Turk J Math
(2015) 39: $313-321$
(C) TÜBİTAK
doi:10.3906/mat-1403-74

Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection

Juan de Dios PÉREZ ${ }^{1, *}$, Young Jin SUH ${ }^{2}$, Changhwa WOO ${ }^{2}$
${ }^{1}$ Department of Geometry and Topology, University of Granada, Granada, Spain
${ }^{2}$ Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea

Received: 26.03 .2014	Accepted/Published Online: 15.01 .2015	Printed: 29.05 .2015

Abstract

We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose shape operator A is generalized Tanaka-Webster recurrent if the principal curvature of the structure vector field is not equal to trace(A).

Key words: Real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized Tanaka-Webster connection, recurrent shape operator

1. Introduction

The generalized Tanaka-Webster connection (from now on, g-Tanaka-Webster connection) for contact metric manifolds was introduced by Tanno ([13]) as a generalization of the connection defined by Tanaka in [12] and, independently, by Webster in [14]. This connection coincides with the Tanaka-Webster connection if the associated CR-structure is integrable. The Tanaka-Webster connection is defined as a canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real hypersurface M in a Kähler manifold has an (integrable) CR-structure associated with the almost contact structure (ϕ, ξ, η, g) induced on M by the Kähler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho [4] and Tanno [13] defined the g -Tanaka-Webster connection for a real hypersurface of a Kähler manifold by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

for any X, Y tangent to M, where ∇ denotes the Levi-Civita connection on M, A is the shape operator on M and k is a non-zero real number. In particular, if the real hypersurface satisfies $A \phi+\phi A=2 k \phi$, then the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ coincides with the Tanaka-Webster connection (see [4]).

Now let us denote by $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ the set of all complex 2-dimensional linear subspaces in $\mathbb{C} \mathbb{C}^{m+2}$. This Riemannian symmetric space has a remarkable geometric structure. It is known to be the unique compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J (see Berndt and Suh [2]). In other words, $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ is the unique compact, irreducible Kähler, quaternionic Kähler manifold, which is not a hyper-Kähler manifold.

[^0]Let M be a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ and N a local normal unit vector field on M. Let also A be the shape operator of M associated to N. The almost contact structure vector field $\xi=-J N$ is said to be a Reeb vector field. Moreover, if $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a local basis of \mathfrak{J}, we define $\xi_{i}=-J_{i} N, i=1,2,3$. We will call $\mathbb{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. Its orthogonal complement in $T M$ will be denoted by \mathbb{D}.

Berndt and Suh, [2] proved that for a connected hypersurface M in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$, both $\operatorname{Span}\{\xi\}$ and \mathbb{D}^{\perp} are invariant under the shape operator A if and only if either (A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C} \mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or $(\mathrm{B}) m$ is even, say $m=2 n$ and M is an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(C^{m+2}\right)$. Both types of real hypersurfaces have constant principal curvatures.

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A. The 1-dimensional foliation of M by the integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ if and only if the Hopf foliation of M is totally geodesic. This is equivalent to the fact that the Reeb vector field is Hopf.

If the shape operator A of M satisfies $\left(\nabla_{X} A\right) Y=0$ for any vector fields X, Y tangent to M, the shape operator is said to be parallel with respect to the Levi-Civita connection. Suh [10] proved the non-existence of real hypersurfaces in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ with parallel shape operator with respect to the Levi-Civita connection.

On the other hand, Kobayashi and Nomizu [7] introduced the notion of recurrent tensor field of type (r, s) on a manifold M with a linear connection ∇. A non-zero tensor field K of type (r, s) on M is said to be recurrent if there exists a 1 -form ω on M such that $\nabla K=K \otimes \omega$.

Suh [11] proved the non-existence of real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with recurrent shape operator with respect to the Levi-Civita connection if $\mathbb{D}\left(\right.$ respectively, $\left.\mathbb{D}^{\perp}\right)$ is invariant by the shape operator. Kim et al. [6] showed that this last condition is superfluous.

