Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $395-407$
(C) TÜBİTAK
doi:10.3906/mat-1407-53

OD-characterization of some alternating groups

Shitian LIU*
School of Science Sichuan University of Science and Engineering, Zigong Sichaun, P. R. China

Received: 22.07.2014 • Accepted/Published Online: 14.01.2015 • Printed: 29.05.2015

Abstract

Let G be a finite group. Moghaddamfar et al. defined prime graph $\Gamma(G)$ of group G as follows. The vertices of $\Gamma(G)$ are the primes dividing the order of G and two distinct vertices p, q are joined by an edge, denoted by $p \sim q$, if there is an element in G of order $p q$. Assume $|G|=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ with $P_{1}<\cdots<p_{k}$ and nature numbers α_{i} with $i=1,2, \cdots, k$. For $p \in \pi(G)$, let the degree of p be $\operatorname{deg}(p)=|\{q \in \pi(G) \mid q \sim p\}|$, and $D(G)=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \cdots, \operatorname{deg}\left(p_{k}\right)\right)$. Denote by $\pi(G)$ the set of prime divisor of $|G|$. Let $G K(G)$ be the graph with vertex set $\pi(G)$ such that two primes p and q in $\pi(G)$ are joined by an edge if G has an element of order $p \cdot q$. We set $s(G)$ to denote the number of connected components of the prime graph $G K(G)$. Some authors proved some groups are $O D$-characterizable with $s(G) \geq 2$. Then for $s(G)=1$, what is the influence of $O D$ on the structure of groups? We knew that the alternating groups A_{p+3}, where $7 \neq p \in \pi(100!), A_{130}$ and A_{140} are $O D$-characterizable. Therefore, we naturally ask the following question: if $s(G)=1$, then is there a group $O D$-characterizable? In this note, we give a characterization of A_{p+3} except A_{10} with $s\left(A_{p+3}\right)=1$, by $O D$, which gives a positive answer to Moghaddamfar and Rahbariyan's conjecture.

Key words: Order component, element order, alternating group, degree pattern, prime graph, Simple group

1. Introduction

In this short paper, all groups under study are finite, and for a simple group, we mean a non-Abelian simple group. Let G be a group. Then $\omega(G)$ denotes the set of orders of its elements of G and $\pi(G)$ denotes the set of prime divisors of $|G|$. Associated to $\omega(G)$ a graph is called a prime graph of G, which is denoted by $G K(G)$. The vertex set of $G K G)$ is $\pi(G)$, and two distinct vertices p, q are joined by an edge if $p \cdot q \in \omega(G)$, which is denoted by $p \sim q$.

Throughout this paper, we also use the following symbols. For a finite group G, the socle of G is defined as the subgroup generated by the minimal normal subgroup of G, denoted by $\operatorname{Soc}(G)$. $\operatorname{Syl}_{p}(G)$ denotes the set of all Sylow p-subgroups of G, where $p \in \pi(G), G_{r}$ denotes the Sylow r-subgroup of G for $r \in \pi(G)$. S_{n} and A_{n} denote the symmetric and alternating groups of degree n, respectively. Let $\operatorname{Aut}(G)$ and Out (G) denote the automorphism and outer-automorphism groups of G, respectively. The other symbols are standard (see [2], for instance).

Moghaddamfar et al. introduced the following concept, which attracted the attention of some authors (see [1]).

[^0]Definition 1.1 [12] Let G be a finite group and $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where $p_{i} s$ are primes and $\alpha_{i} s$ are integers. For $p \in \pi(G)$, let $\operatorname{deg}(p):=|\{q \in \pi(G) \mid p \sim q\}|$, which we call the degree of p. We also define $D(G):=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \cdots, \operatorname{deg}\left(p_{k}\right)\right)$, where $p_{1}<p_{2}<\cdots<p_{k}$. We call $D(G)$ the degree pattern of G

Since not all groups are $O D$-characterizable, Moghaddamfar et al. introduced the following.
Given a finite group M, denote by $h_{O D}(M)$ the number of isomorphism classes of finite groups G such that (1) $|G|=|M|$ and (2) $D(G)=D(M)$.

Definition 1.2 [12] A finite group M is called k-fold $O D$-characterizable if $h_{O D}(M)=k$. Moreover, a 1-fold OD-characterizable group is simply called an $O D$-characterizable group.

To date, we knew that some groups are k-fold $O D$-characterizable (see Tables 1 and 2 and corresponding references of [1]).

In particular, related to alternating groups, we have the following results.

Proposition 1.3 A finite group G is $O D$-characterizable if G is one of the following groups:
(1) The alternating groups A_{p}, A_{p+1}, and A_{p+2}, where p is a prime [11].
(2) The alternating groups A_{p+3}, where p is a prime and $7 \neq p \in \pi(100!)$ [6, 10].

Proposition 1.4 Alternating group A_{10} is 2-fold $O D$-characterizable.
We set $s(G)$ to denote the number of connected components of the prime graph $G K(G)$. Some authors proved that some special groups with $s(G) \geq 2$ are $O D$-characterizable. However, if $s(G)=1$, the author has proved that the alternating groups A_{27} are 6 -fold $O D$-characterizable. Therefore there is a question: which of the alternating groups is $O D$-characterizable? Related to $s(G)=1$ for the alternating group, Moghaddamfar and Rahbariyan gave the following conjecture about the alternating group A_{p+3}.

Conjecture. [10, pp. 665, Conjecture 1] Let $p \neq 7$ be a prime. Then the alternating group A_{p+3} is $O D$-characterizable.

