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Abstract:The object of the present paper is to obtain a necessary and sufficient condition for a 3-dimensional generalized

(κ, µ)-contact metric manifold to be locally ϕ -symmetric in the sense of Takahashi and the condition is verified by an

example. Next we characterize a 3-dimensional generalized (κ, µ)-contact metric manifold satisfying certain curvature

conditions on the concircular curvature tensor. Finally, we construct an example of a generalized (κ, µ)-contact metric

manifold to verify Theorem 1 of our paper.

Key words: Generalized (κ, µ)-contact metric manifolds, concircular curvature tensor, ξ -concircularly flat, locally
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1. Introduction

In a 3-dimensional Riemannian manifold the curvature tensor has a special form. These 3-dimensional

Riemannian manifolds have certain characteristic properties that are different from that of a manifold of

dimension greater than 3. Due to the interesting properties of 3-dimensional Riemannian manifolds, several

authors have studied such manifolds. It is well known that a Sasakian manifold is a normal contact metric
manifold (M,ϕ, ξ, η, g) whose curvature tensor R satisfies

R(X,Y )ξ = η(Y )X − η(X)Y,

for any X,Y ∈ χ(M), where χ(M) denotes the Lie algebra of all smooth vector fields on M. As a generalization

of the Sasakian manifold, Blair et al. [7] introduced the notion of a contact metric manifold called a (κ, µ)-

contact metric manifold satisfying the condition

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (1.1)

for any X,Y ∈ χ(M), where κ and µ are constants on M and h = 1
2Lξϕ (here Lξ is the Lie derivative in the

direction of ξ ). (κ, µ)-contact metric manifolds have been studied by several authors [1, 7, 9, 11, 12, 16, 20, 15].

In 2000, Koufogiorgos and Tsichlias [13] generalized the notion of a (κ, µ)-contact metric manifold by

taking the constants κ and µ in (1.1) to be smooth functions on M , called a generalized (κ, µ)-contact

metric manifold. Furthermore, the same authors [14] studied 3-dimensional generalized (κ, µ)-contact metric
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manifolds with ξµ = 0. Three-dimensional generalized (κ, µ)-contact metric manifolds were also studied by

De and Ghosh [10] and De and Sarkar [17]. In a recent paper [18], Shaikh et al. proved that a 3-dimensional

generalized (κ, µ)-contact metric manifold is locally ϕ-symmetric provided κ and µ are constants. In a recent

paper [6], Blair et al. studied concircular curvature tensor in N(k)-contact metric manifolds. In 2005, Tripathi

and Kim [20] studied the concircular curvature tensor of a (κ, µ)-contact metric manifold.

The present paper is organized as follows: after preliminaries in Section 3, we improve the result of paper

[18] and prove that a 3-dimensional generalized (κ, µ)-contact metric manifold is locally ϕ-symmetric if and only

if κ and µ are constants. In Section 4, we prove that a ξ -concircularly flat 3-dimensional generalized (κ, µ)-

contact metric manifold is either flat or the manifold reduces to a (κ, µ)-contact metric manifold. In the next

section, it is shown that a locally ϕ-concircularly symmetric 3-dimensional generalized (κ, µ)-contact metric

manifold is a (κ, µ)-contact metric manifold. In Section 6, we study concircularly semisymmetric 3-dimensional

generalized (κ, µ)-contact metric manifolds. In the next section, we consider the curvature condition C̃ · S = 0

in a 3-dimensional generalized (κ, µ)-contact metric manifold, where C̃ is a concircular curvature tensor and

S is the Ricci tensor. This result generalizes the results of Tripathi and Kim [20]. Finally, we give an example

of a generalized (k, µ)-contact metric manifold to verify the Theorem of Section 3.

