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Abstract: We determine the structure of finite π(m)-separable groups if the set of conjugacy class sizes of primary and

biprimary elements is {1,m,mn} , where m and n are two coprime integers.
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1. Introduction

We will assume in this paper that any group is finite and G is always a group. For x ∈ G , the conjugacy class

containing x will be denoted by xG and |xG| will be called the conjugacy class size of x . We say that x is a

primary element if its order is a prime power, and x is a biprimary element if its order has exactly two distinct

prime divisors. All unexplained notation and terminology are standard; see [6].

There are many considerable works illustrating the relationship between the structure of a group and its

conjugacy class sizes. For instance, a classical result due to It ô [7] is that a group G is nilpotent if its set of

conjugacy class sizes is {1,m} for some fixed integer m . He also proved [8] that G is solvable if the set of its

conjugacy class sizes is {1,m, n} for positive integers m and n . In [5], Camina proved the following:

Theorem 1.1 ([5, Theorem 3]) Let G be a group. If the set of conjugacy class sizes of G is {1, pa, paqb} , p

and q being primes, then G ∼= G0 × H , where H is abelian and G0 contains a normal subgroup of index p ,

Q0 × P0 , where Q0 is an abelian q -subgroup and P0 is an abelian p-subgroup, neither being central in G , and

Q0 × P0 is the set of all elements of G0 of index pa or 1. Finally, pa = p and if P is a Sylow p-subgroup of

G , then P/P0 acts fixed-point-freely on Q0 and Φ(P ) ≤ Z(P ) .

Recently, Beltrán and Felipe [4] generalized the result above and obtained the following:

Theorem 1.2 ([4, Theorem A]) Let G be a group with no abelian direct factors and suppose that its conjugacy

class sizes are {1,m,mn} , where m,n > 1 are coprime. Then G is an F-group, m = p for some prime p

and G contains an abelian normal subgroup M = H × P0 of index p , where P0 is a Sylow p-subgroup of M ,

and neither H nor P0 is central in G . Furthermore, M is the set of all elements of G of index 1 or p , and

if P is a Sylow p-subgroup of G , then P/P0 acts fixed-point-freely on H/Z(G)p′ and n = |H/Z(G)p′ | . Also,

|P ′| = p and |P/Z(G)p| = p2 .
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On the other hand, some authors replace conditions for all conjugacy classes by conditions referring only

to some conjugacy classes to investigate the structure of a group. For instance, Baer [2] proved that a group

is solvable if its primary elements have prime power conjugacy class sizes. Furthermore, the authors of this

paper studied the influence of primary and biprimary elements on the structure of groups and proved [13] that a

solvable group is nilpotent if the set of conjugacy class sizes of primary and biprimary elements is {1,m, n,mn}
with coprime integers m and n .

In this paper, we go on investigating the structure of groups by conjugacy class sizes of primary and

biprimary elements. Our main result is:

Main Theorem Let m and n be two coprime integers. Furthermore, let G be a π(m)-separable group.

Assume that the set of conjugacy class sizes of all primary and biprimary elements of G is exactly {1,m,mn} .
Then m = p for some prime p and G contains an abelian normal subgroup C = H × P0 of index p , where

P0 is a Sylow p-subgroup of C , and neither H nor P0 is central in G . Furthermore, C is the set of all

primary and biprimary elements of G of conjugacy class sizes 1 or p , and if P is a Sylow p -subgroup of G ,

then H/Z(G)p′ ⋊ P/P0 is a Frobenius group with |H/Z(G)p′ | = n .

Remark 1.1 The conclusion also holds for solvable groups.

2. Preliminary results

In this section, we present some results that will be used in the sequel.

Lemma 2.1 ([3, Theorem C]) Let G be a π -separable group. If x ∈ G with |xG| a π -number, then [xG, xG] ⊆
Oπ(G) . Consequently, x ∈ Oπ,π′(G) .

Lemma 2.2 ([6, Theorem 5.3.4]) Let P ×Q be the direct product of a p group P and a p′ -group Q . Suppose

that P ×Q acts on a p-group G such that CG(P ) ≤ CG(Q) . Then Q acts trivially on G .

Lemma 2.3 ([13, Lemma 2.1]) Let G be a π -separable group with π a subset of π(G) . Then:

(a) |xG| is a π -number for every primary π′ -element x if and only if G has an abelian Hall π′ -subgroup.

(b) |xG| is a π′ -number for every primary π′ -element x if and only if G =Oπ(G)× Oπ′(G) .

