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Abstract: Let G be a finite group. Moghaddamfar et al. defined prime graph I'(G) of group G as follows. The vertices of
I'(G) are the primes dividing the order of G and two distinct vertices p, g are joined by an edge, denoted by p ~ g, if there
is an element in G of order pq. Assume |G| = p{! - - p*
For p € m(G), let the degree of p be deg(p) = |{q € 7(G) | ¢ ~ p}|, and D(G) = (deg(p1), deg(p2), - - ,deg(pr)). Denote

by w(G) the set of prime divisor of |G|. Let GK(G) be the graph with vertex set m(G) such that two primes p and

with Py < --- < p; and nature numbers «o; with i =1,2,--- [ k.

g in 7(G) are joined by an edge if G has an element of order p-gq. We set s(G) to denote the number of connected
components of the prime graph GK(G). Some authors proved some groups are OD-characterizable with s(G) > 2.
Then for s(G) = 1, what is the influence of OD on the structure of groups? We knew that the alternating groups Aps,
where 7 # p € w(100!), Aizo and Ai40 are OD-characterizable. Therefore, we naturally ask the following question: if
s(G) =1, then is there a group OD-characterizable? In this note, we give a characterization of Ap43 except Ao with

s(Ap+3) =1, by OD, which gives a positive answer to Moghaddamfar and Rahbariyan’s conjecture.

Key words: Order component, element order, alternating group, degree pattern, prime graph, Simple group

1. Introduction

In this short paper, all groups under study are finite, and for a simple group, we mean a non-Abelian simple
group. Let G be a group. Then w(G) denotes the set of orders of its elements of G and 7(G) denotes the
set of prime divisors of |G|. Associated to w(G) a graph is called a prime graph of G, which is denoted by
GK(G). The vertex set of GKG) is 7(G), and two distinct vertices p, g are joined by an edge if p-q € w(G),
which is denoted by p ~ gq.

Throughout this paper, we also use the following symbols. For a finite group G, the socle of G is defined
as the subgroup generated by the minimal normal subgroup of G, denoted by Soc(G). Syl,(G) denotes the
set of all Sylow p-subgroups of G, where p € n(G), G, denotes the Sylow r-subgroup of G for r € 7n(G).
Sp and A, denote the symmetric and alternating groups of degree n, respectively. Let Aut(G) and Out(G)
denote the automorphism and outer-automorphism groups of G, respectively. The other symbols are standard
(see [2], for instance).

Moghaddamfar et al. introduced the following concept, which attracted the attention of some authors

(see [1]).
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Definition 1.1 [/2] Let G be a finite group and |G| = p"'p3?---pp*, where p;s are primes and o;s are
integers. For p € ©(Q), let deg(p) = |{q € n(G)|p ~ q}|, which we call the degree of p. We also define
D(G) := (deg(p1), deg(p2), - - ,deg(pk)), where p1 < pa < -+ < pr. We call D(G) the degree pattern of G

Since not all groups are OD-characterizable, Moghaddamfar et al. introduced the following.

Given a finite group M, denote by hop(M) the number of isomorphism classes of finite groups G such
that (1) |G| = |M]| and (2) D(G) = D(M).

Definition 1.2 [12] A finite group M is called k-fold OD -characterizable if hop(M) = k. Moreover, a 1-fold

OD -characterizable group is simply called an OD -characterizable group.

To date, we knew that some groups are k-fold OD-characterizable (see Tables 1 and 2 and corresponding
references of [1]).

In particular, related to alternating groups, we have the following results.

Proposition 1.3 A finite group G is OD -characterizable if G is one of the following groups:
(1) The alternating groups Ay, Apt1, and A,io, where p is a prime [11].

(2) The alternating groups Apys, where p is a prime and 7 # p € w(100!) [0, 10].

Proposition 1.4 Alternating group Ay is 2-fold OD -characterizable.

We set s(G) to denote the number of connected components of the prime graph GK(G). Some authors
proved that some special groups with s(G) > 2 are OD-characterizable. However, if s(G) = 1, the author has
proved that the alternating groups As; are 6-fold OD-characterizable. Therefore there is a question: which of
the alternating groups is OD-characterizable? Related to s(G) = 1 for the alternating group, Moghaddamfar
and Rahbariyan gave the following conjecture about the alternating group A,;3.

