

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

OD-characterization of some alternating groups

School of Science Sichuan University of Science and Engineering, Zigong Sichaun, P. R. China

Received: 22.07.2014	٠	Accepted/Published Online: 14.01.2015	٠	Printed: 29.05.2015

Abstract: Let G be a finite group. Moghaddamfar et al. defined prime graph $\Gamma(G)$ of group G as follows. The vertices of $\Gamma(G)$ are the primes dividing the order of G and two distinct vertices p, q are joined by an edge, denoted by $p \sim q$, if there is an element in G of order pq. Assume $|G| = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ with $P_1 < \cdots < p_k$ and nature numbers α_i with $i = 1, 2, \cdots, k$. For $p \in \pi(G)$, let the degree of p be $\deg(p) = |\{q \in \pi(G) \mid q \sim p\}|$, and $D(G) = (\deg(p_1), \deg(p_2), \cdots, \deg(p_k))$. Denote by $\pi(G)$ the set of prime divisor of |G|. Let GK(G) be the graph with vertex set $\pi(G)$ such that two primes p and q in $\pi(G)$ are joined by an edge if G has an element of order $p \cdot q$. We set s(G) to denote the number of connected components of the prime graph GK(G). Some authors proved some groups are OD-characterizable with $s(G) \ge 2$. Then for s(G) = 1, what is the influence of OD on the structure of groups? We knew that the alternating groups A_{p+3} , where $7 \neq p \in \pi(100!)$, A_{130} and A_{140} are OD-characterizable. Therefore, we naturally ask the following question: if s(G) = 1, then is there a group OD-characterizable? In this note, we give a characterization of A_{p+3} except A_{10} with $s(A_{p+3}) = 1$, by OD, which gives a positive answer to Moghaddamfar and Rahbariyan's conjecture.

Key words: Order component, element order, alternating group, degree pattern, prime graph, Simple group

1. Introduction

In this short paper, all groups under study are finite, and for a simple group, we mean a non-Abelian simple group. Let G be a group. Then $\omega(G)$ denotes the set of orders of its elements of G and $\pi(G)$ denotes the set of prime divisors of |G|. Associated to $\omega(G)$ a graph is called a prime graph of G, which is denoted by GK(G). The vertex set of GKG is $\pi(G)$, and two distinct vertices p, q are joined by an edge if $p \cdot q \in \omega(G)$, which is denoted by $p \sim q$.

Throughout this paper, we also use the following symbols. For a finite group G, the socle of G is defined as the subgroup generated by the minimal normal subgroup of G, denoted by Soc(G). $\text{Syl}_p(G)$ denotes the set of all Sylow *p*-subgroups of G, where $p \in \pi(G)$, G_r denotes the Sylow *r*-subgroup of G for $r \in \pi(G)$. S_n and A_n denote the symmetric and alternating groups of degree n, respectively. Let Aut(G) and Out(G)denote the automorphism and outer-automorphism groups of G, respectively. The other symbols are standard (see [2], for instance).

Moghaddamfar et al. introduced the following concept, which attracted the attention of some authors (see [1]).

^{*}Correspondence: s.t.liu@yandex.com

²⁰¹⁰ AMS Mathematics Subject Classification: 20D05, 20D06, 20D60.

Definition 1.1 [12] Let G be a finite group and $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_i s$ are primes and $\alpha_i s$ are integers. For $p \in \pi(G)$, let $\deg(p) := |\{q \in \pi(G) | p \sim q\}|$, which we call the degree of p. We also define $D(G) := (\deg(p_1), \deg(p_2), \cdots, \deg(p_k))$, where $p_1 < p_2 < \cdots < p_k$. We call D(G) the degree pattern of G

Since not all groups are OD-characterizable, Moghaddamfar et al. introduced the following.

Given a finite group M, denote by $h_{OD}(M)$ the number of isomorphism classes of finite groups G such that (1) |G| = |M| and (2) D(G) = D(M).

Definition 1.2 [12] A finite group M is called k-fold OD-characterizable if $h_{OD}(M) = k$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable group.

To date, we knew that some groups are k-fold OD-characterizable (see Tables 1 and 2 and corresponding references of [1]).

In particular, related to alternating groups, we have the following results.

