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Abstract: We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose shape
operator A is generalized Tanaka—Webster recurrent if the principal curvature of the structure vector field is not equal
to trace(A).
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1. Introduction

The generalized Tanaka—Webster connection (from now on, g-Tanaka—Webster connection) for contact metric
manifolds was introduced by Tanno ([13]) as a generalization of the connection defined by Tanaka in [12]
and, independently, by Webster in [I4]. This connection coincides with the Tanaka—Webster connection if
the associated CR-structure is integrable. The Tanaka—Webster connection is defined as a canonical affine
connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real hypersurface M in a Kdhler manifold

has an (integrable) CR-structure associated with the almost contact structure (¢,&,n,g) induced on M by the

Kéhler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho [4] and
Tanno [13] defined the g-Tanaka—Webster connection for a real hypersurface of a Kéhler manifold by
VY = VxV +g(0AX, Y)E — n(Y)6AX — kn(X)gY (L.1)

for any X,Y tangent to M, where V denotes the Levi-Civita connection on M, A is the shape operator on
M and k is a non-zero real number. In particular, if the real hypersurface satisfies A¢p + ¢pA = 2k¢, then the

g-Tanaka Webster connection V*) coincides with the TanakaWebster connection (see [1]).
Now let us denote by Go(CC™"?) the set of all complex 2-dimensional linear subspaces in CC™%2. This

Riemannian symmetric space has a remarkable geometric structure. It is known to be the unique compact

irreducible Riemannian symmetric space equipped with both a Kahler structure J and a quaternionic Kéahler

structure J not containing .J (see Berndt and Suh [2]). In other words, Go(CC™"?) is the unique compact,

irreducible Kéhler, quaternionic Kéhler manifold, which is not a hyper-Kéhler manifold.
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Let M be a real hypersurface in Go(CC™%?) and N a local normal unit vector field on M. Let also A
be the shape operator of M associated to N. The almost contact structure vector field £ = —JN is said to
be a Reeb vector field. Moreover, if {J1, J2, J3} is a local basis of J, we define & = —J;N, i =1,2,3. We will
call Dt = Span{¢;, &2, &3} . Its orthogonal complement in 7'M will be denoted by D.

Berndt and Suh, [2] proved that for a connected hypersurface M in Go(CC™?), m > 3, both Span{¢}
and D+ are invariant under the shape operator A if and only if either (A) M is an open part of a tube around
a totally geodesic Go(CC™™) in Go(CC™*?), or (B) m is even, say m = 2n and M is an open part of a

tube around a totally geodesic HP™ in Go(C™*2). Both types of real hypersurfaces have constant principal
curvatures.

The Reeb vector field £ is said to be Hopf if it is invariant under the shape operator A. The 1-dimensional
foliation of M by the integral manifolds of the Reeb vector field £ is said to be a Hopf foliation of M. We say

that M is a Hopf hypersurface in Gs ((C(C"H'Q) if and only if the Hopf foliation of M is totally geodesic. This
is equivalent to the fact that the Reeb vector field is Hopf.

If the shape operator A of M satisfies (VxA)Y = 0 for any vector fields X, Y tangent to M, the shape
operator is said to be parallel with respect to the Levi-Civita connection. Suh [10] proved the non-existence of
real hypersurfaces in G» (CC"H'Q) with parallel shape operator with respect to the Levi-Civita connection.

On the other hand, Kobayashi and Nomizu [7] introduced the notion of recurrent tensor field of type
(r,s) on a manifold M with a linear connection V. A non-zero tensor field K of type (r,s) on M is said to be
recurrent if there exists a 1-form w on M such that VK = K @ w.

Suh [11] proved the non-existence of real hypersurfaces in Ga(CC™"?) with recurrent shape operator
with respect to the Levi-Civita connection if I (respectively, D+ ) is invariant by the shape operator. Kim et
al. [6] showed that this last condition is superfluous.