Jeong et al. [5] considered real hypersurfaces in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ whose shape operator is parallel with respect to the g-Tanaka-Webster connection, that is, $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ for any X, Y tangent to M and proved that there do not exist Hopf real hypersurfaces in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$, with parallel shape operator with respect to the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ if $\alpha=g(A \xi, \xi) \neq 2 k$.

This paper is devoted to the study of real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent with respect to the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$. That is, there exists a 1 -form ω on M such that $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=\omega(X) A Y$ for any X, Y tangent to M. We will call $h=\operatorname{trace}(A)$. Notice that if $\omega \equiv 0$, the shape operator should be parallel with respect to the g -Tanaka-Webster connection. Thus we will suppose that the 1-form ω does not vanish. We will prove the following

Main Theorem There do not exist Hopf real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, whose shape operator is recurrent with respect to the g-Tanaka-Webster connection if $\alpha=g(A \xi, \xi) \neq h$, where $h=\operatorname{Tr} A$.

2. Preliminaries

For the study of the Riemannian geometry of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ see [1]. All the notations we will use from now on are those in [2] and [3]. We will suppose that the metric g of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ is normalized for the maximal sectional curvature of the manifold to be eight. Then the Riemannian curvature tensor \bar{R} of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ is locally given
by

$$
\begin{align*}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +\sum_{\nu=1}^{3}\left\{g\left(J_{\nu} Y, Z\right) J_{\nu} X-g\left(J_{\nu} X, Z\right) J_{\nu} Y-2 g\left(J_{\nu} X, Y\right) J_{\nu} Z\right\} \tag{2.1}\\
& +\sum_{\nu=1}^{3}\left\{g\left(J_{\nu} J Y, Z\right) J_{\nu} J X-g\left(J_{\nu} J X, Z\right) J_{\nu} J Y\right\},
\end{align*}
$$

where J_{1}, J_{2}, J_{3} is any canonical local basis of \mathfrak{J}.
Let M be a real hypersurface of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$, that is, a submanifold of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal field of M and A the shape operator of M with respect to N. The Kähler structure J of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ induces on M an almost contact metric structure (ϕ, ξ, η, g). Furthermore, let J_{1}, J_{2}, J_{3} be a canonical local basis of \mathfrak{J}. Then each J_{ν} induces an almost contact metric structure $\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right)$ on M.

Since \mathfrak{J} is parallel with respect to the Riemannian connection $\bar{\nabla}$ of $\left(G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), g\right)$, for any canonical local basis J_{1}, J_{2}, J_{3} of \mathfrak{J} there exist three local 1-forms q_{1}, q_{2}, q_{3} such that

$$
\begin{equation*}
\bar{\nabla}_{X} J_{\nu}=q_{\nu+2}(X) J_{\nu+1}-q_{\nu+1}(X) J_{\nu+2} \tag{2.2}
\end{equation*}
$$

for any X tangent to $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$, where subindices are taken modulo 3 .
From the expression of the curvature tensor of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ the Gauss equation is given by

$$
\begin{align*}
& R(X, Y) Z \\
& \quad g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
&+\sum_{\nu=1}^{3}\left\{g\left(\phi_{\nu} Y, Z\right) \phi_{\nu} X-g\left(\phi_{\nu} X, Z\right) \phi_{\nu} Y-2 g\left(\phi_{\nu} X, Y\right)-2 g\left(\phi_{\nu} X, Y\right) \phi_{\nu} Z\right\} \\
&+\sum_{\nu=1}^{3}\left\{g\left(\phi_{\nu} \phi Y, Z\right) \phi_{\nu} \phi X-g\left(\phi_{\nu} \phi X, Z\right) \phi_{\nu} \phi Y\right\} \tag{2.3}\\
&-\sum_{\nu=1}^{3}\left\{\eta(Y) \eta_{\nu}(Z) \phi_{\nu} \phi X-\eta(X) \eta_{\nu}(Z) \phi_{\nu} \phi Y\right\} \\
&-\sum_{\nu=1}^{3}\left\{\eta(X) g\left(\phi_{\nu} \phi Y, Z\right)-\eta(Y) g\left(\phi_{\nu} \phi X, Z\right)\right\} \xi_{\nu} \\
&+g(A Y, Z) Z X-g(A X, Z) A Y
\end{align*}
$$