Inspired by the works of [6, 10], we generalize some authors' results and show that the alternating groups A_{p+3} with $s\left(A_{p+3}\right)=1$ are $O D$-characterizable by using the classification of finite simple groups, which gives a positive answer regarding Moghaddamfar and Rahbariyan's conjecture. In fact, we prove the following.

Main Theorem. The alternating groups A_{p+3} except for A_{10} are $O D$-characterizable.

2. Preliminary results

In this section, we will give some results that will be used.
Lemma 2.1 [15] Let $S=P_{1} \times P_{2} \times \cdots \times P_{r}$, where P_{i} 's are an isomorphic non-abelian simple group. Then $\operatorname{Aut}(S)=\left(\operatorname{Aut}\left(P_{1}\right) \times \operatorname{Aut}\left(P_{2}\right) \times \cdots \times \operatorname{Aut}\left(P_{r}\right)\right) \cdot S_{r}$.

Lemma 2.2 [16] The group $S_{n}\left(\right.$ or A_{n}) has an element of order $m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$, where p_{1}, p_{2}, \cdots, p_{s} are distinct primes and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}$ are natural numbers, if and only if $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq n$ (or $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq n$ for m odd, and $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq n-2$ for m even).

LIU/Turk J Math

As a corollary of Lemma 2.1, we have the following result.

Lemma 2.3 Let $A_{n}\left(\right.$ or $\left.S_{n}\right)$ be an alternating (or symmetric group) of degree n. Then the following hold.
(1) Let $p, q \in \pi\left(A_{n}\right)$ be odd primes. Then $p \sim q$ if and only if $p+q \leq n$.
(2) Let $p \in \pi\left(A_{n}\right)$ be odd prime. Then $2 \sim p$ if and only if $p+4 \leq n$.
(3) Let $p, q \in \pi\left(S_{n}\right)$. Then $p \sim q$ if and only if $p+q \leq n$.

By [2], we have that $\left|A_{n}\right|=n!/ 2$ and $\left|S_{n}\right|=n!$.
Let $\exp (n, r)=a$ denote that $r^{a} \mid n$ but $r^{a+1} \nmid n$.

Lemma 2.4 Let A_{p+3} be an alternating group of degree $p+3$, where p is a prime. Then the following hold.
(1) $\exp \left(\left|A_{p+3}\right|, 2\right)=\sum_{i=1}^{\infty}\left[\frac{p+3}{2^{i}}\right]-1$. In particular, $\exp \left(\left|A_{p+3}\right|, 2\right) \leq p+2$.
(2) $\exp \left(\left|A_{p+3}\right|, r\right)=\sum_{i=1}^{\infty}\left[\frac{p+3}{r^{i}}\right]$ for each $r \in \pi\left(A_{p+3}\right) \backslash\{2\}$. Furthermore, $\exp \left(\left|A_{p+3}\right|, r\right)<\frac{p-1}{2}$, where $3 \leq r \in$ $\pi\left(A_{p+3}\right)$. In particular, if $r>\left[\frac{p+3}{2}\right]$, then $\exp \left(\left|A_{p+3}\right|, r\right)=1$.
Proof See [9]

Lemma 2.5 Let A_{p+3} be an alternating group of degree $p+3$ with $p+2$ composite and p prime. Suppose that $\left|\pi\left(A_{p+3}\right)\right|=d$. Then the following hold.
(1) $\operatorname{deg}(2)=d-2$. In particular, $2 \sim r$ for all $r \in \pi\left(A_{p+3}\right) \backslash\{p\}$.
(2) $\operatorname{deg}(3)=d-1$.
(3) $\operatorname{deg}(p)=1$. In particular, $p \sim r$ where $r \in \pi\left(A_{p+3}\right)$ if and only if $r=3$.

Proof From Lemmas 2.3 and 2.4, we have the desired result.

Lemma 2.6 Let G be a group with $D(G)=D\left(A_{p+3}\right)$ and $|G|=\left|A_{p+3}\right|$, where p is a prime such that $p+2$ is composite. Suppose that $\left|\pi\left(A_{p+3}\right)\right|=d$. Then
(1) $\operatorname{deg}(2)=\operatorname{deg}(5)=d-2, \operatorname{deg}(3)=d-1$ and $\operatorname{deg}(p)=1$. Hence $G K(G)$ is a connected graph.
(2) If K is the maximal normal soluble subgroup of G, then K is an ω-group, where $\omega=\pi(3(p-1))$. In particular, G is insoluble.

Proof. See [6].
Lemma 2.7 Let L be nonabelian simple groups. Then the orders and their outer-automorphism of L are as listed in Tables 1, 2, and 3.

Proof See [7].
Table 1. The simple classical groups.