Proposition 1.3 A finite group G is OD-characterizable if G is one of the following groups:

- (1) The alternating groups A_p , A_{p+1} , and A_{p+2} , where p is a prime [11].
- (2) The alternating groups A_{p+3} , where p is a prime and $7 \neq p \in \pi(100!)$ [6, 10].

Proposition 1.4 Alternating group A_{10} is 2-fold OD-characterizable.

We set s(G) to denote the number of connected components of the prime graph GK(G). Some authors proved that some special groups with $s(G) \ge 2$ are *OD*-characterizable. However, if s(G) = 1, the author has proved that the alternating groups A_{27} are 6-fold *OD*-characterizable. Therefore there is a question: which of the alternating groups is *OD*-characterizable? Related to s(G) = 1 for the alternating group, Moghaddamfar and Rahbariyan gave the following conjecture about the alternating group A_{p+3} .

Conjecture. [10, pp. 665, Conjecture 1] Let $p \neq 7$ be a prime. Then the alternating group A_{p+3} is OD-characterizable.

Inspired by the works of [6, 10], we generalize some authors' results and show that the alternating groups A_{p+3} with $s(A_{p+3}) = 1$ are *OD*-characterizable by using the classification of finite simple groups, which gives a positive answer regarding Moghaddamfar and Rahbariyan's conjecture. In fact, we prove the following.

Main Theorem. The alternating groups A_{p+3} except for A_{10} are *OD*-characterizable.

2. Preliminary results

In this section, we will give some results that will be used.

Lemma 2.1 [15] Let $S = P_1 \times P_2 \times \cdots \times P_r$, where P_i 's are an isomorphic non-abelian simple group. Then $\operatorname{Aut}(S) = (\operatorname{Aut}(P_1) \times \operatorname{Aut}(P_2) \times \cdots \times \operatorname{Aut}(P_r)) \cdot S_r$.

Lemma 2.2 [16] The group S_n (or A_n) has an element of order $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_s^{\alpha_s}$, where p_1, p_2, \cdots, p_s are distinct primes and $\alpha_1, \alpha_2, \cdots, \alpha_s$ are natural numbers, if and only if $p_1^{\alpha_1} + p_2^{\alpha_2} + \cdots + p_s^{\alpha_s} \leq n$ (or $p_1^{\alpha_1} + p_2^{\alpha_2} + \cdots + p_s^{\alpha_s} \leq n$ for m odd, and $p_1^{\alpha_1} + p_2^{\alpha_2} + \cdots + p_s^{\alpha_s} \leq n - 2$ for m even).

As a corollary of Lemma 2.1, we have the following result.

Lemma 2.3 Let A_n (or S_n) be an alternating (or symmetric group) of degree n. Then the following hold.

- (1) Let $p, q \in \pi(A_n)$ be odd primes. Then $p \sim q$ if and only if $p + q \leq n$.
- (2) Let $p \in \pi(A_n)$ be odd prime. Then $2 \sim p$ if and only if $p + 4 \leq n$.
- (3) Let $p, q \in \pi(S_n)$. Then $p \sim q$ if and only if $p + q \leq n$.
- By [2], we have that $|A_n| = n!/2$ and $|S_n| = n!$.

Let $\exp(n, r) = a$ denote that $r^a \mid n$ but $r^{a+1} \nmid n$.

Lemma 2.4 Let A_{p+3} be an alternating group of degree p+3, where p is a prime. Then the following hold.

(1) $\exp(|A_{p+3}|, 2) = \sum_{i=1}^{\infty} \left[\frac{p+3}{2^i}\right] - 1$. In particular, $\exp(|A_{p+3}|, 2) \le p+2$.

(2) $\exp(|A_{p+3}|, r) = \sum_{i=1}^{\infty} \left[\frac{p+3}{r^i}\right]$ for each $r \in \pi(A_{p+3}) \setminus \{2\}$. Furthermore, $\exp(|A_{p+3}|, r) < \frac{p-1}{2}$, where $3 \le r \in \mathbb{R}$ $\pi(A_{p+3})$. In particular, if $r>[\frac{p+3}{2}]$, then $\exp(|A_{p+3}|,r)=1$.

Proof See [9]

Lemma 2.5 Let A_{p+3} be an alternating group of degree p+3 with p+2 composite and p prime. Suppose that $|\pi(A_{p+3})| = d$. Then the following hold.

