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Abstract: In this work, we propose a new alternative approximation based on the quasi-Newton approach for solving

systems of nonlinear equations using the average of midpoint and Simpson’s quadrature. Our goal is to enhance the

efficiency of the method (Broyden’s method) by reducing the number of iterations it takes to reach a solution. Local

convergence analysis and computational results showing the relative efficiency of the proposed method are given.
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1. Introduction

Consider the numerical solution of the systems of nonlinear equations of the form

F (x) = 0. (1)

One of the methods used to solve (1) is Newton’s method. It is famous with quadratic order of convergence under

some mild assumptions [13]. Despite its good convergence property, Newton’s method has some shortcomings,

such as computing and storing Jacobian matrices, solving systems of linear equation in every iteration, and

inefficiency in handling large-scale systems. In an attempt to reduce the computational cost of Newton’s

method, quasi-Newton methods have been introduced [2]. These methods approximate the Jacobian matrix or

its inverse using a derivative-free matrix that is updated in each iteration, and its order of convergence was

proven to be superlinear [8]. The most successful and simplest quasi-Newton method for solving nonlinear

systems of equations is the Broyden method. Broyden’s method is given by

xk+1 = xk −B−1
k F (xk), k = 0, 1, 2, ... (2)

where matrix Bk is the approximation of F ′(xk), such that the quasi-Newton equation

Bk+1(xk+1 − xk) = F (xk+1)− F (xk) (3)

is satisfied for each k .

It is vital to report that Broyden’s method needs n2 (n is the length of the vector x) storage location;

therefore, for large-scale systems, this might lead to severe memory constraints. From the early 1970s, there has
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been serious attention paid to the issue of reducing the amount of storage required for the iterative methods.

Several modifications of Broyden’s method were given in order to reduce its computational cost; see, for example,

[1, 3, 5, 9, 15, 16, 18, 24] and references therein. The Broyden rank reduction method involves approaching the

update matrix by a low-rank matrix. These methods are sometimes called ”limited memory Broyden methods”

[19, 24]. In these methods, the amount needed for storing the Broyden matrix is reduced from n2 to 2pn storage

locations where p is a predefined and fixed positive integer with 1 ≤ p ≤ n .

The emergence of quasi-Newton’s methods has contributed to the improvement of solving nonlinear

systems by reducing the cost of computing and storing the Jacobian in Newton’s method, but the number of

iterations needed to converge to a solution has increased, which inversely reduced the convergence order from

quadratic to superlinear. In [14], Mamat et al. proposed a Broyden-like method using the trapezoidal rule

to solve a system of nonlinear equations, and numerical testing in that paper showed that the new method

converges with fewer iterations than Broyden’s method. Motivated by this idea, we employ the average of the

midpoint and Simpson’s rule, which exhibits a higher approximation order than that of trapezoidal rule.

Our aim in this work is to present an alternative method that will reduce the number of iterations

required by the classical Broyden method to converge to a solution preserving its local order of convergence.

This is achieved by improving the efficiency of the method using the average of the midpoint and Simpson’s

quadratures to approximate the integral from the analog of the fundamental theorem of calculus in Rn [6], and

then replacing the Jacobian obtained with Broyden’s matrix. The proposed methods are two-step in nature,

where the first step is the classical Broyden method and the second step is a quadrature-based Broyden method.

The rest of this paper is organized as follows. Section 2 is designed for the derivation of the new method,

while the local convergence analysis of the proposed method is given in section 3. In section 4 the computational

experiment of the proposed method is given and compared to the existing classical methods, and finally the

conclusion comes in section 5.

2. New alternative approximations

In this section, we present our new scheme. Consider the following result, whose proof can be found in [17].

Lemma 2.1 [17] Let F : C ⊂ Rn → Rn be continuously differentiable on a convex set Ω . Then for any u,

v ∈ Ω ,

F (v)− F (u) =

∫ 1

0

F ′(u+ η(v− u))(v− u)dη. (4)

Let x be in the neighborhood of a solution x∗ ∈ C. Then, from (4),

F (x∗) = F (x) +

∫ 1

0

F ′(x + η(x∗ − x))(x∗ − x)dη,

and letting x be the iterate xk we have

F (x∗) = F (xk) +

∫ 1

0

F ′(xk + η(x∗ − xk))(x
∗ − xk)dη. (5)

Approximating the integral in (5) in the interval [0, 1] when η = 0 by the average of the midpoint and Simpson’s

quadrature rules yields

F (x∗) ≈ F (xk) +
1

12
[F ′(xk) + 10F ′(

x∗ + xk
2

) + F ′(x∗)](x∗ − xk).
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Since x∗ is a solution of F (x) = 0, it follows that

−F (xk) =
1

12
[F ′(xk) + 10F ′(

x∗ + xk
2

) + F ′(x∗)](x∗ − xk).