Lemma 2.4 Let G be a p-separable group for a prime p . Assume that there is a p-element of conjugacy class

size pα , which is the highest power of p dividing the conjugacy class size of any {p, q}-element of G for each

prime q ∈ π(G) distinct from p . Then G has a normal p-complement.

Proof Let x be a p -element of conjugacy class size pα . Then, for every primary p′ -element v ∈ CG(x), we

have |vCG(x)| = |CG(x) : CG(x) ∩ CG(v)| , which is a p′ -number since pα is the highest power of p dividing

the conjugacy class sizes of all {p, q} -elements. Then Lemma 2.3 (b) implies that CG(x) = CG(x)p ×CG(x)p′ ,

where CG(x)p′ is a Hall p′ -subgroup of CG(x). Clearly, CG(x)p′ is also a Hall p′ -subgroup of G .

Write H :=Op(G). Then x ∈ H by Lemma 2.1, which leads to CG(H) � CG(x). Note that each

primary p′ -element y ∈ CG(x)p′ satisfies CG(x)p ≤ CG(y). This forces CH(x) ≤ CH(y). By Lemma 2.2, we

obtain that y ∈ CG(H), leading to |G : CG(H)| being a p -power. Recall that CG(x) is p -nilpotent. Then

CG(H) has a normal p -complement K . Therefore, K is the normal p -complement of G , as required. 2
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Remark 2.1 It is an extension of [5, Theorem 1].

Lemma 2.5 ([9, Lemma 2.7]) If 1 and m are the only conjugacy class sizes of primary and biprimary elements

of a group G , then G = P ×A , where P ∈ Sylp(G) and A is abelian. In particular, m is a power of p .

Recall that a nonabelian group G is an F-group if, for every x, y ∈ G\Z(G), we have that CG(x) ≤
CG(y) implies that CG(x) = CG(y). In particular:

Lemma 2.6 ([11, Theorem]) G is an F-group if and only if one of the following holds:

(i) G is nonabelian and has an abelian normal subgroup of prime index;

(ii) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement L/Z(G) ,

where K and L are abelian;

(iii) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement L/Z(G) ,

where L is abelian, Z(K) = Z(G) , K/Z(G) has prime power order, and K is an F-group;

(iv) G/Z(G) ∼= S4 , and V is nonabelian if V/Z(G) is the Klein four-group in G/Z(G) ;

(v) G ∼= A× P , where A is abelian and P is a nonabelian F-group of prime power order;

(vi) G/Z(G) ∼= PSL(2, pn) or PGL(2, pn) , G′ ∼= SL(2, pn) with pn ≥ 3 ;

(vii) G/Z(G) ∼= PSL(2, 9) or PGL(2, 9) , G′ ∼= PSL(2, 9) .

3. Special cases of the Main Theorem

First we give a remark that if group G satisfies the assumption of the Main Theorem, then G has no Hall

subgroup of order m since, otherwise, each primary π(m)-element has conjugacy class size 1, implying that G

has a central Hall π(m)-subgroup, which is a contradiction.

Now we consider the case where G has a Hall subgroup of order n . This is necessary because one of

the skills we employ in this paper is to analyze the properties of the centralizer of a certain primary element.

For instance, suppose that x is a primary π(m)-element of conjugacy class size mn . The maximality of mn

indicates that CG(x) = CG(x)π ×CG(x)π′ , where CG(x)π′ is a Hall π′ -subgroup of CG(x). If G has a Hall

π′ -subgroup of order n , then CG(x)π′ is trivial, which makes it impossible to take an element from CG(x)π′ .

Here is an example: Let G = (C21 × C3)⋊ C3 be a nonabelian group of order 189. The conjugacy class

sizes of primary and biprimary elements of G are {1, 3, 21} and G has a Sylow 7-subgroup of order 7.

As a result, we first deal with this special case:

Lemma 3.1 Let m,n > 1 be two coprime integers. Furthermore, let G be a π(m)-separable group. Assume

that G has a Hall subgroup of order n and the set of conjugacy class sizes of primary and biprimary elements

of G is {1,m,mn} . Then m = p for some prime p and G contains an abelian normal subgroup C = H × P0

of index p , where P0 is a Sylow p-subgroup of C , and neither H nor P0 is central in G . Furthermore, C

is the set of all primary and biprimary elements of G of conjugacy class sizes 1 or p , and if P is a Sylow

p-subgroup of G , then H ⋊ P/P0 is a Frobenius group.