Conjecture. [0, pp. 665, Conjecture 1] Let p # 7 be a prime. Then the alternating group Ap;s is
OD-characterizable.
Inspired by the works of [6, 10], we generalize some authors’ results and show that the alternating groups

Apis with s(A,13) =1 are OD-characterizable by using the classification of finite simple groups, which gives
a positive answer regarding Moghaddamfar and Rahbariyan’s conjecture. In fact, we prove the following.

Main Theorem. The alternating groups Aps except for A9 are OD-characterizable.

2. Preliminary results

In this section, we will give some results that will be used.

Lemma 2.1 [/5] Let S = P, X Py x --- x P., where P;’s are an isomorphic non-abelian simple group. Then
Aut(S) = (Aut(Py) x Aut(Py) x -+« x Aut(B,)) - Sy

Lemma 2.2 [16] The group S, (or A, ) has an element of order m = p{* - p3?---p%=, where p1, pa, -+,
ps are distinct primes and oy, ag, -+, as are natural numbers, if and only if pT* +p3? + -+ p% <n (or

Prt+p5% 4+ p% <n for m odd, and p* +p5* 4+ -+ p% <n—2 for m even).
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As a corollary of Lemma 2.1, we have the following result.

Lemma 2.3 Let A, (or S, ) be an alternating (or symmetric group) of degree n. Then the following hold.
(1) Let p,q € m(A,,) be odd primes. Then p ~ q if and only if p+q <n.
(2) Let p € n(Ay,) be odd prime. Then 2 ~ p if and only if p+4 <n.
(3) Let p,q € w(Sy,). Then p~q if and only if p+q < n.

By [2], we have that |A,| =n!/2 and |S,|=n!.

Let exp(n,r) = a denote that 7 | n but ro+1 {n.

Lemma 2.4 Let A, 3 be an alternating group of degree p+ 3, where p is a prime. Then the following hold.

8

(1) exp(|Ap+3],2) = | l[p;;?’] — 1. In particular, exp(|Ap+3|,2) <p+2.
(2) exp(|Aptsl,r) = ] 1[1’;3] for each r € m(Ap3)\{2}. Purthermore, exp(|Apssl,r) < 255, where 3<r €

m(Ap+3). In particular, if r > [222], then exp(|Apis|,7) = 1.
Proof See [9] O

Lemma 2.5 Let Apy3 be an alternating group of degree p+3 with p+2 composite and p prime. Suppose that
|m(Apt3)| = d. Then the following hold.

(1) deg(2) =d — 2. In particular, 2 ~r for all r € 7(Apt3) \ {p}.
(2) deg(3) =d—1.

(8) deg(p) =1. In particular, p ~ 1 where r € m(Apys) if and only if r = 3.

Proof From Lemmas 2.3 and 2.4, we have the desired result. O

Lemma 2.6 Let G be a group with D(G) = D(Apys) and |G| = |Apts|, where p is a prime such that p + 2
is composite. Suppose that |m(Apys)| =d. Then

(1) deg(2) =deg(b) =d—2, deg(3) =d — 1 and deg(p) = 1. Hence GK(G) is a connected graph.

(2) If K is the maximal normal soluble subgroup of G, then K is an w-group, where w = w(3(p — 1)). In

particular, G is insoluble.

Proof. See [6].

Lemma 2.7 Let L be nonabelian simple groups. Then the orders and their outer-automorphism of L are as
listed in Tables 1, 2, and 3.
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Proof See [7].
Table 1. The simple classical groups.
L Lie; rank L d 0] |L|

Ln(q) An_1(q) (nq—1) | 2df,ifn>3; | 1"V, (¢" — 1)

n—1 df,ifn=2
Un(Q) 2An—1(Q) (’I’L,q + 1) 2df7 if n Z 3 éqn(n—l) 2 H:L:Q(qz - (_1)1)

[n/2] df,if n=2

T—m 7

PSpam(q) | Cim(q) (2,g-1) | df,m>3 | 4¢™ [[12(¢* - 1)

m 2f, if m =2
sz+1(Q) Bm(q) 2 2f %qm H?;1(q2i - 1)
q odd m
POL () | Dule) | (g™ —1) | 2df, it m # 4 | gnCm D@ D@D
m >3 m 6df,if m=4
P, (a) | 2Dula) | (4q"+1) | 2df g D@D IS (g2 1)
m > 2 m—1

