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1. Introduction

The generalized Tanaka–Webster connection (from now on, g-Tanaka–Webster connection) for contact metric

manifolds was introduced by Tanno ([13]) as a generalization of the connection defined by Tanaka in [12]

and, independently, by Webster in [14]. This connection coincides with the Tanaka–Webster connection if

the associated CR-structure is integrable. The Tanaka–Webster connection is defined as a canonical affine

connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real hypersurface M in a Kähler manifold

has an (integrable) CR-structure associated with the almost contact structure (ϕ, ξ, η, g) induced on M by the

Kähler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho [4] and

Tanno [13] defined the g-Tanaka–Webster connection for a real hypersurface of a Kähler manifold by

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY (1.1)

for any X,Y tangent to M , where ∇ denotes the Levi-Civita connection on M , A is the shape operator on

M and k is a non-zero real number. In particular, if the real hypersurface satisfies Aϕ+ ϕA = 2kϕ , then the

g-Tanaka–Webster connection ∇̂(k) coincides with the Tanaka–Webster connection (see [4]).

Now let us denote by G2(CCm+2) the set of all complex 2-dimensional linear subspaces in CCm+2 . This

Riemannian symmetric space has a remarkable geometric structure. It is known to be the unique compact

irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler

structure J not containing J (see Berndt and Suh [2]). In other words, G2(CCm+2) is the unique compact,

irreducible Kähler, quaternionic Kähler manifold, which is not a hyper-Kähler manifold.
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Let M be a real hypersurface in G2(CCm+2) and N a local normal unit vector field on M . Let also A

be the shape operator of M associated to N . The almost contact structure vector field ξ = −JN is said to

be a Reeb vector field. Moreover, if {J1, J2, J3} is a local basis of J , we define ξi = −JiN , i = 1, 2, 3. We will

call D⊥ = Span{ξ1, ξ2, ξ3} . Its orthogonal complement in TM will be denoted by D .

Berndt and Suh, [2] proved that for a connected hypersurface M in G2(CCm+2), m ≥ 3, both Span{ξ}
and D⊥ are invariant under the shape operator A if and only if either (A) M is an open part of a tube around

a totally geodesic G2(CCm+1) in G2(CCm+2), or (B) m is even, say m = 2n and M is an open part of a

tube around a totally geodesic HPn in G2(C
m+2). Both types of real hypersurfaces have constant principal

curvatures.

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A . The 1-dimensional

foliation of M by the integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M . We say

that M is a Hopf hypersurface in G2(CCm+2) if and only if the Hopf foliation of M is totally geodesic. This

is equivalent to the fact that the Reeb vector field is Hopf.

If the shape operator A of M satisfies (∇XA)Y = 0 for any vector fields X,Y tangent to M , the shape

operator is said to be parallel with respect to the Levi-Civita connection. Suh [10] proved the non-existence of

real hypersurfaces in G2(CCm+2) with parallel shape operator with respect to the Levi-Civita connection.

On the other hand, Kobayashi and Nomizu [7] introduced the notion of recurrent tensor field of type

(r,s) on a manifold M with a linear connection ∇ . A non-zero tensor field K of type (r,s) on M is said to be

recurrent if there exists a 1-form ω on M such that ∇K = K ⊗ ω .

Suh [11] proved the non-existence of real hypersurfaces in G2(CCm+2) with recurrent shape operator

with respect to the Levi-Civita connection if D (respectively, D⊥ ) is invariant by the shape operator. Kim et

al. [6] showed that this last condition is superfluous.

Jeong et al. [5] considered real hypersurfaces in G2(CCm+2) whose shape operator is parallel with respect

to the g-Tanaka–Webster connection, that is, (∇̂(k)
X A)Y = 0 for any X,Y tangent to M and proved that there

do not exist Hopf real hypersurfaces in G2(CCm+2), m ≥ 3, with parallel shape operator with respect to the

g-Tanaka–Webster connection ∇̂(k) if α = g(Aξ, ξ) ̸= 2k .

This paper is devoted to the study of real hypersurfaces in complex two-plane Grassmannians whose

shape operator is recurrent with respect to the g-Tanaka–Webster connection ∇̂(k) . That is, there exists a

1-form ω on M such that (∇̂(k)
X A)Y = ω(X)AY for any X,Y tangent to M . We will call h = trace(A).