Proof If there exists some prime r ∈ π(G) \ (π(m) ∪ π(n)), then r does not divide any conjugacy class size

of each primary r′ -element y ∈ G as |yG| ∈ {1,m,mn} . By [10, Theorem C], we have G = R × N , where

R is a Sylow r -subgroup of G and N is a Hall r′ -subgroup of G . As a result, every element v ∈ R has an

348



SHAO and JIANG/Turk J Math

r -number conjugacy class size, yielding to R ≤ Z(G). Hence, G = A × B , where A ≤ Z(G) and B is a Hall

π(m) ∪ π(n)-subgroup of G . Since central factors are irrelevant in this context, without loss of generality we

assume that G is a (π(m) ∪ π(n))-group without central factors.

Write π := π(m). Suppose that H is a Hall subgroup of G of order n . Then every primary π′ -element

v has conjugacy class size 1 or m . By applying 2.3 (a), it follows that H is abelian.

Let x be a primary π -element of conjugacy class size m . Then for every primary π′ -element v ∈ CG(x),

we see that |CG(x) : CG(x) ∩CG(v)| = 1 or n , by Lemma 2.3 (b), and it follows that CG(x) = CG(x)π ×Hg

for some g ∈ G since G is π -separable. Moreover, CG(x)π ≰ Z(G) as x ∈ CG(x)π .

On the other hand, suppose that x is a primary π′ -element of conjugacy class size m . We assert that

CG(x) is abelian. In fact, each primary π -element of CG(x) has conjugacy class size 1 or n in CG(x), which

is a π′ -number. According to Lemma 2.3 (a), one has that CG(x)π is abelian. Moreover, CG(x)π ≰ Z(G),

since otherwise, for each noncentral primary π -element w , we obtain CG(w) ≥ ⟨w,Z(G)π⟩ > CG(x)π , which

indicates that |wG|π < m and thus w ∈ Z(G), a contradiction to the choice of w .

Take a primary element z ∈ CG(x)π \ Z(G), which exists since G has no Hall π -subgroup of order m .

Note that |H| = n . Then x ∈ CG(x) forces |zG| = m . As a result, CG(z) = CG(z)π×Hg2 for some g2 ∈ G by

the argument in the previous paragraph, where CG(z)π is a Hall π -subgroup of CG(z). Recall that x ∈ CG(z)

and |H| = n . Then CG(z) ≤ CG(x) and thus CG(z) = CG(x) because both x and z have conjugacy class

size m . Consequently, CG(x) is abelian.

Finally, we show that each element of G has conjugacy class size 1, m or mn . Let v ∈ G be an arbitrary

noncentral element. If v is a primary or a biprimary element, there is nothing to prove. Assume then that v

has at least three primary components.

If v has a component of conjugacy class size mn , say v1 , then for another component vi distinct from

v1 , we have that mn = |vG1 | divides |(v1vi)G| ∈ {1,m,mn} , implying CG(v1vi) = CG(v1). Hence, |vG| = mn .

Now consider the case that each component vi of v is of conjugacy class size m . Suppose first that

v has no π′ -component. Let vi and vj be two distinct components of v . Then CG(vi) = CG(vi)π × Hi

and CG(vj) = CG(vj)π × Hj , where Hi and Hj are two Hall π′ -subgroups of G . As vj ∈ CG(vi), we see

that Hi ≤ CG(vi) ∩ CG(vj), yielding CG(vivj) = CG(vi). Furthermore, |vG| = m , as wanted; if v has a

π′ -component, say vs , then CG(vs) is abelian by the argument above. Since vi ∈ CG(vs) for each component

vi of v such that i ̸= s , we have CG(vs) = CG(vi), which leads to |vG| = m , as required.

Therefore, the set of conjugacy class sizes of G is {1,m,mn} , and then the theorem holds according to

Theorem 1.2. 2

Now we work on another special case in which m is a prime power. That is:

Lemma 3.2 Let G be a p-separable group. Assume that n > 1 is a positive integer coprime to p and that α

is a positive integer. If the set of conjugacy class sizes of all primary and biprimary elements of G is exactly

{1, pα, pαn} , then G contains an abelian normal subgroup C = H × P0 of index pα = p , where P0 is a Sylow

p-subgroup of C , and neither H nor P0 is central in G . Furthermore, C is the set of all primary and biprimary

elements of G of conjugacy class sizes 1 or p , and if P is a Sylow p-subgroup of G , then H/Z(G)p′ ⋊ P/P0

is a Frobenius group with |H/Z(G)p′ | = n .