2. Preliminaries

In this section, we present some basic facts about contact metric manifolds. We referthe reader to [4] for a more

detailed treatment. A differentiable manifold M of dimension 2n+1 is called a contact manifold if it carries a

global 1-form η such that η∧ (dη)2n+1 ̸= 0 everywhere on M. The form η is usually called the contact form of

M. It is well known that a contact metric manifold admits an almost contact metric structure (ϕ, ξ, η, g), i.e.

a global vector field ξ , which is called the characteristic vector field, a (1, 1)-tensor field ϕ , and a Riemannian

metric g such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X,Y ∈ χ(M). Moreover, (ϕ, ξ, η, g) can be chosen such that

dη(X,Y ) = g(X,ϕY ), X, Y ∈ χ(M),

and we then call the structure a contact metric structure. A manifold M carrying such a structure is said to

be a contact metric manifold and it is denoted by (M,ϕ, ξ, η, g). As a consequence of the above relations, we

have η(ξ) = 1, ϕξ = 0, η ◦ϕ = 0, and dη(ξ,X) = 0. If ∇ denotes the Riemannian connection of (M,ϕ, ξ, η, g),

then following [2], we define the (1, 1)-tensor fields h and l by h = 1
2 (Lξϕ) and l = R(., ξ)ξ , where Lξ is the

Lie differentiation in the direction of ξ and R is the curvature tensor, which is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

for all vector fields X,Y, Z ∈ χ(M). The tensor fields h, l are self-adjoint and satisfy

hξ = 0, lξ = 0, trh = trϕh = 0, ϕh+ hϕ = 0.

Since h anticommutes with ϕ , if X ̸= 0 is an eigenvector of h corresponding to the eigenvalue λ , then ϕX

is also an eigenvector of h corresponding to the eigenvalue −λ. Therefore on any contact metric manifold
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(M,ϕ, ξ, η, g), the following formulas are valid:

∇ξ = −ϕ− ϕh (and so ∇ξξ = 0),

∇ξh = ϕ− ϕl − ϕh2,

ϕlϕ− l = 2(ϕ2 + h2).

A contact metric structure (ϕ, ξ, η, g) on M gives rise to an almost complex structure on the product M×ℜ. If
this structure is integrable, then the contact metric manifold (M,ϕ, ξ, η, g) is said to be Sasakian. Equivalently,

a contact metric manifold (M,ϕ, ξ, η, g) is Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y,

for all X,Y ∈ χ(M).

By a generalized (κ, µ)-manifold, we mean a 3-dimensional contact metric manifold such that

R(X,Y )ξ = {κI + µh}[η(Y )X − η(X)Y ], (2.1)

for all X,Y ∈ χ(M), where κ, µ are smooth nonconstant real functions on M. In the special case where κ, µ

are constant, then (M,ϕ, ξ, η, g) is called a (κ, µ)-manifold. We note that in any Sasakian manifold h = 0 and

κ = 1.

Lemma 1 [13, 14] In any generalized (κ, µ)-manifold (M,ϕ, ξ, η, g) the following formulas are valid :

h2 = (κ− 1)ϕ2, κ =
trl

2
≤ 1,

ξκ = 0, ξr = 0,

hgradµ = gradκ.

Lemma 2 [3] A (2n+ 1)-dimensional contact metric manifold satisfying R(X,Y )ξ = 0 is locally isometric to

En+1(0)× Sn(4) for n > 1 and flat if n = 1 .

Lemma 3 [13] Let M be a non-Sasakian, generalized (κ, µ)-contact metric manifold. If κ, µ satisfy the

condition aκ+ bµ = c (a, b, c are constants), then κ, µ are constants.

Lemma 4 [5] A 3-dimensional contact metric manifold (M3, ϕ, ξ, η, g) with Qϕ = ϕQ is either Sasakian, flat,

or of constant ξ -sectional curvature κ < 1 and constant ϕ-sectional curvature −κ .

Furthermore, in a generalized (κ, µ)-contact metric manifold (M2n+1, ϕ, ξ, η, g), we have the following

[2]:

(∇Xh)Y = {(1− κ)g(X,ϕY )− g(X,ϕhY )}ξ − η(Y ){(1− κ)ϕX + ϕhX}

−µη(X)ϕhY, (2.2)

(∇Xϕ)Y = {g(X,Y ) + g(X,hY )}ξ − η(Y )(X + hX). (2.3)
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For a 3-dimensional Riemannian manifold, the conformal curvature tensor C = 0. Thus, the curvature tensor

R and Ricci tensor S for a 3-dimensional generalized (κ, µ)-contact metric manifold are given by [18]:

R(X,Y )Z = −(κ+ µ){g(Y, Z)X − g(X,Z)Y }

+(2κ+ µ){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y } (2.4)

+µ{g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y },

S(X,Y ) = −µg(X,Y ) + µg(hX, Y ) + (2κ+ µ)η(X)η(Y ), (2.5)

respectively. We see that on a 3-dimensional generalized (κ, µ)-contact metric manifold the scalar curvature r

is equal to

r = 2(κ− µ). (2.6)

