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Abstract: We compute the regular poles of the L-factors of the admissible and irreducible representations of the group

GSp4 , which admit a nonsplit Bessel functional and have a Jacquet module length of 3 with respect to the unipotent

radical of the Siegel parabolic, over a non-Archimedean local field of odd characteristic. We also compute the L -factors

of the generic representations of GSp4 .
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1. Introduction

Let k be a non-Archimedean local field of odd characteristics. By Table A.3 of [7], the length of a Jacquet

module with respect to the unipotent radical of the Siegel parabolic of an irreducible admissible representation

of GSp4(k) is at most four. In [2], we considered the representations that have Jacquet module length of at

most 2 and admit a nonsplit Bessel functional. For such representations we computed the regular poles of

the L-factors of the spinor (degree 4) L-functions defined by Piatetski-Shapiro [5]. As a consequence, we also

obtained the L -factors of the generic ones among the representations that were considered.

In this paper, we compute the regular poles of the same type of the representations of GSp4(k) mentioned

above, but with Jacquet module length 3. As a result, we also determine the L -factors of the generic ones. Our

results agree with the results of [11], [3], and the local Langlands conjecture.

There are three available constructions to define L -factors of representations of GSp4(k). The first one

was defined by Novodvorsky integrals in [4] only for generic representations. The second one was defined by

Shahidi in [9] and extended by Gan and Taked in [3] for all representations except nongeneric supercuspidal

ones. In this paper, we consider the construction of Piatetski-Shapiro given in [5] for all infinite dimensional

representations by using the Bessel model.

Let us first give the definition of the Bessel model. Let S be the unipotent radical of the Siegel parabolic

subgroup of GSp4(k) and let ψ be any nondegenerate character of S . We can realize the group GL2(k) in the

Levi subgroup of the Siegel parabolic subgroup. Let T be the connected component of the stabilizer of ψ in

GL2(k). Then T is isomorphic to units of quadratic extension K of k . Therefore, R = TS is a subgroup of

GSp4(k). Let Λ be any character of T . Then define αΛ,ψ(r) =: Λ(t)ψ(s) for r ∈ R, s ∈ S, t ∈ T and r = st .

Let (Π, VΠ) be an infinite-dimensional, irreducible, and admissible representation of GSp4(k). The
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dimension of the space

HomR(Π, αΛ,ψ) ∼= HomGSp4(k)(Π, Ind
GSP4(k)
R αΛ,ψ)

is at most one. If it is nonzero, the image of Π in the induced space above is called the Bessel model of Π. If

Π is infinite-dimensional, then for some choice of R,ψ , and Λ the Bessel model exists.

In the construction of Piatetski-Shapiro the local integrals are

L(s;Wu,Φ, µ) =

∫
N\G

Wu(g)Φ[(0, 1)g]µ(detg)|detg|
s+ 1

2

k dg,

where Φ ∈ C∞
c (K2), µ is a character of k∗ , u ∈ VΠ , Wu is an element of the Bessel model, and N,G are

subgroups of Gsp4(k), which can be realized in GL2(K) and will be defined in the next section.

The integral family {L(s;Wu,Φ, µ) : v ∈ VΠ, Φ ∈ C∞
c (K2)} admits a greatest common denominator for

all its elements. Hence, there exists a function L(s,Π, µ) called an L -factor such that L(s;Wu,Φ, µ)/L(s,Π, µ)

is entire for all u ∈ VΠ and Φ ∈ C∞
c (K2). The poles of the L -factor, coming from an integral with a Schwartz

function vanishing at zero, are called regular poles.

Let us summarize the results of [2].

1) Define φu(x) := Wu

(
xI2

I2

)
. By using Iwasawa decomposition in Proposition 2.5 of [2] it was proved

that the regular poles of the L-factors are the poles of the meromorphic continuation of the integrals∫
k∗
φu(x)µ(x)|x|s−3/2d∗x.

Hence, the regular poles depend only on the asymptotic behavior of φu(x).

2) If the length of the Jacquet module is zero, then by Proposition 3.1 of [2], φu has a compact support

in k∗ and there is no regular pole.

3) If the length of the Jacquet module is one, then by Proposition 3.2 of [2], for |x| sufficiently small we

have
φu(x) = Cχ(x)

for a constant C and a character χ of k∗ , where the Jacquet module is ⊕χ as k∗ module. By Lemma 3.4 of

[2], a regular pole is the pole of CL(s, χ).

4) If the length of the Jacquet module is two then the constituents of the Jacquet module are ⊕χ1 and

⊕χ2 as k∗ module. If χ1 ̸= χ2 , then by Proposition 3.2 of [2],

φu(x) = C1χ1(x) + C2χ2(x)

if χ1 = χ2 = χ then by Proposition 3.2 of [2]

φu(x) = C1χ(x) + C2χ(x)vk(x),

where C1 and C2 are constants in k and vk is the valuation of k . Hence, by Lemma 3.4 and 3.7 of [2], regular

poles are the poles of C1C2L(s, χ1)L(s, χ2) or the least common multiple of C1L(s, χ) and C2L(s, χ)
2 .
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5) After determining the asymptotic behavior of φu we showed that for some choice of u ∈ VΠ we have

that C , C1 , and C2 above are nonzero. In Proposition 5.8 and Proposition 5.11 of [2] it was proved that this

is a consequence of the existence of the homomorphisms from the constituents of the Jacquet module to the

character Λ, which depends on the Bessel existence conditions. By using these results in Theorem 5.9 of [2]

and Theorem 5.16 of [2] we computed the regular poles of each representations that were considered.

In this paper, we follow similar steps but extend the results. Unlike the case of the paper [2], we need

the Jacquet module structures of the representations more explicitly, namely not only the constituents but also

their orders.

This paper is organized as follows. In Section 2, we give the subgroups of GSp4(k), definitions of Bessel

model, local L -factors, and regular poles. In Section 3, we determine the Jacquet module structure of the

representations that we consider. In Section 4, we characterize the exact sequences of k∗ . In Section 5, we

determine the asymptotic behavior of φu and possible regular poles. In Section 6, we show that there is a

relation between the asymptotic behavior of the φu and the homomorphisms from the constituents of the

Jacquet module to the character Λ. Then we compute the regular poles of each representation separately.

The results of Section 6 with exceptional (nonregular) poles as expected by the local Langlands conjecture and

semisimplifications of the Jacquet modules are given in the Appendix.

2. Definitions and preliminaries

We fix some notations.
k is a non-Archimedean local field of odd characteristic.
vk is the valuation of k .

ν is the absolute value on k .
O is the ring of integers of k .

P is the unique maximal prime ideal of O .

ϖ is a fixed generator of P .

q is the cardinality of the residue field of k .

ψ is a nontrivial additive character of k with conductor O .

dx = dψx is the self-dual Haar measure on k .

If ξ is a representation of a group, then its space and central character are denoted by Vξ and ωξ , respectively.

2.1. GSp4(k) and its subgroups

Let us define the group GSp4(k) by

GSp4(k) =
{
g ∈ GL4(k) : g

tJg = λ(g)J for some λ(g) ∈ k∗
}
,

where w =

(
1

1

)
and J =

(
w

−w

)
. Let

P =

{
g ∈ GSp4(k) : g =

(
A B

D

)
, A,B,D ∈M2(k)

}
be the Siegel parabolic subgroup of GSp4(k).

