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Abstract: We define and study the rational Schubert, rational Grothendieck, rational key polynomials in an effort to

understand Molev’s dual Schur functions from the viewpoint of Lascoux.
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1. Introduction

In this work, we introduce a new set of combinatorially defined nonsymmetric functions whose symmetrizations
are Molev’s dual Schur functions [12]. Molev described some properties of dual Schur functions including a com-
binatorial presentation and an expansion formula in terms of the ordinary Schur functions and a multiplication
rule for the dual Schur functions.

Schur functions are an old subject and much is known about them. They are studied in relation to many
different subjects from a number of different points of view. We follow the Lascoux—Schiitzenberger approach,
viewing Schiir functions as (symmetric) special cases of Schubert polynomials. From this point of view, it is
natural to ask how one can define a larger set of nonsymmetric functions, which will include Molev’s dual Schur
functions as their symmetric counterparts. This theme is the main focus of our work.

On the algebraic geometry side, we obtain a duality formula for the Schubert classes in Grassmannians
in terms of rational Schubert (key) polynomials (Proposition 16).

We would also like to point out that a dominant rational Schubert polynomial can be described as a
configuration of lines as in [5]: in this work, Fomin and Krillov gave a geometric interpretation of Schubert
polynomials in terms of intersection points of line segments. In this context, a dominant rational Schubert
polynomial geometrically corresponds to a configuration given by the Figure.

In Section 2, we review the Schubert polynomials of Lascoux and Schiitzenberger. In Section 3, we
define and study the basics of rational Schubert polynomials. Using these properties, we express Cauchy kernel

K, (z;x) : in terms of usual Schubert polynomials and rational Schubert polynomials. In

B Hi,+j§n,+1(zj —z;)

Section 4, we discuss the relation between the dual Schur polynomials and the rational Schubert polynomials;
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see [12]. In Section 5, we introduce rational Grothendieck and rational key polynomials in analogy with rational

Schubert polynomials.

2. Preliminaries

Schubert varieties are indexed by combinatorial objects such as partitions, permutations, and Weyl group
elements. Schubert varieties are useful for studying the cohomology ring of the flag manifold. It can be seen
that the set of Schubert varieties forms a basis for H*(Fl,) over Z; see [l, 7]. The product of two basis
elements can be calculated by using Schubert polynomials. The aim of a theory of Schubert polynomials is to
produce explicit representatives for Schubert classes in the cohomology ring of a flag variety. Schubert varieties
have many applications in discrete geometry, computer graphics, and computer vision.

Schubert polynomials were introduced in 1982 and extensively developed by Lascoux and Schiitzenberger;

a less combinatorial version was considered by Bernstein et al. [I]. New developments of the theory were given
9 ) ]

Let x := {z1,...z,} be a totally ordered set of variables. We denote s;, i = 1,...,n—1 as the elementary

by others [2, 3, 8,

transposition seen as the operator on Z[x| that interchanges z; and z;41 and fixes all other variables. These
operators satisfy the following braid relations:

SiS5 = 5584 7|Z —]| >1 and SiSi+1Si = Si+1SiSi+1-

The operator 0; is defined by f0; := ﬁ%, f € Z[x]. This operator was introduced by Newton and it
is called the Newton divided difference. Similarly, we define operators m; = x;0;, ; = m; — 1. Here we describe

the action of these operators on the set {1,x;41}:

S; 3l T ﬁ'z
1 1 0 1 0
Tig1 | @i | —1| 0 | —w41

We have also Leibnitz formulas:

(f9)0i = f(g0:) + (f0:)(gsi) = g(f0:) + (90i)(fs:)
(fg)mi = flgmi) + (fmi)(gsi) — gsif = g(fmi) + (gmi)(fsi) — fsi-
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In particular, when we take g = z;, the commutation relations may be seen as z;0; = O;x;41 + 1, 71; = Oji11 -
Schubert polynomials are sometimes indexed by sequences u by taking the code of permutation p, and
Y., denotes the corresponding polynomial.
Let x := {1, ...,z,} and y := {y1,...,Yn, ...} be two set of indeterminates. Given A € N" a partition
(ie. Ay > ... > A, >0), the dominant Schubert polynomial is defined by