Proof According to Lemma 3.1, we may assume that G has no Hall subgroup of order n . Moreover, G
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may be assumed as a ({p} ∪ π(n))-group without central factors. If |π(n)| = 1, then the conclusion holds by

Theorem 1.1. In the following we assume that |π(n)| ≥ 2 and the proof will be completed in several steps.

Step 1. Let v be a primary element with conjugacy class size pα . If v is a p -element, then CG(v) =

CG(v)p ×CG(v)p′ , where CG(v)p′ is a nontrivial Hall p′ -subgroup of G ; if v is a p′ -element, then CG(v)p is

abelian with CG(v)p ≰ Z(G).

Assume first that v is a p -element. For each primary p′ -element w ∈ CG(v), we have |CG(v) :

CG(v) ∩ CG(w)| = 1 or n . By Lemma 2.3 (b), we have CG(v) = CG(v)p × CG(v)p′ , where CG(v)p′ is a

Hall p′ -subgroup of CG(v), and so is of G . Moreover, CG(v)p′ is nontrivial because G has no Hall subgroup

of order n .

Suppose now that v is a primary p′ -element. For any p -element u ∈ CG(v), we have |CG(v) :

CG(v) ∩ CG(u)| = 1 or n . Hence, CG(v)p is abelian by Lemma 2.3 (a). We show that CG(v)p ≰ Z(G). If

not, for every noncentral p -element z , we have CG(v)p < ⟨CG(v)p, z⟩ ≤ CG(z), which implies that |zG|p < pα

and thus |zG| = 1, a contradiction to the choice of z .

Step 2. Let v be a q -element of conjugacy class size pαn for some prime q ∈ π(G). Then CG(v) =

CG(v)q ×CG(v)q′ , where CG(v)q′ is an abelian Hall q′ -subgroup of CG(v). In particular, if q ∈ π(n), then

CG(v)p is abelian with CG(v)p ≰ Z(G).

Let w ∈ CG(v) be an arbitrary primary q′ -element. Then pαn = |vG| divides |(vw)G| ∈ {1, pα, pαn} ,
which implies that w ∈ Z(CG(v)). As a result, CG(v) = CG(v)q ×CG(v)q′ with an abelian Hall q′ -subgroup

CG(v)q′ . If q ∈ π(n), then CG(v)p is abelian since CG(v)p ≤ Z(CG(v)). Moreover, CG(v)p ≰ Z(G) by the

same argument in Step 1.

We divide the proof into two cases depending on whether G has a p -element of conjugacy class size pα

or not.

Case 1. G has a p -element of conjugacy class size pα , say x .

Step 3. CG(x) = Op(G) × H , where Op(G) is the Sylow p -subgroup of CG(x) and H is a Hall

p′ -subgroup of G . In particular, Op(G) is abelian.

Since x is a p -element of conjugacy class size pα , by Step 1, we see that CG(x) = CG(x)p ×H , where

H is a Hall p′ -subgroup of G . Moreover, Lemma 2.4 indicates that H is the normal p -complement of G . As

a result, Op(G) ≤ CG(H). Write C := CG(H).

Let P0 ∈ Sylp(C). Then C = Z(H) × P0 , which leads to P0 � G . Moreover, P0 = Op(G) and

thus CG(x)p ≤ Op(G). If CG(x)p < Op(G), then for every primary element v ∈ H , it follows that

CG(x)p < Op(G) ≤ CG(v), leading to |vG|p < pa . As a consequence, H ≤ Z(G). This contradiction

shows that CG(x) = Op(G)×H . Furthermore, Op(G) is abelian since Op(G) centralizes H .

Step 4. Conclusion in Case 1.

Assume that H is nonabelian. For an arbitrary primary element y ∈ H , we have |yG| ∈ {1, pα, pαn} .
Notice that |G : H||yH | = |yG||CG(y) : CH(y)| and H is a normal Hall p′ -subgroup of G . Then |yH | = 1 or

n . By applying Lemma 2.5, we see that n = qβ for some prime q ̸= p , contradicting with |π(n)| ≥ 2. As a

consequence, H is abelian.

Write H = [H,P ] × CH(P ), where P is a Sylow p -subgroup of G . Since CH(P ) ≤ Z(G), then

CH(P ) = 1 as G has no central factors. Now we claim that P/P0 acts fixed-point-freely on H . Otherwise,
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there exists a primary element a ∈ P \ P0 and an element 1 ̸= b ∈ H such that ab = a . Then we see that

CG(b) ≥ ⟨P0, a⟩ > Op(G) = CG(x)p , leading to b ∈ CH(P ) = 1. This contradiction shows that P/P0 ⋉H is a

Frobenuis group and thus P/P0 is either cyclic or a generalized quaternion group.