M =

{(
A

λ(A′)−1

)
: A ∈ GL2(k), λ ∈ k∗

}
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is the Levi factor of P and

S =

{(
I2 Y

I2

)
: Y = Y ′

}
,

where X ′ = w(Xt)w for X ∈M2(k) is the unipotent radical of P . Any character of S is of the form

ψβ

(
I2 Y

I2

)
= ψ[tr(βY )]

for some β = β′ . ψβ is called nondegenerate if β ∈ GL2(k).

Let ψβ be a nondegenerate character of S and let T be the connected component of the stabilizer of

ψβ in M ; then there is a unique semisimple algebra K over k of index (K : k) = 2 and T ∼= K∗ . K is either

a quadratic field extension of k and K = k(
√
ρ) for some ρ /∈ (k∗)2 or K = k ⊕ k . If K is a field then T is

called nonsplit. Otherwise it is called split.

In this paper, we consider the nonsplit case and let K = k(ρ). The group

G = {g ∈ GL2(K) : det g ∈ k∗}

can be realized in GSp4(k) as

(
a+ b

√
ρ c+ d

√
ρ

e+ f
√
ρ m+ n

√
ρ

)
↪→


a b c d
bρ a dρ c
e f m n
fρ e nρ m

 ,

where a+ b
√
ρ, c+ d

√
ρ, e+ f

√
ρ,m+ n

√
ρ ∈ K∗, an+ bm = cf + de. Let

N =

{(
I2 ∗

I2

)
∈ G

}
⊂ G,

which can be realized as a subgroup of S . In the nonsplit case,

T =




a b
bρ a

a −b
−bρ a

 : a+ b
√
ρ ∈ K∗

 .

The center of GSp4(k) is

Z =

{(
aI2

a2((aI2)
′)−1

)
: a ∈ k∗

}
and we define the group

H :=

{(
xI2

x2((xI2)
′)−1

)
: x ∈ k∗

}
.
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2.2. Bessel model, L-factor, and regular poles

If Λ is a character of T and ψ is a nondegenerate character of S then for r = ts ∈ R

αΛ,ψ(r) := Λ(t)ψ(s)

is a character of R . The following theorem guarantees the existence and uniqueness of the Bessel model.

Theorem 2.1 [5] Let (Π, VΠ) be an irreducible smooth, admissible, and preunitary representation of Gsp4(k) ;

then
dim[HomR(Π, αΛ,ψ)] ≤ 1.

If Π is infinite-dimensional, it is nonzero for some choice of Λ , ψ , and R .

Let l be a nonzero element of HomR(Π, αΛ,ψ). For u ∈ VΠ define Bessel function Wu on GSp4(k) by

Wu(g) := l(Π(g)u). Note that for r ∈ R , g ∈ GSp4(k) and v ∈ VΠ we have Wv(rg) = αΛ,ψ(r)Wv(g). The
space

WΛ,ψ = {Wu : u ∈ VΠ}

is called the Bessel model of Π. A representation of GSp4(k) can be defined on WΛ,ψ by right translation and

Π ∼= WΛ,ψ . For hx :=

(
xI2

I2

)
∈ H define φu(x) := Wu(hx). The next theorem provides the definitions

of L -functions and L-factors.

Theorem 2.2 [5] Let Φ ∈ C∞
c (K2) and µ be a character of k∗ . Then for s ∈ C , the integral

L(s;Wu,Φ, µ) =

∫
N\G

Wu(g)Φ[(0, 1)g]µ(detg)|detg|
s+ 1

2

k dg

converges absolutely for Re(s) large enough and has a meromorphic continuation to the whole plane. These

integrals form a fractional ideal of the ring C[qs, q−s] of the form L(s; Π, µ)C[qs, q−s] . The factor L(s; Π, µ) is

of the form P (q−s)−1 , where P (X) ∈ C[X] , P (0) = 1 and is called the L-factor of Π twisted by µ .

A pole of L(s; Π, µ) is called a regular pole if it is a pole of some L(s;Wu,Φ, µ) with Φ(0, 0) = 0. Any

other pole is called an exceptional pole. Regular poles will be expressed as poles of the Tate L-functions:

L(s, χ) =

{
1 if χ is ramified

(1− χ(ϖ)q−s)−1 if χ is unramified

where χ is a character of k∗ .

By using Iwasawa decomposition regular poles can be characterized as follows.

Proposition 2.3 Regular poles of L(s; Π, µ) are the poles of the integrals∫
k∗
φu(x)µ(x)|x|s−3/2d∗x, v ∈ VΠ.

Proof Proposition 2.5 of [2] 2

By the following theorem, finding regular poles of generic representations is equivalent to finding L -factors.

Theorem 2.4 [5] If Π is generic, then its L-factor has only regular poles.
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2.3. Parabolic induction and Jacquet module

Let Po be a maximal standard parabolic subgroup of GSp4(k) with Levi decomposition Po = MoUo .

Let (τ, Vτ ) be a representation of Mo and let δPo be the modular character of Po . The normalized

parabolic induction from Po to GSp4(k) is defined as indGSp4Po
τ = {f : GSp4(k) → Vτ : f(mug) =

δPo(m)1/2τ(m)f(g), for m ∈Mo and u ∈ Uo } . The action of GSp4(k) on indGSp4Po
τ is by right translation.

The unnormalized one is denoted by Ind .

Let (Π, VΠ) be an admissible and irreducible representation of GSp4(k). Define

VS(Π) := span{v −Π(s)v : s ∈ S, v ∈ VΠ}.

The normalized Jacquet module with respect to S is the smooth representation of M defined by

RS(Π) = ΠS ⊗ δ
−1/2
P ,

where (ΠS , VΠ/VS(Π)) is the regular Jacquet module.

If p =

(
A ∗

λ(A′)−1

)
∈ P for A ∈ GL2(k), then δP (p) = |det(A)3λ−3| .

Let B denote the Borel subgroup of GL2(k). For the characters χ1, χ2 of k∗ , define ind
GL2(k)
B (χ1, χ2) =

{f : GL2(k) → C : f(

(
a b

d

)
g) = δB(

(
a b

d

)
)1/2χ1(a)χ2(d)f(g), g ∈ GL2(k)} to be the normalized

induction from B to GL2(k), where δB(

(
a b

d

)
) =

∣∣a
d

∣∣ . Let τ be a representation of GL2(k), Jacquet

module of τ with respect to the unipotent subgroup NGL2(k) =

{(
1 ∗

1

)
∈ GL2(k)

}
is

J(τ) = Vτ/{τ(n)u− u : n ∈ NGL2(k), u ∈ Vτ}

and it is a representation of the diagonal subgroup of GL2(k). By Theorem 4.5.1 of [1], ind
GL2(k)
B (ν1/2, ν−1/2)

has an irreducible subrepresentation of codimension one denoted by StGL2(k) and one-dimensional quotient

denoted by 1GL2(k). Also, by Theorem 4.5.4 of [1],

J(StGL2(k))

(
a

d

)
=

∣∣∣a
d

∣∣∣ and J(1GL2(k)) = 1k∗ .

We also denote the contragredient representation of τ by τ̃ .