PÉREZ et al./Turk J Math

for any X, Y, Z tangent to M. The Codazzi equation is also given by

$$
\begin{align*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} X-2 g\left(\phi_{\nu} X, Y\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi X\right\} \tag{2.4}\\
& +\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}(\phi X)\right\} \xi_{\nu}
\end{align*}
$$

for any X, Y tangent to M. The structures of $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ give the following

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.5}\\
\nabla_{X} \xi=\phi A X \tag{2.6}\\
\nabla_{X} \xi_{\nu}=q_{\nu+2}(X) \xi_{\nu+1}-q_{\nu+1}(X) \xi_{\nu+2}+\phi_{\nu} A X \tag{2.7}\\
\left(\nabla_{X} \phi_{\nu}\right) Y=-q_{\nu+1}(X) \phi_{\nu+2} Y+q_{\nu+2}(X) \phi_{\nu+1} Y+\eta_{\nu}(Y) A X-g(A X, Y) \xi_{\nu} \tag{2.8}
\end{gather*}
$$

A real hypersurface of type (A) has three (if $r=\frac{\pi}{2 \sqrt{8}}$) or four (otherwise) distinct principal curvatures $\alpha=\sqrt{8} \cot (\sqrt{8} r), \beta=\sqrt{2} \cot (\sqrt{2} r), \lambda=-\sqrt{2} \tan (\sqrt{2} r), \quad \mu=0$, for some radius $r \in\left(0, \frac{\pi}{\sqrt{8}}\right)$, with corresponding multiplicities $m(\alpha)=1, m(\beta)=2, m(\lambda)=m(\mu)=2 m-2$. The corresponding eigenspaces can be seen in [2].

A real hypersurface of type (B) has five distinct principal curvatures $\alpha=-2 \tan (2 r), \beta=2 \cot (2 r)$, $\gamma=0, \lambda=\cot (r), \mu=-\tan (r)$, for some $r \in\left(0, \frac{\pi}{4}\right)$, with corresponding multiplicities $m(\alpha)=1$, $m(\beta)=3=m(\gamma), m(\lambda)=4 m-4=m(\mu)$. For the corresponding eigenspaces see [2].

In the following we will need the following Proposition, [2],
Proposition 2.1 Let M be a Hopf real hypersurface in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$, such that $A \xi=\alpha \xi$. Then $Y(\alpha)=\xi(\alpha) \eta(Y)-4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \eta_{\nu}(\phi Y)$ for any Y tangent to M.
and the following Theorem, [8],

Theorem 2.2 Let M be a connected orientable Hopf real hypersurface in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathbb{D} if and only if m is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$, where $m=2 n$.

3. Proof of main theorem

As we suppose that $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=\omega(X) A Y$ for any X, Y tangent to M, from (1.1) we get

$$
\begin{align*}
\left(\nabla_{X} A\right) Y= & -g(\phi A X, A Y) \xi+\eta(A Y) \phi A X+k \eta(X) \phi A Y+g(\phi A X, Y) A \xi \tag{3.1}\\
& -\eta(Y) A \phi A X-k \eta(X) A \phi Y+\omega(X) A Y
\end{align*}
$$

for any X, Y tangent to M. As $A \xi=\alpha \xi$, taking $Y=\xi$ in (3.1) we obtain $\nabla_{X} \alpha \xi=\alpha \phi A X+\alpha \omega(X) \xi$. That is, $X(\alpha) \xi+\alpha \phi A X=\alpha \omega(X) \xi+\alpha \phi A X$. Thus

$$
\begin{equation*}
X(\alpha)=\alpha \omega(X) \tag{3.2}
\end{equation*}
$$

for any X tangent to M.