Let z ∈ P be an arbitrary element. Then |zP | = |zG|p as G = P ⋉H . That is, the conjugacy class sizes

of P are {1, pα} . By [4, Corollary 6], P/Z(P ) has exponent p . Since Z(P ) ≤ P0 , we have that P/P0 also has

exponent p . Hence, |P/P0| = p and α = 1, and the theorem is proved.

Case 2. G has no p -element of conjugacy class size pα .

Step 5. Z(P ) = Z(G)p = Op(G). Moreover, G has a nonabelian Hall π -subgroup H .

Let P be a Sylow p -subgroup of G . Because every element of Op(G) has conjugacy class size 1 or pαn ,

we have Z(P ) = Z(G)p ≤ Op(G). Now we show that Op(G) = Z(G)p .

Suppose that v ∈ H is an arbitrary noncentral primary element. If |vG| = pα , then CG(v)p is abelian

with CG(v)p ≰ Z(G) by Step 1. Take an element t ∈ CG(v)p\Z(G), which exists as G has no Sylow p -subgroup

of order pα . Hence, |tG| = pαn by our assumption. By Step 2, we see that CG(t) = CG(t)p ×CG(t)p′ with

CG(t)p′ abelian. Note that v ∈ CG(t)p′ . Then CG(t) ≤ CG(v) and thus COp(G)(t) ≤ COp(G)(v). As a result,

v ∈ CG(Op(G)) by Lemma 2.2. On the other hand, if |vG| = pαn , then CG(v) = CG(v)p × CG(v)p′ with

CG(v)p abelian satisfying CG(v)p ≰ Z(G) by applying Step 2 again. Select an element t1 ∈ CG(v)p\Z(G).

Then we easily see that CG(v) = CG(t1). By the same reasoning as above we also have v ∈ CG(Op(G)).

Hence, H ≤ CG(Op(G)), implying Op(G) = Z(G)p , as wanted.

If H is abelian, then |hG| = 1 or pα for every primary element h ∈ H . By Lemma 2.1, H ≤ Op,p′(G).

As Op(G) = Z(G)p , it follows that Op,p′(G) = H × Z(G)p and thus H � G . In this case, we see that the

conjugacy class sizes of P are {1, pα} . Arguing as in Step 4, we are done. Hence, we consider that H is

nonabelian below.
Step 6. Let e be a p -element of conjugacy class size pαn in G . Then CG(e) is abelian.

By Step 2, we have CG(e) = CG(e)p × CG(e)p′ with CG(e)p′ a nontrivial abelian Hall p′ -subgroup

of CG(e). If CG(e)p′ ≤ Z(G), then every primary p′ -element has conjugacy class size 1 or pa in G , which

implies that H is abelian by Lemma 2.3 (a), in contradiction to Step 5. Hence there exists a primary element

v1 ∈ CG(e)p′\Z(G), indicating CG(e) ≤ CG(v1). If |vG1 | = pαn , we have that CG(e) = CG(v1) is abelian by

Step 2; if |vG1 | = pα , then CG(v1)p is abelian by Step 1. Note that |CG(v1) : CG(e)| = n , and then CG(e)p is

also abelian. As a consequence, CG(e) is abelian.

Step 7. The final contradiction in Case 2.

Let y be a q -element of conjugacy class size pα . Then q ∈ π(n), which implies that Z(H) ̸= Z(G)p′ .

We claim that Z(H)/Z(G)p′ is a q -group. Otherwise, there exists an r -element d ∈ Z(H)\Z(G) such that

q ̸= r ∈ π(n). Then H ≤ CG(d)∩CG(y) = CG(dy) and hence CG(d) = CG(y). For every primary (π(n)−{q})-
element w ∈ CG(y), we have |CG(y) : CG(y) ∩ CG(w)| = 1 or n . On the other hand, for every q -element

z ∈ CG(y), we obtain |CG(y) : CG(y) ∩ CG(z)| = |CG(d) : CG(d) ∩ CG(z)| = 1 or n . We conclude that

every primary p′ -element is of conjugacy class size 1 or n in CG(y), which follows that CG(y) = CG(y)p ×H

by Lemma 2.3 (b). Recalling that every noncentral p -element has conjugacy class size pαn , we have that

CG(y)p ≤ Z(P ) = Z(G)p , indicating P ≤ Z(G). This contradiction shows that Z(H)/Z(G)p′ is a q -group.

