to be. Gale and Shapely also discussed the criterion for stability of the college admission

problem, that is, the many-to-one case.
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In contrast to [6], money plays an explicit role in the paper by Shapley and Shubik [11]. The model by

Shapley and Shubik [11] is called the “assignment game”. Players in this model can be thought of as buyers

and sellers. Shapely and Shubik used linear programming theory to show the existence of stable assignments.

They also showed that the core of the assignment game is nonempty.

The two main directions in which the marriage model and assignment game have developed in the

literature involve models in which price setting is accomplished simultaneously with matching, and models of

many-to-one and many-to-many matchings.

For the developments involving models with price setting, Eriksson and Karlander [3] provided a single

market to unify these discrete and continuous models. However, their proof for stable outcomes and lattice

properties of the core does not include the assignment game by Shapley and Shubik [11]. Sotomayor [13], unified

these models and proved the nonemptiness of the core, which holds for both markets. She used combinatorial

arguments to prove these results. A generalization of the hybrid models of [3] and [13] was provided by Farooq

[4]. In [4], preferences of players are assumed to be linear functions of money, whereas money is treated as a

continuous variable. He showed the existence of a stable outcome for his model by constructing an algorithm.

Ali and Farooq [1] also considered a matching model with linear valuations with money as a discrete variable.

The paper by Kelso and Crawford [9] is an example of models that involve many-to-one matching. They

introduced a gross substitute condition to show the nonemptiness of the core. Roth [10] considered a model

of many-to-many matching of firms and workers. For this model, he showed the existence of firm-optimal and

worker-optimal stable outcomes. He also proved that the stable outcome that is best for all the firms is the worst

for all the workers and vice versa. For many-to-many matching, set-wise stability was proposed by Sotomayor

[12]. She proved that set-wise stability is a stronger requirement than pairwise stability. She also showed that

set-wise stability is a general concept of stability. Ali and Farooq [2] extended the model of Farooq [4] by

considering many-to-one matching. In this model, firms are allowed to hire as many workers as these firms

require. They presented an algorithm to show the existence of stable many-to-one matching for their model.

Recently, Femenia et al. [5] introduced a matching model in which they presented the definition of stability with

a quota restriction. They proved that the set of stable solutions may be empty under unrestricted institution

preferences. They also showed that the existence of stable matching with a quota is guaranteed when there is

a responsive restriction on the preferences of the institution. Karakaya and Koray [7] considered a two-sided

many-to-one matching model with quota and budget constraints. The players in this model were divided into

two sets: departments of the university and applicants. A department-proposing algorithm was presented in

[7], which also showed that if the algorithm terminates, it yields a core stable matching. In continuation of [7],

Karakaya [8] offered an applicant-proposing algorithm. Karakaya [8] also showed that the department-proposing

and applicant-proposing algorithms are extensions of the Gale and Shapley algorithm [6]. In addition, if either

of these two algorithms terminates, they produce a core stable matching. However, it was shown by Karakaya

[8] that unfortunately these algorithms do not always stop.

In this paper, we consider a two-sided matching model in which firms have to select workers from different

categories or classes of the set of workers. Factors like education, availabilities of resources, abilities, and age

may be criteria for the division of the set of workers into different categories. An example of such a model is

Quaid-i-Azam University, Islamabad, Pakistan. The university provides admission to students from all major

regions of the country as per approved quota (for details, see http://www.qau.edu.pk/admission-quota/ ). No

student can join more than one department. Each department has to select students from all the regions (if

available) considering the quota of the region. We notice that in all of these models, i.e. the marriage model
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[6], assignment games [11], hybrid models [1, 3, 4, 13], and models involving many-to-one and many-to-many

matchings [2, 8, 7, 9, 10, 12], workers are matched with firms without considering different categories or classes

of set of workers. The purpose of this paper is to take such real-life factors into account and propose a model

in which the set of workers is divided into categories. Each firm can hire more than one worker and it has

vacant posts for each category. Each firm requires a finite number of workers for any particular category. This

finite number is called the quota of that category. Firms hire workers considering the category and quota of the

category. Workers in this model can work in only one category, for at most one firm.

We organize this paper as follows. We describe our model and pairwise stability in our model in Section

2. In Section 3, we propose an algorithm to show the existence of a stable outcome. We also present important

features of the algorithm in this section.

