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1. Introduction

In this work, we introduce a new set of combinatorially defined nonsymmetric functions whose symmetrizations

are Molev’s dual Schur functions [12]. Molev described some properties of dual Schur functions including a com-

binatorial presentation and an expansion formula in terms of the ordinary Schur functions and a multiplication

rule for the dual Schur functions.

Schur functions are an old subject and much is known about them. They are studied in relation to many

different subjects from a number of different points of view. We follow the Lascoux–Schützenberger approach,

viewing Schür functions as (symmetric) special cases of Schubert polynomials. From this point of view, it is

natural to ask how one can define a larger set of nonsymmetric functions, which will include Molev’s dual Schur

functions as their symmetric counterparts. This theme is the main focus of our work.

On the algebraic geometry side, we obtain a duality formula for the Schubert classes in Grassmannians

in terms of rational Schubert (key) polynomials (Proposition 16).

We would also like to point out that a dominant rational Schubert polynomial can be described as a

configuration of lines as in [5]: in this work, Fomin and Krillov gave a geometric interpretation of Schubert

polynomials in terms of intersection points of line segments. In this context, a dominant rational Schubert

polynomial geometrically corresponds to a configuration given by the Figure.

In Section 2, we review the Schubert polynomials of Lascoux and Schützenberger. In Section 3, we

define and study the basics of rational Schubert polynomials. Using these properties, we express Cauchy kernel

Kn(z;x) := 1∏
i+j≤n+1(zj−xi)

in terms of usual Schubert polynomials and rational Schubert polynomials. In

Section 4, we discuss the relation between the dual Schur polynomials and the rational Schubert polynomials;
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see [12]. In Section 5, we introduce rational Grothendieck and rational key polynomials in analogy with rational

Schubert polynomials.

2. Preliminaries

Schubert varieties are indexed by combinatorial objects such as partitions, permutations, and Weyl group

elements. Schubert varieties are useful for studying the cohomology ring of the flag manifold. It can be seen

that the set of Schubert varieties forms a basis for H∗(Fln) over Z ; see [1, 7]. The product of two basis

elements can be calculated by using Schubert polynomials. The aim of a theory of Schubert polynomials is to

produce explicit representatives for Schubert classes in the cohomology ring of a flag variety. Schubert varieties

have many applications in discrete geometry, computer graphics, and computer vision.

Schubert polynomials were introduced in 1982 and extensively developed by Lascoux and Schützenberger;

a less combinatorial version was considered by Bernstein et al. [1]. New developments of the theory were given

by others [2, 3, 8, 10, 11, 4].

Let x := {x1, ...xn} be a totally ordered set of variables. We denote si, i = 1, ..., n−1 as the elementary

transposition seen as the operator on Z[x] that interchanges xi and xi+1 and fixes all other variables. These

operators satisfy the following braid relations:

sisj = sjsi , |i− j| > 1 and sisi+1si = si+1sisi+1.

The operator ∂i is defined by f∂i :=
f−fsi

xi−xi+1
, f ∈ Z[x] . This operator was introduced by Newton and it

is called the Newton divided difference. Similarly, we define operators πi = xi∂i, π̂i = πi − 1. Here we describe

the action of these operators on the set {1, xi+1} :

si ∂i πi π̂i

1 1 0 1 0
xi+1 xi −1 0 −xi+1

We have also Leibnitz formulas:

(fg)∂i = f(g∂i) + (f∂i)(gsi) = g(f∂i) + (g∂i)(fsi)

(fg)πi = f(gπi) + (fπi)(gsi)− gsif = g(fπi) + (gπi)(fsi)− fsi.
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In particular, when we take g = xi , the commutation relations may be seen as xi∂i = ∂ixi+1 +1, π̂i = ∂ixi+1 .

Schubert polynomials are sometimes indexed by sequences u by taking the code of permutation µ , and

Yu denotes the corresponding polynomial.

Let x := {x1, ..., xn} and y := {y1, ..., yn, ...} be two set of indeterminates. Given λ ∈ Nn a partition

(i.e. λ1 ≥ ... ≥ λn ≥ 0), the dominant Schubert polynomial is defined by

Yλ(x;y) =
∏

i=1,...,n;j=1,...,λi

(xi − yj)

and we define Schubert polynomials to be all the nonzero images of the dominant Schubert polynomials under

products of ∂i s. Sometimes, these polynomials are known as double Schubert polynomials. The operator

∂i acts on the indices: Y...,λi+1,λi−1,...(x;y) = Yλ(x;y)∂i, λi > λi+1, and here we assume ∂i acts on the

first alphabet x unless otherwise stated. Indeed, Yk(x;y)∂
y
k = −Yk−1(x;y) and Yk(x;y)∂

y
i = 0 for i ̸= k .