YA(x5y) = 11 (zi —yj5)

i=1,nig=1,. A

and we define Schubert polynomials to be all the nonzero images of the dominant Schubert polynomials under
products of J;s. Sometimes, these polynomials are known as double Schubert polynomials. The operator
0; acts on the indices: Y. x,_ . an—-1,..(Xy) = YA(x;¥)0;, Ai > Aip1, and here we assume 0; acts on the
first alphabet x unless otherwise stated. Indeed, Yi(x;y)dy = —Yi_1(x;y) and Yi(x;y)0! = 0 for i # k.
Sometimes we will write A\9; = [A1, ..., \i—1, Aix1, A; — 1, ..., A,]. Similarly, for a dominant partition A € N™|
Gr(x3y) =Lzt njm1.0, (1 — y;x; ') and K, (x) = x* are the dominant Grothendieck and key polynomials of
index A, respectively. We define Grothendieck (resp., key) polynomials to be all the images of the dominant
Grothendieck (resp., key) polynomials under products of ;’s (resp. 7;); for details, see [9]. Here we note
that one can easily describe Schubert polynomials using permutations in general for any permutation p € S,
denoted by X, (x;y). Additionally, we have X, (x;y) = (—=1)!"W X, 1 (y;x), where I(y) is the length of p.
For a dominant partition A € N we note that the integers n, A; denote the lengths of alphabets x, y in
Ya(x;y), respectively. If A € N™ such that A; < X\jpq <- - - < )j, then Yy(x;y) is symmetric in z;,...,x;.
Schubert polynomials are nonsymmetric generalizations of the fundamental basis of symmetric functions that
are Schur functions. In fact, many properties of the Schur basis can be extended to properties of the Y, (x;y)
bases. Fomin et al. [4] studied quantum Schubert polynomials and they gave a quantum analogue of the results
of Bernstein et al. [1] on the cohomology of the flag manifold; they gave the quantum Monk formula.

Unless otherwise stated we will make the following main assumptions and notations: here we use the
notation x,, := {z1,....,zn}, ¥ := {y1,¥2, ..}

e o(u) : permutation with code u, and I(u) : the length of u.

e x": the reverse ordering of alphabet x.

o If u=1[uy,...,u,] € N? then u" = [up,...,u1].
o If w e N, then @ :=[ug — Up,...,u; —ug,u; —uy] = uf —u®.
o If v=1[v1,...,0%Ukt1,...,Un], then here v; := —v;.

n times
—~
For v e N, «" = [u,u,...,u] and 1 ={1,1,...}.
R(A|B) = [l,capep(a—0b), where A and B are the two alphabet sets.

3. Rational Schubert polynomials and Cauchy formula

From now on, when we say Schubert polynomial, we mean double Schubert polynomial (dominant or not).

Definition 1 Let uw € N" be a strict dominant partition. The strict rational Schubert polynomial indexed by u
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1s defined by

1
Yrat X y
H R yn+1a .

R(xi|Yny- -, .
e Yntor|T0) H ( J|yn yn+vj+1)

with v =u — (n—1)", the separation in two blocks corresponding to the values v; > 0 or v; < 0. For a general

Y.rat " one needs the strict dominant, which gives it by applying divided differences 01,...,0n_1, which we call
ancestor.

Example 2 For u = [6,4,1,0], we have v = [3,1,2,3]

rat (v — (13 = Y4) (@3 — ys) (24 —yy) (25 — ys) (24 —Y5)
YGMO( ¥) = (y5—xl)(yg—xl)(y7—x1)(y5—a:g) '

For another example, we see that Y4 (x;y) is ancestor of Y{# (x;y) : Y (x;y) = Y4 (x;y)0102. Here,
the following table illustrates Y i (x;y).

T1 To T3
n

Y2 T3 — Y2
Y3 ’1’2*3/3‘ T3 —Ys
Ya || —21+ Y4

Ys || —Z1+Ys

Proposition 3 For a strict dominant partition u € N, we have

Yumt(X§Y) (- ) “Ya(@n, o xi3yn, - 1) /R, @alyN - Yng)

k
where @ = [u; — Up,...,u1 —ug,u; —u1], N=u1+1, andv=u—(n—1)", hy = > v;,v; 20 fori <k <n.
i=1

Other Y % (x;y) polynomials are obtained by reordering and decreasing the indices as for Schubert, the factor
in the denominator commuting with the divided differences.

