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Abstract:Let G be a finite group. Moghaddamfar et al. defined prime graph Γ(G) of group G as follows. The vertices of

Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge, denoted by p ∼ q , if there

is an element in G of order pq . Assume |G| = pα1
1 · · · pαk

k with P1 < · · · < pk and nature numbers αi with i = 1, 2, · · · , k .
For p ∈ π(G) , let the degree of p be deg(p) = |{q ∈ π(G) | q ∼ p}| , and D(G) = (deg(p1), deg(p2), · · · , deg(pk)) . Denote

by π(G) the set of prime divisor of |G| . Let GK(G) be the graph with vertex set π(G) such that two primes p and

q in π(G) are joined by an edge if G has an element of order p · q . We set s(G) to denote the number of connected

components of the prime graph GK(G) . Some authors proved some groups are OD -characterizable with s(G) ≥ 2.

Then for s(G) = 1, what is the influence of OD on the structure of groups? We knew that the alternating groups Ap+3 ,

where 7 ̸= p ∈ π(100!) , A130 and A140 are OD -characterizable. Therefore, we naturally ask the following question: if

s(G) = 1, then is there a group OD -characterizable? In this note, we give a characterization of Ap+3 except A10 with

s(Ap+3) = 1, by OD , which gives a positive answer to Moghaddamfar and Rahbariyan’s conjecture.

Key words: Order component, element order, alternating group, degree pattern, prime graph, Simple group

1. Introduction

In this short paper, all groups under study are finite, and for a simple group, we mean a non-Abelian simple

group. Let G be a group. Then ω(G) denotes the set of orders of its elements of G and π(G) denotes the

set of prime divisors of |G| . Associated to ω(G) a graph is called a prime graph of G , which is denoted by

GK(G). The vertex set of GKG) is π(G), and two distinct vertices p, q are joined by an edge if p · q ∈ ω(G),

which is denoted by p ∼ q .

Throughout this paper, we also use the following symbols. For a finite group G , the socle of G is defined

as the subgroup generated by the minimal normal subgroup of G , denoted by Soc(G). Sylp(G) denotes the

set of all Sylow p -subgroups of G , where p ∈ π(G), Gr denotes the Sylow r -subgroup of G for r ∈ π(G).

Sn and An denote the symmetric and alternating groups of degree n , respectively. Let Aut(G) and Out(G)

denote the automorphism and outer-automorphism groups of G , respectively. The other symbols are standard

(see [2], for instance).

Moghaddamfar et al. introduced the following concept, which attracted the attention of some authors

(see [1]).
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Definition 1.1 [12] Let G be a finite group and |G| = pα1
1 pα2

2 · · · pαk

k , where pi s are primes and αi s are

integers. For p ∈ π(G) , let deg(p) := |{q ∈ π(G)|p ∼ q}| , which we call the degree of p . We also define

D(G) := (deg(p1), deg(p2), · · · , deg(pk)) , where p1 < p2 < · · · < pk . We call D(G) the degree pattern of G

Since not all groups are OD -characterizable, Moghaddamfar et al. introduced the following.

Given a finite group M , denote by hOD(M) the number of isomorphism classes of finite groups G such

that (1) |G| = |M | and (2) D(G) = D(M).

Definition 1.2 [12] A finite group M is called k -fold OD -characterizable if hOD(M) = k . Moreover, a 1-fold

OD -characterizable group is simply called an OD -characterizable group.

To date, we knew that some groups are k -fold OD -characterizable (see Tables 1 and 2 and corresponding

references of [1]).

In particular, related to alternating groups, we have the following results.

Proposition 1.3 A finite group G is OD -characterizable if G is one of the following groups:

(1) The alternating groups Ap , Ap+1 , and Ap+2 , where p is a prime [11].

(2) The alternating groups Ap+3 , where p is a prime and 7 ̸= p ∈ π(100!) [6, 10].

Proposition 1.4 Alternating group A10 is 2-fold OD -characterizable.