Sometimes we will write λ∂i = [λ1, ..., λi−1, λi+1, λi − 1, ..., λn] . Similarly, for a dominant partition λ ∈ Nn ,

Gλ(x;y) =
∏

i=1..n,j=1..λi
(1− yjx

−1
i ) and Kλ(x) = xλ are the dominant Grothendieck and key polynomials of

index λ, respectively. We define Grothendieck (resp., key) polynomials to be all the images of the dominant

Grothendieck (resp., key) polynomials under products of πi ’s (resp. π̂i); for details, see [9]. Here we note

that one can easily describe Schubert polynomials using permutations in general for any permutation µ ∈ Sn,

denoted by Xµ(x;y). Additionally, we have Xµ(x;y) = (−1)l(µ)Xµ−1(y;x), where l(µ) is the length of µ .

For a dominant partition λ ∈ Nn, we note that the integers n , λ1 denote the lengths of alphabets x , y in

Yλ(x;y), respectively. If λ ∈ Nn such that λi ≤ λi+1 ≤· · · ≤ λj , then Yλ(x;y) is symmetric in xi, ..., xj .

Schubert polynomials are nonsymmetric generalizations of the fundamental basis of symmetric functions that

are Schur functions. In fact, many properties of the Schur basis can be extended to properties of the Yλ(x;y)

bases. Fomin et al. [4] studied quantum Schubert polynomials and they gave a quantum analogue of the results

of Bernstein et al. [1] on the cohomology of the flag manifold; they gave the quantum Monk formula.

Unless otherwise stated we will make the following main assumptions and notations: here we use the

notation xn := {x1, ..., xn}, y := {y1, y2, ...} .
• σ(u) : permutation with code u, and l(u) : the length of u.

• xw : the reverse ordering of alphabet x .

• If u = [u1, . . . , un] ∈ Nn, then uw = [un, . . . , u1] .

• If u ∈ Nn, then ū := [u1 − un, . . . , u1 − u2, u1 − u1] = un
1 − uw .

• If v = [v1, . . . , vk,v̄k+1, ..., v̄n] , then here v̄i := −vi .

• For u ∈ N , un =

n times︷ ︸︸ ︷
[u, u, ..., u] and 1 = {1, 1, ...} .

• R(A|B) =
∏

a∈A,b∈B(a− b), where A and B are the two alphabet sets.

3. Rational Schubert polynomials and Cauchy formula

From now on, when we say Schubert polynomial, we mean double Schubert polynomial (dominant or not).

Definition 1 Let u ∈ Nn be a strict dominant partition. The strict rational Schubert polynomial indexed by u
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is defined by

Y rat
u (x;y) =

∏ 1

R(yn+1, . . . , yn+vi |xi)

∏
R(xj |yn, . . . , yn+vj+1)

with v = u− (n− 1)n , the separation in two blocks corresponding to the values vi ≥ 0 or vj < 0 . For a general

Y rat
u , one needs the strict dominant, which gives it by applying divided differences ∂1, . . . , ∂n−1 , which we call

ancestor.

Example 2 For u = [6, 4, 1, 0] , we have v = [3, 1, 2̄, 3̄]

Y rat
6410(x;y) =

(x3 − y4 ) (x3 − y3 ) (x4 − y4 ) (x4 − y3 ) (x4−y2 )

(y5 − x1 ) (y6 − x1 ) (y7 − x1 ) (y5 − x2 )
.

For another example, we see that Y rat
410 (x;y) is ancestor of Y rat

102 (x;y) : Y rat
102 (x;y) = Y rat

410 (x;y)∂1∂2 . Here,

the following table illustrates Y rat
410 (x;y) .

x1 x2 x3

y1
y2 x3 − y2

y3 x2 − y3 x3 − y3

y4 −x1 + y4

y5 −x1 + y5

Proposition 3 For a strict dominant partition u ∈ Nn , we have

Y rat
u (x;y) = (−1)huYū(xn, . . . , x1; yN , . . . y1)/R(x1, . . . , xn|yN . . . yn+1)

where ū = [u1 −un, . . . , u1 −u2, u1 −u1] , N = u1 +1, and v = u− (n− 1)n, hu =
k∑

i=1

vi, vi ≥ 0 for i ≤ k ≤ n .

Other Y rat
r (x;y) polynomials are obtained by reordering and decreasing the indices as for Schubert, the factor

in the denominator commuting with the divided differences.

Proof The proof consists in the dominant case just of identifying the factors obtained after multiplication by

the resultant R =
∏n

i=1

∏N
j=n+1(xi − yj). 2

Notice that, because of reversing the alphabet xn , a divided difference ∂i acting on Y rat
v corresponds to

−∂n−i on the Schubert polynomial Yū in xn .