3. Jacquet module structure

In this section we determine the Jacquet module structures of the representations of Gsp4(k), which are induced

from the Siegel parabolic subgroup. First we provide the root system and Weyl group of GSp4(k). For details,

one can look at Section 2.3 of [7].
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3.1. Weyl group

A base for a root system of GSp4(k) is α, β and the positive roots are

α, β, α+ β, 2α+ β.

A Weyl group is

{1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2}

where

s1 =

(
w

w

)
, s2 =


1

1
−1

1

 , s2s1s2 =

(
I2

−I2

)

and

s1(α) = −α, s1(β) = 2α+ β, s2(α) = α+ β, s2(β) = −β .
s1s2(α) = α+ β, s1s2(β) = α, s2s1(α) = −α− β, s2s1(β) = 2α+ β .

s2s1s2(α) = α, s2s1s2(β) = α+ β, s1s2s1(α) = −α− β, s2s1s2(β) = β .

s1s2s1s2(α) = −α, s2s1s2(β) = α+ β .

We need the following sets:

[W/Wα] := {w : wα > 0} = {1, s2, s1s2, s2s1s2}

[Wα\W ] := {w : w−1α > 0} = {1, s2, s2s1, s2s1s2}

[Wα\W/Wα] := [W/Wα] ∩ [Wα\W ] = {1, w1 = s2s1s2, w2 = s2} .

Siegel parabolic subgroup of GSp4(k) corresponds to the positive root α and P = Pα.

Proposition 3.1 i) w−1
1 Pw1 ∩ P =M .

ii) w−1
1 Pw1 ∩M =M .

iii) w−1
1 Pw1 ∩ S = I4 .

iv) M ∩ w1Sw
−1
1 = I4 .

Proof For p =

(
A B

D

)
∈ P we have

w−1
1 pw1 =

(
−I2

I2

)(
A B

D

)(
I2

−I2

)
=

(
−D

A B

)(
I2

−I2

)
=

(
D
−B A

)
.
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Hence,

w−1
1 Pw1 ∩ P =M, w−1

1 Pw1 ∩M =M, w−1
1 Pw1 ∩ S = I4.

Since

w−1
1 Pw1 ∩ S = I4 ⇒ P ∩ w1Sw

−1
1 = I4,

we have M ∩ w1Sw
−1
1 = I4. 2

Proposition 3.2 Let

M2 =


∗ ∗

∗
∗ ∗

∗

 , M ′
2 =


1 ∗

1
1 ∗

1

 ,

P2 =


∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗

 , S2 =


1 ∗ ∗

1 ∗
1

1


be subgroups of GSp4(k) .

i) w−1
2 Pw2 ∩ P = P2 .

ii) w−1
2 Pw2 ∩M =M2 .

iii) w−1
2 Pw2 ∩ S = S2 .

iv) M ∩ w2Sw
−1
2 =M ′

2 .

Proof For p =


a b c d
e f g h

m n
r s

 ∈ P we have

w−1
2 pw2 =


1

−1
1

1




a b c d
e f g h

m n
r s




1
1

−1
1



=


a b c d

−m −n
e f g h

r s




1
1

−1
1



=


a −c b d

m −n
e −g f h

−r s

 .

Hence,

M2 = w−1
2 Pw2 ∩M, w−1

2 Pw2 ∩ P = P2, w
−1
2 Pw2 ∩ S = S2.
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For s =


1 c d

1 g h
1

1

 ∈ S we have

w2sw
−1
2 =


1

1
−1

1




1 c d
1 g h

1
1




1
−1

1
1



=


1 c d

1
−1 −g −h

1




1
−1

1
1



=


1 c d

1
−g 1 −h

1

 .

Hence, M ∩ w2Sw
−1
2 =M ′

2 . 2

Proposition 3.3 i) dim(P\Pw1P ) = 3.

ii) dim(P\Pw2P ) = 2 .

Proof i) By Proposition 3.1(i), since w1Mw−1
1 ⊂ P , we have

P\Pw1P = P\P (w1Mw−1
1 )w1S = P\Pw1S.

Hence, the representatives for the quotient are the elements of w1S and dim(P\Pw1P ) = 3.

ii) First note that w2Mw−1
2 ∩ P = w2M2w

−1
2 = M2 , and if g =

(
∗ ∗
c ∗

)
∈ GL2(k) and c ̸= 0 then

there exists b ∈ B and z =

(
1

1 ∗

)
∈ GL2(k) such that g = bz . Hence, M = M2 ∩ M2M

′ where

M ′ =




1
1 n

1
1 −n

 : n ∈ k

 . Also let S′ =




1
1 ∗

1
1


 . Note that M ′S = SM ′ and

S = S2S
′ . Hence,

P\Pw2P = P\Pw2MS

= P\Pw2M2S ∪ P\Pw2M2M
′S

= P\Pw2S ∪ P\Pw2M
′S

= P\Pw2S ∪ P\Pw2SM
′

= P\Pw2S ∪ P\Pw2SM
′

= P\Pw2S2S
′ ∪ P\Pw2S2S

′M ′

= P\Pw2S
′ ∪ P\Pw2S

′M ′
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and the representatives for P\Pw2P are the elements of S′ ∪ S′M ′ . Hence, dim(P\Pw2P ) = 2. 2

3.2. Jacquet module structure of induced representations

In this section we summarize the Jacquet module structures of induced representations due to Section 3.4 of [10]

and Section 6.3 of the unpublished book Introduction to the Theory of Admissible Representations of p-adic

Reductive Groups by William Casselman. Let θ be a representation of M and

In = {f ∈ indGP θ : supp(f) ⊂ Gn = ∪dim(PwP )≥nPwP}.

The elements of I3 , I2 , I1 , and I0 = I have support in Pw1P , Pw1P ∪Pw2P , Pw1P ∪Pw2P , and Gsp4(k),

respectively. Note that I1 = I2. We also have

(In/In+1)S ∼= IndMw−1Pw∩Mw
−1(θM∩wSw−1)(w−1δ

1/2
P )γ, (1)

where dim(PwP ) = n and γ is the modulus of the unique rational character of w−1Pw ∩ P acting on

S/(w−1Pw ∩ S), and θM∩wSw−1 is the Jacquet module of θ with respect to M ∩ wSw−1 .

Now we give the Jacquet module structure of representations induced from the Siegel parabolic by using (1).

Proposition 3.4 Let θ = τ ⊗ ρ be a representation of M . If I = ind
GSp4(k)
P θ then 0 ⊂ I3 ⊂ I2 ⊂ I and

0 ⊂ (I3)S ⊂ (I2)S ⊂ IS ,

where
i)(I3)S = τ̃ ⊗ ωτρ.

ii)(I2/I3)S = ind
GL2(k)
B J ′(τ)⊗ ρν1/2 where J(τ) is the Jacquet module of τ and

J ′(τ)⊗ ρν1/2


a

d
λ
d

λ
a

 = J(τ)

(
a

λ/d

)
|ad|−1/2 ⊗ ρ(λ)|λ|1/2.

iii)(I/I2)S = θ.