Table 2. The simple exceptional groups.
L L d 0 IZ]
G2(q) 2 [1 fifp#3 | ¢®(d® - 1(° - 1)
2f,ifp=3

Fi(q) 401 2.p)f %24((12 ~ 1" -1D(® -D(¢" - 1)
Es(q) 6| B,qg—1) | 2df 24” Hi€{2,5,6,8,9,12}(q2 —1)
E7(g) T 2g-1) | df ia” [Lic2,68.10,12.14,18y (€' _vl)
Es(q) 8 |1 f g Hie{2,8,12,14,18,20,24,30}(q1 —1)
°Ba(g),g=2"""" 1 |1 f ¢°(¢> +1)(¢— 1)
°Ga(q),g=3""TT 1 |1 f (@ +1)(g—1)
“Fu(q),q=2"""T 2 |1 f ¢ +1)(¢" -1 +1)(g—1)
°Da(q) 2 |1 3f 0% +¢* +1)(¢" —1)(¢° — 1)
“Es(q) 4| Big+1) | 2df i7"’ Hi€{2,5,6,8,9,12}(q2 —(-1)")

Lemma 2.8 Let a,b, and n be positive integers such that (a,b) = 1. Then there exists a prime p with the

following properties:
e p divides a™ — b,
e p does not divide a* — b* for all k < n,

with the following exceptions: a =2,b=1; n=6 and a+b=2F; n=2.

Proof See [17]. O

Lemma 2.9 Let ¢ > 1 be an integer, m be a natural number, and p be an odd prime. If p divides q— 1, then
(@" = 1)p=myp-(g—1).

Proof Sece Lemma 8(1) of [4]. O
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Table 3. The simple sporadic groups.

L d [0 L]
M, 1 [1 23511
Mo 2 [2 [20.35.5.11
Masy 1212 [27-32.5.7-11
Mo 1 [1]27-3%2.5.7-11-23
Moy 1 [1]20.3.5.7.11-23
J1 1 [1]2%3-5-7-11-19
Ja 2 |2 [27-3%.5%2.7
J3 3 |2 ]127-35.5-17-19
Ju 1 [1[2%7-3%.5.7-11°-23-29-31-37-43
HS 2 |2 129.32.5%3.7.11
Suz 6 |2 [218.37.52.7.11-13
McL 3 |2 [27.35.53.7.11
Ru 2 |1 [2™.3%.5%.7-13-29
He(F;) |1 [2 [219.3%.52.73.17
Ly 1 [ 1 [2%-37.55.7.11-31-37-67
ON 3 |2 12°.38.5.73.11-19-31
Coy 2 |1 [22T.39.5%.72.11-13-23
Coo 1 [1 [2®.35.53.7.11.23
Cos 1 [1 [20.37.5%.7.11-23
Fligy 6 |2 [2'7.39.52.7.11-13
Fiog 1 |1 [2®.38.5%2.7.11-13-17-23
Fib, 3 |2 [221.36.52.73.11-13-17-23-29
HN(F5) |1 [2 [ 2™-35.55.7.11-19
Th(Fs) |1 |1 [29.310.5%.72.13.19-31
BM(Fy) [ 2 |1 [2¥.38.55.72.11-13-17-19-23-31-47
M(F) 1 [ 1 [2%.320.59.76.112.13%.17-19-23-29-31-41-47-59-71

Remark 2.10 If b = 1, the prime p is called the Zsigmondy prime. If p is a Zsigmnody of a™ — 1, then
Fermat’s little theorem shows that n | p—1. Put Z,(a) = {p: p is a Zsigmondy prime of a™ —1}. If r € Z,(a)

and r|a™ —1, then n|m.
Lemma 2.11 If n > 6 is a natural number, then there are at least s(n) prime numbers p; such that ’%1 <
p; < n. Here
e s5(n) =6 for n >48;
o s(n) =05 for 42 <n <A47;
e s(n)=4 for 38 <n <41;
o s5(n) =3 for 18 <n <37;
e 5(n)=2 for 14<n<17;
o s(n)=1 for 6 <n <13.
In particular, for every natural number n > 6, there exists a prime p such that "7“ <p<n-—1, and for every

natural number n > 3, there exists an odd prime number p such that n —p <p <n.
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Proof See Lemma 1 of [3]. O

Lemma 2.12 Let X be a finite simple non-abelian group, x € Out(X), and |z| a prime greater than 7. Then

m(Out(X)) contains a number greater than 2|z|.