- (1) deg(2) = d 2. In particular, $2 \sim r$ for all $r \in \pi(A_{p+3}) \setminus \{p\}$.
- (2) $\deg(3) = d 1$.
- (3) deg(p) = 1. In particular, $p \sim r$ where $r \in \pi(A_{p+3})$ if and only if r = 3.

Proof From Lemmas 2.3 and 2.4, we have the desired result.

Lemma 2.6 Let G be a group with $D(G) = D(A_{p+3})$ and $|G| = |A_{p+3}|$, where p is a prime such that p+2is composite. Suppose that $|\pi(A_{p+3})| = d$. Then

- (1) $\deg(2) = \deg(5) = d 2$, $\deg(3) = d 1$ and $\deg(p) = 1$. Hence GK(G) is a connected graph.
- (2) If K is the maximal normal soluble subgroup of G, then K is an ω -group, where $\omega = \pi(3(p-1))$. In particular, G is insoluble.

Proof. See [6].

Lemma 2.7 Let L be nonabelian simple groups. Then the orders and their outer-automorphism of L are as listed in Tables 1, 2, and 3.

$\mathbf{Proof} \quad \mathrm{See} \ [7].$

 Table 1. The simple classical groups.

L	Lie; rank ${\bf L}$	d	0	L
$L_n(q)$	$A_{n-1}(q)$	(n, q - 1)	$2df$, if $n \ge 3$;	$\frac{1}{d}q^{n(n-1)/2}\prod_{i=2}^{n}(q^{i}-1)$
	n-1		df, if $n = 2$	-
$U_n(q)$	$^{2}A_{n-1}(q)$	(n, q + 1)	$2df$, if $n \geq 3$	$\frac{1}{d}q^{n(n-1)/2}\prod_{i=2}^{n}(q^{i}-(-1)^{i})$
	[n/2]		df, if $n = 2$	-
$PSp_{2m}(q)$	$C_m(q)$	(2, q - 1)	$df, m \geq 3;$	$\frac{1}{d}q^{m^2}\prod_{i=1}^m(q^{2i}-1)$
	m		2f, if $m = 2$	<u> </u>
$\Omega_{2m+1}(q)$	$B_m(q)$	2	2f	$\frac{1}{2}q^{m^2}\prod_{i=1}^m(q^{2i}-1)$
q odd	m			
$P\Omega_{2m}^+(q)$	$D_m(q)$	$(4, q^m - 1)$	$2df$, if $m \neq 4$	$\frac{1}{d}q^{m(m-1)(q^m-1)\prod_{i=1}^{m-1}(q^{2i}-1)}$
$m \geq 3$	m		6df, if $m = 4$	u di
$P\Omega_{2m}^{-}(q)$	$^{2}D_{m}(q)$	$(4, q^m + 1)$	2df	$\frac{1}{d}q^{m(m-1)(q^m+1)\prod_{i=1}^{m-1}}(q^{2i}-1)$
$m \ge 2$	m-1			

 Table 2. The simple exceptional groups.

L	\mathbf{L}	d	0	L
$G_2(q)$	2	1	f , if $p \neq 3$	$q^6(q^2-1)(q^6-1)$
			2f, if $p = 3$	
$F_4(q)$	4	1	(2,p)f	$q^{24}(q^2-1)(q^6-1)(q^8-1)(q^{12}-1)$
$E_6(q)$	6	(3, q - 1)	2df	$\frac{1}{d}q^{36}\prod_{i\in\{2,5,6,8,9,12\}}(q^i-1)$
$E_7(q)$	7	(2, q - 1)	df	$\frac{1}{d}q^{63}\prod_{i\in\{2,6,8,10,12,14,18\}}(q^i-1)$
$E_8(q)$	8	1	f	$q^{120}\prod_{i\in\{2,8,12,14,18,20,24,30\}}(q^{i}-1)$
$^{2}B_{2}(q), q = 2^{2m+1}$	1	1	f	$q^2(q^2+1)(q-1)$
$^{2}G_{2}(q), q = 3^{2m+1}$	1	1	f	$q^3(q^3+1)(q-1)$
$^{2}F_{4}(q), q = 2^{2m+1}$	2	1	f	$q^{12}(q^6+1)(q^4-1)(q^3+1)(q-1)$
$^{3}D_{4}(q)$	2	1	3f	$q^{12}(q^8 + q^4 + 1)(q^6 - 1)(q^2 - 1)$
$^{2}E_{6}(q)$	4	(3, q + 1)	2df	$\frac{1}{d}q^{36}\prod_{i\in\{2,5,6,8,9,12\}}(q^i-(-1)^i)$

Lemma 2.8 Let a, b, and n be positive integers such that (a, b) = 1. Then there exists a prime p with the following properties:

- p divides $a^n b^n$,
- p does not divide $a^k b^k$ for all k < n,

with the following exceptions: a = 2, b = 1; n = 6 and $a + b = 2^k$; n = 2.