We set s(G) to denote the number of connected components of the prime graph GK(G). Some authors

proved that some special groups with s(G) ≥ 2 are OD -characterizable. However, if s(G) = 1, the author has

proved that the alternating groups A27 are 6-fold OD -characterizable. Therefore there is a question: which of

the alternating groups is OD -characterizable? Related to s(G) = 1 for the alternating group, Moghaddamfar

and Rahbariyan gave the following conjecture about the alternating group Ap+3 .

Conjecture. [10, pp. 665, Conjecture 1] Let p ̸= 7 be a prime. Then the alternating group Ap+3 is

OD -characterizable.

Inspired by the works of [6, 10], we generalize some authors’ results and show that the alternating groups

Ap+3 with s(Ap+3) = 1 are OD -characterizable by using the classification of finite simple groups, which gives

a positive answer regarding Moghaddamfar and Rahbariyan’s conjecture. In fact, we prove the following.

Main Theorem. The alternating groups Ap+3 except for A10 are OD -characterizable.

2. Preliminary results

In this section, we will give some results that will be used.

Lemma 2.1 [15] Let S = P1 × P2 × · · · × Pr , where Pi ’s are an isomorphic non-abelian simple group. Then

Aut(S) = (Aut(P1)×Aut(P2)× · · · ×Aut(Pr)) · Sr .

Lemma 2.2 [16] The group Sn (or An ) has an element of order m = pα1
1 · pα2

2 · · · pαs
s , where p1 , p2 , · · · ,

ps are distinct primes and α1 , α2 , · · · , αs are natural numbers, if and only if pα1
1 + pα2

2 + · · ·+ pαs
s ≤ n (or

pα1
1 + pα2

2 + · · ·+ pαs
s ≤ n for m odd, and pα1

1 + pα2
2 + · · ·+ pαs

s ≤ n− 2 for m even).
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As a corollary of Lemma 2.1, we have the following result.

Lemma 2.3 Let An (or Sn ) be an alternating (or symmetric group) of degree n . Then the following hold.

(1) Let p, q ∈ π(An) be odd primes. Then p ∼ q if and only if p+ q ≤ n .

(2) Let p ∈ π(An) be odd prime. Then 2 ∼ p if and only if p+ 4 ≤ n .

(3) Let p, q ∈ π(Sn) . Then p ∼ q if and only if p+ q ≤ n .

By [2], we have that |An| = n!/2 and |Sn| = n! .

Let exp(n, r) = a denote that ra | n but ra+1 ∤ n .

Lemma 2.4 Let Ap+3 be an alternating group of degree p+ 3 , where p is a prime. Then the following hold.

(1) exp(|Ap+3|, 2) =
∞∑
i=1

[p+3
2i ]− 1 . In particular, exp(|Ap+3|, 2) ≤ p+ 2 .

(2) exp(|Ap+3|, r) =
∞∑
i=1

[p+3
ri ] for each r ∈ π(Ap+3)\{2} . Furthermore, exp(|Ap+3|, r) < p−1

2 , where 3 ≤ r ∈

π(Ap+3) . In particular, if r > [p+3
2 ] , then exp(|Ap+3|, r) = 1 .

Proof See [9] 2

Lemma 2.5 Let Ap+3 be an alternating group of degree p+3 with p+2 composite and p prime. Suppose that

|π(Ap+3)| = d . Then the following hold.

(1) deg(2) = d− 2 . In particular, 2 ∼ r for all r ∈ π(Ap+3) \ {p} .

(2) deg(3) = d− 1 .

(3) deg(p) = 1 . In particular, p ∼ r where r ∈ π(Ap+3) if and only if r = 3 .

Proof From Lemmas 2.3 and 2.4, we have the desired result. 2

Lemma 2.6 Let G be a group with D(G) = D(Ap+3) and |G| = |Ap+3| , where p is a prime such that p + 2

is composite. Suppose that |π(Ap+3)| = d . Then

(1) deg(2) = deg(5) = d− 2 , deg(3) = d− 1 and deg(p) = 1 . Hence GK(G) is a connected graph.

(2) If K is the maximal normal soluble subgroup of G , then K is an ω -group, where ω = π(3(p − 1)) . In

particular, G is insoluble.

Proof. See [6].