Proof See [14, Lemma 11]. O

Lemma 2.13 Let G be a finite non-abelian simple group and p is the largest prime divisor of |G| with p|||G]|.
Then pt|Out(G)|.

Proof By Lemma 2.7, G is isomorphic to alternating group, simple group of Lie type, or sporadic simple
groups.

If G is an alternating group, then |Out(A4,)| =2 if n > 5 and n # 6; |[Out(A,)| =4 if n =16 (see [7]).

Hence we have the desired result.
If G is a sporadic simple group, then by Table 3 we have the result.

Therefore, we only consider that G is a simple group of Lie type. By hypothesis, if p < 3, then G is
a {2,3}-group that is soluble by Burnside’s theorem (see [5], for instance). Hence in the following, let p > 5.
Suppose the contrary; then p | |Out(G)|. We mainly consider three cases.

Case 1. Let G = A,,_1(q). Then p | f or p | d. Obviously, ptq (in fact, if p | ¢, then ¢ = p/ and
hence, by Lemma 2.8 there is a prime r such that r | p'f —1 and r > p).

(1) If p| f, then let f =p-m for some integer m and hence, p | (r’™)* — 1 for some integer i and prime r.
It follows that (pmi) | p — 1, which contradicts Remark 2.10.

(2) If p|d and d = (n,q — 1), then we can assume that ¢ = p-m + 1 for some integer m. It follows that

p|(p-m+1)" —1 for some integer i and hence by Lemma 2.9, (m,p) = 1, and i | p— 1. Thus we can

assume that n =p.

If i =1, then n = 2 and hence p = 3,¢ = 4, in this case, G = Ly(4) = As by [2]. It follows that
3 < 5] |G|, which contradicts the hypothesis.

If i >2 and m = 1, then by Lemma 2.11, there is a prime r with p < (p+ 1)1 -1 <r<(p+1)i -1,

which contradicts the maximality of p.

If i > 2 and m > 2, we also can rule out this case as “i > 2 and m =1".
Case 2. Let G=* A, _1(¢q). Then p| f or p|d.

(1) If p| f, then we write f = pt for some integer ¢ and hence p | (rP!)? — (—1)? for some integer i and prime
T.

If i is even, then p| (7P!)* — 1 and so pti | p — 1, a contradiction.

If 7 is odd, then p | (rP!)® +1 and hence p | (r?P!)? — 1. We also have 2pti | p—1 or pt | p— 1 by Remark

2.10, a contradiction.

(2) If p|d and d = (n,q+ 1), then let ¢ = pt — 1 for some integer t, p | (pt —1)* — (—1)* for some integer i.
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If i is even, then p| (pt —1)* — 1 and so by Remark 2.10, i < p — 1. Thus we assume that n = p. Hence

we rule out this case as the case “Case 1(2)”

If 7 is odd, then p | (pt — 1)* + 1 and so by Remark 2.10, 20 < p—1 or i | p— 1. Thus we assume
that n = p. If i = 1, then n = 2 = p and so ¢ = 2. Hence G =2 A;(2) = 32.Qg by [2, pp. xv] and
G is soluble, which contradicts the hypothesis. If ¢ > 3, then by Lemma 2.11, there is a prime r with
p<(pt—1)"14+1<r<(pt—1)"+1, which contradicts the hypothesis.

Case 3. (G is isomorphic to one of the other simple groups of Lie type.

We can rule out as “Case 1 or Case 2”.
The proof is completed. O

Remark 2.14 In the proof of Lemma 2.13, if p | |Out(G)|, then by Lemmas 2.12 and 2.11, there is a prime
such that p < r < 2p, which contradicts the hypothesis of Lemma 2.185.

3. Main theorem and its proof

Since A,, Apt+1, Apt2 are OD-characterizable, we only consider when p + 2 is composite, namely, we have the

following result.

Theorem 3.1 If G is a finite group such that D(G) = D(Apys) and |G| = |Apys|, where 7 # p is a prime,

and p + 2 is not prime, then G is isomorphic to Apis.

Proof Since p# 7 and p+ 2,p + 4 are primes, we can assume that p > 13. We will prove the theorem by a

series of lemmas. O

Lemma 3.2 Let K be the mazimal normal soluble subgroup of G. Then K is a 7 -group, where m = w(3(p—1)).

In particular, G is insoluble.