Letting xk+1 be the next approximation to x∗ , we have

xk+1 = xk − 12[F ′(xk) + 10F ′(
xk+1 + xk

2
) + F ′(xk+1)]

−1F (xk), (6)

which is an implicit equation.

To obtain the explicit form, we adopt the technique used in [6, 7, 11]. We compute the (k+ 1)th iterate

on the right hand side of (6) by replacing F ′(xk+1+xk

2 ) with F ′( zk+xk

2 ), where zk = xk − F ′(xk)
−1F (xk) is the

Newton iterate, which is the predictor. Thus,

xk+1 = xk − 12[F ′(xk) + 10F ′(wk) + F ′(zk)]
−1F (xk) k = 0, 1, . . . (7)

is the corrector, which is the method derived by Hafiz and Baghat [11] where, wk = zk+xk

2 = xk−1
2F

′(xk)
−1F (xk).

Here, we choose to approximate F ′(xk), F ′(wk) and F ′(zk) using Broyden’s update matrices; that is,

B(xk), B(wk), and B(zk), respectively. By letting

Bk = B(xk) + 10B(wk) +B(zk), (8)

we obtain the two-step iterative scheme of the midpoint-Simpson Broyden method :

zk = xk −B(xk)
−1F (xk),

xk+1 = xk − 12B−1
k F (xk), for k = 0, 1, ...

(9)

Using simple algebra one can easily verify that the midpoint-Simpson Broyden method as member of the

quasi-Newton family satisfies (3).

3. Convergence analysis

In this section the local order of convergence of our proposed method is proven to be superlinear. The following

results will be useful in proving the main theorem of this section.

Definition 3.1 (q-Superlinearly convergence) [13] Let {xk} ⊂ Rn and x∗ ∈ Rn . Then

xk → x∗ q-superlinearly if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

Lemma 3.2 [20] Let F : Rn → Rn be continuously differentiable on an open convex set Ω ⊂ Rn , x ∈ Ω . If

F ′(x) is Lipschitz continuous with Lipschitz constant λ , then for any u, v ∈ Ω

∥F (v)− F (u)− F ′(x)(v− u)∥ ≤ λmax{∥v− x∥, ∥u− x∥}∥v− u∥.

Moreover, if F ′(x) is invertible, then there exist ϵ and ρ > 0 such that

1

ρ
∥v− u∥ ≤ ∥F (v)− F (u)∥ ≤ ρ∥v− u∥,

for all u, v ∈ Ω for which max{∥u− x∥, ∥v− x∥} ≤ ϵ.
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Lemma 3.3 [20] Let xk ∈ Rn , k ≥ 0. If {xk} converges q-superlinearly to x∗ ∈ Rn , then

lim
k→∞

∥xk+1 − xk∥
∥xk − x∗∥

= 1.

Hence, we present the main result.

Theorem 3.4 Let F : Rn → Rn satisfy the hypothesis of Lemma 3.2 on the set Ω . Let {Bk} be a sequence

of nonsingular matrices in L(Rn)- the space of real matrices of order n . Suppose for some x0 the sequence

{xk} generated by (9) remains in Ω and limk→∞ xk = x∗ where for each k , xk ̸= x∗ . Then {xk} converges

q-superlinearly to x∗ and F (x∗) = 0 if and only if

lim
k→∞

∥( 1
12Bk − F ′(x∗))sk∥

∥sk∥
= 0, (10)

where sk = xk+1 − xk and Bk is given in (8).

Proof Suppose Eq. (10) holds; then Eq. (9) gives

0 =
1

12
Bksk + F (xk)

=
1

12
Bksk + F (xk)− F ′(x∗)sk + F ′(x∗)sk.

Thus,

−F (xk+1) = (
1

12
Bk − F ′(x∗))sk + (−F (xk+1)) + F (xk) + F ′(x∗)sk. (11)

Then, using vector norm properties and Lemma 3.2, we have

∥F (xk+1)∥
∥sk∥

≤
∥( 1

12Bk − F ′(x∗))sk∥
∥sk∥

+
∥(−F (xk+1)) + F (xk) + F ′(x∗)sk∥

∥sk∥

≤
∥( 1

12Bk − F ′(x∗))sk∥
∥sk∥

+ λmax{∥xk+1 − x∗∥, ∥xk − x∗∥}.