Jeong et al. [5] considered real hypersurfaces in G ((C(Cm+2) whose shape operator is parallel with respect
to the g-Tanaka—Webster connection, that is, (@g?)A)Y =0 for any X,Y tangent to M and proved that there
do not exist Hopf real hypersurfaces in Gs ((C(Cmﬁ), m > 3, with parallel shape operator with respect to the
g-Tanaka—Webster connection V®) if o = g(AE, &) # 2k.

This paper is devoted to the study of real hypersurfaces in complex two-plane Grassmannians whose
shape operator is recurrent with respect to the g-Tanaka—Webster connection V*) . That is, there exists a

1-form w on M such that (@g?)A)Y = w(X)AY for any X,Y tangent to M. We will call h = trace(4).
Notice that if w = 0, the shape operator should be parallel with respect to the g-Tanaka—Webster connection.
Thus we will suppose that the 1-form w does not vanish. We will prove the following

Main Theorem There do not exist Hopf real hypersurfaces in Go ((C(Cmﬁ), m > 3, whose shape operator is

recurrent with respect to the g-Tanaka—Webster connection if a = g(AE, &) # h, where h = TrA.

2. Preliminaries

For the study of the Riemannian geometry of Go(CC™?) see [1]. All the notations we will use from now on are
those in [2] and [3]. We will suppose that the metric g of Go(CC™%?) is normalized for the maximal sectional

curvature of the manifold to be eight. Then the Riemannian curvature tensor R of Gy ((C(Cm+2) is locally given
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RX,Y)Z =g(Y,2)X — g(X,2)Y + g(JY, 2)JX — g(JX,Z)JY —29(JX,Y)JZ

3
+ 3 {g(LY. 2) 1, X — g(J, X, Z)],Y —29(J,X,Y) ], Z} 2.1)
v=1 .

3
+ > {g(JJY, 2)J,JX — g(J,JX, Z)J,JY},

v=1

where Ji, Jo, J3 is any canonical local basis of J.

Let M be a real hypersurface of Go(CC™%?), that is, a submanifold of Go(CC™%?) with real codimension
one. The induced Riemannian metric on M will also be denoted by g, and V denotes the Riemannian

connection of (M, g). Let N be a local unit normal field of M and A the shape operator of M with respect
to N. The Kahler structure J of Go(CC™?) induces on M an almost contact metric structure (¢,€,1,9).

Furthermore, let Ji,J2,J3 be a canonical local basis of J. Then each J, induces an almost contact metric

structure (¢y,&,,1,,9) on M.

Since J is parallel with respect to the Riemannian connection V of (Go(CC™?), g), for any canonical

local basis Jy, Ja, J3 of J there exist three local 1-forms ¢1, g2, g3 such that
Vxdy = ua(X) i1 = qur1(X) Jopo (2.2)

for any X tangent to G(CC™%?), where subindices are taken modulo 3.

From the expression of the curvature tensor of Go(CC™"?) the Gauss equation is given by

R(X,Y)Z

=9(Y, 2)X —g(X, 2)Y +g(¢Y, Z)¢X — g(¢X, Z)9Y — 29(6X,Y)pZ

3
+> {9(0Y, 2)6, X — g(6,X, 2)$,Y —29(6, X, Y) — 29(6, X, Y)$, Z}

v=1

3
+> {9(600Y, 2)6,0X — g(600X, Z)$u6Y } 23)
v=1 .

3
> V) (2)budX — (X0 (Z)pu Y }

3

= {n(X)g(¢u0Y. Z) = n(Y)g(¢,6X, Z)}E,

v=1

+9(AY, 2)ZX — g(AX, Z)AY
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for any X,Y, Z tangent to M. The Codazzi equation is also given by
(VxAY — (Vy A)X =n(X)oY —n(Y)oX —29(6X,Y)¢

3
+ 3 (X)dY — 0, (Y)d, X — 29(6, X, Y)E,}

3
+ ) {0 (0X)pudY — 0, (¢Y) by X }

v=1

3
+ Y (X)) (6Y) = n(Y)nu(6X)}&,

for any X,Y tangent to M. The structures of Go(CC™"?) give the following

(Vxo)Y =n(Y)AX — g(AX,Y)¢,
Vx&=9AX,
Vx& = qu2(X)6t1 — @1 (X)&t2 + 0 AX,
(Vx0)Y = —qui1(X)Pvi2Y + qui2(X)dp 1Y + 10 (V)AX — g(AX,Y)E,.