Notice that if ω ≡ 0, the shape operator should be parallel with respect to the g-Tanaka–Webster connection.

Thus we will suppose that the 1-form ω does not vanish. We will prove the following

Main Theorem There do not exist Hopf real hypersurfaces in G2(CCm+2) , m ≥ 3 , whose shape operator is

recurrent with respect to the g-Tanaka–Webster connection if α = g(Aξ, ξ) ̸= h , where h = TrA .

2. Preliminaries

For the study of the Riemannian geometry of G2(CCm+2) see [1]. All the notations we will use from now on are

those in [2] and [3]. We will suppose that the metric g of G2(CCm+2) is normalized for the maximal sectional

curvature of the manifold to be eight. Then the Riemannian curvature tensor R̄ of G2(CCm+2) is locally given
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PÉREZ et al./Turk J Math

by

R̄(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY,Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}

+
3∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY },

(2.1)

where J1, J2, J3 is any canonical local basis of J .

Let M be a real hypersurface of G2(CCm+2), that is, a submanifold of G2(CCm+2) with real codimension

one. The induced Riemannian metric on M will also be denoted by g , and ∇ denotes the Riemannian

connection of (M, g). Let N be a local unit normal field of M and A the shape operator of M with respect

to N . The Kähler structure J of G2(CCm+2) induces on M an almost contact metric structure (ϕ, ξ, η, g).

Furthermore, let J1, J2, J3 be a canonical local basis of J . Then each Jν induces an almost contact metric

structure (ϕν , ξν , ην , g) on M .

Since J is parallel with respect to the Riemannian connection ∇̄ of (G2(CCm+2), g), for any canonical

local basis J1, J2, J3 of J there exist three local 1-forms q1, q2, q3 such that

∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (2.2)

for any X tangent to G2(CCm+2), where subindices are taken modulo 3.

From the expression of the curvature tensor of G2(CCm+2) the Gauss equation is given by

R(X,Y )Z

= g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ

+
3∑

ν=1

{g(ϕνY, Z)ϕνX − g(ϕνX,Z)ϕνY − 2g(ϕνX,Y )− 2g(ϕνX,Y )ϕνZ}

+

3∑
ν=1

{g(ϕνϕY,Z)ϕνϕX − g(ϕνϕX,Z)ϕνϕY }

−
3∑

ν=1

{η(Y )ην(Z)ϕνϕX − η(X)ην(Z)ϕνϕY }

−
3∑

ν=1

{η(X)g(ϕνϕY,Z)− η(Y )g(ϕνϕX,Z)}ξν

+ g(AY,Z)ZX − g(AX,Z)AY

(2.3)
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for any X,Y, Z tangent to M . The Codazzi equation is also given by

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

+
3∑

ν=1

{ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕνX,Y )ξν}

+
3∑

ν=1

{ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX}

+

3∑
ν=1

{η(X)ην(ϕY )− η(Y )ην(ϕX)}ξν

(2.4)

for any X,Y tangent to M . The structures of G2(CCm+2) give the following

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, (2.5)

∇Xξ = ϕAX, (2.6)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX, (2.7)

(∇Xϕν)Y = −qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX − g(AX,Y )ξν . (2.8)

A real hypersurface of type (A) has three (if r = π
2
√
8
) or four (otherwise) distinct principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0, for some radius r ∈ (0, π√

8
), with

corresponding multiplicities m(α) = 1, m(β) = 2, m(λ) = m(µ) = 2m− 2. The corresponding eigenspaces can

be seen in [2].

A real hypersurface of type (B) has five distinct principal curvatures α = −2 tan(2r), β = 2 cot(2r),

γ = 0, λ = cot(r), µ = − tan(r), for some r ∈ (0, π
4 ), with corresponding multiplicities m(α) = 1,

m(β) = 3 = m(γ), m(λ) = 4m− 4 = m(µ). For the corresponding eigenspaces see [2].

In the following we will need the following Proposition, [2],

Proposition 2.1 Let M be a Hopf real hypersurface in G2(CCm+2) , m ≥ 3 , such that Aξ = αξ . Then

Y (α) = ξ(α)η(Y )− 4
∑3

ν=1 ην(ξ)ην(ϕY ) for any Y tangent to M .

and the following Theorem, [8],

Theorem 2.2 Let M be a connected orientable Hopf real hypersurface in G2(CCm+2) , m ≥ 3 . Then the Reeb

vector field ξ belongs to the distribution D if and only if m is locally congruent to an open part of a tube around

a totally geodesic HPn in G2(CCm+2) , where m = 2n .