Proof The proof consists in the dominant case just of identifying the factors obtained after multiplication by

the resultant R = [[;_ 1H] 1 (T = y;5). -

Notice that, because of reversing the alphabet x,,, a divided difference 9; acting on Y% corresponds to

—0p—; on the Schubert polynomial Y in x,.

Proposition 4 Let u € N be a strict dominant partition, 4 = u} —u", N=u;+1, v=u— (n—1)", and
o =u+ 1. Then we have the following properties:

(a) Yo(x3y).Ya(@n, .., 215UN, .- 1) = Yun(x5y),

k
(b) Yrot(x;y) = & D" Yo (@n,.. SELUN YY) here by, = S vy, for v >0,

Y(N-n)n (150, Tn YN -5 Y1) =

(¢) Yo(x;3).Y (5 y) RX|yn, - -+ Y1) (1) = Yivn (x;y),
(d) Yy (xy) = (1) gyl nin o)

Y'ann(yn+11~~vyN§x17--~7xn) ’

442



AKER and TUTAS/Turk J Math

Yoo ) (37%)

(e) Yy (xiy) = (15

(01, s0p) (KsYn1,- YN )

n
where cti denotes the conjugate of @, t = n(N —n)+h,+ > 4;, and Y,,Yyn are Schubert polynomials indexed
i=1

by o and N™, respectively.

Proof (a)-(e) are obvious by the definition. For the others, it is easy to see that R(xn|yn,...,¥nt1) =
YiN—n)yn(Z1,- -+, Zn; YN, - - - Y14n) and we use the relation X, (x,y) = (=)' WX, 1 (y,x). Since v = u—(n—1)",
there exists a natural number k£ such that v; > 0 for ¢ < k and v; < 0 for kK < n. By the definition, if

k
hy = > v;, then we have
i=1
rat (. —( \he _ Ya(@n,e T1YN,- Y1)
Yu (va) - ( 1) Y(N,n)n(gcl,,...,:cn:yN,..,yl)
_ (71)h“+i§1 Wi Yea (YN, Y15Zn;,--,T1)
Ye(N—n)n (Ynt1,-YN3T15e-,Tn)
= (- n(an)+hu+i§1ui Yea (YN, ¥13%n,..,T1)
Y, N—n (Ynt1rsYNIT15sTn)
where ct denotes the conjugate of . O

For example, A = [4,1,0], Y% (x;y) = %, and we see that there is a relation explained as a

diagram between indices.

Yaso(x3'5y5)

T2 — Y2
T1—Y2 | T1 — Y3 || L1 — Y4 | T1 — Y5

Ya10(x592,---5Y5)

1

= m . Actually, Kn (Z7 X) is the inverse of the

Now we consider the Cauchy kernel K, (z;x) :

maximal Schubert polynomial in an alphabets of n letters, i.e. K, (z;x) :Yn,7n_17___1(z;x)*1. It can be easily
calculated that

Kn(2;%)07 = K (2;X).(2i41 — Tng1-) *, fori <n —1.
When we apply 07 to the K, (z;x), actually we add a box corresponding to the ¢+ 1-th row and (n+1—1i)-th
column of the diagram of Yy, ,,—1, 1(z;x)~!. For example, for n = 3, we have K3(z;x) = {(z1 — 21)(21 —

12)(21 — 23) (22 — 1) (22 — w2) (23 — x1)} 71, and K3(z;x)0% = K3(z;x)(23 — x2) L.

- . .
o) O | O
o |0 o]0
Py
Ks(z;x) = Yao (z;x) "' = [ [2lo o] 2 |lelo]o

Let v be a dominant code of length n and o(v) be permutation of v. Then there exists a positive integer
k such that o(v) is an element of the symmetric group Si. Let m be the smallest such k. Actually, m

corresponds to N in Proposition 3.
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In this work, from now on m denotes the integer that was described in the last paragraph unless otherwise
stated.