A real hypersurface of type (A) has three (if r = 2“%) or four (otherwise) distinct principal curvatures

a = V8cot(v8r), B = V2cot(v2r), A = —v2tan(v/2r), u = 0, for some radius r € (0,%), with
corresponding multiplicities m(a) = 1, m(8) = 2, m(A) = m(u) = 2m — 2. The corresponding eigenspaces can
be seen in [2].

A real hypersurface of type (B) has five distinct principal curvatures o = —2tan(2r), 8 = 2cot(2r),
v =0, X = cot(r), p = —tan(r), for some r € (0,%), with corresponding multiplicities m(a) = 1,
m(B) =3 =m(y), m(A) =4m —4 = m(u). For the corresponding eigenspaces see [2].

In the following we will need the following Proposition, [2],

Proposition 2.1 Let M be a Hopf real hypersurface in Go(CC™2), m > 3, such that Af = af. Then
V(o) = E(@n(Y) =43 m(Enu(8Y) for any Y tangent to M .

and the following Theorem, [3],

Theorem 2.2 Let M be a connected orientable Hopf real hypersurface in Go(CC™2), m > 3. Then the Reeb
vector field & belongs to the distribution D if and only if m is locally congruent to an open part of a tube around
a totally geodesic HP™ in Go(CC™"?), where m = 2n.

3. Proof of main theorem
As we suppose that (@g’;)A)Y = w(X)AY for any X,Y tangent to M, from (1.1) we get
(VxA)Y = —g(pAX, AY)E + n(AY)9AX + kn(X)pAY + g(¢AX,Y)AL

—n(Y)APAX — kn(X)AgY +w(X)AY (3.1)
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for any XY tangent to M. As A = af, taking Y = ¢ in (3.1) we obtain Vxaf = apAX + aw(X)E. That
is, X ()¢ + apAX = aw(X)§ + apAX . Thus

X(a) = aw(X) (3:2)

for any X tangent to M.

Proposition 3.1 Let M be a Hopf real hypersurface in G ((CCerQ) , m > 3, whose shape operator is recurrent
with respect to the g-Tanaka—Webster connection. If a # h, either £ €D or & € D+,

Proof From [J] we know that if o = 0, a Hopf real hypersurface in G5(CC™"?) satisfies either £ € D or
¢ € DL, Therefore we suppose that a # 0.

We can write £ = n(Xo)Xo + n(&1)& for a certain Xg € D. If n(Xy) = 0 (respectively, n(&1) = 0),
¢ € Dt (respectively, £ € D). Therefore we suppose 1(Xg)n(&1) # 0. From (3.1) and the Codazzi equation we

have

3
N(X)PY —n(Y)oX —2g(6X,V)E+ Y {n(X)dY —nu (V)b X — 29( (X, Y)E}

v=1

3 3
+ D A (6X)$udY — 0 (V)b d X} + Y {n(X)m(6Y) — n(Y)n, (X)}&, 53

= —29(AGAX,Y)E — n(AX)PAY + n(AY)pAX — kn(Y)PAX + kn(X)pAY
+ 9((9A + AP) X, Y) AL + n(X)APAY — n(Y)APAX
+ kn(Y)ApX — kn(X)AdY + w(X)AY — w(Y)AX

for any X,Y tangent to M. Taking X = ¢ in (3.3) we get

3 3 3
Y + MY = 0 (Vb€ — 2> g(du&, Y + Y mu(¢Y)E, -
v=1 v=1 v=1 .