3. Proof of main theorem

As we suppose that (∇̂(k)
X A)Y = ω(X)AY for any X,Y tangent to M , from (1.1) we get

(∇XA)Y = −g(ϕAX,AY )ξ + η(AY )ϕAX + kη(X)ϕAY + g(ϕAX, Y )Aξ

− η(Y )AϕAX − kη(X)AϕY + ω(X)AY
(3.1)
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for any X,Y tangent to M . As Aξ = αξ , taking Y = ξ in (3.1) we obtain ∇Xαξ = αϕAX + αω(X)ξ . That

is, X(α)ξ + αϕAX = αω(X)ξ + αϕAX . Thus

X(α) = αω(X) (3.2)

for any X tangent to M .

Proposition 3.1 Let M be a Hopf real hypersurface in G2(CCm+2) , m ≥ 3 , whose shape operator is recurrent

with respect to the g-Tanaka–Webster connection. If α ̸= h , either ξ ∈ D or ξ ∈ D⊥ .

Proof From [9] we know that if α = 0, a Hopf real hypersurface in G2(CCm+2) satisfies either ξ ∈ D or

ξ ∈ D⊥ . Therefore we suppose that α ̸= 0.

We can write ξ = η(X0)X0 + η(ξ1)ξ1 for a certain X0 ∈ D . If η(X0) = 0 (respectively, η(ξ1) = 0),

ξ ∈ D⊥ (respectively, ξ ∈ D). Therefore we suppose η(X0)η(ξ1) ̸= 0. From (3.1) and the Codazzi equation we

have

η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ +

3∑
ν=1

{ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕν(X,Y )ξν}

+
3∑

ν=1

{ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX}+
3∑

ν=1

{η(X)ην(ϕY )− η(Y )ην(ϕX)}ξν

= −2g(AϕAX, Y )ξ − η(AX)ϕAY + η(AY )ϕAX − kη(Y )ϕAX + kη(X)ϕAY

+ g((ϕA+Aϕ)X,Y )Aξ + η(X)AϕAY − η(Y )AϕAX

+ kη(Y )AϕX − kη(X)AϕY + ω(X)AY − ω(Y )AX

(3.3)

for any X,Y tangent to M . Taking X = ξ in (3.3) we get

ϕY + η1(ξ)ϕ1Y −
3∑

ν=1

ην(Y )ϕνξ − 2
3∑

ν=1

g(ϕνξ, Y )ξν +
3∑

ν=1

ην(ϕY )ξν

= −αϕAY + kϕAY +AϕAY − kAϕY + ω(ξ)AY − αω(Y )ξ

(3.4)

for any Y tangent to M . Taking the scalar product of (3.4) and ξ we obtain

−4η1(ξ)g(ϕξ1, Y ) = αω(ξ)η(Y )− αω(Y ) (3.5)

for any Y tangent to M . As α ̸= 0, from (3.2) and (3.5)

grad(α) = αω(ξ)ξ + 4η1(ξ)ϕ1ξ. (3.6)
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PÉREZ et al./Turk J Math

Let {Ei}i=1,...,4m−1 be an orthonormal basis of eigenvectors of M , and suppose AEi = λiEi , i =

1, ..., 4m− 1. From (3.1) we have

4m−1∑
i=1

g((∇XA)Ei, Ei) = −
4m−1∑
i=1

g(ϕAX,AEi)g(ξ, Ei)

+
4m−1∑
i=1

η(AEi)g(ϕAX,Ei) + kη(X)
4m−1∑
i=1

g(ϕAEi, Ei)

+
4m−1∑
i=1

g(ϕAX,Ei)g(Aξ,Ei)−
4m−1∑
ı=1

g(ξ, Ei)g(AϕAX,Ei)

− kη(X)

4m−1∑
i=1

g(AϕEi, Ei) + ω(X)

4m−1∑
i=1

g(AEi, Ei)

= hω(X),

(3.7)

because the other terms are clearly null. This yields
∑4m−1

i=1 g(∇XλiEi−A∇XEi, Ei) =
∑4m−1

i=1 X(λi) = hω(X).