We define R(z|x) =[]

nm—n(n+1)
2

zj —x;) and YT := (1) . Therefore, we have:

j:l,...,mqi:l,.‘,n(
K, (z;x).R(z]x) =Yun-1.1(z;x) Ym(z;x)

= mfl,m72,..,mfn(xn; coy L15 Zmy Bm—1-++5 Zl)
= T'Y;Lm*",n—l,...Q,l(va Bm—T1++y Z13Lmy «oey $1)~

For example, for n = 3, m = 5, we illustrate the following diagram:

O|O0| O
oO|O0| O
— -1
°© x|olo
°|° ¥ |%|o
Ks(z;x) = | lolo]o and  Ks(z;x).R(z|x) = *[*]*]

The Newton nterpolation formula (NIF) gives us the chance of expanding the polynomial K,,(z;x).R(z|x).
We choose the alphabet z*, y* and we express the NIF in the basis Y, (z";y"). Let ¢, be the coefficient of

the polynomial Y, . By the formula, ¢, can be calculated as

o = (Ko (2 %)-R(2]x))0% 0+

ZW=yW,

and then we obtain a Schubert polynomial indexed by wu, and we have
Kn(2:%).R(zlx) =3 enn{ (Kn(2:%).R(2[%))0; () -1 Hav=yw Ya (25 y")
=D aenn Yu(y";x") Ya(z¥;y")
where v := [m — 1,m — 2,..,m — n] — «. Because of the symmetry, we have R(y1,...,Un|Tnt1, -, Tm) =
(=)™ ™= R(p 11y oy T |Y1,s -, Yn ). Now we remember Proposition 3 (b); if ¢, = Yu(y%;x™) and u is

dominant, then

Y (y¥;x%)
R(yla ”~7yn‘xn+17 7*Tm)

Ca

— (— zyrat i X),
R(ylw'wyn|xn+17~-7xm) " (y )

where r = ul —u" = p¥ + .

o YrTat(y;x)'R(ylv o Yo [Tt 1y oy Tm)
R(21, oy Zm|T1, ey )

Ao Y;rat(y; X)Yv(m—n)" (yh s Yni T4y ey xm)
Ynm(zl,-~-,Z7n;x1,-~-,«rn) )

= (-1)
If u is not dominant, we need to find its ancestor. Let us say u = 80;,...0;, and R = R(Y1, .cr, Yn|Tnt1, s Trm)-

If % =Y/ then %a“...ait =Y/, ; ...0n_;, and we obtain r = s0,_;,...0n_,.

Finally, collecting what we have obtained above, we have the following theorem.
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Theorem 5 Let K, denote the Cauchy kernel, and let x, y, z be alphabets. Then we have

Yim—n)n (Y1y ooy Yn g1y ooy Trn)
K, : _ 1 By 2 ( ) sy Yny 3ty Yrat -x)Y, w; w7
(2:%) a%"( ) Yo (215 ooy Zmi T1y oeey Ty Oy x)Ya(25 YY)

where « is a code of length n and m is the smallest positive integer such that o(a) € Sy, is the permutation

k
of a, and @ =[m—n,...m—2, m—1], hp = > v, forv,; >0, v=r—(n—1" & —a=p30,..0;, and
i=1

v+ a®, -« is dominant

Y . Yrat — )
s 1s the numerator of Y]/, r { 5O sy 0O otherwise.

Example 6 For v =[4,1,0], we have K3(z;x).R(z;x) = Yy32(x*;2"). In fact,
Yiz2(x";2") = Yai0(x3';25). Yos (21, T2, 35 24, 25)

= Yo10(x3'; 25 ).Y52(25, 243 1, T2, ¥3) = Y3321 (2";X").

The following diagrams show the action of braid relations on v.

as Yy coefficient of Y, in NIF
Y410 Y020
o N2 —o s %
Yi30 Y00 Y302 Yo32
’62 |61 — 0o ‘ —01
Yio2 Yo30 Y330 Y02
82\ /8 BEN Vs
Yoo02 Yi30

For lq'l%t, the numerator polynomial is Yi39 in the reversed alphabet. Now let Yyao be the numerator of a
rational Schubert polynomial and R be the resultant; see Proposition 3. First we need to find its ancestor:
Y022 = Y430618281 s and then

yrat _ Y30 N Yi30010201 _ Yooo _ yrat Yoo2 _ YT 0,8,0y = YT
410 R R R T R 410 002
L t_ Y t_ Y. t_ Y t_ Y
Similarly, one can see that Yoy = =392, Y{gy = =82 Yy = =520 Y5 = —482.
numerator of Y, as Yz as Yot
t
Y30 Yy
O s & o N2
¢ ¢
Y02 Y330 Y156 Y50
K % 2| |
¢ ¢
Yo32 Y302 Y05 Y550
62\ /81 61\\ /62
¢
Yo22 Yooh