Proof First constituent: w = w1

By (1),

(I3)S = IndMMw
−1(θI4)(w

−1δ1/2)γ = w−1(θδ1/2)γ

and γ is the modulus of the unique rational character of M acting on S ; hence, it is δ .

w−1(θδ
1/2
P )δ

(
A

λ(A′)−1

)
= θδ

1/2
P

(
λ(A′)−1

λ(λ−1)

) ∣∣∣∣det(A)λ

∣∣∣∣3

= τ(λ(A′)−1)⊗ ρ(λ)

∣∣∣∣det(λ(A′)−1)

λ

∣∣∣∣3/2 ∣∣∣∣det(A)λ

∣∣∣∣3

= τ((A′)−1)⊗ ωτρ(λ)

∣∣∣∣det(A)λ

∣∣∣∣3/2
= δ

1/2
P

(
A

λ(A′)−1

)
τ̃(A)⊗ ωτρ(λ).
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In Table A.2, the Jacquet module is normalized by δ
−1/2
P ; hence, the first constituent is τ̃ ⊗ ωτρ.

Second constituent: w = w2

By (1),

(I2/I3)S = IndMM2
w−1(θM ′

2
)(w−1δ

1/2
P )γ

and γ is the modulus of the unique rational character of P2 acting on S/S2 =


1

1 ∗
1

1

 . Since


a

d
λ
d

λ
a




1
1 s

1
1




a
d

λ
d

λ
a


−1

=


1

1 d2s
λ

1
1



γ


a

d
λ
d

λ
a

 = d2

λ . Also,

w2


a

d
λ
d

λ
a

w−1
2 =


1

1
−1

1




a
d

λ
d

λ
a




1
−1

1
1



=


a

λ
d

λ
a




1
−1

1
1



=


a

λ
d

λ
(
d
λ

)
λ
(
1
a

)
.



Hence,

(I2/I3)S = IndMB×k∗w
−1(θN )(w−1δ

1/2
P )γ
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and θN = J(τ)⊗ ρ where J(τ) is Jacquet module of τ . Thus we have

w−1(θN )(w−1δ1/2)γ


a

d
λ
d

λ
a



= [J(τ)⊗ ρ]δ1/2

w


a
d

λ
d

λ
a

w−1

 γ


a
d

λ
d

λ
a



= [J(τ)⊗ ρ]δ1/2


a

λ
d

λ
(
d
λ

)
λ
(
1
a

)
 γ


a

d
λ
d

λ
a



= J(τ)

(
a

λ
d

)
ρ(λ)

∣∣∣∣∣ aλdλ
∣∣∣∣∣
3/2 ∣∣∣∣d2λ

∣∣∣∣
= J(τ)

(
a

λ
d

)
ρ(λ)|a|3/2|d|1/2|λ|−1. (2)

In Table A.2 the Jacquet module is normalized by δ
−1/2
P . Hence, (2) becomes

∣∣∣∣adλ
∣∣∣∣−3/2

J(τ)

(
a

λ
d

)
|a|3/2|d|1/2| ⊗ ρ(λ)|λ|−1

= J(τ)

(
a

λ
d

)
|d|−1 ⊗ ρ(λ)|λ|1/2

= δ
1/2
B δ

−1/2
B

(
a

d

)
J(τ)

(
a

λ
d

)
|d|−1 ⊗ ρ(λ)|λ|1/2

= δ
1/2
B

(
a

d

)
J(τ)

(
a

λ
d

)
|ad|−1/2 ⊗ ρ(λ)|λ|1/2

and the result follows.

Third constituent: w = 1
By (1),

(I/I2)S = IndMMθI4δ
1/2
P γ = θδ

1/2
P γ

and γ is the modulus of the unique rational character of P acting on I4 ; hence, it is 1. In Table A.2 the

Jacquet module is normalized by δ
−1/2
P and hence the third constituent is θ . 2

3.3. Representations and their Jacquet modules

In this section we determine Jacquet module structures of the representations that we consider in this paper.

Irreducible and admissible representations of GSp4(k), which has Jacquet module length of 3, are given in Table
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A.1 due to the Sally–Tadic classification in [8]. In this table, the representations that we consider are named as

IIa, IIb, Via, and VId. Additionally, semisimplifications of these representations are given in Table A.2.

3.3.1. II-a: χStGL2(k) ⋊ σ

Proposition 3.5 If I = χStGL2(k) ⋊ σ then we have

0 ⊂︸︷︷︸
χ−1StGL2(k)⊗χ2σ

(I3)S ⊂︸︷︷︸
ind

GL2(k)

B (χν1/2,χ−1ν1/2)⊗χν−1/2σ

(I2)S ⊂︸︷︷︸
χStGL2(k)⊗σ

(I)S .

Proof First constituent: By Proposition 3.4(i), the first constituent is

˜χStGL2(k) ⊗ ωχStGL2(k)
σ = χ−1StGL2(k) ⊗ χ2σ.

Second constituent: By Proposition 3.4(ii),

J(χStGL2(k))

(
a

λ
d

)
|ad|−1/2 ⊗ σ(λ)|λ|1/2

= χ

(
aλ

d

) ∣∣∣∣∣ aλ
d

∣∣∣∣∣ |ad|1/2 ⊗ σ(λ)|λ|1/2

= χ(a)|a|1/2χ−1(d)|d|1/2 ⊗ χσ(λ)|λ|−1/2.

Hence, the second constituent is

ind
GL2(k)
B (χν1/2, χ−1ν1/2)⊗ χσν−1/2.

Third constituent: By Proposition 3.4(iii), the third constituent is χStGL2(k) ⊗ σ . 2

3.3.2. II-b: χ1GL2(k) ⋊ σ

Proposition 3.6 If I = χ1GL2(k) ⋊ σ then we have

0 ⊂︸︷︷︸
χ−11GL2(k)⊗χ2σ

(I3)S ⊂︸︷︷︸
ind

GL2(k)

B (χν−1/2,χ−1ν−1/2)⊗χν1/2σ

(I2)S ⊂︸︷︷︸
χ1GL2(k)⊗σ

(I)S .

Proof First constituent: By Proposition 3.4(i), the first constituent is

˜χ1GL2(k) ⊗ ωχ1GL2(k)
σ = χ−11GL2(k) ⊗ χ2σ.

Second constituent: By Proposition 3.4(ii),

J(χ1GL2(k))

(
a

λ
d

)
|ad|−1/2 ⊗ σ(λ)|λ|1/2

= χ

(
aλ

d

)
|ad|−1/2 ⊗ σ(λ)|λ|1/2

= χ(a)|a|−1/2χ−1(d)|d|−1/2 ⊗ χσ(λ)|λ|1/2.
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Hence, the second constituent is

ind
GL2(k)
B (χν−1/2, χ−1ν−1/2)⊗ χν1/2σ.

Third constituent: By Proposition 3.4(iii), the third constituent is χ1GL2(k) ⊗ σ. 2

3.3.3. VI-a: τ(S, ν−1/2σ)

By Section 2.2 of [7], we have

0 −→ V I − a −→ ν1/2StGL2(k) ⋊ ν−1/2σ −→ V I − c −→ 0

and the Jacquet module of VI-c is ν−1/2StGL2(k) ⊗ ν1/2σ.

Proposition 3.7 If I = ν1/2StGL2(k) ⋊ ν−1/2σ then we have

0 ⊂︸︷︷︸
ν−1/2StGL2(k)⊗ν1/2σ

(I3)S ⊂︸︷︷︸
ν1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν−1/2σ

(I2)S ⊂︸︷︷︸
ν1/2StGL2(k)⊗ν−1/2σ

(I)S .