Proposition 3.1 Let M be a Hopf real hypersurface in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$, whose shape operator is recurrent with respect to the g-Tanaka-Webster connection. If $\alpha \neq h$, either $\xi \in \mathbb{D}$ or $\xi \in \mathbb{D}^{\perp}$.

Proof From [9] we know that if $\alpha=0$, a Hopf real hypersurface in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right)$ satisfies either $\xi \in \mathbb{D}$ or $\xi \in \mathbb{D}^{\perp}$. Therefore we suppose that $\alpha \neq 0$.

We can write $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$ for a certain $X_{0} \in \mathbb{D}$. If $\eta\left(X_{0}\right)=0$ (respectively, $\eta\left(\xi_{1}\right)=0$), $\xi \in \mathbb{D}^{\perp}$ (respectively, $\xi \in \mathbb{D}$). Therefore we suppose $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$. From (3.1) and the Codazzi equation we have

$$
\begin{align*}
& \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi+\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} X-2 g\left(\phi_{\nu}(X, Y) \xi_{\nu}\right\}\right. \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi X\right\}+\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}(\phi X)\right\} \xi_{\nu} \tag{3.3}\\
& \quad=-2 g(A \phi A X, Y) \xi-\eta(A X) \phi A Y+\eta(A Y) \phi A X-k \eta(Y) \phi A X+k \eta(X) \phi A Y \\
& \quad+g((\phi A+A \phi) X, Y) A \xi+\eta(X) A \phi A Y-\eta(Y) A \phi A X \\
& \quad+k \eta(Y) A \phi X-k \eta(X) A \phi Y+\omega(X) A Y-\omega(Y) A X
\end{align*}
$$

for any X, Y tangent to M. Taking $X=\xi$ in (3.3) we get

$$
\begin{align*}
\phi Y & +\eta_{1}(\xi) \phi_{1} Y-\sum_{\nu=1}^{3} \eta_{\nu}(Y) \phi_{\nu} \xi-2 \sum_{\nu=1}^{3} g\left(\phi_{\nu} \xi, Y\right) \xi_{\nu}+\sum_{\nu=1}^{3} \eta_{\nu}(\phi Y) \xi_{\nu} \tag{3.4}\\
& =-\alpha \phi A Y+k \phi A Y+A \phi A Y-k A \phi Y+\omega(\xi) A Y-\alpha \omega(Y) \xi
\end{align*}
$$

for any Y tangent to M. Taking the scalar product of (3.4) and ξ we obtain

$$
\begin{equation*}
-4 \eta_{1}(\xi) g\left(\phi \xi_{1}, Y\right)=\alpha \omega(\xi) \eta(Y)-\alpha \omega(Y) \tag{3.5}
\end{equation*}
$$

for any Y tangent to M. As $\alpha \neq 0$, from (3.2) and (3.5)

$$
\begin{equation*}
\operatorname{grad}(\alpha)=\alpha \omega(\xi) \xi+4 \eta_{1}(\xi) \phi_{1} \xi \tag{3.6}
\end{equation*}
$$

PÉREZ et al./Turk J Math

Let $\left\{E_{i}\right\}_{i=1, \ldots, 4 m-1}$ be an orthonormal basis of eigenvectors of M, and suppose $A E_{i}=\lambda_{i} E_{i}, i=$ $1, \ldots, 4 m-1$. From (3.1) we have