Dividing Yaz2(xV;2") by Ya(x1, 22, 3; 24, 25) , we obtain

Y210(x3; 25)

Y;lg,()(Xw' Zw)
]f’l at }:’ Z )
)2(}(3;24,2’5) ( )

—1)2 = .
=1) Yos (X35 24, 25)
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Then Yise(x¥;2%) = Yt (x;2).Ya(X; 24, 25).Ya3 (X; 24, 25) and we get

(=) Y7 (y; X) Yo (2% y™ ) Yos (y; 4, T5)
Yos (x; 24, 25) Yo (X; 24, 25)

Vi (x;2) = Z

veEN™?
where r is the same as in Theorem 5. In general, we state the following proposition.
Proposition 7

(D)™ Y (s x)Ya (25 y*)

Yr(m—n)" (X; Zn4ly e Zm)'yv(m—n) (X; Zn4lyeees Zm) ,

rat . —
mel,n72,n73,...,1,0(x7Z) =
veNn

where r s the same as in Theorem 5.
Proof Properties of Schubert polynomials give us the following relations:
Ym—l,“.,m—n(xz; Z%) = Yn—l,..,l(xw; Zny eees ZI)J/(mfn)” (X; Zn41y ey Zm)
= (—1)(7”_")”}/”,1,“’1()(1”; Zny ey 21) Yom—n(Zn4 1y vy Zm; X)

= (—1)(’”_7’)”}/717,1_”,,,_17.,,271(zm7 Zm—1.-y 213 XY)

and

Yn—l,A.,l,O(X%}; Zny ey Zl)
men(xn§ B4l ey Zm)

(=) Y s 10(x52) =

mel,m72...,mfn+1,0(xg; zw)
Yim—n)n (Xn} 2041, -0 Zm)

Hence, as a result, we obtain

(_1)m_n mfl,-..,mfn(xr% Z;Un)

)/(m—n) (Xa Bn4ly-ees Zm)'}/(m—n)" (X; Bn+1s ey Zm)

rat

mfl,n72,n73,..‘,1,0(x; Z) =

)

and Theorem 5 gives Proposition 7.

Corollary 8 The following statements hold for the Cauchy kernel:
(—1)(m=m(n+ D) yrat

(a) Kolzix) = B e
(b) K,(z;x) = (—1)(’”_")%7 where p=[n—1,...,1,0].
Proof (a) By the proof of Theorem 5 and Proposition 7 we have
Kn(z;x)Ynm(2;%) =Ymo1,  m-n(Xy;2%)

= (_1)(mfn)Jr(mfn)nY:ﬁl,n—2,n—3,...,1,0(X§ z).S

where S = Y(,,—0) (X5 Zng1,...om)Y(m—n)n (Znt1,...m; X) and

(_1)(m_")(n+l)yn2(it1,n72,n73 ..... 1,0(X§ Z)~Y(m—n) (X5 20415 s Zm)
Yo (25 %) '

K, (z;x) =
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K, Y,m Yo (kg .
(Z x) n (Z x) — Ym—1,., m n(’fn Zm) , we Obtaln
—a)n (X524 1500 52m) Y(m—n)n (2;X)

(b) Since Yo

(=)™ " K (2;%).Yon (2 %) = Y, " (2;%), where p = [n —1,n —2,...,1,0]. O

Proposition 9 []i= n+1 m,(zi —xj) = D enn Yu(YV;XW)Yo pu(2¥5y"), where p = [n —1,..,1,0] and

u=(m-—1)"—p"
Proof We have seen that K, (z;x)R(z|x) = >

obtain

venn Yu (YW xW)Y, (2";y"); see Theorem 5. Using 97, we

K, (2;x)R(2|%)07; = Ko (2 x)05R(zlx) = Y Vo (y™;x™) (Y, (2" y")d7)

veEN™

where w is the maximum permutation. In this case, the following results hold.