Moreover, every primary and biprimary q′ -element has conjugacy class size 1 or pαn in G . By [1, Theorem

A], it follows that n is a prime, contrary to |π(n)| ≥ 2. This completes the proof. 2
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4. Proof of the Main Theorem

Proof According to Lemma 3.1, we may assume that G has no Hall subgroup of order n . Moreover, if m is a

prime power, then we are done according to Lemma 3.2. Hence, in the following we may assume that |π(m)| ≥ 2.

Moreover, we may assume that G is a (π(m) ∪ π(n))-group without central factors. Write π := π(m). We

divide the proof into several steps.

Step 1. Let v be a primary element with conjugacy class size m . If v is a π -element, then CG(v) =

CG(v)π ×CG(v)π′ , where CG(v)π′ is a nontrivial Hall π′ -subgroup of G . If v is a π′ -element, then CG(v)π

is abelian with CG(v)π ≰ Z(G).

The proof is similar to the proof of Step 1 of Lemma 3.2.

Step 2. Assume that x is a primary element with conjugacy class size mn . Then CG(x) = CG(x)π ×
CG(x)π′ , where CG(x)π is the abelian Hall π -subgroup of CG(x) such that CG(x)π ≰ Z(G). In particular, if

x is a π -element, then CG(x) is abelian.

Let x be a q -element for some prime q ∈ π(G). Then for every primary q′ -element v ∈ CG(x), we have

that mn = |xG| divides |(xv)G| ∈ {1,m,mn} , which implies that CG(x) = CG(x)q ×CG(x)q′ , where CG(x)q′

is an abelian Hall q′ -subgroup of CG(x).

If q ∈ π′ , then we easily see that CG(x)π is an abelian Hall π -subgroup of CG(x). We show that

CG(x)π ≰ Z(G). Otherwise, every primary π -element y satisfying CG(y) ≥ ⟨y,Z(G)π⟩ > CG(x)π , implying

y ∈ Z(G). As a result, G has a central Hall π -subgroup, a contradiction to our assumption.

Suppose then that q ∈ π . Then CG(x) = CG(x)π ×CG(x)π′ with CG(x)π′ an abelian Hall π′ -subgroup

of CG(x). It is obvious that CG(x)π ≰ Z(G) since x ∈ CG(x)π . Now we show that CG(x) is abelian.

We first prove that CG(x)π/Z(G)π is not a q -group. Otherwise, there exists a noncentral r -element

d such that q ̸= r ∈ π . Clearly, CG(d) ≥ ⟨Z(G), d⟩ > CG(x)r since CG(x)r = Z(G)r . This implies that

|dG|r < mr and thus |dG| = 1, a contradiction. Hence, there exists an s-element e ∈ CG(x)π\Z(G) for some

prime s ∈ π distinct from q . Moreover, CG(x) ≤ CG(e). If |eG| = m , then x ∈ CG(e) = CG(e)π ×CG(e)π′ ,

where CG(e)π′ is a Hall π′ -subgroup of G by Step 1. This contradiction shows that |eG| = mn and

CG(x) = CG(e). Moreover, CG(e)π = CG(x)π is abelian by Step 2, and so is CG(x).

We will divide the proof into two cases depending on whether there exists a primary π -element of

conjugacy class size m or not.

Case 1. There is a primary π -element of conjugacy class size m , say x .

Let x be a p -element of conjugacy class size m for some p ∈ π and H be a Hall π′ -subgroup of G such

that H ≤ CG(x). Then:

Step 3. CG(x) = CG(x)π × H , where CG(x)π is an abelian Hall π -subgroup of G . In particular,

π(CG(x)π) = π = π(CG(x)π/Z(G)π).

By Step 1, we obtain CG(x) = CG(x)π ×H , where CG(x)π is a nontrivial Hall π -subgroup of CG(x)

such that CG(x)π ≰ Z(G). Let w ∈ CG(x)π\Z(G)π be an s -element for some prime s ∈ π distinct

from p , which exists by the argument of Step 2. Then H ≤ CG(w) and hence |wG| = m . Moreover,

H ≤ CG(x) ∩ CG(w) = CG(wx) implies that |(wx)G| = m and thus CG(w) = CG(x). This indicates that

every primary π -element of CG(x) has conjugacy class size 1 or n in CG(x). Therefore, by Lemma 2.3 (a),