Proposition 4 Let u ∈ Nn be a strict dominant partition, ū = un
1 − uw , N = u1 + 1, v = u− (n− 1)n , and

σ = u+ 1 . Then we have the following properties:

(a) Yσ(x;y).Yū(xn, . . . , x1; yN , . . . , y1) = YNn(x;y),

(b) Y rat
u (x;y) = (−1)huYū(xn,...,x1;yN ,...,y1)

Y(N−n)n (x1,...,xn:yN ,...,y1)
, where hu =

k∑
i=1

vi, for vi ≥ 0 ,

(c) Yσ(x;y).Y
rat
u (x;y)R(x|yN , . . . , yn+1)(−1)hu = YNn(x;y),

(d) Y rat
u (x;y) = (−1)t Ycū(yN ,...,y1;xn,...,x1)

YnN−n (yn+1,...,yN ;x1,...,xn)
,
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(e) Y rat
u (x;y) = (−1)h

Y[−vn,...,−vk+1](x
w;yw)

Y[v1,...,vk](x;yn+1,...,yN ) ,

where cū denotes the conjugate of ū , t = n(N−n)+hu+
n∑

i=1

ūi , and Yσ, YNn are Schubert polynomials indexed

by σ and Nn, respectively.

Proof (a)–(e) are obvious by the definition. For the others, it is easy to see that R(xn|yN , . . . , yn+1) =

Y(N−n)n(x1, . . . , xn; yN , . . . y1+n) and we use the relation Xµ(x,y) = (−)l(µ)Xµ−1(y,x). Since v = u−(n−1)n,

there exists a natural number k such that vi ≥ 0 for i ≤ k and vi ≤ 0 for k ≤ n . By the definition, if

hu =
k∑

i=1

vi , then we have

Y rat
u (x;y) = (−1)hu

Yū (xn,...,x1;yN ,...y1)
Y(N−n)n (x1,...,xn:yN ,...y1)

= (−1)
hu+

n∑
i=1

ūi Ycū(yN ,...,y1;xn,...,x1)
Yc(N−n)n (yn+1,...,yN ;x1,...,xn)

= (−1)
n(N−n)+hu+

n∑
i=1

ūi Ycū(yN ,...,y1;xn,...,x1)
YnN−n (yn+1,...,yN ;x1,...,xn)

where cū denotes the conjugate of ū . 2

For example, λ = [4, 1, 0], Y rat
410 (x;y) =

Y430(x
w
3 ;yw

5 )
Y2(x;y)

, and we see that there is a relation explained as a

diagram between indices.

Y430(x
w
3 ;yw

5 )︷ ︸︸ ︷
◦ ◦ ◦ ◦

x2 − y2 ◦ ◦ ◦
x1 − y2 x1 − y3 x1 − y4 x1 − y5︸ ︷︷ ︸

Y410(x;y2,...,y5)

Now we consider the Cauchy kernel Kn(z;x) :=
1∏

i+j≤n+1(zj−xi)
. Actually, Kn(z;x) is the inverse of the

maximal Schubert polynomial in an alphabets of n letters, i.e. Kn(z;x) =Yn,n−1,...1(z;x)
−1. It can be easily

calculated that

Kn(z;x)∂
z
i = Kn(z;x).(zi+1 − xn+1−i)

−1, for i ≤ n− 1.

When we apply ∂z
i to the Kn(z;x), actually we add a box corresponding to the i+1-th row and (n+1− i)-th

column of the diagram of Yn,n−1,...1(z;x)
−1 . For example, for n = 3, we have K3(z;x) = {(z1 − x1)(z1 −

x2)(z1 − x3)(z2 − x1)(z2 − x2)(z3 − x1)}−1, and K3(z;x)∂
z
2 = K3(z;x)(z3 − x2)

−1.

K3(z;x) = Y321(z;x)
−1 =


◦
◦ ◦
◦ ◦ ◦


−1

∂z
2→


◦ ◦
◦ ◦
◦ ◦ ◦


−1

Let v be a dominant code of length n and σ(v) be permutation of v . Then there exists a positive integer

k such that σ(v) is an element of the symmetric group Sk . Let m be the smallest such k . Actually, m

corresponds to N in Proposition 3.
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In this work, from now on m denotes the integer that was described in the last paragraph unless otherwise

stated.

We define R(z|x) =
∏

j=1,...,m,i=1,..,n(zj − xi) and Υ := (−1)
nm−n(n+1)

2 . Therefore, we have:

Kn(z;x).R(z|x) = Yn,n−1,...1(z;x)
−1Ynm(z;x)

= Ym−1,m−2,..,m−n(xn, ..., x1; zm, zm−1..., z1)
= Υ.Ynm−n,n−1,...2,1(zm, zm−1..., z1;xn, ..., x1).

For example, for n = 3, m = 5, we illustrate the following diagram:

K3(z;x) =


◦
◦ ◦
◦ ◦ ◦


−1

and K3(z;x).R(z|x) =

◦ ◦ ◦
◦ ◦ ◦
∗ ◦ ◦
∗ ∗ ◦
∗ ∗ ∗ .