1) Kn(z;%)0; Hz =1 (2 = 25) 7

,,,,,

2) Kn(Z;X)(?wR(%X) [li= 1t m, (2 = 25);

3) Y, (2V;y™)0F =Y, (2" y ), where s = [, 001 — 1,...,01 — (n — 1)] = v — p¥.
Finally, (1)-(2)-(3) give us the proposition. O

4. Dual Schur and rational Schubert polynomials

Molev constructed dual Schur functions starting from the (1 — xy) description; see [12]. By changing variables
by z; — 1/x;, one can start equally from the (z — y) description. Here, we outline both approaches. Dual

Schur functions are defined as follows:
(1 — yz) picture: Asin [12], p. 15, for given partition A, define

Ajtn—j 1 - .
A — Z; (I=aozi)(1—a—12;)(1—a_(x,_jyTi)’ J< /\J
ij = 7

Nitne i )
z; it J(l — alxi) cee (1 — aj_)\j_ll‘i]), /\j <.

Let d be the number of elements on the diagonal. Note that d is determined by the inequality
Ad+1 < d < Ag. Consequently, if j < d, then j < Aj; otherwise, if 7 > d, then \; < j.

(x —y) picture: Plug 1/x; for x; in A;;:

1 1 . )
(Ai)y 1 =] 7 B o, AR
o et —an) o (2 = ajox-1), Ay <G

For simplicity, define gij = x;’_lAij. The dual Schur function corresponding to A is obtained by applying the
operator 9,, to the product J] A;;, and we denote it by DualShur()). Equivalently, the dual Schur function
for A can also be obtained by applying the operator d,, to the product HZ“ Starting from (z — y)*

introduce a graphical display first. Given a partition A, we put an empty box in (i,k) if the term z; — ag

appears in A;;. Columns of the diagram represent factors of the form z; — ax. In the case of A = [4,3,1,0],

the display becomes the following.

447



AKER and TUTAS/Turk J Math

All A22 A33 A44

L1 T2 T3 L4
Tg — a3
T4 — a2

]ms—aﬂ\ Ty —ay

Fw] | [

r1 — a_1 ’xg—a,l‘

1 —a_9

T —a_3

The dual Schur function for a given partition A is defined to be (]| /Tn')aw as follows: multiplying by the
resultant R = R(x1,...,%4ag,..., ag), one obtains a polynomial product of factors (z; — a;), whose image
under J,, is by definition + a Grassmannian Schubert polynomial in the alphabets. For A = [4,3,1,0], the
display would be:

Iy T2 X3
as
a2
a
ao

a—1

a_o O

a_s3 O

OoooOoQ
ooooooog

and DualSchur([4,3,1,0])= Yo1a4 . Here,

R(z4,...,x1]a_3,...,a0)

Yr500(@4, .0y 1503, ..., 03) 0y = Y7520030201030203 = Yp134.

It is convenient to use two sets of parameters y; and z; instead of a_;11, ¢ > 0 and a;, j = 1,...,n, respectively.

Proposition 10 There exists a correspondence between dominant rational Schubert polynomials and dual Schur

polynomials.

Proof For a given dominant A\ with length n, let v = A — (n — 1)™ and let N, denote the product of the
boxes of the graphical display. If N, := (—1)" Y7 (x;y)

Yi—znt1—; We have
Yn+i—Yi

DualSchur(8) = ((—=1)" Y (x; vz R0,

. w
n+i

k
where S =A—(n—1)"+10,1,....n—1] and hy = > v;, v; >0 for i < k. For any given dominant dual Schur

i=1
1 }Lﬁ+ Vo
polynomial indexed by [, since Y/gf_; = ()%, we have
(_1)h5+pY[07,31*,327m,51*5n] Yi—rZnt1—i
Y50on = UiV — DualSchur(f3)
R(X[yn41; s UN)lyy =y
where p=[n—1,...,1,0]. O
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Now we want to give a formula that is related to those for key polynomials and the kernel 32—
Hi+_j§n+1(1 T;Y;5)

For a given dominant A with length n, we take v = A —[0,1,....,n — 1] = [v1,v2, ..., Uk Vk+1, ---, Un] . Then we
have
Yoo on1, v /52 B Yoy o1 v ) (K752) Yop (5)
Yioy,vg,...,0,1 (55Y) Yiog vg,...0,] (X5Y)
=Ye(x";y%,2)
where {=[v, +v1, Upn_1+V1, ..., Vg1 +0U1, 01—V, ..., v1—01] and R = [[i=1,....n, (x;—y;). Hence DualSchur(X\) =
Jj=1,..., V1