2. Model description and pairwise stability

We consider a matching market with two disjoint sets: the set of workers and set of firms. Each worker wants

a job and each firm needs workers. A worker increases the revenue of the firm and in return the firm pays

its worker a certain amount of money, called the salary of the worker. We divide the set of workers into

different types or classes. We call these types or classes categories of workers. We consider factors like abilities,

educations, experiences, ages, etc. as criteria for the division of the set of workers into these categories. Firms

hire workers from each category to fulfill their quota, where the quota of a firm is the total number of workers

that the firm can hire.

Now we describe our model mathematically. We use W and F to denote finite sets of workers and firms,

respectively. E = W × F denotes all possible pairs of workers and firms. We divide the set of workers into

different categories. Supposing that there are m categories, then we have m subsets of W . We denote these

subsets by wa , a ∈ I where I = {1, 2, · · · ,m} is an indexing set. Also, ∪a∈Iw
a = W . We also assume that

for some a, a′ ∈ I , wa ∩ wa′ ̸= ∅ , where a ̸= a′ . This means that all subsets of W may not be disjoint.

Each firm hires some workers from wa , a ∈ I . The maximum number of workers that a firm j can hire

from wa is denoted by µa(j) for some a ∈ I . The total number of workers that firm j can hire is denoted by

µ(j). Thus,
∑m

a=1 µ
a(j) = µ(j). If

∑m
a=1 µ

a(j) < µ(j), for j ∈ F , firm j is said to be unsaturated. Note here

that each worker can work for only one category of at most one firm and firms cannot hire more workers than

their quota for each category.

A worker and firm can negotiate between each other by increasing or decreasing the salary. We assume

that salaries in this model are bounded; that is, for each (i, j) ∈ E , we have πij and πij , which denote the

lower and upper bound on the salary, respectively. Also, π , π ∈ ZE 1 with π ≤ π 2. We denote the salary

vector by p = (pij | (i, j) ∈ E) ∈ ZE . The salary vector is called feasible if π ≤ p ≤ π . We assume that

each firm has a list of preferences of workers that it wants to hire and, similarly, each worker has a preferences

list of firms for which he/she is willing to work. We represent the preferences of players by strictly increasing

functions, called linearly increasing valuations3. For each (i, j) ∈ E , define νij(x) and νji(x) from Z into R .

νij(x) represents the valuation of a worker i , at a salary x from a firm j , when worker i joins firm j (that is,

is matched with j ). Similarly, νji(x) represents the valuation of the firm j when it hires worker i and pays

1RA represents the |A| -dimensional Euclidean space with coordinate indexed by the elements of the set A and ZA stands for
the set of all integral vectors contained in RA .

2For any two vectors x ∈ RE and y ∈ RE , we say that x ≤ y if xij ≤ yij for all (i, j) ∈ E .
3By valuation, we mean estimation of some asset or real property.
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him or her salary x . Furthermore, we define these linearly increasing valuations νij(·) and νji(·), from Z into

R by

νij(x) = αijx+ βij , νji(x) = αjix+ βji, (2.1)

where x ∈ Z , αij and αji are given positive real numbers, and βij and βji are any given real numbers.

With the help of valuations defined in (2.1), players of both sets can compare the players of the opposite

side. A worker i prefers firm j to firm j′ at salary x, x′ ∈ Z , if νij(x) > νij′(x
′). If i ∈ W is indifferent

between firms j and j′ at salary x, x′ ∈ Z , then it can be written as νij(x) = νij′(x
′). We can define the terms

“prefer” and “indifferent” for a firm in the similar way.

If a worker is willing to join a firm, then the firm is acceptable to the worker. Similarly, if a firm agrees

to hire a worker, then the worker is acceptable to the firm. By νij(x) ≥ 0, we mean that j is acceptable to i

at salary x ∈ Z and νji(x) ≥ 0 means i is acceptable to j at salary x .

We define Sa = (Sa
j | j ∈ F ), for all a ∈ I , where Sa

j is defined as follows:

Sa
j = {i ∈ wa | i and j are matched}. (2.2)

If Sa
j = ∅ for some a ∈ I and j ∈ F , we say there is no worker working for firm j in category wa . We say that

firm j employs worker i in category wa if i ∈ Sa
j .