Lemma 2.7 Let L be nonabelian simple groups. Then the orders and their outer-automorphism of L are as

listed in Tables 1, 2, and 3.
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Proof See [7]. 2

Table 1. The simple classical groups.

L Lie; rank L d O |L|
Ln(q) An−1(q) (n, q − 1) 2df , if n ≥ 3; 1

dq
n(n−1)/2

∏n
i=2(q

i − 1)
n− 1 df , if n = 2

Un(q)
2An−1(q) (n, q + 1) 2df , if n ≥ 3 1

dq
n(n−1)/2

∏n
i=2(q

i − (−1)i)
[n/2] df , if n = 2

PSp2m(q) Cm(q) (2, q − 1) df , m ≥ 3; 1
dq

m2 ∏m
i=1(q

2i − 1)
m 2f , if m = 2

Ω2m+1(q) Bm(q) 2 2f 1
2q

m2 ∏m
i=1(q

2i − 1)
q odd m

PΩ+
2m(q) Dm(q) (4, qm − 1) 2df , if m ̸= 4 1

dq
m(m−1)(qm−1)

∏m−1
i=1 (q2i−1)

m ≥ 3 m 6df , if m = 4

PΩ−
2m(q) 2Dm(q) (4, qm + 1) 2df 1

dq
m(m−1)(qm+1)

∏m−1
i=1 (q2i − 1)

m ≥ 2 m− 1

Table 2. The simple exceptional groups.

L L d O |L|
G2(q) 2 1 f , if p ̸= 3 q6(q2 − 1)(q6 − 1)

2f , if p = 3
F4(q) 4 1 (2, p)f q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)
E6(q) 6 (3, q − 1) 2df 1

dq
36

∏
i∈{2,5,6,8,9,12}(q

i − 1)

E7(q) 7 (2, q − 1) df 1
dq

63
∏

i∈{2,6,8,10,12,14,18}(q
i − 1)

E8(q) 8 1 f q120
∏

i∈{2,8,12,14,18,20,24,30}(q
i − 1)

2B2(q), q = 22m+1 1 1 f q2(q2 + 1)(q − 1)
2G2(q), q = 32m+1 1 1 f q3(q3 + 1)(q − 1)
2F4(q), q = 22m+1 2 1 f q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1)
3D4(q) 2 1 3f q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)
2E6(q) 4 (3, q + 1) 2df 1

dq
36

∏
i∈{2,5,6,8,9,12}(q

i − (−1)i)

Lemma 2.8 Let a, b , and n be positive integers such that (a, b) = 1 . Then there exists a prime p with the

following properties:

• p divides an − bn ,

• p does not divide ak − bk for all k < n ,

with the following exceptions: a = 2, b = 1 ; n = 6 and a+ b = 2k ; n = 2 .

Proof See [17]. 2

Lemma 2.9 Let q > 1 be an integer, m be a natural number, and p be an odd prime. If p divides q− 1 , then

(qm − 1)p = mp · (q − 1)p .

Proof See Lemma 8(1) of [4]. 2
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Table 3. The simple sporadic groups.

L d O |L|
M11 1 1 24 · 32 · 5 · 11
M12 2 2 26 · 33 · 5 · 11
M22 12 2 27 · 32 · 5 · 7 · 11
M23 1 1 27 · 32 · 5 · 7 · 11 · 23
M24 1 1 210 · 33 · 5 · 7 · 11 · 23
J1 1 1 23 · 3 · 5 · 7 · 11 · 19
J2 2 2 27 · 33 · 52 · 7
J3 3 2 27 · 35 · 5 · 17 · 19
J4 1 1 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43
HS 2 2 29 · 32 · 53 · 7 · 11
Suz 6 2 213 · 37 · 52 · 7 · 11 · 13
McL 3 2 27 · 36 · 53 · 7 · 11
Ru 2 1 214 · 33 · 53 · 7 · 13 · 29
He(F7) 1 2 210 · 33 · 52 · 73 · 17
Ly 1 1 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67
ON 3 2 29 · 34 · 5 · 73 · 11 · 19 · 31
Co1 2 1 221 · 39 · 54 · 72 · 11 · 13 · 23
Co2 1 1 218 · 36 · 53 · 7 · 11 · 23
Co3 1 1 210 · 37 · 53 · 7 · 11 · 23
Fi22 6 2 217 · 39 · 52 · 7 · 11 · 13
Fi23 1 1 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23
Fi′24 3 2 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29
HN(F5) 1 2 214 · 36 · 56 · 7 · 11 · 19
Th(F3) 1 1 215 · 310 · 53 · 72 · 13 · 19 · 31
BM(F2) 2 1 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47
M(F1) 1 1 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Remark 2.10 If b = 1 , the prime p is called the Zsigmondy prime. If p is a Zsigmnody of an − 1 , then