Ye(x";y%,2)05.
Yv['un,vnfl ,,,,, vk+1](1§xwz)

By changing variables by x; — 1/x;, we have z +? :
Yivy va....0p] (15XY)

, where xy = {x;y; : 4,7 > 1}.
For example, Y51 (1;xy) = (1 — 21y1)(1 — 21y2)(1 — z2y1). The transformation x; — 1/x; preserves 9, up to

global symmetric factor x”~ 1.

1; x¥z) o=
—% DualSchur()).

xA+p Yv[”nvﬂn_1,...,vk+1](
Yoy v, ] (15 XY)

On the other hand, we choose the starting point that is part of the denominator r = [r,r—1,...,1, 0,..,0 ].
——

k—r times

Now we define 9, = Htol 0, and 0, = H:S;”*HFI(? Let us take b = [r,vg41,...,0p]. If

T(r—i+i) "
y=b+[0,1,.,n—=1=[",r+1,...k— 1,541 + k, ..., vp, + (n — 1)], then we have
Yo, v v (1;x*z) oY Yo, v Y (1; x"'z)
[V V=15 Vg 1] T Ap 0pvn—1 k4]
D aand + Ty xAtP
Yirr—1,...,11(L;xy) Yiog,vg,...,05] (1iXY)
N
—% DualSchur(X).

Now we remember that Yj.,_1,. 1)(1;xy) = m, and we know how to expand this with respect
iti<rt1 iYj

to key polynomials; see [6].
Yo, v v ; xY
DualSchur(\) = gy+pLnin_t e OYOr

= (.’L"Y—"_pl/[vn 7””—11"'7vk+1](1;xwz) (iz[r,r—l,..%,l](]-;)cy)) a"y) 83
= ZQENT (KOl (Y)ag) (x7+p)/[vn’v7L71’...7vk+1] (17 XwZ)K(X’w (X)> 857

where K denotes the adjoint key polynomial. Take Yo, :=Yo, wn_1,onsa)(1;X72) . Using the

JUn—1,Vk41]

formula for the action of 07, we have

_1)l(o) N
DualSehur(3) = Y qer (Ka(¥)00) YXoes, Ta— @Y, vy, Kaw(X))o
_1\l(o) N
=S (Ko@) Y pes. SR Yo, wn 1) 0377 Ko (X))o

where A =[], ., j<n(mi — x;). Hence, we see that DualSchur polynomials can be expressed as a sum of key

polynomials in the alphabet y, multiplied by the product of Schubert polynomials in x, z and key polynomials

in x. If we combine what we have achieved, we can express the following theorem.

Theorem 11 For a given dominant partition X\ with length n, using the same notation above, DualSchur(X)
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s equal to
—1)io) .
3 K)o T e (P20 (67 e ()0

a€eNT oeS,,

where A =[] <, <, (i —x;), and S, is the r-th symmetric group.

5. Rational Grothendieck and rational key polynomials

Now we are going to give the definition of rational Grothendieck and key polynomials.

Definition 12 Let u € N™ be a strict dominant partition. The strict rational Grothendieck and key polynomials

indexed by u are defined by

Yn+v,;+1
Gzat(x; y) = H R(y’"+1 yn+v H R 1| . 7J)

;>0 x; 7 v]<0 L

K7 (x H G O‘xl H R(z;l0,...,0)

v; >0

with v =wu — (n — 1), respectively. For a general GI* , (resp., K!*) one needs the strict dominant, given by

applying divided differences m;(resp., #;), i <n —1, which we call ancestor.

Example 13 For u = [6,4,1,0], we have K{f, = ngg and

ZL’IZEQ

Coiio(x;y) = ( (y)(J)(%)(J)(W)(J)(y)(I) )
7 T z; T2

Similarly, in the case of the Schubert polynomial, G35 is the image under mimo of G458 under mimo, and then

410 s the ancestor 102.

The following proposition can be proved similarly to Proposition 3.