A set X = {(Sa
j , j) | a ∈ I, j ∈ F} is called a job allocation if:

(i) |Sa
j | ≤ µa(j) for all a ∈ I , j ∈ F ;

(ii) Sa
j ∩ Sa

j′ = ∅ for all j, j′ ∈ F with j ̸= j′ .

Condition (i) implies a quota condition on each j ∈ F , whereas the second condition suggests that each worker

can work for only one firm.

Fixing pij , we define q ∈ RW as follows:

qi =

{
νij(pij) if i ∈ Sa

j for any j ∈ F
0 otherwise

(∀i ∈ W ). (2.3)

We have r = (rj | j ∈ F ) ∈ RF where rj ∈ Rm for each j ∈ F , which is defined as

raj =

{
min{νji(−pij) | i ∈ Sa

j } if |Sa
j | = µa(j)

0 otherwise
(∀a ∈ I), (2.4)

where the minimum over an empty set is defined to be 0.

A quadruple (X; p, q, r) is said to be an outcome if X is a job allocation, p is a feasible salary vector,

and q and r are defined by (2.3) and (2.4), respectively,

In the sequel, whenever we say that Sa
j ∈ X (or j ∈ X ), we always mean that (Sa

j , j) ∈ X . Also, by

(i, j) ∈ X , we always mean that i ∈ Sa
j for some a ∈ I .

An outcome (X; p, q, r) is said to be blocked by a worker-firm pair that are not matched to one another

but the worker prefers the firm to his/her current employer4 and the firm prefers the worker to its current

4For convenience, we say that a player is self-matched, if it is unmatched.
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workers or still has a vacancy to hire a worker. Mathematically, (i, j) ∈ E is a blocking pair of the outcome

(X; p, q, r) if there exists α ∈ Z with πij ≤ α ≤ πij such that i /∈ Sa
j and νij(α) > qi , νji(−α) > raj , for some

a ∈ I .

2.1. Pairwise stability

Now we define the pairwise stability for outcome (X; p, q, r) as follows:

(ps1) νij(pij) ≥ 0 and νji(−pij) ≥ 0 for all (i, j) ∈ X .

(ps2) νij(α) ≤ qi or νji(−α) ≤ raj for all a ∈ I , for all α ∈ Z with πij ≤ α ≤ πij and for all (i, j) ∈ E .

Condition (ps1) reflects the mutual acceptability of matched pairs. Condition (ps2) requires that the outcome

cannot be blocked by any pair.

3. Existence of a stable outcome in our model

In this section, we shall prove the existence of pairwise stability for our model described in Section 2. In order

to show that a pairwise stable outcome always exists, we construct an algorithm. In this algorithm we initially

set the maximum possible salary such that workers are acceptable to the firms and we find a set of mutually

acceptable worker-firm pairs. Then we match workers to their most favorite firms. We modify the salary of

worker-firm pairs if the worker is not matched to his/her most favorite firm. In each iteration, we modify the

salary vector, preserving its feasibility, to obtain pairwise stability. If every worker from the set of mutually

acceptable players is matched, then our algorithm terminates. At the end of this section, we prove that at

termination our algorithm outputs stable matching.

For each (i, j) ∈ E we define pij ∈ Z as follows:

pij :=

{
πij if νji(−πij) ≥ 0 and

max{πij , ⌊
βji

αji
⌋} otherwise

(∀(i, j) ∈ E). (3.1)

Note that p is a feasible salary vector. Also note that pij , defined by (3.1), is the maximum integer in [πij , πij ]

for which νji(−pij) ≥ 0.

Next, define Ẽ by

Ẽ = {(i, j) ∈ E | νij(pij) ≥ 0 and νji(−pji) ≥ 0}. (3.2)

Ẽ denotes the set of mutually acceptable players.

For all i ∈ W , define q̃i as follows:

q̃i = max{νij(pij) | (i, j) ∈ Ẽ} (∀i ∈ W ). (3.3)

Also, define Ẽa
W and ẼW as follows:

Ẽa
W = {(i, j) ∈ Ẽ | i ∈ wa, νij(pij) = q̃i} (∀a ∈ I), (3.4)

and

ẼW = ∪a∈IẼ
a
W . (3.5)
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Ẽa
W denotes the set of worker-firm pairs in which the worker belongs to category “a” and the firm is the most

preferred by the worker. Let F̃ denote the set of matched firms in X ; that is, F̃ ⊆ F and it is defined by

F̃ = {j ∈ F |j is matched in X}. (3.6)