From (10) and that xk → x∗ for all k ,

lim
k→∞

∥F (xk+1)∥
∥sk∥

≤ lim
k→∞

∥( 1
12Bk − F ′(x∗))sk∥

∥sk∥
+ λ lim

k→∞
max{∥xk+1 − x∗∥, ∥xk − x∗∥}

= 0.

(12)

Thus,

F (x∗) = F ( lim
k→∞

xk)

= lim
k→∞

F (xk)

= 0.
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Since F ′(x∗) is nonsingular, by Lemma 3.2 there exist ρ > 0, k0 ≥ 0, such that

∥F (xk+1)∥ = ∥F (xk+1)− F (x∗)∥ ≥ 1

ρ
∥xk+1 − x∗∥. (13)

Now, for all k ≥ k0 , (12) and (13) give

0 = lim
k→∞

∥F (xk+1)∥
∥sk∥

≥ lim
k→∞

1

ρ

∥xk+1 − x∗∥
∥sk∥

≥ lim
k→∞

1

ρ

∥xk+1 − x∗∥
∥xk − x∗∥+ ∥xk+1 − x∗∥

= lim
k→∞

1
ρ tk

1 + tk
, where tk =

∥xk+1 − x∗∥
∥xk − x∗∥

,

which implies that limk→∞ tk = 0. Hence, {xk} converges q-superlinearly to x∗ .

Conversely, suppose that {xk} converges q-superlinearly to x∗ and F (x∗) = 0.

By Lemma 3.2, ∃ρ > 0 such that

∥F (xk+1)∥ ≤ ρ∥xk+1 − x∗∥.

Now,

0 = lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

≥ lim
k→∞

∥F (xk+1)∥
ρ∥xk − x∗∥

= lim
k→∞

∥F (xk+1)∥
ρ∥sk∥

∥sk∥
∥xk − x∗∥

.

Then, using Lemma 3.3, we obtain

lim
k→∞

∥F (xk+1)∥
∥sk∥

= 0. (14)

From Eq. (11), we have

lim
k→∞

∥( 1
12Bk − F ′(x∗))sk∥

∥sk∥
≤ lim

k→∞

∥F (xk+1)∥
∥sk∥

+ lim
k→∞

∥ − F (xk+1) + F (xk) + F ′(x∗)sk∥
∥sk∥

≤ 0 + λ lim
k→∞

max{∥xk − x∗∥, ∥xk+1 − x∗∥}.

Since {xk} converges to x∗ , limk→∞ ∥xk − x∗∥ = 0. This proves that

lim
k→∞

∥( 1
12Bk − F ′(x∗))sk∥

∥sk∥
= 0.

2
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4. Numerical results

In this section, we compare the performance of our proposed method with that of the classical Broyden method

(CB), modified autoadaptative limited memory Broyden method (LMB) [24], and trapezoidal Broyden method

(TB) [14]. We denote by MSB the method defined by (9). An identity matrix is used as an initial approximation

to the Jacobian matrix in the CB, LMB, TB, and MSB methods. We use ten test functions in order to check

the effectiveness of the proposed methods. For the last six of them, we consider seven instances of dimension

n, namely n = 5, 15, 65, 165, 365, 665, 1065. This makes a total of forty-six problems. x0 stands for initial

approximation to the solution in all the tested problems. In Tables 1 and 2 we present results on the following

information: the number of iterations (Iter) needed to converge to a solution and the CPU time (in seconds).

A failure is reported (denoted by ’-’) if any of the following situations occur during the iteration process:

the number of iterations and/or the CPU time (in seconds) reaches 300, but no xk satisfying ∥sk∥+∥F (xk)∥ ≤
10−8 is obtained; failure on execution of the code due to insufficient memory; and failure due to the approach

to singular matrix during the iteration process.

We implement the four methods (CB, LMB, TB, and MSB) using MATLAB R2010a and the tic- toc

command is used for reporting the CPU time. All computations were carried out on a PC with Intel COREi3

processor with 4 GB of RAM and CPU 2.30 GHz.