Fermat’s little theorem shows that n | p−1 . Put Zn(a) = {p : p is a Zsigmondy prime of an−1} . If r ∈ Zn(a)

and r | am − 1 , then n | m .

Lemma 2.11 If n ≥ 6 is a natural number, then there are at least s(n) prime numbers pi such that n+1
2 <

pi < n . Here

• s(n) = 6 for n ≥ 48 ;

• s(n) = 5 for 42 ≤ n ≤ 47 ;

• s(n) = 4 for 38 ≤ n ≤ 41 ;

• s(n) = 3 for 18 ≤ n ≤ 37 ;

• s(n) = 2 for 14 ≤ n ≤ 17 ;

• s(n) = 1 for 6 ≤ n ≤ 13 .

In particular, for every natural number n > 6 , there exists a prime p such that n+1
2 < p < n− 1 , and for every

natural number n > 3 , there exists an odd prime number p such that n− p < p < n .
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Proof See Lemma 1 of [8]. 2

Lemma 2.12 Let X be a finite simple non-abelian group, x ∈ Out(X) , and |x| a prime greater than 7. Then

π(Out(X)) contains a number greater than 2|x| .

Proof See [14, Lemma 11]. 2

Lemma 2.13 Let G be a finite non-abelian simple group and p is the largest prime divisor of |G| with p∥|G| .
Then p ∤ |Out(G)| .

Proof By Lemma 2.7, G is isomorphic to alternating group, simple group of Lie type, or sporadic simple
groups.

If G is an alternating group, then |Out(An)| = 2 if n ≥ 5 and n ̸= 6; |Out(An)| = 4 if n = 6 (see [7]).

Hence we have the desired result.

If G is a sporadic simple group, then by Table 3 we have the result.

Therefore, we only consider that G is a simple group of Lie type. By hypothesis, if p < 3, then G is

a {2, 3}-group that is soluble by Burnside’s theorem (see [5], for instance). Hence in the following, let p ≥ 5.

Suppose the contrary; then p | |Out(G)| . We mainly consider three cases.

Case 1. Let G ∼= An−1(q). Then p | f or p | d . Obviously, p ∤ q (in fact, if p | q , then q = pf and

hence, by Lemma 2.8 there is a prime r such that r | ptf − 1 and r > p).

(1) If p | f , then let f = p ·m for some integer m and hence, p | (rpm)i − 1 for some integer i and prime r .

It follows that (pmi) | p− 1, which contradicts Remark 2.10.

(2) If p | d and d = (n, q − 1), then we can assume that q = p ·m + 1 for some integer m . It follows that

p | (p ·m + 1)i − 1 for some integer i and hence by Lemma 2.9, (m, p) = 1, and i | p − 1. Thus we can

assume that n = p .

If i = 1, then n = 2 and hence p = 3, q = 4, in this case, G ∼= L2(4) ∼= A5 by [2]. It follows that

3 < 5 | |G| , which contradicts the hypothesis.

If i ≥ 2 and m = 1, then by Lemma 2.11, there is a prime r with p ≤ (p+ 1)i−1 − 1 < r < (p+ 1)i − 1,

which contradicts the maximality of p .

If i ≥ 2 and m ≥ 2, we also can rule out this case as “i ≥ 2 and m = 1”.

Case 2. Let G ∼=2 An−1(q). Then p | f or p | d .