L	Lie; rank L	d	O	L
$L_{n}(q)$	$\begin{aligned} & A_{n-1}(q) \\ & n-1 \end{aligned}$	$(n, q-1)$	$\begin{aligned} & 2 d f, \text { if } n \geq 3 ; \\ & d f, \text { if } n=2 \end{aligned}$	$\frac{1}{d} q^{n(n-1) / 2} \prod_{i=2}^{n}\left(q^{i}-1\right)$
$U_{n}(q)$	$\begin{aligned} & { }^{2} A_{n-1}(q) \\ & {[n / 2]} \\ & \hline \end{aligned}$	$(n, q+1)$	$\begin{aligned} & 2 d f, \text { if } n \geq 3 \\ & d f, \text { if } n=2 \end{aligned}$	$\frac{1}{d} q^{n(n-1) / 2} \prod_{i=2}^{n}\left(q^{i}-(-1)^{i}\right)$
$P S p_{2 m}(q)$	$\begin{aligned} & C_{m}(q) \\ & m \end{aligned}$	$(2, q-1)$	$\begin{aligned} & d f, m \geq 3 ; \\ & 2 f, \text { if } m=2 \end{aligned}$	$\frac{1}{d} q^{m^{2}} \prod_{i=1}^{m}\left(q^{2 i}-1\right)$
$\begin{aligned} & \Omega_{2 m+1}(q) \\ & q \text { odd } \end{aligned}$	$\begin{aligned} & B_{m}(q) \\ & m \end{aligned}$	2	$2 f$	$\frac{1}{2} q^{m^{2}} \prod_{i=1}^{m}\left(q^{2 i}-1\right)$
$\begin{aligned} & P \Omega_{2 m}^{+}(q) \\ & m \geq 3 \end{aligned}$	$\begin{aligned} & D_{m}(q) \\ & m \end{aligned}$	$\left(4, q^{m}-1\right)$	$\begin{aligned} & 2 d f, \text { if } m \neq 4 \\ & 6 d f, \text { if } m=4 \end{aligned}$	$\frac{1}{d} q^{m(m-1)\left(q^{m}-1\right)} \prod_{i=1}^{m-1}\left(q^{2 i}-1\right)$
$\begin{aligned} & P \Omega_{2 m}^{-}(q) \\ & m \geq 2 \end{aligned}$	$\begin{aligned} & { }^{2} D_{m}(q) \\ & m-1 \end{aligned}$	$\left(4, q^{m}+1\right)$	$2 d f$	$\frac{1}{d} q^{m(m-1)\left(q^{m}+1\right)} \prod_{i=1}^{m-1}\left(q^{2 i}-1\right)$

Table 2. The simple exceptional groups.

L	\mathbf{L}	d	O	$\|L\|$
$G_{2}(q)$	2	1	f, if $p \neq 3$ $2 f$, if $p=3$	$q^{6}\left(q^{2}-1\right)\left(q^{6}-1\right)$
$F_{4}(q)$	4	1	$(2, p) f$	$q^{24}\left(q^{2}-1\right)\left(q^{6}-1\right)\left(q^{8}-1\right)\left(q^{12}-1\right)$
$E_{6}(q)$	6	$(3, q-1)$	$2 d f$	$\frac{1}{d} q^{36} \prod_{i \in\{2,5,6,8,9,12\}}\left(q^{i}-1\right)$
$E_{7}(q)$	7	$(2, q-1)$	$d f$	$\frac{1}{d} q^{63} \prod_{i \in\{2,6,8,10,12,14,18\}}\left(q^{i}-1\right)$
$E_{8}(q)$	8	1	f	$q^{120} \prod_{i \in\{2,8,12,14,18,20,24,30\}}\left(q^{i}-1\right)$
${ }^{2} B_{2}(q), q=2^{2 m+1}$	1	1	f	$q^{2}\left(q^{2}+1\right)(q-1)$
${ }^{2} G_{2}(q), q=3^{2 m+1}$	1	1	f	$q^{3}\left(q^{3}+1\right)(q-1)$
${ }^{2} F_{4}(q), q=2^{2 m+1}$	2	1	f	$q^{12}\left(q^{6}+1\right)\left(q^{4}-1\right)\left(q^{3}+1\right)(q-1)$
${ }^{3} D_{4}(q)$	2	1	$3 f$	$q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$
${ }^{2} E_{6}(q)$	4	$(3, q+1)$	$2 d f$	$\frac{1}{d} q^{36} \prod_{i \in\{2,5,6,8,9,12\}}\left(q^{i}-(-1)^{i}\right)$

Lemma 2.8 Let a, b, and n be positive integers such that $(a, b)=1$. Then there exists a prime p with the following properties:

- p divides $a^{n}-b^{n}$,
- p does not divide $a^{k}-b^{k}$ for all $k<n$,
with the following exceptions: $a=2, b=1 ; n=6$ and $a+b=2^{k} ; n=2$.
Proof See [17].

Lemma 2.9 Let $q>1$ be an integer, m be a natural number, and p be an odd prime. If p divides $q-1$, then $\left(q^{m}-1\right)_{p}=m_{p} \cdot(q-1)_{p}$.
Proof See Lemma 8(1) of [4].

Table 3. The simple sporadic groups.

L	d	O	
M_{11}	1	1	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$
M_{12}	2	2	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$
M_{22}	12	2	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
M_{23}	1	1	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M_{24}	1	1	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
J_{1}	1	1	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
J_{2}	2	2	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$
J_{3}	3	2	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$
J_{4}	1	1	$2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
$H S$	2	2	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$
$S u z$	6	2	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
$M c L$	3	2	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$
$R u$	2	1	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$
$H e\left(F_{7}\right)$	1	2	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$
$L y$	1	1	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
$O N$	3	2	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$
$C o_{1}$	2	1	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$
$C o_{2}$	1	1	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
$C o_{3}$	1	1	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
$F i_{22}$	6	2	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
$F i_{23}$	1	1	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$
$F i_{24}^{\prime}$	3	2	$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$
$H N\left(F_{5}\right)$	1	2	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$
$T h\left(F_{3}\right)$	1	1	$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$
$B M\left(F_{2}\right)$	2	1	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
$M\left(F_{1}\right)$	1	1	$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Remark 2.10 If $b=1$, the prime p is called the Zsigmondy prime. If p is a Zsigmnody of $a^{n}-1$, then Fermat's little theorem shows that $n \mid p-1$. Put $Z_{n}(a)=\left\{p: p\right.$ is a Zsigmondy prime of $\left.a^{n}-1\right\}$. If $r \in Z_{n}(a)$ and $r \mid a^{m}-1$, then $n \mid m$.