Proof By Lemma 2.6, G is insoluble and if K is the maximal normal soluble subgroup of G, then K is a
m-group, where m = 7(3(p — 1)). O

Lemma 3.3 The quotient group G/K is an almost simple group. In fact, S < G/K < Aut(S).

Proof Let G=G/K and S = Soc(G). Then S = By x By X -+ X By, , where B;(1 <14 < m) are non-abelian
simple groups and S < G < Aut(S). In the following, we will prove that m = 1.
Let m > 2. Then we have that p t |S|. For otherwise, 2 ~ p and hence deg(p) > 2 contradicting

Lemma 2.5. Thus for every i, B; € §,, where §, is the set of non-abelian finite simple groups S such that

pen(G) €{2,3,5,---,p} and p is a prime. By Lemma 3.2, p{|K| and so p € n(G) & 7(Aut(S)). Hence
p | |Out(S)|. We know that

Out(S) = Out(S7) x Out(Ss) x - -+ x Out(S,),
where the groups S;(j =1,2,---,7) are direct products of all isomorphic Bjs such that

3281X32X~'~XST.
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Therefore, for certain j, p divides the order of an outer-automorphism of a direct product S; of ¢ isomorphic
simple groups B; for some 1 < j < m. Since B; € §,, it follows from Lemma 2.13 that p { |Out(B;)|. However,
by Lemma 2.1, |Aut(S;)| = [Aut(S;)[*-¢!. Thus ¢ > p. Since Bj is a non-abelian simple group, 47 | |Aut(B;)|*,

and hence 2% | |G|, which contradicts Lemma 2.4. Hence m =1 and S = B;. O

Lemma 3.4 The order |S| of S is divisible by p.

Proof If r > p—;?’, then by Lemma 2.4, r|||G|. Assume that p { |S|. Then by Lemma 3.3 p | |K]| or
p | |Out(S)].
If p||K|, then by Lemma 3.2, p € n(p — 1). Thus p <p —1, a contradiction. Therefore, p | |Out(S)],

which contradicts Lemma 2.13. O

Lemma 3.5 S is isomorphic to A, with n=p,p+1,p+2,p+ 3.
Proof By hypothesis and Lemma 3.4, |Gp| = |G|, = |Sp| = p. According to the classification of simple

groups, we see that the possibilities for S are the alternating groups A, with n > 6, one of the 26 sporadic

simple groups, or simple groups of Lie type.

e Case 1. S~ A, with n>6.

Then n=p,p+1,p+2, n=p+3 or p+k with k > 4. If n=p+k and k > 4, then order consideration
rules out this case. Therefore, S = A,, with n=p,p+1,p+2,p+ 3.

e Case 2. S is not isomorphic to a sporadic simple group according to [2].

e Case 3. S is isomorphic to a simple group of Lie type.

Let ¢ be a prime power.

- 1. S B,(q) with n > 2.
In this situation, by hypothesis, 7(G) = {2,3,5,7,--- ,p} and so
1 n? ﬁ( 21 1) | |
o 4 q — p--

=1

It follows that p | ¢ or p | [[;=,(¢** —1). If p | ¢, then ¢ is a power of p. Since |G,| = p by
hypothesis, this is impossible as n > 2. Therefore, p | [\, (¢* — 1). It follows that p | ¢** — 1 for
some 1 <t <n as p is prime. If p|¢? —1, then p|¢* —1 and hence p | ¢*" — 1. Since |G,| = p,

then pt¢*"—2

— 1. Then, without loss of generality, we assume that p =¢" —1 or p=¢" + 1 and
hence 2 | ¢ by Lemma 2.8. By Fermat’s little theorem, n < (p —1)/2 and so n? < n by Lemma 2.4,
a contradiction.

- 2. S D,(q) with n>4.

Therefore, we have

n—1
1 _ )
e 1)q"(” D" =1 J] @ -1 Ip"
’ i=1
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Since the Sylow p-subgroup of G is of order p, p { ¢ as otherwise, ¢ = p and thus n = 1, a
contradiction. It follows that p | ¢" —1 or p | ¢** — 1 for some integer 1 <t <n—1. If p|q¢*—1,

2n—2

then p | ¢* —1 and hence p | q —lorp|q"—1.Ifp|¢g™—1, thensince |Gp| = p we can assume

that p = ¢™ — 1 and hence by Lemma 2.8, 2 | ¢. By Remark 2.10, n | p—1 andso n+3 <p+ 2.

n(n+1)
2

By Lemma 2.4, < n+ 3 and hence n = 3, a contradiction.