(1) If p | f , then we write f = pt for some integer t and hence p | (rpt)i− (−1)i for some integer i and prime
r .

If i is even, then p | (rpt)i − 1 and so pti | p− 1, a contradiction.

If i is odd, then p | (rpt)i +1 and hence p | (r2pt)i − 1. We also have 2pti | p− 1 or pt | p− 1 by Remark

2.10, a contradiction.

(2) If p | d and d = (n, q+1), then let q = pt− 1 for some integer t , p | (pt− 1)i − (−1)i for some integer i .
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If i is even, then p | (pt− 1)i − 1 and so by Remark 2.10, i ≤ p− 1. Thus we assume that n = p . Hence

we rule out this case as the case “Case 1(2)”

If i is odd, then p | (pt − 1)i + 1 and so by Remark 2.10, 2i ≤ p − 1 or i | p − 1. Thus we assume

that n = p . If i = 1, then n = 2 = p and so q = 2. Hence G ∼=2 A1(2) ∼= 32.Q8 by [2, pp. xv] and

G is soluble, which contradicts the hypothesis. If i ≥ 3, then by Lemma 2.11, there is a prime r with

p ≤ (pt− 1)i−1 + 1 < r < (pt− 1)i + 1, which contradicts the hypothesis.

Case 3. G is isomorphic to one of the other simple groups of Lie type.

We can rule out as “Case 1 or Case 2”.

The proof is completed. 2

Remark 2.14 In the proof of Lemma 2.13, if p | |Out(G)| , then by Lemmas 2.12 and 2.11, there is a prime r

such that p < r < 2p , which contradicts the hypothesis of Lemma 2.13.

3. Main theorem and its proof

Since Ap, Ap+1, Ap+2 are OD -characterizable, we only consider when p+ 2 is composite, namely, we have the

following result.

Theorem 3.1 If G is a finite group such that D(G) = D(Ap+3) and |G| = |Ap+3| , where 7 ̸= p is a prime,

and p+ 2 is not prime, then G is isomorphic to Ap+3 .

Proof Since p ̸= 7 and p+ 2, p+ 4 are primes, we can assume that p ≥ 13. We will prove the theorem by a

series of lemmas. 2

Lemma 3.2 Let K be the maximal normal soluble subgroup of G . Then K is a π -group, where π = π(3(p−1)) .

In particular, G is insoluble.

Proof By Lemma 2.6, G is insoluble and if K is the maximal normal soluble subgroup of G , then K is a

π -group, where π = π(3(p− 1)). 2

Lemma 3.3 The quotient group G/K is an almost simple group. In fact, S ≲ G/K ≲ Aut(S) .

Proof Let G = G/K and S = Soc(G). Then S = B1×B2× · · ·×Bm , where Bi(1 ≤ i ≤ m) are non-abelian

simple groups and S ≲ G ≲ Aut(S). In the following, we will prove that m = 1.

Let m ≥ 2. Then we have that p ∤ |S| . For otherwise, 2 ∼ p and hence deg(p) ≥ 2 contradicting

Lemma 2.5. Thus for every i , Bi ∈ Fp , where Fp is the set of non-abelian finite simple groups S such that

p ∈ π(G) ⫅ {2, 3, 5, · · · , p} and p is a prime. By Lemma 3.2, p ∤ |K| and so p ∈ π(G) ⫅ π(Aut(S)). Hence

p | |Out(S)| . We know that

Out(S) = Out(S1)×Out(S2)× · · · ×Out(Sr),

where the groups Sj(j = 1, 2, · · · , r) are direct products of all isomorphic B′
i s such that

S = S1 × S2 × · · · × Sr.
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Therefore, for certain j , p divides the order of an outer-automorphism of a direct product Sj of t isomorphic

simple groups Bi for some 1 ≤ j ≤ m . Since Bi ∈ Fp , it follows from Lemma 2.13 that p ∤ |Out(Bi)| . However,

by Lemma 2.1, |Aut(Sj)| = |Aut(Sj)|t · t! . Thus t ≥ p . Since Bj is a non-abelian simple group, 4p | |Aut(Bi)|t ,
and hence 22p | |G| , which contradicts Lemma 2.4. Hence m = 1 and S = Bi . 2

Lemma 3.4 The order |S| of S is divisible by p .