Lemma 2.11 If $n \geq 6$ is a natural number, then there are at least $s(n)$ prime numbers p_{i} such that $\frac{n+1}{2}<$ $p_{i}<n$. Here

- $s(n)=6$ for $n \geq 48$;
- $s(n)=5$ for $42 \leq n \leq 47$;
- $s(n)=4$ for $38 \leq n \leq 41$;
- $s(n)=3$ for $18 \leq n \leq 37$;
- $s(n)=2$ for $14 \leq n \leq 17$;
- $s(n)=1$ for $6 \leq n \leq 13$.

In particular, for every natural number $n>6$, there exists a prime p such that $\frac{n+1}{2}<p<n-1$, and for every natural number $n>3$, there exists an odd prime number p such that $n-p<p<n$.

Proof See Lemma 1 of [8].

Lemma 2.12 Let X be a finite simple non-abelian group, $x \in \operatorname{Out}(X)$, and $|x|$ a prime greater than 7. Then $\pi(\operatorname{Out}(X))$ contains a number greater than $2|x|$.
Proof See [14, Lemma 11].

Lemma 2.13 Let G be a finite non-abelian simple group and p is the largest prime divisor of $|G|$ with $p \||G|$.
Then $p \nmid|\operatorname{Out}(G)|$.
Proof By Lemma 2.7, G is isomorphic to alternating group, simple group of Lie type, or sporadic simple groups.

If G is an alternating group, then $\left|\operatorname{Out}\left(A_{n}\right)\right|=2$ if $n \geq 5$ and $n \neq 6 ;\left|\operatorname{Out}\left(A_{n}\right)\right|=4$ if $n=6$ (see [7]). Hence we have the desired result.

If G is a sporadic simple group, then by Table 3 we have the result.
Therefore, we only consider that G is a simple group of Lie type. By hypothesis, if $p<3$, then G is a $\{2,3\}$-group that is soluble by Burnside's theorem (see [5], for instance). Hence in the following, let $p \geq 5$. Suppose the contrary; then $p||\operatorname{Out}(G)|$. We mainly consider three cases.

Case 1. Let $G \cong A_{n-1}(q)$. Then $p \mid f$ or $p \mid d$. Obviously, $p \nmid q$ (in fact, if $p \mid q$, then $q=p^{f}$ and hence, by Lemma 2.8 there is a prime r such that $r \mid p^{t f}-1$ and $\left.r>p\right)$.
(1) If $p \mid f$, then let $f=p \cdot m$ for some integer m and hence, $p \mid\left(r^{p m}\right)^{i}-1$ for some integer i and prime r. It follows that $(p m i) \mid p-1$, which contradicts Remark 2.10.
(2) If $p \mid d$ and $d=(n, q-1)$, then we can assume that $q=p \cdot m+1$ for some integer m. It follows that $p \mid(p \cdot m+1)^{i}-1$ for some integer i and hence by Lemma 2.9, $(m, p)=1$, and $i \mid p-1$. Thus we can assume that $n=p$.

If $i=1$, then $n=2$ and hence $p=3, q=4$, in this case, $G \cong L_{2}(4) \cong A_{5}$ by [2]. It follows that $3<5| | G \mid$, which contradicts the hypothesis.

If $i \geq 2$ and $m=1$, then by Lemma 2.11, there is a prime r with $p \leq(p+1)^{i-1}-1<r<(p+1)^{i}-1$, which contradicts the maximality of p.

If $i \geq 2$ and $m \geq 2$, we also can rule out this case as " $i \geq 2$ and $m=1$ ".
Case 2. Let $G \cong{ }^{2} A_{n-1}(q)$. Then $p \mid f$ or $p \mid d$.
(1) If $p \mid f$, then we write $f=p t$ for some integer t and hence $p \mid\left(r^{p t}\right)^{i}-(-1)^{i}$ for some integer i and prime r.

If i is even, then $p \mid\left(r^{p t}\right)^{i}-1$ and so $p t i \mid p-1$, a contradiction.
If i is odd, then $p \mid\left(r^{p t}\right)^{i}+1$ and hence $p \mid\left(r^{2 p t}\right)^{i}-1$. We also have $2 p t i \mid p-1$ or $p t \mid p-1$ by Remark 2.10, a contradiction.
(2) If $p \mid d$ and $d=(n, q+1)$, then let $q=p t-1$ for some integer $t, p \mid(p t-1)^{i}-(-1)^{i}$ for some integer i.

LIU/Turk J Math

If i is even, then $p \mid(p t-1)^{i}-1$ and so by Remark 2.10, $i \leq p-1$. Thus we assume that $n=p$. Hence we rule out this case as the case "Case 1(2)"

If i is odd, then $p \mid(p t-1)^{i}+1$ and so by Remark 2.10, $2 i \leq p-1$ or $i \mid p-1$. Thus we assume that $n=p$. If $i=1$, then $n=2=p$ and so $q=2$. Hence $G \cong \cong^{2} A_{1}(2) \cong 3^{2} . Q_{8}$ by $[2, \mathrm{pp} . \mathrm{xv}]$ and G is soluble, which contradicts the hypothesis. If $i \geq 3$, then by Lemma 2.11, there is a prime r with $p \leq(p t-1)^{i-1}+1<r<(p t-1)^{i}+1$, which contradicts the hypothesis.