The Newton nterpolation formula (NIF) gives us the chance of expanding the polynomial Kn(z;x).R(z|x).
We choose the alphabet zw , yw and we express the NIF in the basis Yα(z

w;yw). Let cα be the coefficient of

the polynomial Yα . By the formula, cα can be calculated as

cα = (Kn(z;x).R(z|x))∂z
σ(α)−1 |zw=yw ,

and then we obtain a Schubert polynomial indexed by u , and we have

Kn(z;x).R(z|x) =
∑

α∈Nn{(Kn(z;x).R(z|x))∂z
σ(α)−1}|zw=ywYα(z

w;yw)

=
∑

α∈Nn Yu(y
w;xw) Yα(z

w;yw)

where u := [m − 1,m − 2, ..,m − n] − α . Because of the symmetry, we have R(y1, ..., yn|xn+1, ..., xm) =

(−1)n(m−n)R(xn+1, ..., xm|y1, ..., yn). Now we remember Proposition 3 (b); if cα = Yu(y
w;xw) and u is

dominant, then

cα
R(y1, ..., yn|xn+1, ..., xm)

= (−1)hr
Yu(y

w;xw)

R(y1, ..., yn|xn+1, ..., xm)
= Y rat

r (y;x),

where r = un
1 − uw = ρw + αw.

cα
R(z1, ..., zm|x1, ..., xn)

= (−1)hr
Y rat
r (y;x).R(y1 , ..., yn |xn+1, ..., xm)

R(z1, ..., zm|x1, ..., xn)

= (−1)hr
Y rat
r (y;x)Y(m−n)n(y1, ..., yn;xn+1, ..., xm)

Ynm(z1, ..., zm;x1, ..., xn)
.

If u is not dominant, we need to find its ancestor. Let us say u = β∂i1 ...∂is and R = R(y1, ..., yn|xn+1, ..., xm).

If
Yβ

R = Y rat
s , then

Yβ

R ∂i1 ...∂it = Y rat
s ∂n−i1 ...∂n−it and we obtain r = s∂n−i1 ...∂n−it .

Finally, collecting what we have obtained above, we have the following theorem.
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Theorem 5 Let Kn denote the Cauchy kernel, and let x , y, z be alphabets. Then we have

Kn(z;x) =
∑
α∈Nn

(−1)hr
Y(m−n)n(y1, ..., yn;xn+1, ..., xm)

Ynm(z1, ..., zm;x1, ..., xn)
Y rat
r (y;x)Yα(z

w;yw),

where α is a code of length n and m is the smallest positive integer such that σ(α) ∈ Sm is the permutation

of α , and Φ = [m − n, ...,m − 2, m − 1], hr =
k∑

i=1

vi, for vi ≥ 0 , v = r − (n − 1)n, Φ − α = β∂i1 ...∂it , and

Yβ is the numerator of Y rat
s , r =

{
ρw + αw, Φ-α is dominant

s∂n−i1 ...∂n−it , otherwise.

Example 6 For v = [4, 1, 0] , we have K3(z;x).R(z;x) = Y432(x
w; zw) . In fact,

Y432(x
w; zw) = Y210(x

w
3 ; z

w
3 ).Y23(x1, x2, x3; z4, z5)

= Y210(x
w
3 ; z

w
3 ).Y32(z5, z4;x1, x2, x3) = Y3321(z

w;xw).

The following diagrams show the action of braid relations on v .

as Yv︷ ︸︸ ︷
Y410

∂1⧸ ⧹∂2

Y130 Y400∣∣∂2 |∂1

Y102 Y030

∂2⧹ ⧸∂2

Y002

coefficient of Yv in NIF︷ ︸︸ ︷
Y022

−∂1⧸ ⧹−∂2

Y302 Y032∣∣−∂2 |−∂1
Y330 Y402
−∂1⧹ ⧸−∂2

Y430

For Y rat
410 , the numerator polynomial is Y430 in the reversed alphabet. Now let Y022 be the numerator of a

rational Schubert polynomial and R be the resultant; see Proposition 3. First we need to find its ancestor:

Y022 = Y430∂1∂2∂1 , and then

Y rat
410 =

Y430

R
⇒ Y430∂1∂2∂1

R
=

Y022

R
= Y rat

r ⇒ Y022

R
= Y rat

410 ∂2∂1∂2 = Y rat
002 .

Similarly, one can see that Y rat
030 = Y302

R , Y rat
102 = Y032

R , Y rat
400 = Y330

R , Y rat
130 = Y402

R .

numerator of Y rat
u as Yū︷ ︸︸ ︷

Y430
∂2⧸ ⧹∂1

Y402 Y330∣∣∂1 |∂2

Y032 Y302

∂2⧹ ⧸∂1

Y022

as Y rat
v︷ ︸︸ ︷

Y rat
410

∂1⧸ ⧹∂2

Y rat
130 Y rat

400
∂2 | |∂1

Y rat
102 Y rat

030

∂1⧹ ⧸∂2

Y rat
002

Dividing Y432(x
w; zw) by Y2(x1, x2, x3; z4, z5) , we obtain

(−1)2
Y210(x

w
3 ; z

w
3 )

Y2(x3; z4, z5)
= Y rat

410 (x, z) =
Y430(x

w; zw)

Y23(x3; z4, z5)
.
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Then Y432(x
w; zw) = Y rat

410 (x; z).Y2(x; z4, z5).Y23(x; z4, z5) and we get

Y rat
410 (x; z) =

∑
v∈Nn

(−1)hrY rat
r (y;x)Yα(z

w;yw)Y23(y;x4, x5)

Y23(x; z4, z5)Y2(x; z4, z5)

where r is the same as in Theorem 5. In general, we state the following proposition.