Proof If r > p+3
2 , then by Lemma 2.4, r∥|G| . Assume that p ∤ |S| . Then by Lemma 3.3 p | |K| or

p | |Out(S)| .
If p | |K| , then by Lemma 3.2, p ∈ π(p− 1). Thus p ≤ p− 1, a contradiction. Therefore, p | |Out(S)| ,

which contradicts Lemma 2.13. 2

Lemma 3.5 S is isomorphic to An with n = p, p+ 1, p+ 2, p+ 3 .

Proof By hypothesis and Lemma 3.4, |Gp| = |G|p = |Sp| = p . According to the classification of simple

groups, we see that the possibilities for S are the alternating groups An with n ≥ 6, one of the 26 sporadic

simple groups, or simple groups of Lie type.

• Case 1. S ∼= An with n ≥ 6.

Then n = p, p+1, p+2, n = p+3 or p+k with k ≥ 4. If n = p+k and k ≥ 4, then order consideration

rules out this case. Therefore, S ∼= An with n = p, p+ 1, p+ 2, p+ 3.

• Case 2. S is not isomorphic to a sporadic simple group according to [2].

• Case 3. S is isomorphic to a simple group of Lie type.

Let q be a prime power.

– 1. S ∼= Bn(q) with n ≥ 2.

In this situation, by hypothesis, π(G) = {2, 3, 5, 7, · · · , p} and so

1

(2, q − 1)
qn

2
n∏

i=1

(q2i − 1) | p!.

It follows that p | q or p |
∏n

i=1(q
2i − 1). If p | q , then q is a power of p . Since |Gp| = p by

hypothesis, this is impossible as n ≥ 2. Therefore, p |
∏n

i=1(q
2i − 1). It follows that p | q2t − 1 for

some 1 ≤ t ≤ n as p is prime. If p | q2 − 1, then p | q4 − 1 and hence p | q2n − 1. Since |Gp| = p ,

then p ∤ q2n−2 − 1. Then, without loss of generality, we assume that p = qn − 1 or p = qn + 1 and

hence 2 | q by Lemma 2.8. By Fermat’s little theorem, n ≤ (p− 1)/2 and so n2 ≤ n by Lemma 2.4,

a contradiction.

– 2. S ∼= Dn(q) with n ≥ 4.

Therefore, we have

1

(4, qn − 1)
qn(n−1)(qn − 1)

n−1∏
i=1

(q2i − 1) | p!.
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Since the Sylow p -subgroup of G is of order p , p ∤ q as otherwise, q = p and thus n = 1, a

contradiction. It follows that p | qn − 1 or p | q2t − 1 for some integer 1 ≤ t ≤ n− 1. If p | q2 − 1,

then p | q2t−1 and hence p | q2n−2−1 or p | qn−1. If p | qn−1, then since |Gp| = p we can assume

that p = qn − 1 and hence by Lemma 2.8, 2 | q . By Remark 2.10, n | p − 1 and so n + 3 ≤ p + 2.

By Lemma 2.4, n(n+1)
2 ≤ n+ 3 and hence n = 3, a contradiction.

– 3. S ∼=2 An(q) with n ≥ 2.

In this situation,

1

(n+ 1, q + 1)
q

1
2n(n+1)

n∏
i=1

(qi+1 − (−1)i+1) | p!.

Since the Sylow p -subgroup of G is of order p and n ≥ 2, we obtain that p | qt+1 − (−1)t+1 for

some integer 1 ≤ t ≤ n .

Let n be odd. Then p | qn+1+1. If q is odd, then 2∥qn+1+1 and hence we assume that p = qn+1+1
2 ,

contradicting Lemma 2.8. Hence q is even. We can assume that p = qn+1 + 1 is a Mersenne prime.

Obviously p | q2(n+1) − 1 and hence by Remark 2.10, 2(n + 1) | p − 1. It follows from Lemma 2.4

that n(n+1)
2 ≤ 2(n + 1) + 3 and so n = 5, 3. Order consideration and Lemma 2.13 imply that it is

impossible.