= —agAY + koAY + ApAY — kAPY + w(§)AY — aw(Y)E
for any Y tangent to M. Taking the scalar product of (3.4) and & we obtain

—4m(§)g(¢61,Y) = aw(En(Y) — aw(Y) (3.5)

for any Y tangent to M. As « # 0, from (3.2) and (3.5)

grad(a) = aw(§)€ + 4m (§)di1€. (3.6)
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=1,...,

4m—1 4m—1

Y I(VXAELE) == Y g(0AX, AE;)g(¢, Er)

=1 i=1

4m—1 4m—1

+ 2 MAB)G(GAX, B) + kn(X) 3 g(AE;, B

4m—1 4m—1 3.7
+ Y 9(0AX, Eg(AE E) — > g(&, Ei)g(ApAX, E;) 7

—kn(X) Y 9(A¢E:i, B) +w(X) > g(AE;, E;)

i=1 i=1

= hw(X),

because the other terms are clearly null. This yields Z4m Y 9(VxNE—AVx E;, E;) = Z?;nfl X(\) =hw(X).

Thus
X(h) = hw(X) (3.8)

for any X tangent to M. Moreover, 337" g((V, A)Y, E;) = g(ApAY,€) + w(AY) = w(AY). Thus from the
Codazzi equation

4m—1

WAY) = > g(VyA)E; + n(E)¢Y — n(Y)$E; — 29(¢E;, Y )¢

i=1

+Z{m DY — 0, (Y)éu Ei — 29(6,Ei, Y)E}

3
+ > {m(¢E)$u8Y — 0, (Y, G E;}

v=1

+ Z{n D10 (0Y) = (Y )0, (9Ei)}E,, Ey) (3.9)
4m—1 3
= > (VY NELE) = g(6u€, $u0Y)
=1 v=1

3 am—1
=Y m(¢Y) Z 9(¢v9Ei, Ei) + m (oY )n(&1)

4m—1

3
= > YO +2m(Om(eY) = > _ (oY )trace(d,9),

=1

for any Y tangent to M. As for any v = 1,2,3, trace(¢,¢) = trace(pp,) = 21, (), see for example [9], from
(3.9) we obtain
w(AY) =Y (h) = hw(Y) (3.10)
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for any Y tangent to M. Taking Y = ¢ in (3.10) we get w(AE) = hw(€) = aw(€). Thus (h— a)w(§) =0. As
we suppose h # « it follows
w(§) =0. (3.11)
(3.6) and (3.11) yield
grad(a) = 4n(&1) €. (3.12)

We know that for any X,Y tangent to M ¢(Vxgrad(a),Y) = g(Vygrad(a),X). This yields

(9(PAX,&1) +9(§, Vx1))g(616,Y) +m(§)g(Vx i€, Y)

3.13
= (9(¢AY,&1) + 9(&, Vv &1))g(#16, X) + m(§)g(Vy 1§, X). (319

Taking Y = ¢ in (3.13) we obtain 71(§)g(Vx 1€, &) = 9(§, Ve&1)g(018, X) +m1(§)g((Veh1)€, X) for any
X tangent to M. This gives —n1(£)g(¢&1, pAX) = (&, q3(§)€2— 2(£) &3+ P14 g(91€, X) +m () g(—q2(§) p3€ +
q3(§)p2€ + M (§)AE, X) for any X tangent to M. As we suppose 71(€) = n(&1) # 0 we get —g(A&, X) +
an(&)n(X) = —¢2(§)g(#3€, X) + 43(£)g(d2€, X) + an(&)n(X) for any X tangent to M. Therefore

A& = q2(§) P38 — q3(§) P28, (3.14)

The scalar product of (3.14) and ¢ yields an(&) = 0. As a # 0, n(&§1) = 0 and we arrive at a

contradiction.
This finishes the proof of our Proposition. O

Now, if £ € D, from Theorem 2.2, M is locally congruent to a real hypersurface of type (B). Therefore

consider the case ¢ € Dt. We can write £ = &;.