Proposition 14 Let u € N" be a strict dominant partition. Then we have

t L YN Yn+1
Grt(x;y) = (=)™ Galzp, ..., x9N, ... y1)/ I | R(1|x- Yoy 7; )
i=1,....,n v v

KI(x) = (=)™ Kg(zn, ..., 21)/ (21, ..., 2)" "

k
with @ = [ug — Up, ..., u1 —ug,u1 —u1), N=wu;+1, hy =Y, v; forv; >0, and v=u— (n—1)"
i=1
For example, we have Gs3a(x;y) = x~ (332 Y530 (x;y) = %;Exy)) and
—3_ -2
Ty w3 (za—y2)(xa—ys)(xa—ya)(z3—ys)(z3—ya) _ o xy)
Geflo(x;y) = ‘11—3:1;:—1 (@w2—ys)(x1—ys) (z1—ye) (T1—ve) f(%‘%z?o(x) ’

We note that, because of reversing the alphabet, a divided difference 7¥ acting on G7* corresponds to

7y 1_; on the Grothendieck polynomial in x, .
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Proposition 15 Let u € N" be a strict dominant partition. Then one can easily seen that

1) Yu(x5y)ly=0 = Ku(x) and Y (x;¥)|ly=0 = K *(x),
2) Gu(x;y) Yu(x35y)

IR
ra YJM X3
3) G (sy) = Fomrny
Proof It is clear by the definition. O

In the dominant case, rational Grothendieck and key polynomials have similar properties of Schubert
polynomials listed in Proposition 4. It is clear that rational Grothendieck (resp., key) polynomials can be
written as a proportion of two Grothendieck (resp., key) polynomials, depending on the given strict dominant

partition u € N in the following way:

Gl 1] (X3 ¥")
G[vl,...,vk](x; Yn+1s--- 7yN)

G (xyy) = (=)

k
where v =u— (n —1)" and h, = > v;, v; >0 for i <k.
i=1

Now we consider the Grassmannian Gr(n, N + n) and Schubert class Tguq (o) as the dual class of
7,. Rational polynomials Y, (x;0) and Y;ﬁ;l(u)(x; 0) correspond to classes Tos Tdual(s) » TeSpectively, and

Y7ot (x;0) Vet o (x;0) = F1.

Proposition 16 Let 7, and 7, be Schubert classes. Then we have

o 1, Kg“t(x).K;“t(x)zi—l
7 0, otherwise.

Proof Let u € N” be a strict dominant partition and ¢ = u + 1. If w is not strict dominant, we use its

k
ancestor. Let ¢ =ul —u¥, N=u1 +1, v=u—(n—1)",and h, = > v;, v; > 0, where u" is the reverse

i=1
ordering of u. Then we obtain

YiNem)n (K5ynt1s - yn) Y (xiy) = (1) Ya(@n, ..., 21598, 91)

YiN—n)n (X¥ns1s - ,yN)Yﬂ’“at(x; y) = (=D)"Yy(z,,...,z09N8,. . 91).

Here we note that @ is the dual of . We get ordinary Schubert polynomial Y, (x;y) for y = 0, which is
equal to the key polynomial K, (x), and we have Y,"'(x;0) = K/ (x). Additionally, we have Y, (x;0) =

T

(—1)hu Kl*’”" **** 7Uk+1](‘7’.7’1,7
Kioy,...o,)(T15-,T0n)

diagram for Y% . (x;0) can be obtained by the Young diagram for Y%/ (x;0) rotated by 180°. Therefore,

wal(u)

2 and Y;f;l(u) (x;0) = (—1)ha Ko, oy @) ik by Proposition 4. The Young

Ki—vp,eoi—vjy 1] (15T

YJ“t(x;O)Ydrsgl(u) (x;0) = +1. If 7, is dual class to 75, then p, o are dual partitions, and 7,.7, is 1 and 0

otherwise. Hence, we have proven the Proposition 16. O
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Example 17 Let us take u = [4,1,0]. Then we have o = [5,2,1] and dual(o) = @ = [4,3,0]. The rational

* | *
*
2 2
Schubert polynomials Y/ (x;0) = mi? and Y] (x;0) = _;?m correspond to diagrams * [ *] and
* | %

*

* 1%, respectively. Hence, Y14 (x;0)Y 5 (x;0) = —1.
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