Now we find a job allocation X = {(Sa
j , j) | a ∈ I, j ∈ F}5 in the bipartite graph (W,F ; ẼW ) that

satisfies the following:

X matches all members of F̃ ; (3.7)

Sa
j ∩ Sa

j′ = ∅ for all Sa
j , S

a
j′ ∈ X with j ̸= j′ among the matching

satisfying (3.7); (3.8)

raj , for each a ∈ I and j ∈ F, is maximum among the matchings

satisfying (3.7) and (3.8); (3.9)∣∣|Sa
j | − µa(j)

∣∣ , for each a ∈ I and j ∈ F , is minimum among the

matching satisfying (3.7), (3.8), and (3.9). (3.10)

Define Ua , for each a ∈ I , by

Ua := {(i, j) ∈ Ẽa
W | i /∈ Sa

j , a ∈ I}. (3.11)

Ua contains worker-firm pairs in which a worker from category “a” is not matched to his or her most favorite

firm.

Lemma 3.1 For each a ∈ I , if (i, j) ∈ Ua , then there exists k ∈ W \{i} such that k ∈ Sa
j and raj ≥ νji(−pij) ,

where raj is defined by (2.4).

Proof One can easily verify the assertion by considering (3.9) and (3.10). 2

Lemma 3.2 If Ua = ∅ for all a ∈ I , then X satisfies (ps1) and (ps2).

Proof We know that if (i, j) ∈ X then (i, j) ∈ Ẽ , since νij(pij) and νji(−pij) are nonnegative for all

(i, j) ∈ Ẽ . Therefore, (ps1) holds.

Let Ua = ∅ for all a ∈ I . On the contrary, suppose that (ps2) does not hold true. This means that there

exists (i, j) ∈ E and α ∈ [πij , πij ] such that νij(α) > qi and νji(−α) > raj . Since raj ≥ 0, we have pij ≥ α by

(3.1). This implies that νij(pij) ≥ νij(α) > qi . Since Ua ⊆ Ẽa
W and Ua = ∅ imply that νij(pij) < qi by (3.4),

we have a contradiction. Thus, our assumption is wrong, and X satisfies (ps2). This completes the proof. 2

(ps2) may not hold if Ua ̸= ∅ , for some a ∈ I . We suppose that Ua ̸= ∅ , for some a ∈ I . Now we modify the

salary vector to obtain (ps2). In the modification procedure, we shall decrease the salary vector in such a way

that the feasibility of the salary vector and (ps1) are preserved. We initially set salary vector p given by (3.1).

We know that, for some a, a′ ∈ I , Ua ∩ Ua′ ̸= ∅ with a ̸= a′ . Define r∗j for j ∈ F as follows:

r∗j = min{raj | a ∈ I s.t (i, j) ∈ Ua} (∀j ∈ F ). (3.12)

5If some j ∈ F is not matched in X then we can always add a pair (Sa
j , j) in X with Sa

j = ∅ , for all a ∈ I .
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For each (i, j) ∈ U , for some a ∈ I , we find a modified salary p̃ such that νji(−p̃ij) ≥ raj , for some (i, j) ∈ Ua .

To calculate p̃ , we find an integer nij for (i, j) ∈ Ua , a ∈ I , as follows:

nij := max{1, ⌈
r∗j − νji(−pij)

αji
⌉} (∀(i, j) ∈ Ua, a ∈ I). (3.13)

Define the modified salary p̃ by

p̃ij :=

{
max{πij , pij − nij} if (i, j) ∈ Ua,
pij otherwise.

(3.14)

p̃ is feasible since πij ≤ p̃ij ≤ πij for each (i, j) ∈ E .

Lemma 3.3 For each (i, j) ∈ Ua , a ∈ I , nij is the minimum integer for which νji(−(pij − nij)) ≥ r∗j holds.

Proof Let (i, j) ∈ Ua for some a ∈ I . For r∗j = νji(−pij) we have nij = 1, which is the minimum integer by

(3.13) and νji(−pij + 1) = νji(−pij) + αji > r∗j . This proves the assertion.

Now consider r∗j > νji(−pij) and, on the contrary, suppose that νji(−pij + nij − 1) ≥ r∗j . We have

νji(−pij) + αji(nij − 1) ≥ r∗j .

After simplification, we have

nij − 1 ≥
r∗j − νji(−pij)

αji
.