CG(x)π is abelian, as wanted.
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We now prove that π(CG(x)π) = π . If not, there exists a prime r ∈ π \ π(CG(x)π). Suppose that

R ∈ Sylr(G) and y ∈ R\Z(G). Then |yG|r < |R| = mr , which follows that |yG| = 1, a contradiction. If

π(CG(x)π/Z(G)π) ̸= π , there exists a prime r ∈ π = π(CG(x)π) such that CG(x)r = Z(G)r . Then for every

r -element v ∈ G\Z(G), it follows CG(v) ≥ ⟨v,Z(G)r⟩ > CG(x)r that |vG|r < mr , leading to v ∈ Z(G). This

contradiction shows that π(CG(x)π/Z(G)π) = π = π(CG(x)π).

Step 4. Every primary element w ∈ Oπ(G)\Z(G) has conjugacy class size m in G . In particular,

CG(w)π < Oπ(G).

Suppose that there exists a primary element w ∈ Oπ(G) such that |wG| = mn . Then Step 2 indicates

that CG(w) = CG(w)π × CG(w)π′ , where CG(w)π′ is an abelian Hall π′ -subgroup of CG(w). Moreover,

there exists some element g0 ∈ G such that CG(w)π′ ≤ Hg0 because G is π -separable. As a result, for every

primary element t ∈ CG(w)π′ , it follows that CG(t) ≥ ⟨CG(w)π,CG(x)
g0
π ⟩ > CG(x)

g0
π , so |tG|π < m since

w ∈ Oπ(G)\
∪

g∈G CG(x)
g
π , leading to t ∈ Z(G). This forces that CG(w)π′ ≤ Z(G). Consequently, for every

noncentral primary π′ -element z , we have CG(w)π′ < ⟨CG(w)π′ , z⟩ ≤ CG(z), yielding |zG|π′ < mπ′ and thus

|zG| = m . By Lemma 2.3 (a), H is abelian.

Let y be a q -element. Assume first that q ∈ π . If |yG| = m , then by Step 3 we see that CG(y)π is

abelian, and so is CG(y) by applying Step 1. If |yG| = mn , then Step 2 indicates that CG(y) is also abelian.

Hence, we may assume that q ∈ π′ , leading to |yG| = m . Since G is π -separable, there exists some g2 ∈ G such

that y ∈ Hg2 . Note that H is abelian. Then CG(x)
g2 = CG(y), leading to CG(y) = CG(x)

g2 = CG(x)
g2
π ×Hg2

being abelian. Therefore, we conclude that the centralizer of each noncentral element of G is abelian. This

forces that G is an F -group. In particular, G is one of the types in Lemma 2.6. As G is π -separable, we rule

out case (vi) and case (vii). Furthermore:

If G is of type (i), then G has a primary element of conjugacy class size prime, in contradiction to

|π| ≥ 2;

If G is of type (ii), then G/Z(G) = K/Z(G) ⋊ L/Z(G) is a Frobenius group with Frobenius kernel

K/Z(G) and Frobenius complement L/Z(G) and K,L are abelian. Let a ∈ K and b ∈ L be two noncentral

primary elements. Then |aG| divides |G : L| = |K/Z(G)| and |bG| divides |G : K| = |L/Z(G)| . Hence, |aG|
and |bG| are coprime, also a contradiction;

If G is of type (iii), then G/Z(G) = K/Z(G)⋊ L/Z(G) is a Frobenius group with complement L/Z(G)

and L is abelian, and K/Z(G) has prime power order. Let c ∈ L be a noncentral primary element. Then |cG|
divides |G : L| = |K/Z(G)| a prime power, in contradiction to our assumption that |π| ≥ 2;

If G is of type (iv), then every primary or biprimary element has conjugacy class size 1, 3, 6, or 8,

contrary to our assumption;

If G is of type (v), then each noncentral primary element of G has prime power conjugacy class size,

yielding that m is a prime power. The final contradiction shows that the first statement of Step 4 holds.

Let v be an arbitrary element of conjugacy class size m in G . Write G = CG(v)K1 , where K1 is a

Hall π -subgroup of G containing v . We see easily that ⟨vG⟩ = ⟨vCG(v)K1⟩ = ⟨vK1⟩ ≤ K1 , which follows that

v ∈ Oπ(G). Moreover, the argument above implies that for every primary noncentral element y ∈ CG(v)π

satisfying |yG| = m by Step 3. Hence, y ∈ Oπ(G) and CG(v)π ≤ Oπ(G) holds. If CG(v)π = Oπ(G), then

H ≤ CG(Oπ(G)), which follows that Oπ,π′(G) = H ×Oπ(G) �G . Hence, H �G . This indicates that every
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primary and biprimary element of K1 has conjugacy class size 1 or m . Since K1 is nonabelian, it follows that

|π| = 1 by Lemma 2.5, in contradiction to our assumption. Therefore, CG(v)π < Oπ(G) and thus the second

statement of Step 4 holds.