Proposition 7

Y rat
m−1,n−2,n−3,...,1,0(x; z) =

∑
v∈Nn

(−1)m−nY rat
r (y;x)Yv(z

w;yw)

Y(m−n)n(x; zn+1, ..., zm).Y(m−n)(x; zn+1, ..., zm)
,

where r is the same as in Theorem 5.

Proof Properties of Schubert polynomials give us the following relations:

Ym−1,...,m−n(x
w
n ; z

w
m) = Yn−1,..,1(x

w; zn, ..., z1).Y(m−n)n(x; zn+1, ..., zm)

= (−1)(m−n)nYn−1,..,1(x
w; zn, ..., z1).Ynm−n(zn+1, ..., zm;x)

= (−1)(m−n)nYnm−n,n−1,...2,1(zm, zm−1..., z1;x
w)

and

(−1)m−nY rat
m−1,n−2,n−3,...,1,0(x; z) =

Yn−1,..,1,0(x
w
n ; zn, ..., z1)

Ym−n(xn; zn+1, ..., zm)

=
Ym−1,m−2...,m−n+1,0(x

w
n ; z

w)

Y(m−n)n(xn; zn+1, ..., zm)
.

Hence, as a result, we obtain

Y rat
m−1,n−2,n−3,...,1,0(x; z) =

(−1)m−nYm−1,...,m−n(x
w
n ; z

w
m)

Y(m−n)(x; zn+1, ..., zm).Y(m−n)n(x; zn+1, ..., zm)
,

and Theorem 5 gives Proposition 7. 2

Corollary 8 The following statements hold for the Cauchy kernel:

(a) Kn(z;x) =
(−1)(m−n)(n+1)Y rat

m−1,n−2,n−3,...,1,0(x;z)Y(m−n)(x;zn+1,...,zm)

Ynn (z;x) .

(b) Kn(z;x) = (−1)(m−n)
Y rat
ρ (z;x)

Ynn (z;x) , where ρ = [n− 1, ..., 1, 0].

Proof (a) By the proof of Theorem 5 and Proposition 7 we have

Kn(z;x)Ynm(z;x) = Ym−1,...,m−n(x
w
n ; z

w
m)

= (−1)(m−n)+(m−n)nY rat
m−1,n−2,n−3,...,1,0(x; z).S

where S = Y(m−n)(x; zn+1,...,m)Y(m−n)n(zn+1,...,m;x) and

Kn(z;x) =
(−1)(m−n)(n+1)Y rat

m−1,n−2,n−3,...,1,0(x; z).Y(m−n)(x; zn+1, ..., zm)

Ynn(z;x)
.
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(b) Since Kn(z;x).Ynm (z;x)
Y(m−n)n (x;zn+1,...,zm) =

Ym−1,...,m−n(x
w
n ;zw

m)
Y(m−n)n (z;x) , we obtain

(−1)m−nKn(z;x).Ynn(z;x) = Y rat
ρ (z;x), where ρ = [n− 1, n− 2, ..., 1, 0]. 2

Proposition 9
∏

i=n+1,...,m,
j=1,...,n

(zi − xj) =
∑

v∈Nn Yu(y
w;xw)Yv−ρw(zw;yw) , where ρ = [n − 1, ..., 1, 0] and

u = (m− 1)n − ρw − v .

Proof We have seen that Kn(z;x)R(z|x) =
∑

v∈Nn Yu(y
w;xw)Yv(z

w;yw); see Theorem 5. Using ∂z
ω, we

obtain

Kn(z;x)R(z|x)∂z
ω = Kn(z;x)∂

z
ωR(z|x) =

∑
v∈Nn

Yu(y
w;xw)(Yv(z

w;yw)∂z
ω)

where ω is the maximum permutation. In this case, the following results hold.

1) Kn(z;x)∂
z
ω =

∏
i=1,...,n,
j=1,...,n

(zi − xj)
−1 ;

2) Kn(z;x)∂
z
ωR(z,x) =

∏
i=n+1,...,m,

j=1,...,n
(zi − xj);

3) Yv(z
w;yw)∂z

ω = Ys(z
w;yw), where s = [vn, vn−1 − 1, ..., v1 − (n− 1)] = v − ρw.