3. 522 A,(q) with n>2.

In this situation,

1
n (n+1) i+1 z+1
n+1,q+1! H ) I pl.

Since the Sylow p-subgroup of G is of order p and n > 2, we obtain that p | ¢**! — (=1)**! for
some integer 1 <t <mn.

Let n be odd. Then p | ¢" Tt +1. If ¢ is odd, then 2|[¢" "' +1 and hence we assume that p = L—" HH )

contradicting Lemma 2.8. Hence ¢ is even. We can assume that p = ¢"*! 4+ 1 is a Mersenne prime.
Obviously p | ¢?™*1) — 1 and hence by Remark 2.10, 2(n + 1) | p — 1. It follows from Lemma 2.4
that % <2(n+1)+3 and so n = 5,3. Order consideration and Lemma 2.13 imply that it is
impossible.

Let n be even. Then p | ¢"*! — 1. If ¢ is odd, then by Lemma 2.9, p | ¢ — 1 and hence we assume

that p = ©—. Therefore, n+ 1 <p— 1. By Lemma 2.4, ") < 2L 5 contradiction. Thus

q is even. Similarly we have n +4 < p+ 2 and % < n+ 4. Therefore, n = 2,4,6. Order
consideration and Lemma 2.13 rule out this case.

Therefore, we have

"¢ = 1) (¢** = 1)(¢® = D)(¢"® = D(¢" =) (¢ = 1)(¢® = 1)(¢" = 1) | p.
It follows that
Pl (@™ = D(@* = D@ - 1D = D" = (¢ = 1)(¢" = 1)(¢* - 1).

Hence p | ¢* — 1, where t € {14, 18,20, 24,30} .

Let t = 14. If ¢ is odd, then by Lemma 2.11, there is a prime r > p, a contradiction. Hence p | ¢*° —
and by Remark 2.10, 30 + 3 < p + 2. It follows from Lemmas 2.9 and 2.4 that 2'*. (¢ — 1)§ < 33,

120 ‘ 233

a contradiction. If ¢ is odd, then similarly we have ¢ , a contradiction. Similarly, we can

exclude that H/K = Eg(q), E7(q) and Fy(q).

5. 5= Ga(q).
Then we have ¢5(q® —1)(¢®> — 1) | p!. Tt follows that p | ¢ —1 or p | ¢> — 1. If p | ¢> — 1, then
p | ¢® —1. Hence we only consider p | ¢° — 1 and hence 6 | p — 1. If ¢ is odd, then 6 | 3, a

contradiction. Hence ¢ is even,
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- 6. 5 =2 E6(q)

It is easy to see that

G - D6 D - D - )+ e - ) |

It follows that p | ¢* —1 with ¢t = 12,8, or p| ¢* +1 with k=9,5.

Let t = 12. If ¢ is odd, then 2 | ¢ — 1 and 2 | ¢+ 1. It follows from Lemma 2.4 that
ISla = 27 (¢ — 1)3 - (¢ + 1)3 and exp(|S|,2) > 15. On the other hand, 15 < p + 2. We have
q = 3 and so p = 73. Order consideration rules this out. If ¢ is even, then by Lemma 2.4,

36 | 2™ + 1, a contradiction. Similarly we can rule out “t = 8.
Let t =9. If ¢ is odd, then similarly we have exp(]S],2) > 15. On the other hand, 18 < p+2. Thus

we also have ¢ = 3 and so p = 703. Order consideration rules this out. If ¢ is even, 36 | ¢° + 3, a

contradiction. Similarly, we can rule out “t = 5.

7. 8222 By(q) with g = 22m+1,

It follows that ¢?(¢> +1)(¢—1) | p!. Thus p|¢*+1 or p|qg—1.

Let p | ¢* + 1. We can assume that p = ¢ + 1 and hence, m = 0. By [2, pp. xv], S = 5:4 is

soluble, a contradiction.

Let p | ¢— 1, then we can assume that p = 22*! —1 and hence 2m + 1 is a prime. Thus by Lemma
2.4, 4m +2 | 22+ 41, a contradiction.

Similarly S 22 Fy(22m+1).