Step 5. The contradiction of Case 1.

Step 4 implies that Oπ(G) = CG(x1)π
∪
· · ·

∪
CG(xt)π , where xi ∈ Oπ(G)\Z(G)π are primary elements

satisfying CG(xi)π ̸= CG(xj)π when i ̸= j . In particular, t > 1. We claim that (CG(xi) ∩CG(xj))π = Z(G)π

for distinct integers i, j ∈ {1, · · · , t} . Otherwise, there exists a primary element v ∈ (CG(xi)∩CG(xj))π\Z(G)π .

Since CG(xi)π and CG(xj)π are abelian by Step 3, we have CG(xi) ≤ CG(v) and CG(xj) ≤ CG(v), which

follows that CG(xi) = CG(v) = CG(xj), a contradiction. As a consequence, Oπ(G) \ Z(G) is a disjoint union

of CG(x1)π \ Z(G), · · · ,CG(xt)π \ Z(G).

Write CG(xi) = CG(xi)π ×Hi , where Hi are Hall π′ -subgroups of G . We prove that Hi are different

conjugates of H . Since G is π -separable, Hi are conjugates of H . If there exists some i, j ∈ {1, . . . , t}
such that Hi = Hj , then for every h ∈ Hi we have CG(h) ≥ CG(Hi) ≥ ⟨CG(xi)π,CG(xj)π⟩ > CG(xj)π ,

which implies |hG|π < m . As a result, |hG| = 1 and thus Hi ≤ Z(G), a contradiction. On the other

hand, for every g ∈ G , we see that CG(x
g) = CG(x)

g
π × Hg . Because Oπ(G) \ Z(G) is a disjoint union of

CG(x1)π\Z(G), · · · ,CG(xt)π\Z(G) with t > 1, there exists some j ∈ {1, . . . , t} such that CG(x)
g
π = CG(xj)π ,

leading to Hg = Hj . Consequently, we conclude that H1, . . . , Ht are all the different conjugates of H .

Therefore, t = |Oπ(G)\Z(G)π|
|CG(x)π\Z(G)π| = |G : NG(H)| because G is π -separable. Furthermore, t | m because

CG(x) ≤ NG(H) and |xG| = m .

We claim that |vG| = m for every noncentral biprimary element v in Oπ(G)\Z(G)π . Write v = vpvq ,

where vp, vq are the p -part and the q -part of v , respectively. If vp (or vq ) is in Z(G), the conclusion is

trivial. Assume that neither vp nor vq is in Z(G). Since vp ∈ CG(vp) ∩CG(vq), by the arguments in the first

paragraph of this Step we obtain CG(vp) = CG(vq) = CG(v), which forces |vG| = |vGp | = m .

Let k be an arbitrary primary or biprimary element of Oπ(G). Then |kG| = 1 or m . Moreover,

COπ(G)(k) = CG(k) ∩ Oπ(G) ≤ CG(k)π ≤ CG(k) ∩ Oπ(G) = COπ(G)(k), implying COπ(G)(k) = CG(k)π .

Hence, |kOπ(G)| = |Oπ(G) : COπ(G)(k)| = |Oπ(G) : CG(k)π| = |K : CG(k)π| |Oπ(G)|
|K| = |G : CG(k)|π |Oπ(G)|

|K| = 1

or m |Oπ(G)|
|K| . By Lemma 2.5, we have that m |Oπ(G)|

|K| is a prime power. Let |Oπ(G) : CG(k)π| = rs for some

r ∈ π . Since t|CG(x)π\Z(G)π| = |Oπ(G)\Z(G)π| , we have that (t− rs)|CG(x)π/Z(G)π| = t− 1. As a result,

|CG(x)π/Z(G)π| | (t− 1), which contradicts the fact that t | m and π(CG(x)π/Z(G)π) = π according to Step

3.

Case 2. There is no primary π -element of conjugacy class size m .

In this case, every primary or biprimary π -element is of conjugacy class size 1 or mn . By [12, Main

Theorem], we see that m is a prime power, contrary to our assumption. Therefore, the proof is established. 2
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