Proof First constituent: By Proposition 3.4(i), the first constituent is

˜ν1/2StGL2(k) ⊗ ων1/2StGL2(k)
ν−1/2σ = ν−1/2StGL(2) ⊗ ν1/2σ.

Second constituent: By Proposition 3.4(ii),

J(ν1/2StGL2(k))

(
a

λ
d

)
|ad|−1/2 ⊗ |λ|−1/2σ(λ)|λ|1/2

=

∣∣∣∣aλd
∣∣∣∣1/2

∣∣∣∣∣ aλ
d

∣∣∣∣∣ |ad|−1/2 ⊗ σ(λ)

= |a| ⊗ σ(λ)|λ|−1/2.

Hence, the second constituent is

ind
GL2(k)
B (ν, 1)⊗ ν−1/2σ = ν1/2ind

GL2(k)
B (ν1/2, ν−1/2)⊗ ν−1/2σ.

Third constituent: By Proposition 3.4(iii), the third constituent is ν1/2StGL2(k) ⊗ ν−1/2σ . 2

Corollary 3.8

0 ⊂︸︷︷︸
ν1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν−1/2σ

((V I − a)2)S ⊂︸︷︷︸
ν1/2StGL2(k)⊗ν−1/2σ

(V I − a)S
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3.3.4. VI-d: L(ν, 1K∗ ⋊ ν−1/2σ)

By Section 2.2 of [7], we have

0 −→ V I − b −→ ν1/21GL2(k) ⋊ ν−1/2σ −→ V I − d −→ 0

and the Jacquet module of VI-b is ν1/21GL2(k) ⊗ ν−1/2σ.

Proposition 3.9 If I = ν1/21GL2(k) ⋊ ν−1/2σ then we have

0 ⊂︸︷︷︸
ν−1/21GL2(k)⊗ν1/2σ

(I3)S ⊂︸︷︷︸
ν−1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν1/2σ

(I2)S ⊂︸︷︷︸
ν1/21GL2(k)⊗ν−1/2σ

(I)S .

Proof First constituent: By Proposition 3.4(i), the first constituent is

˜ν1/21GL2(k) ⊗ ων1/21GL2(k)
ν−1/2σ = ν−1/21GL(2) ⊗ ν1/2σ.

Second constituent: By Proposition 3.4(ii),

J(ν1/21GL2(k))

(
a

λ
d

)
|ad|−1/2 ⊗ |λ|−1/2σ(λ)|λ|1/2

=

∣∣∣∣aλd
∣∣∣∣1/2 |ad|−1/2 ⊗ σ(λ)

= |d|−1 ⊗ σ(λ)|ν|1/2.

Hence, the second constituent is

ind
GL2(k)
B (1, ν−1)⊗ ν1/2σ = ν−1/2ind

GL2(k)
B (ν1/2, ν−1/2)⊗ ν1/2σ.

Third constituent: By Proposition 3.4(iii), the third constituent is ν−1/21GL2(k) ⊗ ν1/2σ . 2

Corollary 3.10

0 ⊂︸︷︷︸
ν−1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν1/2σ

((V I − d)2)S ⊂︸︷︷︸
ν−1/21GL2(k)⊗ν1/2σ

(V I − d)S .

4. Representations of k∗

In this section, we describe some exact sequences of representations of k∗ that we will need in the following

section.

Proposition 4.1 Let χ1 and χ2 be characters of k∗ , (ρ, U) be a representation of k∗ , and

0 −→ ⊕χ1 −→ U −→ ⊕χ2 −→ 0.

i)If χ1 ̸= χ2 then U = ⊕χ1

⊕
⊕χ2 . Hence, if u ∈ U then there exists u1 ∈ ⊕χ1 and u2 ∈ ⊕χ2 such that

u = u1 + u2 and

ρ(x)u = χ1(x)u1 + χ2(x)u2.

383
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ii)If χ1 = χ2 = χ and u ∈ U then for some w ∈ ⊕χ we have

ρ(x)u = χ(x)u+ χ(x)vk(x)w.

Proof Lemma 5.10 of [2]. 2

Proposition 4.2 Let χ1, χ2 , and χ3 be characters of k∗ and let (ρ, U) and (ρ, U1) be representations of k∗

such that
0 −→ U1 −→ U −→ ⊕χ3 −→ 0 (3)

and
0 −→ ⊕χ1 −→ U1 −→ ⊕χ2 −→ 0.

i) If χ1, χ2 , and χ3 are all different then U = ⊕χ1

⊕
⊕χ2

⊕
⊕χ3 . Hence, for all u ∈ U there exists ui ∈ ⊕χi

for i = 1, 2, 3 such that u = u1 + u2 + u3 and

ρ(x)u = χ1(x)u1 + χ2(x)u2 + χ3(x)u3.

ii) If χ1 = χ3 and χ2 ̸= χ3 then U = U ′
1

⊕
⊕χ2 where 0 −→ ⊕χ1 −→ U ′

1 −→ ⊕χ1 −→ 0 . Hence, for all

u ∈ U there exists u1 ∈ U ′
1 and u2 ∈ ⊕χ2 such that u = u1 + u2 and for some u′1 ∈ ⊕χ1 we have

ρ(x)u = χ1(x)u1 + χ1(x)vk(x)u
′
1 + χ2(x)u2.

Proof i) By Proposition 4.1 (i), U1 = ⊕χ1

⊕
⊕χ2 . If u ∈ U then we have

ρ(x)u = χ3(x)u+ w1(x) + w2(x) (4)

for some w1(x) ∈ ⊕χ1 and w2(x) ∈ ⊕χ2. Hence,

ρ(y)w1(x) = χ1(y)w1(x), ρ(y)w2(x) = χ2(y)w2(x). (5)

From Eq. (4),

ρ(xy)u = χ3(xy)u+ w1(xy) + w2(xy). (6)

By Eqs. (4) and (5),

ρ(xy)u = ρ(y)[ρ(x)u]

= ρ(y)[χ3(x)u+ w1(x) + w2(x)]

= χ3(x)ρ(y)u+ ρ(y)w1(x) + ρ(y)w2(x)]

= χ3(x)[χ3(y)u+ w1(y) + w2(y)] + χ1(y)w1(x) + χ2(y)w2(x)

= χ3(xy)u+ χ3(x)w1(y) + χ3(x)w2(y) + χ1(y)w1(x) + χ2(y)w2(x). (7)

Hence, by Eqs. (6) and (7) we have

[w1(xy)− χ3(x)w1(y)− χ1(y)w1(x)] + [w2(xy)− χ3(x)w2(y)− χ2(y)w2(x)] = 0,

and since we have a direct sum,

w1(xy) = χ3(x)w1(y) + χ1(y)w1(x) (8)
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w2(xy) = χ3(x)w2(y) + χ2(y)w2(x). (9)

As in the proof of Proposition 4.1(i) , for some w1 ∈ ⊕χ1 and w2 ∈ ⊕χ2 we have

w1(x) = w1[χ1(x)− χ3(x)], w2(x) = w2[χ2(x)− χ3(x)].