Definition (3.13) further implies that

⌈
r∗j − νji(−pij)

αji
⌉ − 1 ≥

r∗j − νji(−pij)

αji
.

This, however, is not true. Hence, the assertion holds. This completes the proof. 2

Next we define a subset La of Ua by

La = {(i, j) ∈ Ua | pij − nij < πij} (∀a ∈ I). (3.15)

Observe that p̃ij = πij for all (i, j) ∈ La , a ∈ I .

In the following lemma we show the importance of the modified salary vector p̃ .

Lemma 3.4 Suppose Ua\La ̸= ∅ , a ∈ I . There is at least one (i, j) ∈ Ua\La , a ∈ I , for which νji(−p̃ij) ≥ raj .

Moreover, p̃ij is the maximum integer in [πij , πij ] for which this inequality holds.

Proof Let (i, j) ∈ Ua \ La for some a ∈ I . Then, by (3.14), we have

νji(−p̃ij) = νji(−pij + nij)

= νji(−pij) + αji(nij).
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If νji(−pij) = r∗j , then nij = 1 by (3.13). Thus, we have νji(−p̃ij) > r∗j since αij > 0. Otherwise,

νji(−p̃ij) = νji(−pij) + αji(⌈
r∗j − νji(−pij)

αji
⌉)

≥ νji(−pij) + αji(
r∗j − νji(−pij)

αji
)

= r∗j .

Thus, we have νji(−p̃ij) ≥ r∗j and r∗j = raj for some (i, j) ∈ Ua ; therefore, the first part of the assertion holds.

Next we prove that p̃ij , for (i, j) ∈ Ua \ La , is the maximum integer in [πij , πij ] ∈ Z such that

νji(−p̃ij) ≥ raj . Since raj ≥ r∗j , therefore, νji(−p̃ij) ≥ raj ≥ r∗j . By Lemma 3.3, nij is the minimum integer

for which νji(−p̃ij) ≥ r∗j . Thus, by (3.14), pij is the maximum integer in [πij , πij ] such that νji(−p̃ij) ≥ raj . 2

Lemma 3.5 For each (i, j) ∈ La , a ∈ I , νji(−p̃ij) < raj .

Proof On the contrary, suppose that νji(−p̃ij) ≥ raj for any (i, j) ∈ La , a ∈ I . Since for all (i, j) ∈ La ,

a ∈ I , p̃ij = πij , let πij = pij − n′
ij . We have νji(−(pij − n′

ij)) ≥ raj . Note here pij − nij < πij = pij − n′
ij

for (i, j) ∈ La . This implies that nij > n′
ij . This, however, contradicts the minimality of nij by Lemma 3.3.

Hence, our assumption is wrong. 2

Define a subset Ẽa
0 of Ua by

Ẽa
0 = {(i, j) ∈ Ua | νij(p̃ij) < 0} (∀a ∈ I). (3.16)

Now we propose our algorithm.

Algorithm Job Allocation

Step 0: Out r = 0 and F̃ = ∅ . Initially define p , Ẽ , q̃ , Ẽa
W , for all a ∈ I , and ẼW by (3.1)−(3.5),

respectively. Find a matching X in the bipartite graph (W,F ; ẼW ) satisfying (3.7)−(3.10). For all

a ∈ I , define Sa by (2.2), ra by (2.4) and Ua by (3.11).

Step 1: If Ua = ∅ , for all a ∈ I , then stop.

Step 2: For each pair (i, j) ∈ Ua , a ∈ I , calculate r∗ by (3.12) and nij by (3.13), and find p̃ by (3.14). Define

La and Ẽa
0 , for all a ∈ I , by (3.15) and (3.16), respectively.

Step 3: Put p := p̃ and modify Ẽ by

Ẽ := Ẽ \ ∪a∈I{La ∪ Ẽa
0}. (3.17)

Calculate q̃ by (3.3) and Ẽa
W by (3.4), and modify ẼW by (3.5) for the updated Ẽ and p . Find a

matching X in the bipartite graph (W,F ; ẼW ) satisfying (3.7)−(3.10). Define Sa by (2.2) and ra by

(2.4), and update Ua by (3.11), for all a ∈ I . Go to Step 1.
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For the sake of convenience we will use the following terminology in the rest of the work. We will use

(old)∗ and (new)∗ for sets/vectors/integers before and after update in some iteration of the Job Allocation,

respectively.