$$
\begin{align*}
\sum_{i=1}^{4 m-1} g\left(\left(\nabla_{X} A\right) E_{i}, E_{i}\right)= & -\sum_{i=1}^{4 m-1} g\left(\phi A X, A E_{i}\right) g\left(\xi, E_{i}\right) \\
& +\sum_{i=1}^{4 m-1} \eta\left(A E_{i}\right) g\left(\phi A X, E_{i}\right)+k \eta(X) \sum_{i=1}^{4 m-1} g\left(\phi A E_{i}, E_{i}\right) \\
& +\sum_{i=1}^{4 m-1} g\left(\phi A X, E_{i}\right) g\left(A \xi, E_{i}\right)-\sum_{1=1}^{4 m-1} g\left(\xi, E_{i}\right) g\left(A \phi A X, E_{i}\right) \tag{3.7}\\
& -k \eta(X) \sum_{i=1}^{4 m-1} g\left(A \phi E_{i}, E_{i}\right)+\omega(X) \sum_{i=1}^{4 m-1} g\left(A E_{i}, E_{i}\right) \\
= & h \omega(X)
\end{align*}
$$

because the other terms are clearly null. This yields $\sum_{i=1}^{4 m-1} g\left(\nabla_{X} \lambda_{i} E_{i}-A \nabla_{X} E_{i}, E_{i}\right)=\sum_{i=1}^{4 m-1} X\left(\lambda_{i}\right)=h \omega(X)$. Thus

$$
\begin{equation*}
X(h)=h \omega(X) \tag{3.8}
\end{equation*}
$$

for any X tangent to M. Moreover, $\sum_{i=1}^{4 m-1} g\left(\left(\nabla_{E_{i}} A\right) Y, E_{i}\right)=g(A \phi A Y, \xi)+\omega(A Y)=\omega(A Y)$. Thus from the Codazzi equation

$$
\begin{align*}
\omega(A Y)= & \sum_{i=1}^{4 m-1} g\left(\left(\nabla_{Y} A\right) E_{i}+\eta\left(E_{i}\right) \phi Y-\eta(Y) \phi E_{i}-2 g\left(\phi E_{i}, Y\right) \xi\right. \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(E_{i}\right) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} E_{i}-2 g\left(\phi_{\nu} E_{i}, Y\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\phi E_{i}\right) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi E_{i}\right\} \\
& \left.+\sum_{\nu=1}^{3}\left\{\eta\left(E_{i}\right) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}\left(\phi E_{i}\right)\right\} \xi_{\nu}, E_{i}\right) \tag{3.9}\\
= & \sum_{i=1}^{4 m-1} g\left(\nabla_{Y} \lambda_{i} E_{i}, E_{i}\right)-\sum_{\nu=1}^{3} g\left(\phi_{\nu} \xi, \phi_{\nu} \phi Y\right) \\
= & \sum_{i=1}^{4 m-1} Y\left(\sum_{\nu=1}^{3} \eta_{\nu}(\phi Y)+2 \sum_{i=1}^{4 m-1} g\left(\phi_{\nu} \phi E_{i}, E_{i}\right)+\eta_{1}(\phi) \eta_{1}(\phi Y)-\sum_{\nu=1}^{3} \eta_{\nu}(\phi Y) \operatorname{trace}\left(\xi_{\nu}\right)\right.
\end{align*}
$$

for any Y tangent to M. As for any $\nu=1,2,3, \operatorname{trace}\left(\phi_{\nu} \phi\right)=\operatorname{trace}\left(\phi \phi_{\nu}\right)=2 \eta_{\nu}(\xi)$, see for example [9], from (3.9) we obtain

$$
\begin{equation*}
\omega(A Y)=Y(h)=h \omega(Y) \tag{3.10}
\end{equation*}
$$

for any Y tangent to M. Taking $Y=\xi$ in (3.10) we get $\omega(A \xi)=h \omega(\xi)=\alpha \omega(\xi)$. Thus $(h-\alpha) \omega(\xi)=0$. As we suppose $h \neq \alpha$ it follows

$$
\begin{equation*}
\omega(\xi)=0 \tag{3.11}
\end{equation*}
$$

(3.6) and (3.11) yield

$$
\begin{equation*}
\operatorname{grad}(\alpha)=4 \eta\left(\xi_{1}\right) \phi_{1} \xi \tag{3.12}
\end{equation*}
$$