Hence, by Eq. (4),

ρ(x)u = χ3(x)u+ w1[χ1(x)− χ3(x)] + w2[χ2(x)− χ3(x)]

and
ρ(x)[u− w1 − w2] = χ3(x)[u− w1 − w2].

Thus, the exact sequence (3) splits.

ii) By Eqs. (8) and (9) and as in the proof of Proposition 4.1(i) and (ii) for some w2 ∈ ⊕χ2 and w1 ∈ ⊕χ1 we

have
w2(x) = w2[χ2(x)− χ3(x)],

w1(x) = w1χ1(x)vk(x).

By Eq. (4),

ρ(x)u = χ1(x)u+ w1χ1(x)vk(x) + w2[χ2(x)− χ1(x)]

and
ρ(x)[u− w2] = χ1(x)[u− w2] + χ1(x)vk(x)w1.

Hence, we have a direct sum of ⊕χ2 and U ′
1 . 2

5. Asymptotic behavior of φu

In this section, we determine the behavior of φu(x) for small enough |x| , which depends on the Jacquet module

structure. We also compute the possible poles of the integrals in Proposition 2.3 in the line of [2] but by

extending the results.

Proposition 5.1 Let (Π, VΠ) be a smooth representation of GSp4(k) .

1) If u ∈ VΠ , then there exists a constant C , depending on u , such that φu(x) = 0 for |x| > C .

2) If u ∈ VS(Π) , then there exists a constant ϵ > 0 , depending on u , such that φu(x) = 0 for |x| < ϵ .

Therefore, φu has compact support in k∗ .

Proof Proposition 3.1 of [2]. 2

Proposition 5.2 Let u ∈ VΠ . If Π(hx)u − χ(x)u ∈ VS(Π) for every x ∈ k∗ , then there exists a constant C

and positive integer jo such that

φu(x) = Cχ(x)

for |x| ≤ q−jo .

Proof Proposition 3.2 of [2]. 2
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Lemma 5.3 If φu(x) = C|x|3/2χ(x) for some character χ of k∗ and |x| ≤ q−jo , then the pole of∫
k∗
φu(x)|x|s−3/2d∗x is the pole of CL(s, χ) .

Proof Lemma 3.4 of [2]. 2

Proposition 5.4 Let u,w ∈ VΠ . If Π(hx)u−χ(x)u−χ(x)vk(x)w ∈ VS(Π) and Π(hx)w−χ(x)w ∈ VS(Π) for

sufficiently small |x| then for some constants C1 and C2 we have

φu(x) = C1χ(x) + C2χ(x)vk(x).

Proof Proposition 3.5 of [2]. 2

Lemma 5.5 If φu(x) = C1|x|3/2χ(x) + C2|x|3/2χ(x)vk(x) for some character χ of k∗ and |x| ≤ q−jo , then

the poles of

∫
k∗
φu(x)|x|s−3/2d∗x are the poles of the least common multiple of C1L(s, χ) and C2L(s, χ)

2 .

Proof Lemma 3.7 of [2]. 2

Theorem 5.6 Let u ∈ VΠ and |x| be small enough; then the asymptotic behavior of the Bessel model of

i)II-a is if χ2 ̸= 1

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2χ2σ(x);

otherwise

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2vk(x)σ(x).

ii)II-b is if χ2 ̸= 1

φ(x) = C1|x|3/2σ(x) + C2|x|3/2|x|−1/2χσ(x) + C3|x|3/2χ2σ(x);

otherwise

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|−1/2χσ(x) + C3|x|3/2vk(x)σ(x).

iii) VI-a is

φu(x) = C1|x|3/2|x|1/2σ(x) + C2|x|3/2|x|1/2vk(x)σ(x).

iv) VI-d is

φu(x) = C1|x|3/2|x|−1/2σ(x) + C2|x|3/2|x|−1/2vk(x)σ(x).

Proof i) By Proposition 3.5, the constituents of the Jacquet module of II-a are χ−1StGL2(k) ⊗ χ2σ ,

ind
GL2(k)
B (χν1/2, χ−1ν1/2) ⊗ χν−1/2σ , and χStGL2(k) ⊗ σ . As a representation of H , the constituents are

⊕σ , ⊕ν1/2χσ , and ⊕χ2σ and in this case χ ̸= ν∓3/2 and χ2 ̸= ν∓1 by Section 2.2 of [7]. Hence, if χ2 ̸= 1,

then these three constituents are different, so we are in the case of Proposition 4.2(i) and the result follows

from Proposition 5.2. If χ2 = 1 then the constituents are ⊕σ , ⊕ν1/2χσ and ⊕σ then we are in the case of

Proposition 4.2(ii), and the result follows from Proposition 5.2 and Proposition 5.4.
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ii) Similar to the previous proof.

iii) By Corollary 3.8 the constituents of the Jacquet module of VI-a are ν1/2ind
GL2(k)
B (ν1/2, ν−1/2) ⊗ ν−1/2σ

and ν1/2StGL2(k) ⊗ ν−1/2σ . As a representation of H , the constituents are two ⊕ν1/2σ . Thus we are in the

case of Proposition 4.1(ii) and the result follows from Proposition 5.4.

iv)Similar to the previous proof. 2

6. Computation of regular poles

The following theorem and lemmas are required to determine whether constants in Theorem 5.6 are nonzero or

not.

Let

VT,S(Λ,Π) := {Π(ts)v − Λ(t)v : v ∈ VΠ}

and

V T (Λ,Π) := {Π(t)v − Λ(t)v : v ∈ VΠ/VS(Π)}.

Theorem 6.1

φv ∈ C∞
c (k∗) ⇐⇒ v ∈ VT,S(Λ,Π).

Proof Theorem 4.9 of [2] 2

Lemma 6.2 Let K be a quadratic extension of k and T ∼= K∗ ; then

HomT (σStGL2(k),Λ) is nonzero for a character of K∗ , which satisfies σ2 = Λ|k∗ if and only if Λ ̸= σ ◦NK/k .
If HomT (σStGL2(k),Λ) is nonzero then it is one-dimensional.

Proof Proposition 1.7 in [12]. 2

Lemma 6.3 Let K be a quadratic extension of k and T ∼= K∗ . If π is an irreducible representation of GL2(k) ,

which is induced from a character of the torus of GL2(k) , then HomT (π,Λ) is nonzero for every character Λ

of K∗ such that ωπ = Λ|k∗ and HomT (π,Λ) is one-dimensional.

Proof Proposition 1.6 in [12]. 2

From now on, we assume that (Π, VΠ) has a Bessel model with respect to ψ and Λ. Also, for simplicity,

we take µ = 1.

6.1. Representations with Jacquet module length 3

In this section we compute the regular poles for each representation separately.

6.1.1. II-a: χStGL2(k) ⋊ σ

By Proposition 3.5, if I = χStGL2(k) ⋊ σ , then we have

0 ⊂︸︷︷︸
χ−1StGL2(k)⊗χ2σ

(I3)S ⊂︸︷︷︸
ind

GL2(k)

B (χν1/2,χ−1ν1/2)⊗χν−1/2σ

(I2)S ⊂︸︷︷︸
χStGL2(k)⊗σ

(I)S
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and as a representation of H we have

0 ⊂︸︷︷︸
⊕σ

(I3)S ⊂︸︷︷︸
⊕χν1/2σ

(I2)S ⊂︸︷︷︸
⊕χ2σ

(I)S .