We compare the performance among the tested methods based on the performance profile presented by

Dolan and Mor é [10]. For ns solvers and np problems, the performance profile P : R → [0, 1] is defined

as follows: let P and S be the set of problems and set of solvers respectively. For each problem p ∈ P
and for each solver s ∈ S we define tp,s := (number of iterations required to solve problem p by solver

s). The performance ratio is given by rp,s :=
tp,s

min{tp,s|s∈S} . Then the performance profile is defined by

P (τ) := 1
np

size{p ∈ P|rp,s ≤ τ}, ∀τ ∈ R , where P (τ) is the probability for solver s ∈ S that a performance

ratio rp,s is within a factor τ ∈ R of the best possible ratio.

List of the tested problems:

Problem 1 [12]

F (x1, x2) = ((x1 − 1)2(x1 − x2), (x2 − 2)5cos( 2x1

x2
)).

Problem 2 [23]

F (x1, x2) = (|x1|+ (x2 − 1)2 − 1, (x1 − 1)2 + |x2| − 1).

Problem 3 [22]

F (x1, x2, x3) = (cosx1 − 9 + 3x1 + 8exp(x2), cosx2 − 9 + 3x2 + 8exp(x1), cosx3 − x3 − 1).

Problem 4 [1]

Fi(x) = xi −
∑

x3
j+1

8 i = 1, . . . , 4.

Problem 5 [4]

Fi(x) = xixi+1 − 1,

Fn(x) = xnx1 − 1

i = 1, 2, . . . , n− 1 and x0 = (0.5, 0.5, . . . , 0.5)T .

Problem 6 (Artificial problem)

Fi(x) = (cos(xi)− 1)2 − 1,
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i = 1, 2, . . . , n and x0 = (1, 1, . . . , 1)T .

Problem 7 [11]

Fi(x) = x2i − cos(xi − 1), i = 1, 2, . . . , n and x0 = (1.5, 1.5, . . . , 1.5)T .

Problem 8 (Artificial problem)

F1(x) = −2x21 + 3x1 − 2x2 + 1,

Fi(x) = −2x2i + 3xi − 2xi−1 + 1,

Fn(x) = −2x2n + 3xn − 2xn−1 + 1

i = 2, 3, . . . , n− 1 and x0 = (2, 2, . . . , 2).

Problem 9 [21]

Fi(x) = In(xi)cos(1− (1 + xTx)2)−1)exp((1− (1 + xTx)2)−1)

i = 1, 2, . . . , n and x0 = (2.5, 2.5, . . . , 2.5)T .

Problem 10 [2]

F1(x) = (3− ux1)x1 − 2x2 + 1,

Fi(x) = (3− uxi)xi − xi−1 − 2xi+1 + 1,

Fn(x) = (3− uxn)xn − xn−1 + 1.

i = 2, 3, ..., n− 1, u = 2 and x0 = (0, 0, . . . , 0)T .

The nuerical results in Tables 1 and 2 clearly show that our method has reduced the number of iterations

required to solve the tested problems. In Figures 1 and 2, MSB performs best with probability of about 0.60

and 0.85, respectively. Although CB manages to solve all the problems in Figure 1, MSB solves about 60% of

the problems with a lower number of iterations. We can observe from Figure 2 that for the fraction of τ > 4,

MSB and LMB are the best solvers, but for τ < 4, MSB outperforms the rest of the solvers. In short, MSB

solves and wins 91.3%, TB solves and wins 23.9%, and CB solves and wins 6.52% of the tested problems.

Table 1. Numerical results for problems 1–4.

..

Problem Guess
CB LMB TB MSB

Iter CPU Iter CPU Iter CPU Iter CPU

1

(1,1) 12 0.3995 14 0.2711 8 0.3927 7 0.4604

(1.7,1.5) 36 1.0598 - - - - - -

(1.9,2) 5 0.2067 7 0.1365 4 0.2317 4 0.2989

2

(0.5,0.5) 8 0.8697 14 0.2946 6 0.3210 5 0.3540

(-0.5,-0.5) 7 0.2808 8 0.1994 7 0.3587 4 0.2654

(-1,-1) 8 0.3057 13 0.2606 1 0.1302 5 0.3518

3

(1,2,-2) 24 0.8310 - - - - - -

(1.5,2.3,-1.8) 10 0.3871 - - - - - -

(2,1,-1) 7 0.2882 - - - - - -

4

(0.5,0.5,0.5,0.5) 5 0.4334 7 0.3534 4 0.5025 4 0.6306

(1.5,1.5,1.5,1.5) 7 0.5770 7 0.3311 6 0.7274 4 0.6267

(-3,-3,-3,-3) 11 0.8585 10 0.4356 8 0.9042 7 1.0145

341



MOHAMMAD and WAZIRI/Turk J Math

Table 2. Numerical results for problems 5–10.