Case 3. G is isomorphic to one of the other simple groups of Lie type.
We can rule out as "Case 1 or Case 2".
The proof is completed.

Remark 2.14 In the proof of Lemma 2.13, if $p||\operatorname{Out}(G)|$, then by Lemmas 2.12 and 2.11, there is a prime r such that $p<r<2 p$, which contradicts the hypothesis of Lemma 2.13.

3. Main theorem and its proof

Since A_{p}, A_{p+1}, A_{p+2} are $O D$-characterizable, we only consider when $p+2$ is composite, namely, we have the following result.

Theorem 3.1 If G is a finite group such that $D(G)=D\left(A_{p+3}\right)$ and $|G|=\left|A_{p+3}\right|$, where $7 \neq p$ is a prime, and $p+2$ is not prime, then G is isomorphic to A_{p+3}.
Proof Since $p \neq 7$ and $p+2, p+4$ are primes, we can assume that $p \geq 13$. We will prove the theorem by a series of lemmas.

Lemma 3.2 Let K be the maximal normal soluble subgroup of G. Then K is a π-group, where $\pi=\pi(3(p-1))$. In particular, G is insoluble.
Proof By Lemma 2.6, G is insoluble and if K is the maximal normal soluble subgroup of G, then K is a π-group, where $\pi=\pi(3(p-1))$.

Lemma 3.3 The quotient group G / K is an almost simple group. In fact, $S \lesssim G / K \lesssim \operatorname{Aut}(S)$.
Proof Let $\bar{G}=G / K$ and $S=\operatorname{Soc}(G)$. Then $S=B_{1} \times B_{2} \times \cdots \times B_{m}$, where $B_{i}(1 \leq i \leq m)$ are non-abelian simple groups and $S \lesssim \bar{G} \lesssim \operatorname{Aut}(S)$. In the following, we will prove that $m=1$.

Let $m \geq 2$. Then we have that $p \nmid|S|$. For otherwise, $2 \sim p$ and hence $\operatorname{deg}(p) \geq 2$ contradicting Lemma 2.5. Thus for every $i, B_{i} \in \mathfrak{F}_{p}$, where \mathfrak{F}_{p} is the set of non-abelian finite simple groups S such that $p \in \pi(G) \subseteq\{2,3,5, \cdots, p\}$ and p is a prime. By Lemma 3.2, $p \nmid|K|$ and so $p \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. Hence $p||\operatorname{Out}(S)|$. We know that

$$
\operatorname{Out}(S)=\operatorname{Out}\left(S_{1}\right) \times \operatorname{Out}\left(S_{2}\right) \times \cdots \times \operatorname{Out}\left(S_{r}\right),
$$

where the groups $S_{j}(j=1,2, \cdots, r)$ are direct products of all isomorphic $B_{i}^{\prime} \mathrm{s}$ such that

$$
S=S_{1} \times S_{2} \times \cdots \times S_{r} .
$$

Therefore, for certain j, p divides the order of an outer-automorphism of a direct product S_{j} of t isomorphic simple groups B_{i} for some $1 \leq j \leq m$. Since $B_{i} \in \mathfrak{F}_{p}$, it follows from Lemma 2.13 that $p \nmid\left|\operatorname{Out}\left(B_{i}\right)\right|$. However, by Lemma 2.1, $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(S_{j}\right)\right|^{t} \cdot t$. Thus $t \geq p$. Since B_{j} is a non-abelian simple group, $\left.4^{p}| | \operatorname{Aut}\left(B_{i}\right)\right|^{t}$, and hence $2^{2 p}| | G \mid$, which contradicts Lemma 2.4. Hence $m=1$ and $S=B_{i}$.

Lemma 3.4 The order $|S|$ of S is divisible by p.
Proof If $r>\frac{p+3}{2}$, then by Lemma 2.4, $r \||G|$. Assume that $p \nmid|S|$. Then by Lemma $3.3 p||K|$ or $p||\operatorname{Out}(S)|$.

If $p||K|$, then by Lemma 3.2, $p \in \pi(p-1)$. Thus $p \leq p-1$, a contradiction. Therefore, $p||\operatorname{Out}(S)|$, which contradicts Lemma 2.13.

Lemma 3.5 S is isomorphic to A_{n} with $n=p, p+1, p+2, p+3$.
Proof By hypothesis and Lemma 3.4, $\left|G_{p}\right|=|G|_{p}=\left|S_{p}\right|=p$. According to the classification of simple groups, we see that the possibilities for S are the alternating groups A_{n} with $n \geq 6$, one of the 26 sporadic simple groups, or simple groups of Lie type.

- Case 1. $S \cong A_{n}$ with $n \geq 6$.

Then $n=p, p+1, p+2, n=p+3$ or $p+k$ with $k \geq 4$. If $n=p+k$ and $k \geq 4$, then order consideration rules out this case. Therefore, $S \cong A_{n}$ with $n=p, p+1, p+2, p+3$.

- Case 2. S is not isomorphic to a sporadic simple group according to [2].
- Case 3. S is isomorphic to a simple group of Lie type.

Let q be a prime power.

- 1. $S \cong B_{n}(q)$ with $n \geq 2$.