Finally, (1)-(2)-(3) give us the proposition. 2

4. Dual Schur and rational Schubert polynomials

Molev constructed dual Schur functions starting from the (1− xy) description; see [12]. By changing variables

by xi → 1/xi , one can start equally from the (x − y) description. Here, we outline both approaches. Dual

Schur functions are defined as follows:

(1− yx) picture: As in [12], p. 15, for given partition λ , define

Aij =

{
x
λj+n−j

i
1

(1−a0xi)(1−a−1xi)···(1−a−(λj−j)xi)
, j ⩽ λj

x
λj+n−j

i (1− a1xi) · · · (1− aj−λj−1xi]), λj < j.

Let d be the number of elements on the diagonal. Note that d is determined by the inequality

λd+1 ≤ d ≤ λd . Consequently, if j ⩽ d , then j ⩽ λj ; otherwise, if j > d , then λj < j.

(x− y) picture: Plug 1/xi for xi in Aij :

(Aij)xi← 1
xi

=


1

xn−1
i

1
(xi−a0)(x−a−1)···(xi−a−(λj−j)

, j ⩽ λj

1
xn−1
i

(xi − a1) · · · (xi − aj−λj−1), λj < j.

For simplicity, define Ãij := xn−1
i Aij . The dual Schur function corresponding to λ is obtained by applying the

operator ∂ω to the product
∏

Aii , and we denote it by DualShur(λ). Equivalently, the dual Schur function

for λ can also be obtained by applying the operator ∂ω to the product
∏

Ãii . Starting from (x − y)± , we

introduce a graphical display first. Given a partition λ , we put an empty box in (i, k) if the term xi − ak

appears in Ãii . Columns of the diagram represent factors of the form xi − ak . In the case of λ = [4, 3, 1, 0],

the display becomes the following.
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Ã11 Ã22 Ã33 Ã44

x1 x2 x3 x4

x4 − a3

x4 − a2

x3 − a1] x4 − a1

x1 − a0 x2 − a0

x1 − a−1 x2 − a−1

x1 − a−2

x1 − a−3

The dual Schur function for a given partition λ is defined to be (
∏

Ãii)∂ω as follows: multiplying by the

resultant R = R(x1, . . . , x4 |a0, . . . , a3), one obtains a polynomial product of factors (xi − aj), whose image

under ∂ω is by definition ± a Grassmannian Schubert polynomial in the alphabets. For λ = [4, 3, 1, 0], the

display would be:

x1 x2 x3 x4

a3 □
a2 □
a1 □ □
a0 □ □
a−1 □ □
a−2 □ □ □
a−3 □ □ □

and DualSchur([4, 3, 1, 0])= Y0134

R(x4,...,x1 | a−3,...,a0)
. Here,

Y7520(x4, ..., x1; a−3, ..., a3)∂ω = Y7520∂3∂2∂1∂3∂2∂3 = Y0134.

It is convenient to use two sets of parameters yi and zj instead of a−i+1, i ≥ 0 and aj , j = 1, ..., n , respectively.

Proposition 10 There exists a correspondence between dominant rational Schubert polynomials and dual Schur

polynomials.

Proof For a given dominant λ with length n , let v = λ − (n − 1)n and let Nv denote the product of the

boxes of the graphical display. If Nv := (−1)hλY rat
λ (x;y)|yi→zn+1−i

yn+i→yi

we have

DualSchur(β) = ((−1)hλY rat
λ (x;y)|yi→zn+1−i

yn+i→yi

R)∂x
ω

where β = λ− (n− 1)n + [0, 1, ..., n− 1] and hλ =
k∑

i=1

vi, vi ≥ 0 for i ≤ k. For any given dominant dual Schur

polynomial indexed by β , since Y rat
β+ρ =

(−1)hβ+ρYβ+ρ

R , we have

Y rat
β+ρ∂

x
ω =

(−1)hβ+ρY[0,β1−β2,...,β1−βn]|yi→zn+1−i
yn+i→yi

R(x|yn+1, ...., yN )|yn+i→yi

= DualSchur(β)

where ρ = [n− 1, ..., 1, 0]. 2
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Now we want to give a formula that is related to those for key polynomials and the kernel 1∏
i+j≤n+1(1−xiyj)

.

For a given dominant λ with length n , we take v = λ − [0, 1, ..., n − 1] = [v1, v2, ..., vk,v̄k+1, ..., v̄n] . Then we

have

Y[vn ,vn−1,...,vk+1](x
w;z).R

Y[v1,v2,...,vk](x;y)
=

Y[vn ,vn−1,...,vk+1](x
w;z)Yvn

1
(x;y)

Y[v1,v2,...,vk](x;y)

= Yξ(x
w;yw, z)

where ξ=[vn+v1, vn−1+v1, ..., vk+1+v1, v1−vk, ..., v1−v1] and R =
∏

i=1,...,n,
j=1,...,v1

(xi−yj). Hence DualSchur(λ) =

Yξ(x
w;yw, z)∂x

ω .

By changing variables by xi → 1/xi , we have xλ+ρ Y[vn ,vn−1,...,vk+1](1;x
wz)

Y[v1,v2,...,vk](1;xy)
, where xy = {xiyj : i, j ⩾ 1} .