Lemma 3.6 In each iteration of Job Allocation, there exists a matching in (W,F ; ẼW ) satisfying (3.7)−(3.10)

at Step 3.

Proof Let i ∈ (old)Sa
j after the tth iteration, (t ≥ 1). This means that (i, j) ∈ (old)(Ẽa

W \ Ua). In the

(t + 1)th iteration, we have (old)pij = (new)pij by (3.14) at Step 2. It implies (old)qi = (new)qi . Thus,

(i, j) ∈ (new)Ẽa
W and (old)(Ẽa

W \ Ua) ⊆ (new)Ẽa
W at Step 3. Since (old)Sa

j , for each j ∈ F and a ∈ I ,

satisfies (3.10) at Step 3 in the tth iteration, one can therefore find a matching in (P,Q; (new)ẼP ) at Step 3

satisfying (3.7)−(3.10). 2

The next lemma shows important features of the Job Allocation.

Lemma 3.7 In each iteration of the Job Allocation, the following hold:

(i) For some a ∈ I , if Ua \ {La, Ẽa
0} ̸= ∅ at Step 2, then pij decreases at Step 3, for all (i, j) ∈ Ua \ {La, Ẽa

0}
.

(ii) If La ̸= ∅ or Ẽa
0 ̸= ∅ , for some a ∈ I , then Ẽ decreases.

(iii) For j ∈ F , |Sa
j | increases or remains the same and |Sa

j | ≤ µa(j) for all a ∈ I .

(iv) Ẽ decreases or remains the same.

(v) raj increases or remains the same, for each j ∈ F and a ∈ I .

Proof (i) Initially, p is defined at Step 0. For some a ∈ I , if Ua ̸= ∅ , then in each iteration at Step 2, we

find p̃ by (3.14). If Ua \ {La, Ẽa
0} ̸= ∅ then we have p̃ij = pij − nij , for all (i, j) ∈ Ua \ {La, Ẽa

0} , where nij is

a positive integer. This proves the assertion.

(ii) Initially, Ẽ is defined by (3.2) at Step 0 and it is modified by (3.17) at Step 3 in each iteration. If

La ̸= ∅ or Ẽa
0 ̸= ∅ , for some a ∈ I , by (3.17), (new)Ẽ decreases at Step 3.

(iii) First we show that |Sa
j | ≤ µa(j) for all j ∈ F , a ∈ I . On the contrary, suppose that there exist

j ∈ F and a ∈ I such that |Sa
j | > µa(j) for a matching X at Step 3. Let ||Sa

j | − µa(j)| = l , where l > 0, be

the minimum by (3.10). We can find S′a
j ⊆ Sa

j such that |S′a
j | = µa(j). Thus, we have

∣∣|S′a
j | − µa(j)

∣∣ = 0 < l,

which contradicts the minimality of l . Thus, our assumption is wrong. Therefore, for all j ∈ F , a ∈ I , we have

|Sa
j | ≤ µa(j). (3.18)

Now we show that |Sa
j | increases or remains the same for all j ∈ F and a ∈ I . First, we consider the case

|Sa
j | < µa(j), for any j ∈ F and a ∈ I . Suppose (i, j) ∈ Ẽa

W with (i, j) /∈ X at Step 3. After the execution of
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Step 3, we have a matching X that satisfies (3.7)−(3.10) and i ∈ Sa
j due to (3.9) and (3.10). Therefore, |Sa

j |
increases. For any j ∈ F and a ∈ I with |Sa

j | = µa(j), |Sa
j | remains the same by (3.10).

(iv) By (ii), Ẽ decreases if La ̸= ∅ or Ẽa
0 ̸= ∅ , for some a ∈ I . If La = Ẽa

0 = ∅ with Ua ̸= ∅ , for all

a ∈ I , in this case Ẽ remains the same in each iteration.

(v) We have a matching X satisfying (3.7)−(3.10) and we define r by (2.4). On the contrary, suppose

that there exist j ∈ F and a ∈ I such that (new)raj < (old)raj . This contradicts that X satisfies (3.9). Thus,

our assumption is wrong. 2

Lemma 3.8 In each iteration of the Job Allocation at Step 3, if νji(−pij) > raj , a ∈ I , for some (i, j) ∈ E ,

then pij is the maximum integer in [πij , πij ] for which this inequality holds.