Thus
X(h) = hω(X) (3.8)

for any X tangent to M . Moreover,
∑4m−1

i=1 g((∇EiA)Y,Ei) = g(AϕAY, ξ) + ω(AY ) = ω(AY ). Thus from the

Codazzi equation

ω(AY ) =
4m−1∑
i=1

g((∇Y A)Ei + η(Ei)ϕY − η(Y )ϕEi − 2g(ϕEi, Y )ξ

+
3∑

ν=1

{ην(Ei)ϕνY − ην(Y )ϕνEi − 2g(ϕνEi, Y )ξν}

+

3∑
ν=1

{ην(ϕEi)ϕνϕY − ην(ϕY )ϕνϕEi}

+

3∑
ν=1

{η(Ei)ην(ϕY )− η(Y )ην(ϕEi)}ξν , Ei)

=
4m−1∑
i=1

g(∇Y λiEi, Ei)−
3∑

ν=1

g(ϕνξ, ϕνϕY )

−
3∑

ν=1

ην(ϕY )
4m−1∑
i=1

g(ϕνϕEi, Ei) + η1(ϕY )η(ξ1)

=

4m−1∑
i=1

Y (λi) + 2η1(ξ)η1(ϕY )−
3∑

ν=1

ην(ϕY )trace(ϕνϕ),

(3.9)

for any Y tangent to M . As for any ν = 1, 2, 3, trace(ϕνϕ) = trace(ϕϕν) = 2ην(ξ), see for example [9], from

(3.9) we obtain

ω(AY ) = Y (h) = hω(Y ) (3.10)
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for any Y tangent to M . Taking Y = ξ in (3.10) we get ω(Aξ) = hω(ξ) = αω(ξ). Thus (h− α)ω(ξ) = 0. As

we suppose h ̸= α it follows

ω(ξ) = 0. (3.11)

(3.6) and (3.11) yield

grad(α) = 4η(ξ1)ϕ1ξ. (3.12)

We know that for any X,Y tangent to M g(∇Xgrad(α), Y ) = g(∇Y grad(α), X). This yields

(g(ϕAX, ξ1) + g(ξ,∇Xξ1))g(ϕ1ξ, Y ) + η1(ξ)g(∇Xϕ1ξ, Y )

= (g(ϕAY, ξ1) + g(ξ,∇Y ξ1))g(ϕ1ξ,X) + η1(ξ)g(∇Y ϕ1ξ,X).
(3.13)

Taking Y = ξ in (3.13) we obtain η1(ξ)g(∇Xϕ1ξ, ξ) = g(ξ,∇ξξ1)g(ϕ1ξ,X)+ η1(ξ)g((∇ξϕ1)ξ,X) for any

X tangent to M . This gives −η1(ξ)g(ϕξ1, ϕAX) = g(ξ, q3(ξ)ξ2−q2(ξ)ξ3+ϕ1Aξ)g(ϕ1ξ,X)+η1(ξ)g(−q2(ξ)ϕ3ξ+

q3(ξ)ϕ2ξ + η1(ξ)Aξ,X) for any X tangent to M . As we suppose η1(ξ) = η(ξ1) ̸= 0 we get −g(Aξ1, X) +

αη(ξ1)η(X) = −q2(ξ)g(ϕ3ξ,X) + q3(ξ)g(ϕ2ξ,X) + αη(ξ1)η(X) for any X tangent to M . Therefore

Aξ1 = q2(ξ)ϕ3ξ − q3(ξ)ϕ2ξ. (3.14)

The scalar product of (3.14) and ξ yields αη(ξ1) = 0. As α ̸= 0, η(ξ1) = 0 and we arrive at a

contradiction.

This finishes the proof of our Proposition. 2

Now, if ξ ∈ D , from Theorem 2.2, M is locally congruent to a real hypersurface of type (B). Therefore

consider the case ξ ∈ D⊥ . We can write ξ = ξ1 .

Proposition 3.2 Let M be a Hopf real hypersurface in G2(CCm+2) , m ≥ 3 , whose shape operator is recurrent

with respect to the g-Tanaka–Webster connection. If ξ ∈ D⊥ and α ̸= 0 , M is locally congruent to a type (A)

real hypersurface.