Let n be even. Then p | qn+1 − 1. If q is odd, then by Lemma 2.9, p | q − 1 and hence we assume

that p = qn+1−1
q−1 . Therefore, n + 1 ≤ p − 1. By Lemma 2.4, n(n+1)

2 ≤ n+1
2 , a contradiction. Thus

q is even. Similarly we have n + 4 ≤ p + 2 and n(n+1)
2 ≤ n + 4. Therefore, n = 2, 4, 6. Order

consideration and Lemma 2.13 rule out this case.

– 4. S ∼= E8(q).

Therefore, we have

q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1) | p!.

It follows that

p | q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1).

Hence p | qt − 1, where t ∈ {14, 18, 20, 24, 30} .

Let t = 14. If q is odd, then by Lemma 2.11, there is a prime r > p , a contradiction. Hence p | q30−1

and by Remark 2.10, 30 + 3 ≤ p + 2. It follows from Lemmas 2.9 and 2.4 that 214 · (q − 1)82 ≤ 33,

a contradiction. If q is odd, then similarly we have q120 | 233 , a contradiction. Similarly, we can

exclude that H/K ∼= E6(q), E7(q) and F4(q).

– 5. S ∼= G2(q).

Then we have q6(q6 − 1)(q2 − 1) | p! . It follows that p | q6 − 1 or p | q2 − 1. If p | q2 − 1, then

p | q6 − 1. Hence we only consider p | q6 − 1 and hence 6 | p − 1. If q is odd, then 6 | 3, a
contradiction. Hence q is even,
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– 6. S ∼=2 E6(q).

It is easy to see that

1

(3, q + 1)
q36(q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1) | p!.

It follows that p | qt − 1 with t = 12, 8, or p | qk + 1 with k = 9, 5.

Let t = 12. If q is odd, then 2 | q − 1 and 2 | q + 1. It follows from Lemma 2.4 that

|S|2 = 27 · (q − 1)42 · (q + 1)22 and exp(|S|, 2) ≥ 15. On the other hand, 15 ≤ p + 2. We have

q = 3 and so p = 73. Order consideration rules this out. If q is even, then by Lemma 2.4,

36 | 2m + 1, a contradiction. Similarly we can rule out “t = 8”.

Let t = 9. If q is odd, then similarly we have exp(|S|, 2) ≥ 15. On the other hand, 18 ≤ p+2. Thus

we also have q = 3 and so p = 703. Order consideration rules this out. If q is even, 36 | q9 + 3, a

contradiction. Similarly, we can rule out “t = 5”.

– 7. S ∼=2 B2(q) with q = 22m+1 .

It follows that q2(q2 + 1)(q − 1) | p! . Thus p | q2 + 1 or p | q − 1.

Let p | q2 + 1. We can assume that p = q2 + 1 and hence, m = 0. By [2, pp. xv], S ∼= 5 : 4 is

soluble, a contradiction.

Let p | q−1, then we can assume that p = 22m+1−1 and hence 2m+1 is a prime. Thus by Lemma

2.4, 4m+ 2 | 22m+1 + 1, a contradiction.

Similarly S ≇2 F4(2
2m+1).

– 8. S ∼=2 G2(q), q = 32n+1 with n ≥ 1.

We see that q3(q3 + 1)(q − 1) | p! . It follows that p | q3 + 1 or p | q − 1. If p | q3 + 1, then we can

assume that p = q3+1
4 and so 6n+3 | q2+9

2 . It follows that n = 1 and p = 73. We can rule out this

case by order consideration. If p | q − 1 and r | q , then there exists a Frobenius group of r · p with

a Kernel of order r and a complement of order p respectively, and so there is an element of order

r · p , which contradicts the fact that deg(p) = 1.

– 9. S ∼=3 D4(q).

We have q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) | p! . In this case, since G has a Sylow p -subgroup of order

p , then p | q8 + q4 +1, or q | q6 − 1. If p | q8 + q4 +1, then by Remark 2.10, 12 | p− 1. If q is odd,

then 12l | 6, a contradiction.