In an n -dimensional Riemannian manifold, the concircular curvature tensor C̃ is defined by [21, 22]

C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)
{g(Y, Z)X − g(X,Z)Y }. (2.7)

We observe from (2.7) that Riemannian manifolds with vanishing concircular curvature tensor are of constant

curvature. Thus, the concircular curvature is a measure of the failure of a Riemannian manifold to be of constant

curvature.
Hence, using (2.4) and (2.6) in (2.7), we get

C̃(X,Y )Z = −(
4κ+ 2µ

3
){g(Y, Z)X − g(X,Z)Y }+ (2κ+ µ){g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }

+µ{g(Y, Z)hX − g(X,Z)hY + g(hY,Z)X − g(hX,Z)Y }. (2.8)

Using (2.8), we can give the following formulas:

C̃(X,Y )ξ =
2κ+ µ

3
{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (2.9)

C̃(X, ξ)Z =
2κ+ µ

3
{η(Z)X − g(X,Z)ξ}+ µ{η(Z)hX − g(hX,Z)ξ}, (2.10)

C̃(X, ξ)ξ =
2κ+ µ

3
{X − η(X)ξ}+ µhX, (2.11)

S(X, ξ) = 2κη(X). (2.12)

3. Locally ϕ-symmetric 3-dimensional generalized (κ, µ)-contact metric manifolds

Definition 1 A contact metric manifold (M2n+1, ϕ, ξ, η, g) is said to be locally ϕ-symmetric in the sense of

Takahashi [19] if it satisfies

ϕ2((∇WR)(X,Y )Z) = 0,

for all vector fields X,Y, Z,W orthogonal to ξ.
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In a 3-dimensional generalized (κ, µ)-contact metric manifold, if we take X,Y, Z,W to be horizontal

vector fields, that is, if X,Y, Z,W are orthogonal to ξ, then we obtain [18]

ϕ2(∇WR)(X,Y )Z = (Wκ+Wµ){g(Y, Z)X − g(X,Z)Y }

−(Wµ){g(Y, Z)hX − g(X,Z)hY

+g(hY,Z)X − g(hX,Z)Y }. (3.1)

Suppose that κ and µ are constants; then a 3-dimensional generalied (κ, µ)-contact metric manifold is locally

ϕ-symmetric in the sense of Takahashi. Conversely, let the manifold under consideration be locally ϕ -symmetric.

Then, from (3.1), we obtain

(Wκ+Wµ){g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}

−(Wµ){g(Y, Z)g(hX,U)− g(X,Z)g(hY, U) + g(hY, Z)g(X,U) (3.2)

−g(hX,Z)g(Y,U)} = 0.

Contracting X and Z in (3.2), we obtain

2n(Wκ+Wµ)g(Y, U) + (2n− 1)(Wµ)g(Y, hU) = 0, (3.3)

which implies

2n(Wκ+Wµ)Y + (2n− 1)(Wµ)hY = 0. (3.4)

Applying h in (3.4) and taking the trace of h we get

(Wµ) = 0, (3.5)

since trace h2 ̸= 0.

That is, µ =constant. Using µ =constant in (3.4), we get κ = constant. Thus, we can state the following:

Theorem 1 A 3-dimensional generalized (κ, µ)-contact metric manifold is locally ϕ-symmetric if and only if

κ and µ are constants.

Now we obtain the following:

Corollary 1 A 3-dimensional (κ, µ)-contact metric manifold is always locally ϕ-symmetric.

4. ξ -concircularly flat 3-dimensional (κ, µ)-contact metric manifolds

Let M be an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g). At

each point p ∈ M , decompose the tangent space TpM into direct sum TpM = ϕ(TpM)⊕ {ξp} , where {ξp} is

the 1-dimensional linear subspace of TpM generated by {ξp} . Thus, the conformal curvature tensor C is a
map

C : TpM × TpM × TpM −→ ϕ(TpM)⊕ {ξp}, p ∈ M.

It may be natural to consider the following particular cases:
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1. C : Tp(M)× Tp(M)× Tp(M) −→ L(ξp), i.e. the projection of the image of C in ϕ(TpM) is zero.