..

Problem DIM
CB LMB TB MSB

Iter CPU Iter CPU Iter CPU Iter CPU

5

5 6 0.0223 12 0.0127 5 0.0343 4 0.0048

15 6 0.0039 12 0.0033 5 0.0026 4 0.0038

65 6 0.0125 12 0.0368 5 0.0058 4 0.0149

165 6 0.0155 13 0.1424 5 0.0509 4 0.0438

365 6 0.1485 13 1.0261 5 0.1594 4 0.1158

665 6 0.2528 13 6.0735 5 0.4003 4 0.3878

1065 7 0.8423 13 27.2486 5 1.3092 4 1.1270

6

5 6 0.0159 8 0.0043 5 0.0245 4 0.0044

15 6 0.0020 8 0.0037 5 0.0045 4 0.0048

65 6 0.0070 8 0.0585 5 0.0073 4 0.0167

165 6 0.0558 8 0.0919 5 0.0748 4 0.0607

365 6 0.1250 8 0.6257 5 0.1481 4 0.1441

665 7 0.2767 8 3.4729 5 0.4011 5 0.4623

1065 7 0.7132 8 15.9695 5 1.3252 5 1.4734

7

5 11 0.0027 8 0.0025 7 0.0052 4 0.0041

15 11 0.0059 8 0.0036 7 0.0063 4 0.0051

65 11 0.0131 8 0.0382 7 0.0171 5 0.0111

165 11 0.0488 8 0.0926 7 0.0387 5 0.0536

365 11 0.1291 8 0.6695 7 0.1603 5 0.1435

665 11 0.4487 8 3.5873 7 0.6038 5 0.4900

1065 11 1.3439 8 15.8269 7 1.7910 5 1.5636

8

5 9 0.0057 14 0.0070 6 0.0092 6 0.0063

15 9 0.0051 14 0.0081 6 0.0054 6 0.0066

65 - - 14 0.0292 6 0.0188 6 0.0223

165 - - 14 0.1689 6 0.0633 6 0.0518

365 - - 14 1.1364 6 0.1562 6 0.1690

665 - - 14 6.4593 6 0.5150 6 0.6352

1065 - - 14 29.4250 13 3.5660 6 1.6617

9

5 7 0.0024 10 0.5386 6 0.0180 5 0.0275

15 7 0.0044 11 0.0089 6 0.0048 5 0.0037

65 8 0.0101 13 0.1465 6 0.0297 5 0.0149

165 8 0.0594 13 0.5781 6 0.0738 5 0.0717

365 8 0.1221 13 2.8815 6 0.1402 5 0.1625

665 8 0.3141 13 16.8575 6 0.5035 5 0.4776

1065 8 0.9212 13 66.8782 6 1.5516 5 1.4875

10

5 19 0.0040 - - - - - -

15 39 0.0125 - - - - - -

65 109 0.0928 - - - - - -

165 228 0.4314 - - - - - -

365 - - - - - - - -

665 - - - - - - - -

1065 - - - - - - - -
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Figure 1. Performance profile of CB, LMB, TB, and MSB methods with respect to number of iterations for problems

1–4.
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Figure 2. Performance profile of CB, LMB, TB, and MSB methods with respect to number of iterations for problems

510.

5. Conclusions

We have shown that one can use the approach of approximating Jacobian matrices with Broyden’s matrices

via a quadrature formula and we obtained an efficient update maintaining the local order of convergence of

Broyden’s method.

Numerical experiments show a strong indication that the newly proposed Broyden-like method exhibits

enhanced performance (with respect to number of iterations) in most of the tested problems by comparison

with the other variants. Finally, we can conclude that the use of numerical quadratures to approximate the

Newton step is capable of improving the efficiency of the quasi-Newton (Broyden) method to an acceptable level.
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[15] Martinéz JM. A quasi-Newton method with modification of one column per iteration. Computing 1984; 33: 353-362.
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