For example, Y21(1;xy) = (1− x1y1)(1− x1y2)(1− x2y1). The transformation xi → 1/xi preserves ∂ω up to

global symmetric factor xn−1 .

xλ+ρ
Y[vn ,vn−1,...,vk+1](1; xwz)

Y[v1,v2,...,vk](1; xy)

∂x
ω−→ DualSchur(λ).

On the other hand, we choose the starting point that is part of the denominator r = [r, r−1, ..., 1, 0, .., 0︸ ︷︷ ︸
k−r times

] .

Now we define ∂τ =
∏r−1

i=0
∂τi , and ∂τi =

∏v(i+1)−r+i−1
j=0

∂τ(r−i+j)
. Let us take b = [r, vk+1, ..., vn] . If

γ = b+ [0, 1, ..., n− 1] = [rr, r + 1, ..., k − 1, vk+1 + k, ..., vn + (n− 1)] , then we have

xγ+ρ Y[vn ,vn−1,...,vk+1](1;x
wz)

Y[r,r−1,...,1](1;xy)

∂y
τ−→ xλ+ρ Y[vn ,vn−1,...,vk+1](1; x

wz)

Y[v1,v2,...,vk](1;xy)

∂x
ω−→ DualSchur(λ).

Now we remember that Y[r,r−1,...,1](1;xy) =
1∏

i+j≤r+1(1−xiyj)
, and we know how to expand this with respect

to key polynomials; see [6].

DualSchur(λ) = xγ+ρ Y[vn ,vn−1,...,vk+1](1; x
wz)

Y[r,r−1,...,1](1;xy)
∂y
τ ∂

x
ω

=
(
xγ+ρY[vn ,vn−1,...,vk+1](1;x

wz)
(

1
Y[r,r−1,...,1](1;xy)

)
∂y
τ

)
∂x
ω

=
∑

α∈Nr (Kα(y)∂
y
τ )

(
xγ+ρY[vn ,vn−1,...,vk+1](1;x

wz)K̂αw(x)
)
∂x
ω,

where K̂ denotes the adjoint key polynomial. Take Y[vn ,vn−1,...,vk+1] :=Y[vn ,vn−1,...,vk+1](1;x
wz). Using the

formula for the action of ∂x
ω , we have

DualSchur(λ) =
∑

α∈Nr (Kα(y)∂
y
τ )

∑
σ∈Sr

(−1)l(σ)

∆ (xγ+ρY[vn ,vn−1,...,vk+1]K̂αw(x))σ

=
∑

α∈Nr (Kα(y)∂
y
τ )

∑
σ∈Sr

(−1)l(σ)

∆ Y[vn ,vn−1,...,vk+1]σ.(x
γ+ρK̂αw(x))σ

where ∆ =
∏

1≤i<j≤n(xi − xj). Hence, we see that DualSchur polynomials can be expressed as a sum of key

polynomials in the alphabet y , multiplied by the product of Schubert polynomials in x , z and key polynomials

in x . If we combine what we have achieved, we can express the following theorem.

Theorem 11 For a given dominant partition λ with length n , using the same notation above, DualSchur(λ)
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is equal to ∑
α∈Nr

∑
σ∈Sr

(Kα(y)∂
y
τ )

(−1)l(σ)

∆
Y[vn ,vn−1,...,vk+1](1;x

wz)σ(xγ+ρK̂αw(x))σ

where ∆ =
∏

1≤i<j≤n(xi − xj) , and Sr is the r -th symmetric group.

5. Rational Grothendieck and rational key polynomials

Now we are going to give the definition of rational Grothendieck and key polynomials.

Definition 12 Let u ∈ Nn be a strict dominant partition. The strict rational Grothendieck and key polynomials

indexed by u are defined by

Grat
u (x;y) =

∏
vi≥0

1

R(yn+1

xi
, . . . ,

yn+vi

xi
|1)

∏
vj<0

R(1|yn
xj

, . . . ,
yn+vj+1

xj
)

Krat
u (x) =

∏
vi≥0

1

R(0 . . . , 0|xi)

∏
vj<0

R(xj |0, . . . , 0)

with v = u− (n− 1)n , respectively. For a general Grat
u , (resp., Krat

u ) one needs the strict dominant, given by

applying divided differences πi(resp ., π̂i) , i ≤ n− 1 , which we call ancestor.

Example 13 For u = [6, 4, 1, 0] , we have Krat
6410 =

x3
4x

2
3

x3
1x2

and

Grat
6410(x;y) =

(
1− y4

x3

)(
1− y3

x3

)(
1− y4

x4

)(
1− y3

x4

)(
1− y2

x4

)
(

y5

x1
− 1

)(
y6

x1
− 1

)(
y7

x1
− 1

)(
y5

x2
− 1

) .

Similarly, in the case of the Schubert polynomial, Grat
102 is the image under π1π2 of Grat

410 under π1π2 , and then

410 is the ancestor 102 .

The following proposition can be proved similarly to Proposition 3.