2. C : Tp(M) × Tp(M) × Tp(M) −→ ϕ(Tp(M)), i.e. the projection of the image of C in Lξp is zero. This

condition is equivalent to

C(X,Y )ξ = 0. (4.1)

3. C : ϕ(Tp(M))×ϕ(Tp(M))×ϕ(Tp(M)) −→ L(ξp), i.e. when C is restricted to ϕ(TpM)×ϕ(TpM)×ϕ(TpM),

the projection of the image of C in ϕ(Tp(M)) is zero. This condition is equivalent to

ϕ2C(ϕX, ϕY )ϕZ = 0. (4.2)

A Riemannian manifold satisfying (4.1) is called ξ -conformally flat. The Riemannian manifold satisfying

cases (4.1) and (4.2) was considered in [23, 24, 8], respectively.

Analogous to the consideration of a conformal curvature tensor, here we can define the following:

Definition 2 A (2n+ 1)-dimensional contact metric manifold is said to be ξ -concircularly flat if

C̃(X,Y )ξ = 0. (4.3)

In this section we prove the following:

Theorem 2 A ξ -concirculary flat 3-dimensional non-Sasakian generalized (κ, µ)-contact metric manifold is

either flat or reduces to a (κ, µ) contact metric manifold.

Proof For a ξ -concircularly flat manifold from (2.9), we get

2κ+ µ

3
{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY } = 0. (4.4)

If we take X = ξ in (4.4), we obtain

2κ+ µ

3
{η(Y )ξ − Y } − µhY = 0. (4.5)

Taking Y = hY in (4.5), we have

−2κ+ µ

3
hY − µh2Y = 0. (4.6)

Taking the trace of h we get µ = 0. Using µ = 0 in (4.4) we get κ = 0. Thus, R(X,Y )ξ = 0, and hence,

from Lemma 2, we get that the manifold is flat. Taking the inner product with U in the equation (4.4) and

contracting X and U , we obtain 2κ+µ = 0. Applying Lemma 3, we get k, µ = constant. Thus, the manifold

reduces to a (k, µ)-contact metric manifold. 2
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5. Locally ϕ-concircularly symmetric 3-dimensional generalized (κ, µ)-contact metric manifolds

In this section, first we give the following:

Definition 3 A contact metric manifold M is said to be locally ϕ-concircularly symmetric in the sense of

Takahashi [19] if it satisfies

ϕ2((∇W C̃)(X,Y )Z) = 0. (5.1)

Now we investigate locally ϕ-concircularly symmetric 3-dimensional generalized (κ, µ)-contact metric

manifolds. First we can write the following:

(∇W C̃)(X,Y )Z = ∇W C̃(X,Y )Z − C̃(∇WX,Y )Z

−C̃(X,∇WY )Z − C̃(X,Y )∇WZ. (5.2)

Using (2.8) in (5.2), we obtain

(∇W C̃)(X,Y )Z = −1

3
((Wκ) + (Wµ)){g(Y, Z)X − g(X,Z)Y }

+(2(Wκ) + (Wµ)){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }

+(Wµ){g(Y, Z)hX − g(X,Z)hY + g(hY,Z)X − g(hX,Z)Y }

+(2κ+ µ){g(Y,Z)g(X,∇W ξ)ξ + g(Y, Z)η(X)∇W ξ

−g(X,Z)g(Y,∇W ξ)ξ − g(X,Z)η(X)ξ + g(Y,∇W ξ)η(Z)X

+η(Y )g(Z,∇W ξ)X − g(X,∇W ξ)η(Z)Y − η(X)g(Z,∇W ξ)Y }

+µ{g(Y, Z)(∇Wh)X + g(((∇Wh)Y, Z)X

−g((∇Wh)X,Z)Y − g(X,Z)(∇Wh)Y }. (5.3)

Applying ϕ2 to both sides of (5.3) and taking X , Y , Z , and W as horizontal vector fields, we get

1

3
(4(Wκ) + 2(Wµ)){g(Y,Z)X − g(X,Z)Y } (5.4)

+(Wµ){g(X,Z)hY − g(Y, Z)hX − g(hY,Z)X + g(hX,Z)Y } = 0.