In this situation, by hypothesis, $\pi(G)=\{2,3,5,7, \cdots, p\}$ and so

$$
\left.\frac{1}{(2, q-1)} q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right) \right\rvert\, p!
$$

It follows that $p \mid q$ or $p \mid \prod_{i=1}^{n}\left(q^{2 i}-1\right)$. If $p \mid q$, then q is a power of p. Since $\left|G_{p}\right|=p$ by hypothesis, this is impossible as $n \geq 2$. Therefore, $p \mid \prod_{i=1}^{n}\left(q^{2 i}-1\right)$. It follows that $p \mid q^{2 t}-1$ for some $1 \leq t \leq n$ as p is prime. If $p \mid q^{2}-1$, then $p \mid q^{4}-1$ and hence $p \mid q^{2 n}-1$. Since $\left|G_{p}\right|=p$, then $p \nmid q^{2 n-2}-1$. Then, without loss of generality, we assume that $p=q^{n}-1$ or $p=q^{n}+1$ and hence $2 \mid q$ by Lemma 2.8. By Fermat's little theorem, $n \leq(p-1) / 2$ and so $n^{2} \leq n$ by Lemma 2.4, a contradiction.

- 2. $S \cong D_{n}(q)$ with $n \geq 4$.

Therefore, we have

$$
\left.\frac{1}{\left(4, q^{n}-1\right)} q^{n(n-1)}\left(q^{n}-1\right) \prod_{i=1}^{n-1}\left(q^{2 i}-1\right) \right\rvert\, p!
$$

Since the Sylow p-subgroup of G is of order $p, p \nmid q$ as otherwise, $q=p$ and thus $n=1$, a contradiction. It follows that $p \mid q^{n}-1$ or $p \mid q^{2 t}-1$ for some integer $1 \leq t \leq n-1$. If $p \mid q^{2}-1$, then $p \mid q^{2 t}-1$ and hence $p \mid q^{2 n-2}-1$ or $p \mid q^{n}-1$. If $p \mid q^{n}-1$, then since $\left|G_{p}\right|=p$ we can assume that $p=q^{n}-1$ and hence by Lemma 2.8, $2 \mid q$. By Remark $2.10, n \mid p-1$ and so $n+3 \leq p+2$.
By Lemma 2.4, $\frac{n(n+1)}{2} \leq n+3$ and hence $n=3$, a contradiction.

- 3. $S \cong^{2} A_{n}(q)$ with $n \geq 2$.

In this situation,

$$
\left.\frac{1}{(n+1, q+1)} q^{\frac{1}{2} n(n+1)} \prod_{i=1}^{n}\left(q^{i+1}-(-1)^{i+1}\right) \right\rvert\, p!
$$

Since the Sylow p-subgroup of G is of order p and $n \geq 2$, we obtain that $p \mid q^{t+1}-(-1)^{t+1}$ for some integer $1 \leq t \leq n$.
Let n be odd. Then $p \mid q^{n+1}+1$. If q is odd, then $2 \| q^{n+1}+1$ and hence we assume that $p=\frac{q^{n+1}+1}{2}$, contradicting Lemma 2.8. Hence q is even. We can assume that $p=q^{n+1}+1$ is a Mersenne prime. Obviously $p \mid q^{2(n+1)}-1$ and hence by Remark 2.10, $2(n+1) \mid p-1$. It follows from Lemma 2.4 that $\frac{n(n+1)}{2} \leq 2(n+1)+3$ and so $n=5,3$. Order consideration and Lemma 2.13 imply that it is impossible.
Let n be even. Then $p \mid q^{n+1}-1$. If q is odd, then by Lemma 2.9, $p \mid q-1$ and hence we assume that $p=\frac{q^{n+1}-1}{q-1}$. Therefore, $n+1 \leq p-1$. By Lemma 2.4, $\frac{n(n+1)}{2} \leq \frac{n+1}{2}$, a contradiction. Thus q is even. Similarly we have $n+4 \leq p+2$ and $\frac{n(n+1)}{2} \leq n+4$. Therefore, $n=2,4,6$. Order consideration and Lemma 2.13 rule out this case.

- 4. $S \cong E_{8}(q)$.

Therefore, we have

$$
q^{120}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{2}-1\right) \mid p!
$$

It follows that

$$
p \mid q^{120}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{2}-1\right)
$$

Hence $p \mid q^{t}-1$, where $t \in\{14,18,20,24,30\}$.
Let $t=14$. If q is odd, then by Lemma 2.11, there is a prime $r>p$, a contradiction. Hence $p \mid q^{30}-1$ and by Remark 2.10, $30+3 \leq p+2$. It follows from Lemmas 2.9 and 2.4 that $2^{14} \cdot(q-1)_{2}^{8} \leq 33$, a contradiction. If q is odd, then similarly we have $q^{120} \mid 2^{33}$, a contradiction. Similarly, we can exclude that $H / K \cong E_{6}(q), E_{7}(q)$ and $F_{4}(q)$.

- 5. $S \cong G_{2}(q)$.

Then we have $q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right) \mid p$!. It follows that $p \mid q^{6}-1$ or $p \mid q^{2}-1$. If $p \mid q^{2}-1$, then $p \mid q^{6}-1$. Hence we only consider $p \mid q^{6}-1$ and hence $6 \mid p-1$. If q is odd, then $6 \mid 3$, a contradiction. Hence q is even,

- 6. $S \cong^{2} E_{6}(q)$.