We know that for any X, Y tangent to $M g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=g\left(\nabla_{Y} \operatorname{grad}(\alpha), X\right)$. This yields

$$
\begin{align*}
& \left(g\left(\phi A X, \xi_{1}\right)+g\left(\xi, \nabla_{X} \xi_{1}\right)\right) g\left(\phi_{1} \xi, Y\right)+\eta_{1}(\xi) g\left(\nabla_{X} \phi_{1} \xi, Y\right) \\
& \quad=\left(g\left(\phi A Y, \xi_{1}\right)+g\left(\xi, \nabla_{Y} \xi_{1}\right)\right) g\left(\phi_{1} \xi, X\right)+\eta_{1}(\xi) g\left(\nabla_{Y} \phi_{1} \xi, X\right) \tag{3.13}
\end{align*}
$$

Taking $Y=\xi$ in (3.13) we obtain $\eta_{1}(\xi) g\left(\nabla_{X} \phi_{1} \xi, \xi\right)=g\left(\xi, \nabla_{\xi} \xi_{1}\right) g\left(\phi_{1} \xi, X\right)+\eta_{1}(\xi) g\left(\left(\nabla_{\xi} \phi_{1}\right) \xi, X\right)$ for any X tangent to M. This gives $-\eta_{1}(\xi) g\left(\phi \xi_{1}, \phi A X\right)=g\left(\xi, q_{3}(\xi) \xi_{2}-q_{2}(\xi) \xi_{3}+\phi_{1} A \xi\right) g\left(\phi_{1} \xi, X\right)+\eta_{1}(\xi) g\left(-q_{2}(\xi) \phi_{3} \xi+\right.$ $\left.q_{3}(\xi) \phi_{2} \xi+\eta_{1}(\xi) A \xi, X\right)$ for any X tangent to M. As we suppose $\eta_{1}(\xi)=\eta\left(\xi_{1}\right) \neq 0$ we get $-g\left(A \xi_{1}, X\right)+$ $\alpha \eta\left(\xi_{1}\right) \eta(X)=-q_{2}(\xi) g\left(\phi_{3} \xi, X\right)+q_{3}(\xi) g\left(\phi_{2} \xi, X\right)+\alpha \eta\left(\xi_{1}\right) \eta(X)$ for any X tangent to M. Therefore

$$
\begin{equation*}
A \xi_{1}=q_{2}(\xi) \phi_{3} \xi-q_{3}(\xi) \phi_{2} \xi \tag{3.14}
\end{equation*}
$$

The scalar product of (3.14) and ξ yields $\alpha \eta\left(\xi_{1}\right)=0$. As $\alpha \neq 0, \eta\left(\xi_{1}\right)=0$ and we arrive at a contradiction.

This finishes the proof of our Proposition.
Now, if $\xi \in \mathbb{D}$, from Theorem $2.2, M$ is locally congruent to a real hypersurface of type (B). Therefore consider the case $\xi \in \mathbb{D}^{\perp}$. We can write $\xi=\xi_{1}$.

Proposition 3.2 Let M be a Hopf real hypersurface in $G_{2}\left(\mathbb{C} \mathbb{C}^{m+2}\right), m \geq 3$, whose shape operator is recurrent with respect to the g-Tanaka-Webster connection. If $\xi \in \mathbb{D}^{\perp}$ and $\alpha \neq 0, M$ is locally congruent to a type (A) real hypersurface.
Proof With our hypothesis and being $\xi=\xi_{1}$, (3.4) becomes

$$
\begin{align*}
\phi Y & +\phi_{1} Y-\eta_{2}(Y) \xi_{3}+\eta_{3}(Y) \xi_{2} \\
& =-\alpha \phi A Y+k \phi A Y+A \phi A Y-k A \phi Y+\omega(\xi) A Y-\alpha \omega(Y) \xi \tag{3.15}
\end{align*}
$$

for any Y tangent to M.
The scalar product of (3.15) and ξ, bearing in mind that $\alpha \neq 0$, yields $\omega(Y)=\eta(Y) \omega(\xi)$ for any Y tangent to M. From (3.2) we obtain

$$
\begin{equation*}
\operatorname{grad}(\alpha)=\alpha \omega(\xi) \xi \tag{3.16}
\end{equation*}
$$