Applying h to (5.4) and taking the trace of h , we have

(Wµ){g(X,Z)traceh2Y − g(Y, Z)traceh2X} = 0. (5.5)

Contracting X and Z in (5.5), we obtain

2n(Wµ)traceh2Y = 0. (5.6)

Since traceh2 ̸= 0, from (5.6) it follows that µ =constant. Using µ =constant in (5.4) yields κ =constant.

Hence, the manifold reduces to a (κ, µ)-contact metric manifold. Thus, we can give the following:

Theorem 3 A locally ϕ-concircularly symmetric 3-dimensional generalized (κ, µ)-contact metric manifold

reduces to a (κ, µ)-contact metric manifold.
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6. Three-dimensional generalized (κ, µ)-contact metric manifolds satisfying the condition R·C̃ = 0

Let M be a 3-dimensional generalized (κ, µ)-contact metric manifold satisfying the condition R · C̃ = 0. Then

we can write

(R(X,Y ) · C̃)(U, V )W = R(X,Y )C̃(U, V )W − C̃(R(X,Y )U, V )W

−C̃(U,R(X,Y )V )W − C̃(U, V )R(X,Y )W = 0. (6.1)

If we take X = V = ξ in (6.1), we get

(R(ξ, Y ) · C̃(U, ξ)W = R(ξ, Y )C̃(U, ξ)W − C̃(R(ξ, Y )U, ξ)W (6.2)

−C̃(U,R(ξ, ξ)V )W − C̃(U, ξ)R(ξ, Y )W = 0.

Using (2.4) in (6.2), we have

κg(Y, C̃(U, ξ)W )ξ − κη(C̃(U, ξ)W )Y + µg(hY, C̃(U, ξ)W )ξ

−µη(C̃(U, ξ)W )hY − κg(Y,U)C̃(ξ, ξ)W + κη(U)C̃(Y, ξ)W

−µg(hY,U)C̃(ξ, ξ)W + µη(U)C̃(hY, ξ)W − κη(Y )C̃(U, ξ)W (6.3)

+κC̃(U, Y )W + µC̃(U, hY )W = 0.

Using (2.10) in (6.3), we write

κ(
2κ+ µ

3
){η(W )g(Y,U)ξ − g(U,W )η(Y )ξ − g(Y,W )η(U)ξ

−η(Y )η(W )U − η(Y )g(U,W )ξ}

+κµ{η(W )g(hY,U)ξ − η(U)g(hY,W )ξ + η(U)η(W )hY

−η(U)g(hY,W )ξ − η(Y )η(W )hU + g(Y,W )hU − g(U,W )hY + g(hY,W )U}

−µ(
4κ+ 2µ

3
){g(hY,W )U − g(U,W )hY }+ µ2{η(W )g(hY, hU)ξ

+η(U)η(W )h2Y − η(U)g(h2Y,W )ξ + g(hY,W )hU (6.4)

−g(U,W )h2Y − g(h2Y,W )U}

−κ(
4κ+ 2µ

3
){g(Y,W )U − g(U,W )Y }+ κ(2κ+ µ){g(Y,W )η(U)ξ

−g(U,W )η(Y )ξ + η(Y )η(W )U − η(U)η(W )hY }

+µ(
2κ+ µ

3
){η(W )g(hY,U)ξ − g(hY,W )ξ}

+µ(2κ+ µ){g(hY,W )η(U)ξ − η(U)η(W )hY } = 0

Taking the inner product with T and contracting Y and T in (6.4), we obtain

{5κ2κ+ µ

3
+ µ2g(h2ei, ei)}(η(U)η(W )− g(W,U)) (6.5)

+{κµ− µ(
4κ+ 2µ

3
)}g(hW,U) = 0.
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Instead of (6.5), we can write

{5κ2κ+ µ

3
+ µ2g(h2ei, ei)}(η(U)ξ − U) (6.6)

+{κµ− µ(
4κ+ 2µ

3
)}hU = 0.

Operating h and taking the trace of h, we obtain κµ−µ( 4κ+2µ
3 ) = 0. Therefore, either µ = 0 or κ+2µ = 0. By

Lemma 3, we get from κ+2µ = 0 that the manifold is a (κ, µ)-contact manifold. We also know Qϕ−ϕQ = 2µhϕ .

Therefore, µ = 0 implies Qϕ = ϕQ . Then by Lemma 4, we get that the manifold is either Sasakian, flat, or of

constant ξ -sectional curvature κ < 1 and constant ϕ -sectional curvature −1.