Proof See [17].

Lemma 2.9 Let q > 1 be an integer, m be a natural number, and p be an odd prime. If p divides q-1, then $(q^m - 1)_p = m_p \cdot (q-1)_p$.

Proof See Lemma 8(1) of [4].

398

LIU/Turk J Math

L	d	Ο	
M_{11}	1	1	$2^4 \cdot 3^2 \cdot 5 \cdot 11$
M_{12}	2	2	$2^6 \cdot 3^3 \cdot 5 \cdot 11$
M_{22}	12	2	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$
M_{23}	1	1	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M_{24}	1	1	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
J_1	1	1	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
J_2	2	2	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$
J_3	3	2	$2^7 \cdot 3^5 \cdot 5 \cdot 17 \cdot 19$
J_4	1	1	$2^{21} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11^3 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
HS	2	2	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$
Suz	6	2	$2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
McL	3	2	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$
Ru	2	1	$2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$
$He(F_7)$	1	2	$2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$
Ly	1	1	$2^8 \cdot 3^7 \cdot 5^6 \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
ON	3	2	$2^9 \cdot 3^4 \cdot 5 \cdot 7^3 \cdot 11 \cdot 19 \cdot 31$
Co_1	2	1	$2^{21} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$
Co_2	1	1	$2^{18} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
Co_3	1	1	$2^{10} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
Fi_{22}	6	2	$2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
Fi_{23}	1	1	$2^{18} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$
Fi'_{24}	3	2	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$
$HN(F_5)$	1	2	$2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19$
$Th(F_3)$	1	1	$2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$
$BM(F_2)$	2	1	$2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
$M(F_1)$	1	1	$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Table 3. The simple sporadic groups.

Remark 2.10 If b = 1, the prime p is called the Zsigmondy prime. If p is a Zsigmondy of $a^n - 1$, then Fermat's little theorem shows that $n \mid p-1$. Put $Z_n(a) = \{p : p \text{ is a Zsigmondy prime of } a^n - 1\}$. If $r \in Z_n(a)$ and $r \mid a^m - 1$, then $n \mid m$.

Lemma 2.11 If $n \ge 6$ is a natural number, then there are at least s(n) prime numbers p_i such that $\frac{n+1}{2} < p_i < n$. Here

- s(n) = 6 for $n \ge 48$;
- s(n) = 5 for $42 \le n \le 47$;
- s(n) = 4 for $38 \le n \le 41$;
- s(n) = 3 for $18 \le n \le 37$;
- s(n) = 2 for $14 \le n \le 17$;
- s(n) = 1 for $6 \le n \le 13$.

In particular, for every natural number n > 6, there exists a prime p such that $\frac{n+1}{2} , and for every natural number <math>n > 3$, there exists an odd prime number p such that n - p .

Proof See Lemma 1 of [8].

Lemma 2.12 Let X be a finite simple non-abelian group, $x \in Out(X)$, and |x| a prime greater than 7. Then $\pi(Out(X))$ contains a number greater than 2|x|.

Proof See [14, Lemma 11].

Lemma 2.13 Let G be a finite non-abelian simple group and p is the largest prime divisor of |G| with p|||G|. Then $p \nmid |Out(G)|$.

Proof By Lemma 2.7, G is isomorphic to alternating group, simple group of Lie type, or sporadic simple groups.

If G is an alternating group, then $|Out(A_n)| = 2$ if $n \ge 5$ and $n \ne 6$; $|Out(A_n)| = 4$ if n = 6 (see [7]). Hence we have the desired result.

If G is a sporadic simple group, then by Table 3 we have the result.