Proof Let (i, j) /∈ Ua , a ∈ I . In the first iteration of the Job Allocation, we have (new)pij = (old)pij defined

by (3.1). We know that (old)pij is the maximum integer in [πij , πij ] for which νji(−(old)pij) ≥ 0; therefore,

(new)pij is the maximum integer in [πij , πij ] ∈ Z for which νji(−(new)pij) > (new)raj since (new)raj ≥ 0.

We suppose that the assertion holds for the tth iteration, t ≥ 2. We show that the assertion holds for

the (t+ 1)th iteration. By (3.14), (new)pij = (old)pij for (i, j) /∈ Ua , a ∈ I . Therefore,

νji(−(old)pij) = νji(−(new)pij) > (new)raj ≥ (old)raj , (3.19)

where the last inequality holds by Lemma 3.7(vi). Thus, νji(−(old)pij) > (old)raj . By induction hypothesis,

(old)pij is the maximum integer in [πij , πij ] for which this inequality holds. By (3.19), (new)pij is the maximum

integer in [πij , πij ] such that νji(−(new)pij) > (new)raj .

Next we consider the case (i, j) ∈ Ua , a ∈ I . By assumption, νji(−(new)pij) > (new)raj ≥ (old)raj , and

it means that (i, j) ∈ Ua \La . Thus, (new)pij is the maximum integer in [πij , πij ] such that νij(−(new)pij) >

(new)raj , by Lemma 3.4. This completes the proof. 2

Theorem 3.9 If Job Allocation terminates, then (X; p, q, r) satisfies (ps1) and (ps2).

Proof Initially we define Ẽ by (3.2) and in each iteration we modify it by (3.17) at Step 3. Since νij(pij)

and νji(−pij) are nonnegative for all (i, j) ∈ Ẽ , therefore νij(pij) ≥ 0 and νji(−pij) ≥ 0 for all (i, j) ∈ X at

termination. Thus, (ps1) satisfies at termination.

On the contrary to (ps2), suppose that there exists (i, j) ∈ E and α ∈ [πij , πij ] ∈ Z such that νij(α) > qi ,

νji(−α) > raj for some a ∈ I . If pij < α , then νji(−pij) > νji(−α) > raj for some a ∈ I . By Lemma 3.8, this

is not true. If pij ≥ α then

νij(pij) ≥ νij(α) > qi.

However, Ua = ∅ , for each a ∈ I , at termination. Then, by (3.4) and (3.11), νij(pij) < qi , a contradiction.

Hence, (ps2) also holds at termination. 2

Theorem 3.10 Job Allocation terminates after a finite number of iterations.
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Proof Consider the case when La = Ẽa
0 = ∅ , for all a ∈ I . By Lemma 3.7(i), pij decreases for each

(i, j) ∈ Ua \{La, Ẽa
0} , for all a ∈ I . However, p is discrete and pij ≥ max{πij ,

βji

αji
} for each (i, j) ∈ Ua , a ∈ I .

Therefore, pij can be decreased only by a finite number of times.

Next we consider the case when La ̸= ∅ , or Ẽa
0 ̸= ∅ . In either case, Ẽ reduces at Step 3. By Lemma

3.7(iv), in each iteration of the Job Allocation, Ẽ decreases or remains the same, and therefore this case is

possible at most |E| times. This completes the proof. 2

4. Concluding remarks

We have presented a job market in which we have taken different categories of the workers into account. Each

firm employs worker according to its eligibility criteria. The preferences of players are represented by increasing

utility functions. Here we list some important points about the model and Job Allocation:

1. The existence of a pairwise stable outcome is guaranteed in our model. The salary in this model is a

discrete variable. The marriage model [6] and the Ali and Farooq model [1] are special cases of this

model. A possible extension of the model is to consider salary as a continuous variable.

2. By Lemma 3.8, we have that pij is the maximum integer in [πij , πij ] for which νji(−pij) > raj , a ∈ I , for

some (i, j) ∈ E . Since valuations are linearly increasing, the matching will be worker-optimal. It is possible

to define an algorithm by starting from the lowest possible salary and then increasing it accordingly. This

type of algorithm will yield firm-optimal stable outcomes.

3. The complexity of the Job Allocation is not polynomial as it depends on the length of [πij , πij ] for each

(i, j) ∈ E .
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