Hence, we can give the following:

Theorem 4 A 3-dimensional non-Sasakian generalized (κ, µ)-contact metric manifold satisfying the condition

R · C̃ = 0 is either a (κ, µ)-contact manifold, flat, or of constant ξ -sectional curvature κ < 1 and constant

ϕ-sectional curvature −1 .

7. Three-dimensional generalized (κ, µ)-contact metric manifolds satisfying the condition C̃ ·S = 0

Let M be a 3-dimensional generalized (κ, µ)-contact metric manifold satisfying the condition C̃(ξ,X) ·S = 0.

Then we can write

(C̃(ξ,X) · S)(Y,W ) = −S(C̃(ξ,X)Y,W )− S(Y, C̃(ξ,X)W ) = 0,

or equivalently,

S(C̃(ξ,X)Y,W ) + S(Y, C̃(ξ,X)W ) = 0. (7.1)

Using (2.10) in (7.1), we get

−µ
2κ+ µ

3
{g(X,Y )η(W )− g(X,W )η(Y )− η(Y )g(hX,W )}

+µ2{η(Y )g(hX,W )− g(hX, Y )η(W )}

+
(2κ+ µ)2

3
{g(X,Y )η(W )− η(X)η(W )η(Y )}+ µ(2κ+ µ)g(hX, Y )η(W )

+µ2(k − 1)g(X,W )η(Y )− µ2(k − 1)η(Y )η(W )η(X)− µ
2κ+ µ

3
{g(X,W )η(Y ) (7.2)

−g(X,Y )η(W ) + η(W )g(hY,X)}+ µ2{η(W )g(hX, Y )− g(hX,W )η(Y )}

+{g(X,W )η(Y )− η(W )η(Y )η(X)}+ µ(2κ+ µ)g(hX,W )η(Y )

+µ2(k − 1)g(X,Y )η(W )− µ2(k − 1)η(Y )η(W )η(X) = 0,

or equivalently,

µ
2κ+ µ

3
{η(Y )g(hX,W ) + η(W )g(hY,X)η(W )}

−µ(2κ+ µ){g(hX, Y )η(W ) + g(hX,W )η(Y )}+ (2κ+ µ)2

3
(7.3)

+µ2(κ− 1)){g(X,Y )η(W )− 2η(X)η(Y )η(W ) + g(X,W )η(Y )} = 0.
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Taking W = ξ in (7.3), we obtain

2µ
2κ+ µ

3
g(hY,X) + (

(2κ+ µ)2

3
+ µ2(κ− 1)) (7.4)

{g(X,Y )− 2η(X)η(Y ) + η(X)η(Y )} = 0.

Equation (7.4) can be written as

2µ
2κ+ µ

3
hY + (

(2κ+ µ)2

3
+ µ2(κ− 1)){Y − η(Y )ξ} = 0. (7.5)

Operating h in (7.5), we get

2µ
2κ+ µ

3
h2Y + (

(2κ+ µ)2

3
+ µ2(κ− 1))hY = 0. (7.6)

Taking the trace of h and using trh = 0 in (7.6), we get µ(2κ + µ) = 0, since trh2 ̸= 0. Therefore, either

µ = 0 or 2κ+µ = 0. By Lemma 3, we get from 2κ+µ = 0 that the manifold becomes a (κ, µ)-contact metric

manifold. Also, if µ = 0, then by Lemma 4, we get that the manifold is either Sasakian, flat, or of constant

ξ -sectional curvature κ < 1 and constant ϕ -sectional curvature −1.

Thus, we are in a position to state the following:

Theorem 5 A 3-dimensional generalized (κ, µ)-contact metric manifold satisfying the condition C̃ · S = 0 is

either Sasakian, flat, or of constant ξ -sectional curvature κ < 1 and constant ϕ-sectional curvature −1 , or a

(κ, µ)-contact metric manifold.

8. An example of generalized (κ, µ)-contact metric manifolds

Let k : I ⊂ R → R be a smooth function defined on an open interval I , such that k(z) < 1 for any z ∈ I.