Therefore for any X tangent to $M \nabla_{X} \operatorname{grad}(\alpha)=X(\alpha \omega(\xi)) \xi+\alpha \omega(\xi) \phi A X=\omega(\xi) X(\alpha) \xi+\alpha X(\omega(\xi)) \xi+$ $\alpha \omega(\xi) \phi A X$. If Y is orthogonal to $\xi, g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=\alpha \omega(\xi) g(\phi A X, Y)$. Moreover, if X is also orthogonal to ξ, as $g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=g\left(\nabla_{Y} \operatorname{grad}(\alpha), X\right)$, we get $\alpha \omega(\xi) g(\phi A X, Y)=\alpha \omega(\xi) g(\phi A Y, X)$. Thus either $\omega(\xi)=0$ and ω should vanish, which is impossible, or $g((\phi A+A \phi) X, Y)=0$ for any X, Y orthogonal to ξ. As we also have $(\phi A+A \phi) \xi=0$ we obtain

$$
\begin{equation*}
\phi A+A \phi=0 \tag{3.17}
\end{equation*}
$$

From (3.17) it is easy to see that $A^{2} \phi=\phi A^{2}$. Now from (3.1) we have $\left(\nabla_{\xi} A\right) \xi_{2}=k \phi A \xi_{2}-k A \phi \xi_{2}+$ $\omega(\xi) A \xi_{2}=2 k A \xi_{3}+\omega(\xi) A \xi_{2}$. If $X \in \mathbb{D}$ we get $g\left(\left(\nabla_{\xi} A\right) \xi_{2}, X\right)=g\left(\xi_{2},\left(\nabla_{\xi} A\right) X\right)$ and applying the Codazzi equation this is equal to $g\left(\xi_{2}, \alpha \phi A X+\phi X-A \phi A X+\phi_{1} X\right)$. This yields

$$
\begin{equation*}
g\left(A^{2} \xi_{3}, X\right)=(2 k-\alpha) g\left(A \xi_{3}, X\right)+\omega(\xi) g\left(A \xi_{2}, X\right) \tag{3.18}
\end{equation*}
$$

for any $X \in \mathbb{D}$. Developing $\left(\nabla_{\xi} A\right) \xi_{3}$ we have

$$
\begin{equation*}
-g\left(A^{2} \xi_{2}, X\right)=(\alpha-2 k) g\left(A \xi_{2}, X\right)+\omega(\xi) g\left(A \xi_{3}, X\right) \tag{3.19}
\end{equation*}
$$

for any $X \in \mathbb{D}$. If in (3.18) we take ϕX instead of X we get

$$
\begin{equation*}
-g\left(A^{2} \xi_{2}, X\right)=(2 k-\alpha) g\left(A \xi_{2}, X\right)-\omega(\xi) g\left(A \xi_{3}, X\right) \tag{3.20}
\end{equation*}
$$

From (3.19) and (3.20) $g\left(A^{2} \xi_{2}, X\right)=0$. Similarly $g\left(A^{2} \xi_{3}, X\right)=0$ for any $X \in \mathbb{D}$. Thus (3.18) and (3.19) become

$$
\begin{align*}
& \omega(\xi) g\left(A \xi_{2}, X\right)+(2 k-\alpha) g\left(A \xi_{3}, X\right)=0 \tag{3.21}\\
& -(2 k-\alpha) g\left(A \xi_{2}, X\right)+\omega(\xi) g\left(A \xi_{3}, X\right)=0
\end{align*}
$$

The matrix of coefficients of this homogeneous linear system has as determinant $(\omega(\xi))^{2}+(2 k-\alpha)^{2}$, and as $\omega(\xi) \neq 0$, this determinant does not vanish. This yields $g\left(A \xi_{2}, X\right)=g\left(A \xi_{3}, X\right)=0$ for any $X \in \mathbb{D}$. Thus \mathbb{D} is A-invariant and M must be locally of type (A).