In this case, we have χ ̸= ν∓3/2, χ2 ̸= ν∓1 .

Proposition 6.4 If II-a has a Bessel model with respect to the characters Λ and Ψ then Λ ̸= χσ ◦NK/k.

Proof By Proposition 2.1 of [6],

(χStGL2(k) ⋊ σ)θ = (χStGL2(k) ⊗ σ)|T = (χσStGL2(k))|T .

Hence, II-a has a Bessel model if and only if HomT [χσStGL2(k),Λ] ̸= 0 and the result follows from Lemma 6.2.

2

Case 1: If χ2 ̸= 1 then by Theorem 5.6(i),

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2χ2σ(x)

and by Proposition 4.2(i)

IS = ⊕σ
⊕

⊕χν1/2σ
⊕

⊕χ2σ.

Proposition 6.5 For some choice of u , the constants C1, C2 , and C3 are all nonzero.

Proof If C1 = 0, then by Theorem 6.1, (I3)S ⊂ V T (Λ,Π). Therefore, if u ∈ ⊕σ = (I3)S then

u =

N1∑
i=1

ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] +

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] +

N3∑
l=1

cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3]

where ai, bj , cl ∈ k , ti, tj , tl ∈ T and ui1 ∈ ⊕σ, ul2 ∈ ⊕χν1/2σ, ul3 ∈ ⊕χ2σ . Note that∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] ∈ ⊕σ ,∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] ∈ ⊕χν1/2σ ,∑N3

l=1 cl[ΠS(tl)u
l
2 − Λ(tl)u

l
3] ∈ ⊕χ2σ .

Since we have a direct sum
∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] = 0 and

∑N3

l=1 cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3]=0, hence

u =

N1∑
i=1

ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1]

and

0 = HomT [(I3)S ,Λ]

= HomT [χ
−1StGL2(k) ⊗ χ2σ,Λ]

= HomT [χσStGL2(k),Λ].
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Hence by Lemma 6.2, Λ = χσ ◦NK/k , which contradicts the Bessel existence condition.

If C2 = 0 then by Theorem 6.1, ⊕χν1/2σ ⊂ V T (Λ,Π). Therefore, if u ∈ ⊕χν1/2σ then

u =

N1∑
i=1

ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] +

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] +

N3∑
l=1

cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3]

where ai, bj , cl ∈ k , ti, tj , tl ∈ T and ui1 ∈ ⊕σ, ul2 ∈ ⊕χν1/2σ, ul3 ∈ ⊕χ2σ . Note that∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] ∈ ⊕σ ,∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] ∈ ⊕χν1/2σ ,∑N3

l=1 cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3] ∈ ⊕χ2σ .

Since we have a direct sum
∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] = 0 and

∑N3

l=1 cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3] = 0, hence

u =

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] ∈ ⊕χν1/2σ

and

0 = HomT [(I2)S/(I3)S ,Λ]

= HomT [ind
GL2(k)
B (χν1/2, χ−1ν1/2)⊗ χσν−1/2,Λ]

= HomT [χσν
−1/2ind

GL2(k)
B (χν1/2, χ−1ν1/2),Λ],

which is a contradiction by Lemma 6.3.

If C3 = 0 then by Theorem 6.1, ⊕χ2σ ⊂ V T (Λ,Π). Therefore, if u ∈ ⊕χ2σ then

u =

N1∑
i=1

ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] +

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] +

N3∑
l=1

cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3]

where ai, bj , cl ∈ k , ti, tj , tl ∈ T and ui1 ∈ ⊕σ, ul2 ∈ ⊕χν1/2σ, ul3 ∈ ⊕χ2σ . Note that∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] ∈ ⊕σ ,∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] ∈ ⊕χν1/2σ ,∑N3

l=1 cl[ΠS(tl)u
l
2 − Λ(tl)u

l
3] ∈ ⊕χ2σ .

Since we have a direct sum
∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] = 0 and

∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] = 0, hence

u =

N3∑
l=1

cl[ΠS(tl)u
l
3 − Λ(tl)u

l
3]

and

0 = HomT [(I)S/(I2)S ,Λ]

= HomT [χStGL2(k) ⊗ σ,Λ]

= HomT [χσStGL2(k),Λ].
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Hence, by Lemma 6.2, Λ = χσ ◦NK/k , which contradicts the Bessel existence condition. 2

Case 2: If χ2 = 1 then, by Theorem 5.6(ii), for every u ∈ VΠ we have

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2vk(x)σ(x),

and by Proposition 4.2(ii)

IS = U ′
1

⊕
⊕χν1/2σ

where U ′
1 is an extension of two ⊕σ.

Proposition 6.6 For some choice of u , the constants C2 and C3 are nonzero.

Proof If C2 = 0 then by Theorem 6.1 ⊕χν1/2σ ⊂ V T (Λ,Π) ((I2)S = ⊕σ
⊕

⊕χν1/2σ ). Therefore, if

u ∈ ⊕χν1/2σ , then

u =

N1∑
i=1

ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] +

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2]

where ai, bj ∈ k , ti, tj ∈ T and ui1 ∈ U ′
1, u

l
2 ∈ ⊕χν1/2σ . Note that∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] ∈ ⊕U ′

1 ,∑N2

j=1 bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2] ∈ ⊕χν1/2σ .

Since we have a direct sum
∑N1

i=1 ai[ΠS(ti)u
i
1 − Λ(ti)u

i
1] = 0, hence

u =

N2∑
j=1

bj [ΠS(tj)u
j
2 − Λ(tj)u

j
2]

and

0 = HomT [(I2)S/(I3)S ,Λ]

= HomT [ind
GL2(k)
B (χν1/2, χ−1ν1/2)⊗ χσν−1/2,Λ]

= HomT [χσν
−1/2ind

GL2(k)
B (χν1/2, χ−1ν1/2),Λ],

which is a contradiction by Lemma 6.3.

If C3 = 0, then for every u ∈ (I)S there exists u2 ∈ (I2)S such that u− u2 ∈ V T (Λ,Π). Hence,

0 = HomT [(I)S/(I2)S ,Λ]

= HomT [χStGL2(k) ⊗ σ,Λ]

= HomT [χσStGL2(k),Λ].

Hence by Lemma 6.2, Λ = χσ ◦NK/k , which contradicts the Bessel existence condition. 2
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6.1.2. II-b: χ1GL2(k) ⋊ σ

By Proposition 3.6, if I = χ1GL2(k) ⋊ σ , then we have

0 ⊂︸︷︷︸
χ−11GL2(k)⊗χ2σ

(I3)S ⊂︸︷︷︸
ind

GL2(k)

B (χν−1/2,χ−1ν−1/2)⊗χν1/2σ

(I2)S ⊂︸︷︷︸
χ1GL(2)⊗σ

(I)S

and as a representation of H we have

0 ⊂︸︷︷︸
⊕σ

(I3)S ⊂︸︷︷︸
⊕χν−1/2σ

(I2)S ⊂︸︷︷︸
⊕χ2σ

(I)S .

In this case, we have χ ̸= ν∓3/2, χ2 ̸= ν∓1 . By a similar proof to that of II-a we have:

Proposition 6.7 If II-b has a Bessel model with respect to the characters Λ and Ψ then Λ = χσ ◦NK/k.