It is easy to see that

$$
\left.\frac{1}{(3, q+1)} q^{36}\left(q^{12}-1\right)\left(q^{9}+1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{5}+1\right)\left(q^{2}-1\right) \right\rvert\, p!
$$

It follows that $p \mid q^{t}-1$ with $t=12,8$, or $p \mid q^{k}+1$ with $k=9,5$.
Let $t=12$. If q is odd, then $2 \mid q-1$ and $2 \mid q+1$. It follows from Lemma 2.4 that $|S|_{2}=2^{7} \cdot(q-1)_{2}^{4} \cdot(q+1)_{2}^{2}$ and $\exp (|S|, 2) \geq 15$. On the other hand, $15 \leq p+2$. We have $q=3$ and so $p=73$. Order consideration rules this out. If q is even, then by Lemma 2.4, $36 \mid 2^{m}+1$, a contradiction. Similarly we can rule out " $t=8$ ".
Let $t=9$. If q is odd, then similarly we have $\exp (|S|, 2) \geq 15$. On the other hand, $18 \leq p+2$. Thus we also have $q=3$ and so $p=703$. Order consideration rules this out. If q is even, $36 \mid q^{9}+3$, a contradiction. Similarly, we can rule out " $t=5$ ".
$-7 . S \cong^{2} B_{2}(q)$ with $q=2^{2 m+1}$.
It follows that $q^{2}\left(q^{2}+1\right)(q-1) \mid p$!. Thus $p \mid q^{2}+1$ or $p \mid q-1$.
Let $p \mid q^{2}+1$. We can assume that $p=q^{2}+1$ and hence, $m=0$. By $[2, \mathrm{pp} . \mathrm{xv}], S \cong 5: 4$ is soluble, a contradiction.

Let $p \mid q-1$, then we can assume that $p=2^{2 m+1}-1$ and hence $2 m+1$ is a prime. Thus by Lemma 2.4, $4 m+2 \mid 2^{2 m+1}+1$, a contradiction.

Similarly $S \not ¥^{2} F_{4}\left(2^{2 m+1}\right)$.

- 8. $S \cong{ }^{2} G_{2}(q), q=3^{2 n+1}$ with $n \geq 1$.

We see that $q^{3}\left(q^{3}+1\right)(q-1) \mid p$. It follows that $p \mid q^{3}+1$ or $p \mid q-1$. If $p \mid q^{3}+1$, then we can assume that $p=\frac{q^{3}+1}{4}$ and so $6 n+3 \left\lvert\, \frac{q^{2}+9}{2}\right.$. It follows that $n=1$ and $p=73$. We can rule out this case by order consideration. If $p \mid q-1$ and $r \mid q$, then there exists a Frobenius group of $r \cdot p$ with a Kernel of order r and a complement of order p respectively, and so there is an element of order $r \cdot p$, which contradicts the fact that $\operatorname{deg}(p)=1$.

- 9. $S \cong{ }^{3} D_{4}(q)$.

We have $q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right) \mid p$!. In this case, since G has a Sylow p-subgroup of order p, then $p \mid q^{8}+q^{4}+1$, or $q \mid q^{6}-1$. If $p \mid q^{8}+q^{4}+1$, then by Remark $2.10,12 \mid p-1$. If q is odd, then $12 l \mid 6$, a contradiction.
If $p \mid q^{6}-1$, then $6 \mid p-1$ and similarly we also can rule this out.
Similarly we can rule out this case " $p \mid q^{2}-1$ ".

- 10. $S \cong A_{n}(q)$ with $n \geq 1$.

It is easy to get

$$
\left.\frac{1}{(n+1, q-1)} q^{n(n+1) / 2} \prod_{i=1}^{n}\left(q^{i+1}-1\right) \right\rvert\, p!.
$$

It follows that $p \mid \prod_{i=1}^{n}\left(q^{i+1}-1\right)$ and so $p \mid q^{t+1}-1$ for some integer $t=n, n-1$.

Let $t=n-1$. Then $p \mid q^{n}-1$ and so $n \leq p-1$. If q is odd, then by Lemma $2.9|S|_{2}=$ $(q-1)_{2}^{n} \cdot \prod_{i=1}^{n}(i+1)_{2}$ and hence $\exp (|S|, 2) \geq \frac{3 n}{2}$. By Lemma 2.4, we conclude that $\frac{3 n}{2} \leq n+3$ and $n \leq 6$. Order consideration can rule out this case. If q is even, then similarly $\exp (|S|, 2) \geq \frac{n(n+1)}{2}$ and hence $\frac{n(n+1)}{2} \leq n+3$. Thus we get $n \leq 3$; order consideration rules this out.
Let $t=n$. Then similarly we can rule out " $t=n-1$ ".
This completes the proof of the lemma.

Lemma 3.6 G is isomorphic to A_{p+3}.
Proof By Lemma 3.3, $S \leq G / K \leq \operatorname{Aut}(S)$. By Lemma 3.5, $S \cong A_{n}$ with $n=p, p+1, p+2, p+3$. We consider the following cases.

Case 1. $S \cong A_{p}$.
Therefore, $A_{p} \leq G / K \leq S_{p}$.
If $G / K \cong A_{p}$, then order consideration of G, we have that $|K|=(p+1)(p+2)(p+3)$. Obviously $2 \in \pi(K)$. It follows that there is an element of order $2 \cdot p$, which contradicts the fact that $\operatorname{deg}(p)=1$.

If $G / K \cong S_{p}$, we have $|K|=(p+1)(p+2)(p+3) / 2$ and also $2 \in \pi(K)$. It means that $2 \sim p$, contradicting $\operatorname{deg}(p)=1$.