From Propositions 3.1 and $3.2, M$ is locally congruent to a real hypersurface either of type (A) or of type (B).

Let M be a type (A) real hypersurface. Clearly $\left(\nabla_{\xi} A\right) \xi=0$. For (3.1) to be satisfied we should have $\sqrt{8} \cot (\sqrt{8} r) \omega(\xi) \xi=0$. Therefore $\omega(\xi)=0$.

As $\left(\nabla_{\xi_{i}} A\right) \xi=\sqrt{8} \cot (\sqrt{8} r) \phi A \xi_{i}-A \phi A \xi_{i}, \quad i=2,3$, for (3.1) to be satisfied this must be equal to $\sqrt{8} \cot (\sqrt{8} r) \phi A \xi_{i}-A \phi A \xi_{i}+\omega\left(\xi_{i}\right) A \xi$. Thus $\omega\left(\xi_{i}\right)=0, i=1,2$.

The same occurs if we take any $X \in T_{\lambda}$ or $Y \in T_{\mu}$. This means that for a real hypersurface of type (A) to satisfy our condition we should have $\omega \equiv 0$, which is impossible.

A similar reasoning applied to a real hypersurface of type (B) shows that these real hypersurfaces do not satisfy our condition and our Theorem is proved.

References

[1] Berndt J. Riemannian geometry of complex two-plane Grassmannians. Rend Sem Mat Univ Politec Torino 1997; 55: 19-83.
[2] Berndt J, Suh YJ. Real hypersurfaces in complex two-plane Grassmannians. Monatsh Math 1999; 127: 1-14.
[3] Berndt J, Suh YJ. Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monatsh Math 2002; 137: 87-98.
[4] Cho JT. CR structures on real hypersurfaces of a complex space form. Publ Math Debrecen 1999; 54: 473-487.
[5] Jeong I, Lee H, Suh YJ. Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel shape operator. Kodai Math J 2011; 34: 352-366.

PÉREZ et al./Turk J Math

[6] Kim S, Lee H, Yang HY. Real hypersurfaces in complex two-plane Grassmannians with recurrent shape operator. Bull Malays Math Sci Soc 2011; 34: 1-14.
[7] Kobayashi S, Nomizu K. Foundations of Differential Geometry I. New York, NY, USA: John Wiley and Sons, Inc., 1963.
[8] Lee H, Suh YJ. Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. Bull Korean Math Soc 2010; 47: 551-561.
[9] Pérez JD, Suh YJ. The Ricci tensor of real hypersurfaces in complex two plane Grassmannians. J Korean Math Soc 2007; 44: 211-235.
[10] Suh YJ. Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. Bull Austral Math Soc 2003; 62: 493-502.
[11] Suh YJ. Recurrent real hypersurfaces in complex two-plane Grassmannians. Acta Math Hungar 2006; 112: 13091324.
[12] Tanaka N. On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J Math 1976; 20: 89-102.
[13] Tanno S. Variational problems on contact Riemannian manifolds. Trans AMS 1989; 314: 349-379.
[14] Webster SM. Pseudo-Hermitian structures on a real hypersurface. J Diff Geom 1978; 13: 25-41.

[^0]: *Correspondence: jdperez@ugr.es
 2010 AMS Mathematics Subject Classification: Primary 53C40; Secondary 53C15.
 The first author is partially supported by MCT-FEDER Grant MTM2010-18099, the second author by Grant Proj. No. NRF-2012-R1A2A2A-01043023, and the third author by Fostering Core Leaders No. NRF-2013H1A8A1004325.