Proposition 6.8 If χ2 ̸= 1 then for some choice of u we have

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2χ2σ(x)

and the constants C1, C2 , and C3 are nonzero.

Proposition 6.9 If χ2 = 1 then for some choice of u we have

φu(x) = C1|x|3/2σ(x) + C2|x|3/2|x|1/2χσ(x) + C3|x|3/2vk(x)σ(x)

and the constants C2 and C3 are nonzero.

6.1.3. VI-a: τ(S, ν1/2σ)

By Corollary 3.8, we have

0 ⊂︸︷︷︸
ν1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν−1/2σ

((V I − a)2)S ⊂︸︷︷︸
ν1/2StGL2(k)⊗ν−1/2σ

(V I − a)S

and as a representation of H we have

0 ⊂︸︷︷︸
⊕ν1/2σ

((V I − a)2)S ⊂︸︷︷︸
⊕ν1/2σ

(V I − a)S .

Proposition 6.10 If VI-a has a Bessel model with respect to the characters Λ and Ψ then Λ ̸= σ ◦NK/k.

Proof By Sally–Tadic classification and exactness of the twisted Jacquet module, we have

0 −→ (V I − a)ψ −→ (ν1/2StGL2(k) ⋊ ν−1/2σ)ψ −→ (V I − c)ψ −→ 0.

Since T is nonsplit this sequence splits and by Proposition 2.1 of [6], (ν1/2StGL2(k) ⋊ ν−1/2σ)ψ = σStGL2(k) .

Thus, if VI-a or VI-c has a Bessel model with respect to ψ and Λ, then by Lemma 6.2 Λ ̸= σ ◦NK/k .
2

By Theorem 5.6(iii)

φu(x) = C1|x|3/2|x|1/2σ(x) + C2|x|3/2|x|1/2vk(x)σ(x).
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Proposition 6.11 For some choice of u we have a nonzero C2 .

Proof If C2 = 0 then for all u ∈ (V I − a)S there exists u2 ∈ (V I − a)2)S such that u − u2 ∈ V T (Λ,Π).

Hence,

0 = HomT [(V I − a)S/(V I − a)2)S ,Λ]

= HomT [ν
1/2StGL2(k) ⊗ ν−1/2σ,Λ]

= HomT [σStGL2(k),Λ].

Hence, by Lemma 6.2 Λ = σ ◦NK/k , which contradicts the Bessel existence condition. 2

6.1.4. VI-d: L(ν, 1K∗ ⋊ ν−1/2σ)

By Corollary 3.10, we have

0 ⊂︸︷︷︸
ν−1/2ind

GL2(k)

B (ν1/2,ν−1/2)⊗ν1/2σ

((V I − d)2)S ⊂︸︷︷︸
ν−1/21GL2(k)⊗ν1/2σ

(V I − d)S

and as a representation of H we have

0 ⊂︸︷︷︸
⊕ν−1/2σ

((V I − d)2)S ⊂︸︷︷︸
⊕ν−1/2σ

(V I − d)S .

Proposition 6.12 If VI-d has a Bessel model with respect to the characters Λ and Ψ , then Λ = σ ◦NK/k.

Proof By Sally–Tadic classification and exactness of the twisted Jacquet module, we have

0 −→ (V I − b)ψ −→ (ν1/21GL2(k) ⋊ ν−1/2σ)ψ −→ (V I − d)ψ −→ 0.

Since T is nonsplit this sequence splits and by Proposition 2.1 of [6], (ν1/21GL2(k) ⋊ ν−1/2σ)ψ = σ1GL2(k) .

Thus, if VI-b or VI-d has a Bessel model with respect to ψ and Λ, then Λ = σ ◦NK/k . 2

By Theorem 5.6(iii)

φu(x) = C1|x|3/2|x|−1/2σ(x) + C2|x|3/2|x|−1/2vk(x)σ(x).

Proposition 6.13 For some choice of u we have a nonzero C2 .

Proof If C2 = 0 then for all u ∈ (V I − d)S there exists u2 ∈ (V I − d)2)S such that u − u2 ∈ V T (Λ,Π).

Hence,

0 = HomT [(V I − d)S/(V I − d)2)S ,Λ]

= HomT [ν
−1/21GL2(k) ⊗ ν1/2σ,Λ]

= HomT [σ1GL2(k),Λ].

Hence, Λ ̸= σ ◦NK/k , which contradicts the Bessel existence condition. 2
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Theorem 6.14 i) The L-factor of II-a is L(s, σ)L(s, ν1/2χσ)L(s, χ2σ) .

ii) Regular poles of II-b are poles of L(s, σ)L(s, ν−1/2χσ)L(s, χ2σ) .

iii) The L-factor of VI-a is L(s, ν1/2σ)2 .

iv) Regular poles of VI-d are poles of L(s, ν−1/2σ)2 .

Proof i) If χ2 ̸= 1 then the result follows from Proposition 6.5, Lemma 5.3, and Theorem 2.4. If χ2 = 1 then

the result follows from Proposition 6.6, Lemma 5.3, Lemma 5.5, and Theorem 2.4.

ii) Similar to (i).

iii) The result follows from Proposition 6.11, Lemma 5.5, and Theorem 2.4.

iv) The result follows from Proposition 6.13 and Lemma 5.5. 2

Appendix

A. Tables

Table A.1 displays the regular poles of the nonsupercuspidal representations due to [8], which have Jacquet

module length of 3, in terms of the poles of Tate L -functions. The last column shows the expected exceptional

poles from the local Langlands conjecture. Table A.2 shows the semisimplifications of the Jacquet modules

with respect to the Siegel parabolic, given in the appendix of [7]. ′#′ and ′g′ columns indicate the number of

constituents of the Jacquet module and generic representations, respectively.

A.1. Regular and exceptional poles.

Representation Regular poles Exceptional

II a χStGL(2) ⋊ σ L(s, σ)L(s, ν1/2χσ)L(s, χ2σ) -

II b χ1GL(2) ⋊ σ L(s, σ)L(s, ν−1/2χσ)L(s, χ2σ) L(s, ν1/2χσ)

VI a τ(S, ν−1/2σ) L(s, ν1/2σ)2 -

VI d L(ν, 1K∗ ⋊ ν−1/2σ) L(s, ν−1/2σ)2 L(s, ν1/2σ)2

A.2. Jacquet modules: the Siegel parabolic.

Representation Semisimplification # g

II a χStGL2(k) ⋊ σ

χ−1StGL2(k) ⊗ χ2σ

ind
GL2(k)
B (χν1/2, χ−1ν1/2)⊗ χν−1/2σ

χStGL2(k) ⊗ σ

3 •

II b χ1GL2(k) ⋊ σ

χ−11GL2(k) ⊗ χ2σ

ind
GL2(k)
B (χν−1/2, χ−1ν−1/2)⊗ χν1/2σ

χ1GL2(k) ⊗ σ

3

VI a τ(S, ν−1/2σ)
2(̇ν1/2StGL2(k) ⊗ ν−1/2σ)
ν1/21GL2(k) ⊗ ν−1/2σ

3 •

VI d L(ν, 1k∗ ⋊ ν−1/2σ)
2(̇ν−1/21GL2(k) ⊗ ν1/2σ)
ν−1/2StGL2(k) ⊗ ν1/2σ

3
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