Case 2. $S \cong A_{p+1}$.
In this case, $A_{p+1} \leq G / K \leq S_{p+1}$.
If $G / K \cong A_{p+1}$, then $|K|=(p+2)(p+3)$. Obviously $2 \in \pi(K)$ and so there exists an element of order $2 \cdot p$. It follows that $\operatorname{deg}(p) \geq 2$, a contradiction.

If $G / K \cong S_{p+1}$, then $|K|=(p+2)(p+3) / 2$. If $2 \nmid|K|$, then there is a prime r such that $p>r>3$ and $r \leq \frac{p+3}{2}$. It follows that there exists an element of order $r \cdot p$ and hence $r \sim p$, contradicting Lemma 2.5. If $4||K|$, then also we can rule out this case.

Case 3. $S \cong A_{p+2}$.
We have $A_{p+2} \leq G / K \leq S_{p+2}$.
If $G / K \cong A_{p+2}$, then $|K|=p+3$. Obviously $2 \in \pi(K)$, we rule out this case as "Case 1 ".
If $G / K \cong S_{p+2}$, then $|K|=(p+3) / 2$. We rule out this case as "Case 2 ".
Case 4. $S \cong A_{p+3}$.
It is easy to get $A_{p+3} \leq G / K \cong S_{p+3}$.
If $G / K \cong S_{p+3}$, then $(p+3)!\left\lvert\, \frac{(p+3)!}{2}\right.$, a contradiction.
If $G / K \cong A_{p+3}$, then $K=1$ and hence $G \cong A_{p+3}$.
This completes the proof of the Lemma and also of the main theorem.

4. Some applications

We knew that alternating groups A_{p}, A_{p+1}, and A_{p+2}, where p is a prime, are $O D$-characterizable (see [11]) and by our main theorem, we have the following.

Theorem 4.1 The alternating group A_{n} except A_{10} with $n=p, p+1, p+2, p+3$ are $O D$-characterization.
Shi gave the following conjecture.
Conjecture [13] Let G be a group and H a finite simple group. Then $G \cong H$ if and only if (a) $\omega(G)=\omega(H)$ and (b) $|G|=|H|$.

Then we have the following corollary.

Corollary 4.2 Let G be a group and $p \geq 5$ is a prime. Then $G \cong A_{n}$ where $n=p, p+1, p+2, p+3$ if and only if $\omega(G)=\omega\left(A_{n}\right)$ and $|G|=\left|A_{n}\right|$.

Acknowledgments

This work was supported by the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant Nos: 2013QYJ02 and 2014QYJ04), by the Scientific Research Project of Sichuan University of Science and Engineering (Grant No: 2014RC02) and by the department of education of Sichuan Province (Grant No: 15ZA0235). The author is very grateful for the helpful suggestions of the referee.

References

[1] Akbari M, Moghaddamfar AR. Some quantitative characterizations of certain symplectic groups over the binary field. Int Electron J Algebra 2014; 16: 32-52.
[2] Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. Atlas of finite groups. New York, NY, Oxford: Oxford University Press, 1985.
[3] Crescenzo P. A Diophantine equation which arises in the theory of finite groups. Advances in Math 1975; 17: 25-29.
[4] Grechkoseeva MA. Recognition of finite simple linear groups over fields of characteristic 2 by the spectrum. Algebra Logika 2008; 47: 405-427.
[5] Hall, Jr., M. The theory of groups, Reprinting of the 1968 edition. New York NY: Chelsea Publishing Co., 1976.
[6] Hoseini AA, Moghaddamfar AR. Recognizing alternating groups A_{p+3} for certain primes p by their orders and degree patterns. Front Math China 2010; 5: 541-553.
[7] Kleidman P, Liebeck M. The subgroup structure of the finite classical groups, vol. 129 of London Mathematical Society Lecture Note Series. New York, NY, Cambridge: Cambridge University Press, 1990.
[8] Kondratiev AS, Mazurov VD. Recognition of alternating groups of prime degree from the orders of their elements. Siberian Math J 2000; 41: 294-302.
[9] Liu S, Yang Y. On Thompson's conjecture for alternating groups A_{p+3}. Sci World J 2014; 2014: Article ID 752598, 10 pages.
[10] Moghaddamfar AR, Rahbariyan S. More on the OD-characterizability of a finite group. Algebra Colloq 2011; 18: 663-674.
[11] Moghaddamfar AR, Zokayi AR. Recognizing finite groups through order and degree pattern. Algebra Colloq 2008; 15: 449-456.
[12] Moghaddamfar AR, Zokayi AR, Darafsheh MR. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq 2005; 12: 431-442.
[13] Shi WJ. A new characterization of the sporadic simple groups. In Group theory (Singapore, 1987). Berlin, B, Berlin: de Gruyter, 1989, pp. 531-540.
[14] Vasiliev AV. On the recognition of all finite nonabelian simple groups with orders having prime divisors at most 13, Sibirsk Mat Zh 2005; 46: 315-324.
[15] Zavarnitsin AV. Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime r and of a group of degree 16 by the set of their element orders. Algebra Log 2000; 39: 648-661.
[16] Zavarnitsin AV, Mazurov VD. Element orders in coverings of symmetric and alternating groups. Algebra Log 1999; 38: 296-315.
[17] Zsigmondy K. Zur Theorie der Potenzreste. Monatsh Math Phys 1892; 3: 265-284.

[^0]: *Correspondence: s.t.liu@yandex.com
 2010 AMS Mathematics Subject Classification: 20D05, 20D06, 20D60.