8. S =2Gy(q), ¢ =3%"*! with n>1.

We see that ¢3(¢® +1)(q — 1) | p!. Tt follows that p | ¢> +1 or p|qg—1. If p| ¢ + 1, then we can

assume that p = # and so 6n+ 3| (127.5_9' It follows that n =1 and p = 73. We can rule out this
case by order consideration. If p | ¢ — 1 and r | ¢, then there exists a Frobenius group of r - p with
a Kernel of order r and a complement of order p respectively, and so there is an element of order
r - p, which contradicts the fact that deg(p) = 1.

9. 523 Dy(q).

We have ¢'2(¢® 4+ ¢* +1)(¢° — 1)(¢> — 1) | p!. In this case, since G has a Sylow p-subgroup of order
p,then p|¢®+q¢*+1,0r q|¢®—1.1If p|¢®+¢*+1, then by Remark 2.10, 12 | p— 1. If ¢ is odd,
then 12 | 6, a contradiction.

If p|¢°—1, then 6| p— 1 and similarly we also can rule this out.

Similarly we can rule out this case “p | ¢ — 1.

10. S = A4,(q) with n > 1.
It is easy to get

n

qn(n+1)/2 H(qi+1 - 1) | p!'

=1

-

It follows that p | [T, (¢"™* — 1) and so p | ¢"™* — 1 for some integer t =n,n — 1.
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Let t =n—1. Then p| ¢" —1 and so n < p—1. If ¢ is odd, then by Lemma 2.9 |S|s =
(¢—1)5-TI;_1(i4+1)2 and hence exp(|S],2) > 3. By Lemma 2.4, we conclude that 3* < n+3 and

n < 6. Order consideration can rule out this case. If ¢ is even, then similarly exp(|S],2) > w
and hence % <n+3. Thus we get n < 3; order consideration rules this out.

Let t = n. Then similarly we can rule out “¢t =n —17.

This completes the proof of the lemma. o

Lemma 3.6 G is isomorphic to A,43.

Proof By Lemma 3.3, S < G/K < Aut(S). By Lemma 3.5, S 2 A, with n =p,p+1,p+2,p+3. We
consider the following cases.

Case 1. S=A4,.

Therefore, A, <G/K < 5,.

If G/K = A,, then order consideration of G, we have that |K| = (p+ 1)(p + 2)(p + 3). Obviously
2 € m(K). Tt follows that there is an element of order 2 - p, which contradicts the fact that deg(p) = 1.

If G/IK =2 S,, we have |K| = (p+ 1)(p+ 2)(p+ 3)/2 and also 2 € n(K). It means that 2 ~ p,
contradicting deg(p) = 1.

Case 2. S=A,.,.

In this case, Ap11 < G/K < Spq1.

If G/K = Apyq, then |K| = (p+2)(p+3). Obviously 2 € m(K) and so there exists an element of order
2-p. It follows that deg(p) > 2, a contradiction.

If G/K = S,11, then |K| = (p+2)(p+3)/2. If 241 |K|, then there is a prime 7 such that p > r > 3
and r < p—;g. It follows that there exists an element of order r - p and hence r ~ p, contradicting Lemma 2.5.
If 4| |K|, then also we can rule out this case.

Case 3. S=A,.,.

We have 4,19 < G/K < Sp19.

If G/K = Ap,yo, then |K| =p+ 3. Obviously 2 € w(K), we rule out this case as “Case 1”.

If G/K = Spia, then |K| = (p+ 3)/2. We rule out this case as “Case 2.

Case 4. S=A,.3.

It is easy to get Ap13 < G/K = S),43.

If G/K = 8,3, then (p+3)! | @52 a contradiction.

If G/K = Apys, then K =1 and hence G = Ap 3.

This completes the proof of the Lemma and also of the main theorem. O

4. Some applications

We knew that alternating groups A,, 4,11, and Ap,yo, where p is a prime, are OD-characterizable (see [11])

and by our main theorem, we have the following.
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Theorem 4.1 The alternating group A,, except Aig with n=p,p+1,p+2,p+ 3 are OD -characterization.

Shi gave the following conjecture.
Conjecture [13] Let G be a group and H a finite simple group. Then G = H if and only if (a)
w(G) =w(H) and (b) |G| = |H]|.

Then we have the following corollary.

Corollary 4.2 Let G be a group and p > 5 is a prime. Then G = A, where n=p,p+1,p+2,p+ 3 if and
only if w(G) =w(4,,) and |G| =|A4,]|.
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