Proof With our hypothesis and being ξ = ξ1 , (3.4) becomes

ϕY + ϕ1Y − η2(Y )ξ3 + η3(Y )ξ2

= −αϕAY + kϕAY +AϕAY − kAϕY + ω(ξ)AY − αω(Y )ξ
(3.15)

for any Y tangent to M .

The scalar product of (3.15) and ξ , bearing in mind that α ̸= 0, yields ω(Y ) = η(Y )ω(ξ) for any Y

tangent to M . From (3.2) we obtain

grad(α) = αω(ξ)ξ. (3.16)

Therefore for any X tangent to M ∇Xgrad(α) = X(αω(ξ))ξ+αω(ξ)ϕAX = ω(ξ)X(α)ξ+αX(ω(ξ))ξ+

αω(ξ)ϕAX . If Y is orthogonal to ξ , g(∇Xgrad(α), Y ) = αω(ξ)g(ϕAX, Y ). Moreover, if X is also orthogonal

to ξ , as g(∇Xgrad(α), Y ) = g(∇Y grad(α), X), we get αω(ξ)g(ϕAX, Y ) = αω(ξ)g(ϕAY,X). Thus either

ω(ξ) = 0 and ω should vanish, which is impossible, or g((ϕA + Aϕ)X,Y ) = 0 for any X,Y orthogonal to ξ .

As we also have (ϕA+Aϕ)ξ = 0 we obtain

ϕA+Aϕ = 0. (3.17)
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From (3.17) it is easy to see that A2ϕ = ϕA2 . Now from (3.1) we have (∇ξA)ξ2 = kϕAξ2 − kAϕξ2 +

ω(ξ)Aξ2 = 2kAξ3 + ω(ξ)Aξ2 . If X ∈ D we get g((∇ξA)ξ2, X) = g(ξ2, (∇ξA)X) and applying the Codazzi

equation this is equal to g(ξ2, αϕAX + ϕX −AϕAX + ϕ1X). This yields

g(A2ξ3, X) = (2k − α)g(Aξ3, X) + ω(ξ)g(Aξ2, X) (3.18)

for any X ∈ D . Developing (∇ξA)ξ3 we have

−g(A2ξ2, X) = (α− 2k)g(Aξ2, X) + ω(ξ)g(Aξ3, X) (3.19)

for any X ∈ D . If in (3.18) we take ϕX instead of X we get

−g(A2ξ2, X) = (2k − α)g(Aξ2, X)− ω(ξ)g(Aξ3, X). (3.20)

From (3.19) and (3.20) g(A2ξ2, X) = 0. Similarly g(A2ξ3, X) = 0 for any X ∈ D . Thus (3.18) and

(3.19) become

ω(ξ)g(Aξ2, X) + (2k − α)g(Aξ3, X) = 0

− (2k − α)g(Aξ2, X) + ω(ξ)g(Aξ3, X) = 0
(3.21)

The matrix of coefficients of this homogeneous linear system has as determinant (ω(ξ))2+(2k−α)2 , and

as ω(ξ) ̸= 0, this determinant does not vanish. This yields g(Aξ2, X) = g(Aξ3, X) = 0 for any X ∈ D . Thus

D is A -invariant and M must be locally of type (A). 2

From Propositions 3.1 and 3.2, M is locally congruent to a real hypersurface either of type (A) or of

type (B).

Let M be a type (A) real hypersurface. Clearly (∇ξA)ξ = 0. For (3.1) to be satisfied we should have
√
8cot(

√
8r)ω(ξ)ξ = 0. Therefore ω(ξ) = 0.

As (∇ξiA)ξ =
√
8cot(

√
8r)ϕAξi − AϕAξi , i = 2, 3, for (3.1) to be satisfied this must be equal to

√
8cot(

√
8r)ϕAξi −AϕAξi + ω(ξi)Aξ . Thus ω(ξi) = 0, i = 1, 2.

The same occurs if we take any X ∈ Tλ or Y ∈ Tµ . This means that for a real hypersurface of type (A)

to satisfy our condition we should have ω ≡ 0, which is impossible.

A similar reasoning applied to a real hypersurface of type (B) shows that these real hypersurfaces do not

satisfy our condition and our Theorem is proved.
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