If p | q6 − 1, then 6 | p− 1 and similarly we also can rule this out.

Similarly we can rule out this case “p | q2 − 1”.

– 10. S ∼= An(q) with n ≥ 1.

It is easy to get

1

(n+ 1, q − 1)
qn(n+1)/2

n∏
i=1

(qi+1 − 1) | p!.

It follows that p |
∏n

i=1(q
i+1 − 1) and so p | qt+1 − 1 for some integer t = n, n− 1.
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Let t = n − 1. Then p | qn − 1 and so n ≤ p − 1. If q is odd, then by Lemma 2.9 |S|2 =

(q− 1)n2 ·
∏n

i=1(i+1)2 and hence exp(|S|, 2) ≥ 3n
2 . By Lemma 2.4, we conclude that 3n

2 ≤ n+3 and

n ≤ 6. Order consideration can rule out this case. If q is even, then similarly exp(|S|, 2) ≥ n(n+1)
2

and hence n(n+1)
2 ≤ n+ 3. Thus we get n ≤ 3; order consideration rules this out.

Let t = n . Then similarly we can rule out “t = n− 1”.

This completes the proof of the lemma. 2

Lemma 3.6 G is isomorphic to Ap+3 .

Proof By Lemma 3.3, S ≤ G/K ≤ Aut(S). By Lemma 3.5, S ∼= An with n = p, p + 1, p + 2, p + 3. We

consider the following cases.

Case 1. S ∼= Ap .

Therefore, Ap ≤ G/K ≤ Sp .

If G/K ∼= Ap , then order consideration of G , we have that |K| = (p + 1)(p + 2)(p + 3). Obviously

2 ∈ π(K). It follows that there is an element of order 2 · p , which contradicts the fact that deg(p) = 1.

If G/K ∼= Sp , we have |K| = (p + 1)(p + 2)(p + 3)/2 and also 2 ∈ π(K). It means that 2 ∼ p ,

contradicting deg(p) = 1.

Case 2. S ∼= Ap+1 .

In this case, Ap+1 ≤ G/K ≤ Sp+1 .

If G/K ∼= Ap+1 , then |K| = (p+2)(p+3). Obviously 2 ∈ π(K) and so there exists an element of order

2 · p . It follows that deg(p) ≥ 2, a contradiction.

If G/K ∼= Sp+1 , then |K| = (p + 2)(p + 3)/2. If 2 ∤ |K| , then there is a prime r such that p > r > 3

and r ≤ p+3
2 . It follows that there exists an element of order r · p and hence r ∼ p , contradicting Lemma 2.5.

If 4 | |K| , then also we can rule out this case.

Case 3. S ∼= Ap+2 .

We have Ap+2 ≤ G/K ≤ Sp+2 .

If G/K ∼= Ap+2 , then |K| = p+ 3. Obviously 2 ∈ π(K), we rule out this case as “Case 1”.

If G/K ∼= Sp+2 , then |K| = (p+ 3)/2. We rule out this case as “Case 2”.

Case 4. S ∼= Ap+3 .

It is easy to get Ap+3 ≤ G/K ∼= Sp+3 .

If G/K ∼= Sp+3 , then (p+ 3)! | (p+3)!
2 , a contradiction.

If G/K ∼= Ap+3 , then K = 1 and hence G ∼= Ap+3 .

This completes the proof of the Lemma and also of the main theorem. 2

4. Some applications

We knew that alternating groups Ap , Ap+1 , and Ap+2 , where p is a prime, are OD -characterizable (see [11])

and by our main theorem, we have the following.
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Theorem 4.1 The alternating group An except A10 with n = p, p+ 1, p+ 2, p+ 3 are OD -characterization.

Shi gave the following conjecture.

Conjecture [13] Let G be a group and H a finite simple group. Then G ∼= H if and only if (a)

ω(G) = ω(H) and (b) |G| = |H| .
Then we have the following corollary.

Corollary 4.2 Let G be a group and p ≥ 5 is a prime. Then G ∼= An where n = p, p+ 1, p+ 2, p+ 3 if and

only if ω(G) = ω(An) and |G| = |An| .
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