Proposition 3.2 Let M be a Hopf real hypersurface in G (C(Cm+2) , m > 3, whose shape operator is recurrent
with respect to the g-Tanaka—Webster connection. If € € D+ and o # 0, M is locally congruent to a type (A)

real hypersurface.

Proof With our hypothesis and being £ = &, (3.4) becomes

Y + 1Y —n2(Y)E3 +n3(Y)E2

3.15
= —adAY + kdAY + APAY — kAPY + w(€)AY — aw(Y)E (3.15)

for any Y tangent to M.
The scalar product of (3.15) and £, bearing in mind that a # 0, yields w(Y) = n(Y)w(§) for any YV
tangent to M. From (3.2) we obtain
grad(a) = aw(&)E. (3.16)

Therefore for any X tangent to M Vxgrad(a) = X (aw(€))+aw(§)dAX = w(§) X (o) + aX (w(§))E +
aw(§)pAX . If Y is orthogonal to &, g(Vxgrad(a),Y) = aw(€)g(¢pAX,Y). Moreover, if X is also orthogonal
to &, as g(Vxgrad(a),Y) = g(Vygrad(a),X), we get aw(§)g(¢AX,Y) = aw(f)g(¢pAY, X). Thus either
w(§) =0 and w should vanish, which is impossible, or g((¢A + A¢)X,Y) =0 for any X,Y orthogonal to &.
As we also have (¢pA + A¢)E =0 we obtain

GA+ Ap =0. (3.17)
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From (3.17) it is easy to see that A%2¢ = ¢pA%. Now from (3.1) we have (VeA)& = kpAs — kApEs +
w(§)A& = 2kAL +w(§)A&. If X € D we get g((Ved)ée, X) = g(&2, (VeA)X) and applying the Codazzi
equation this is equal to g(&, adAX + ¢X — APAX + ¢ X). This yields

9(A%, X) = (2k — a)g(A&, X) + w(€)g(A&, X) (3.18)

for any X € . Developing (V¢A)&3 we have

—9(A%, X) = (a = 2k)g(A&, X) + w(§)g(A&s, X) (3.19)

for any X € D. If in (3.18) we take ¢X instead of X we get
—g(A%6, X) = (2k — @) g(Abs, X) — w(€)g(A&s, X). (3.20)

From (3.19) and (3.20) g(A4%&,X) = 0. Similarly g(A4%¢3,X) = 0 for any X € D. Thus (3.18) and
(3.19) become

w(€)g(A&2, X) + (2k — a)g(A&3, X) =0

(3.21)
— (2k — a)g(A&, X) + w(§)g(A&s, X) =0

The matrix of coefficients of this homogeneous linear system has as determinant (w(€))%+ (2k —a)?, and
as w(&) # 0, this determinant does not vanish. This yields g(A&s, X) = g(A&s, X) = 0 for any X € D. Thus
D is A-invariant and M must be locally of type (A). O

From Propositions 3.1 and 3.2, M is locally congruent to a real hypersurface either of type (A) or of
type (B).

Let M be a type (A) real hypersurface. Clearly (V¢A)§ = 0. For (3.1) to be satisfied we should have
V8cot(v/8r)w(€)€ = 0. Therefore w(¢) = 0.

As (Ve A)E = VBeot(V8r)pAE, — ApAE;, i = 2,3, for (3.1) to be satisfied this must be equal to
V8ot (v/8r)pAE; — APAE; + w(&)AE. Thus w(é) =0, i=1,2.

The same occurs if we take any X € Ty or Y € T,. This means that for a real hypersurface of type (A)
to satisfy our condition we should have w = 0, which is impossible.

A similar reasoning applied to a real hypersurface of type (B) shows that these real hypersurfaces do not

satisfy our condition and our Theorem is proved.
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