Proposition 14 Let u ∈ Nn be a strict dominant partition. Then we have

Grat
u (x;y) = (−1)huGū(xn, . . . , x1; yN , . . . y1)/

∏
i=1,...,n

R(1|yN
xi

, . . . ,
yn+1

xi
)

Krat
u (x) = (−1)huKū(xn, . . . , x1)/(x1, . . . , xn)

N−n

with ū = [u1 − un, . . . , u1 − u2, u1 − u1] , N = u1 + 1, hu =
k∑

i=1

vi for vi ≥ 0 , and v = u− (n− 1)n .

For example, we have G532(x;y) = x−(532)Y532(x;y) =
Y532(x;y)
K532(x)

and

Grat
6410(x;y) =

x−3
4 x−2

3

x−3
1 x−1

2

(x4−y2)(x4−y3)(x4−y4)(x3−y3)(x3−y4)
(x2−y5)(x1−y5)(x1−y6)(x1−y6)

=
Y rat
6410(x;y)
Krat

6410(x)
.

We note that, because of reversing the alphabet, a divided difference πx
i acting on Grat

v corresponds to

πx
n+1−i on the Grothendieck polynomial in xn .
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AKER and TUTAŞ/Turk J Math

Proposition 15 Let u ∈ Nn be a strict dominant partition. Then one can easily seen that

1) Yu(x;y)|y=0 = Ku(x) and Y rat
u (x;y)|y=0 = Krat

u (x),

2) Gu(x;y) =
Yu(x;y)
Ku(x)

,

3) Grat
u (x;y) =

Y rat
u (x;y)
Krat

u (x) .

Proof It is clear by the definition. 2

In the dominant case, rational Grothendieck and key polynomials have similar properties of Schubert

polynomials listed in Proposition 4. It is clear that rational Grothendieck (resp., key) polynomials can be

written as a proportion of two Grothendieck (resp., key) polynomials, depending on the given strict dominant

partition u ∈ Nn, in the following way:

Grat
u (x;y) = (−1)hu

G[−vn,...,−vk+1](x
w;yw)

G[v1,...,vk](x; yn+1, . . . , yN )

where v = u− (n− 1)n and hu =
k∑

i=1

vi, vi ≥ 0 for i ≤ k.

Now we consider the Grassmannian Gr(n,N + n) and Schubert class τdual(σ) as the dual class of

τσ . Rational polynomials Y rat
u (x;0) and Y rat

dual(u)(x;0) correspond to classes τσ, τdual(σ) , respectively, and

Y rat
u (x;0)Y rat

dual(u)(x;0) = +̄1.

Proposition 16 Let τσ and τµ be Schubert classes. Then we have

τσ.τµ =

{
1, Krat

σ (x).Krat
µ (x) = +̄1

0, otherwise.

Proof Let u ∈ Nn be a strict dominant partition and σ = u + 1 . If u is not strict dominant, we use its

ancestor. Let ū = un
1 − uw , N = u1 + 1, v = u − (n − 1)n , and hu =

k∑
i=1

vi, vi ≥ 0, where uw is the reverse

ordering of u . Then we obtain

Y(N−n)n(x;yn+1, . . . , yN )Y rat
u (x;y) = (−1)huYū(xn, . . . , x1; yN , . . . , y1)

Y(N−n)n(x;yn+1, . . . , yN )Y rat
ū

(x;y) = (−1)hūYu(xn, . . . , x1; yN , . . . , y1).

Here we note that ū is the dual of σ . We get ordinary Schubert polynomial Yu(x;y) for y = 0, which is

equal to the key polynomial Ku(x), and we have Y rat
u (x;0) = Krat

u (x). Additionally, we have Y rat
u (x;0) =

(−1)hu
K[−vn,...,−vk+1](xn,...,x1)

K[v1,...,vk](x1,...,xn)
and Y rat

dual(u)(x;0) = (−1)hū
K[v1,...,vk](xn,...,x1)

K[−vn,...,−vk+1](x1,...,xn)
, by Proposition 4. The Young

diagram for Y rat
dual(u)(x;0) can be obtained by the Young diagram for Y rat

u (x;0) rotated by 180◦ . Therefore,

Y rat
u (x;0)Y rat

dual(u)(x;0) = +̄1. If τµ is dual class to τσ , then µ , σ are dual partitions, and τσ.τµ is 1 and 0

otherwise. Hence, we have proven the Proposition 16. 2
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Example 17 Let us take u = [4, 1, 0] . Then we have σ = [5, 2, 1] and dual(σ) = ū = [4, 3, 0] . The rational

Schubert polynomials Y rat
410 (x;0) =

x2
3x2

x2
1

and Y rat
430 (x;0) =

x2
3

−x2
1x2

correspond to diagrams

∗ ∗
∗

∗ ∗ and

∗ ∗
∗
∗ ∗ , respectively. Hence, Y rat

410 (x;0)Y
rat
430 (x;0) = −1 .
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