Then we construct a generalized (κ, µ)-contact metric manifold (M,ϕ, ξ, η, g) in the set M = R2 × I ⊂ R3 as

follows:

We put λ(z) =
√
1− k(z) > 0, λ

′
(z) = ∂λ

∂z and we consider three linearly independentvector fields e1, e2 ,

and e3 on M as follows:

e1 =
∂

∂x
, e2 =

∂

∂y
,

e3 = [2y + f(z)]
∂

∂x
+ [2λ(z)x− λ

′
(z)

2λ(z)
y + h(z)]

∂

∂y
+

∂

∂z
,

where f(z) and h(z) are arbitrary functions of z . We define the tensor fields ϕ, η, g as follows:

g is the Riemannian metric on M with respect to which the vector fields e1, e2 ,e3 are orthonormal; η

is the 1-form on M defined by η(Z) = g(Z, e1) for any Z ∈ χ(M); ϕ is the (1, 1)-tensor field defined by

ϕe1 = 0, ϕe2 = e3, ϕe3 = −e2 .

Now we calculate the following:

[e1, e2] = 0, [e1, e3] = 2λ(z)e2, [e2, e3] = − λ′(z)

2λ(z)
e2 + 2e1.

365



YILDIZ et al./Turk J Math

Since (η ∧ dη)(e1, e2, e3) ̸= 0 everywhere on M , we conclude that η is a contact form. From the definition of

ϕ , g and the relations of (8.1) it is easy to verify that

ϕ2Z = −Z + η(Z)e1,

g(ϕY, ϕZ) = g(Y, Z)− η(Y )η(Z),

dη(Y,Z) = g(Y, ϕZ),

for any Y, Z ∈ χ(M). Therefore, (M,ϕ, ξ, η, g) is a contact metric manifold for ξ = e1. Using Koszul’s formula

we calculate the following:

∇e1e1 = 0 ∇e1e2 = −{1 + λ(z)}e3, ∇e1e3 = {1 + λ(z)}e2

∇e2e1 = −{1 + λ(z)}e3, ∇e2e3 =
λ′(z)

2λ(z)
e3, ∇e2e3 = − λ′(z)

2λ(z)
e2 + {1 + λ(z)}e1

∇e3e1 = {1− λ(z)}e2, ∇e3e2 = −{1− λ(z)}e1, ∇e3e3 = 0. (8.1)

Comparing with the relation ∇Xe1 = −ϕX − ϕhX and the relations obtained in (8.1), we see that

he1 = 0, he2 = λ(z)e2, he3 = −λ(z)e3.

Using the formula R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, we calculate the following:

R(e2, e1)e1 = {1 + λ(z)}2e2

= {1 + 2λ(z) + (λ(z))2}e2

= [{1− (λ(z))2}+ 2{1 + λ(z)}λ(z)]e2

= {1− (λ(z))2}(η(e1)e2 − η(e2)e1) + 2{1 + λ(z)}(η(e1)he2 − η(e2)he1),

R(e3, e1)e1 = {1− 2λ(z)− 3(λ(z))2}e3

= [{1− (λ(z))2}+ 2{1 + λ(z)}(−λ(z))]e3

= {1− (λ(z))2}(η(e1)e3 − η(e3)e1) + 2{1 + λ(z)}(η(e1)he3 − η(e3)he1),

R(e2, e3)e1 = 0

= {1− (λ(z))2}(η(e3)e2 − η(e2)e3) + 2{1 + λ(z)}(η(e3)he2 − η(e2)he3).

In view of the above expressions of curvature tensors we can easily conclude that the manifold M is a generalized

(κ, µ)-contact metric manifold with k = {1− (λ(z))2} and µ = 2{1 + λ(z)}.
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Other curvature tensors are given below:

R(e1, e2)e3 = 0,

R(e1, e2)e2 = {1 + λ(z)}e1,

R(e1, e3)e3 = {1− 2λ(z)− 3(λ(z))2}e1,

R(e3, e2)e2 = { λ′′(z)

2(λ(z))2
− 3(λ′(z))2

4(λ(z))2
− 2{1 + λ(z)} − {1− (λ(z))2}}e3

R(e2, e3)e3 = { λ′′(z)

2(λ(z))2
− 3(λ′(z))2

4(λ(z))2
− 2{1 + λ(z)} − {1− (λ(z))2}}e2.

If we consider λ(z) = constant > 0, then κ and µ become constants and hence the manifold becomes a

(κ, µ)-contact metric manifold.

It can be easily verified that such a (κ, µ)-contact metric manifold is locally ϕ-symmetric. Then Theorem

1 is verified.
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