Therefore, we only consider that G is a simple group of Lie type. By hypothesis, if p < 3, then G is a $\{2,3\}$ -group that is soluble by Burnside's theorem (see [5], for instance). Hence in the following, let $p \ge 5$. Suppose the contrary; then $p \mid |\operatorname{Out}(G)|$. We mainly consider three cases.

Case 1. Let $G \cong A_{n-1}(q)$. Then $p \mid f$ or $p \mid d$. Obviously, $p \nmid q$ (in fact, if $p \mid q$, then $q = p^f$ and hence, by Lemma 2.8 there is a prime r such that $r \mid p^{tf} - 1$ and r > p).

- (1) If $p \mid f$, then let $f = p \cdot m$ for some integer m and hence, $p \mid (r^{pm})^i 1$ for some integer i and prime r. It follows that $(pmi) \mid p - 1$, which contradicts Remark 2.10.
- (2) If $p \mid d$ and d = (n, q 1), then we can assume that $q = p \cdot m + 1$ for some integer m. It follows that $p \mid (p \cdot m + 1)^i 1$ for some integer i and hence by Lemma 2.9, (m, p) = 1, and $i \mid p 1$. Thus we can assume that n = p.

If i = 1, then n = 2 and hence p = 3, q = 4, in this case, $G \cong L_2(4) \cong A_5$ by [2]. It follows that $3 < 5 \mid |G|$, which contradicts the hypothesis.

If $i \ge 2$ and m = 1, then by Lemma 2.11, there is a prime r with $p \le (p+1)^{i-1} - 1 < r < (p+1)^i - 1$, which contradicts the maximality of p.

If $i \ge 2$ and $m \ge 2$, we also can rule out this case as " $i \ge 2$ and m = 1".

Case 2. Let $G \cong^2 A_{n-1}(q)$. Then $p \mid f$ or $p \mid d$.

(1) If $p \mid f$, then we write f = pt for some integer t and hence $p \mid (r^{pt})^i - (-1)^i$ for some integer i and prime r.

If i is even, then $p \mid (r^{pt})^i - 1$ and so $pti \mid p - 1$, a contradiction.

If i is odd, then $p \mid (r^{pt})^i + 1$ and hence $p \mid (r^{2pt})^i - 1$. We also have $2pti \mid p-1$ or $pt \mid p-1$ by Remark 2.10, a contradiction.

(2) If $p \mid d$ and d = (n, q+1), then let q = pt - 1 for some integer $t, p \mid (pt - 1)^i - (-1)^i$ for some integer i.

If i is even, then $p \mid (pt-1)^i - 1$ and so by Remark 2.10, $i \leq p-1$. Thus we assume that n = p. Hence we rule out this case as the case "Case 1(2)"

If *i* is odd, then $p \mid (pt-1)^i + 1$ and so by Remark 2.10, $2i \leq p-1$ or $i \mid p-1$. Thus we assume that n = p. If i = 1, then n = 2 = p and so q = 2. Hence $G \cong^2 A_1(2) \cong 3^2 Q_8$ by [2, pp. xv] and *G* is soluble, which contradicts the hypothesis. If $i \geq 3$, then by Lemma 2.11, there is a prime *r* with $p \leq (pt-1)^{i-1} + 1 < r < (pt-1)^i + 1$, which contradicts the hypothesis.

Case 3. G is isomorphic to one of the other simple groups of Lie type.

We can rule out as "Case 1 or Case 2".

The proof is completed.

Remark 2.14 In the proof of Lemma 2.13, if $p \mid |\operatorname{Out}(G)|$, then by Lemmas 2.12 and 2.11, there is a prime r such that p < r < 2p, which contradicts the hypothesis of Lemma 2.13.

3. Main theorem and its proof

Since A_p, A_{p+1}, A_{p+2} are *OD*-characterizable, we only consider when p+2 is composite, namely, we have the following result.

Theorem 3.1 If G is a finite group such that $D(G) = D(A_{p+3})$ and $|G| = |A_{p+3}|$, where $7 \neq p$ is a prime, and p+2 is not prime, then G is isomorphic to A_{p+3} .

Proof Since $p \neq 7$ and p+2, p+4 are primes, we can assume that $p \geq 13$. We will prove the theorem by a series of lemmas.

Lemma 3.2 Let K be the maximal normal soluble subgroup of G. Then K is a π -group, where $\pi = \pi(3(p-1))$. In particular, G is insoluble.

Proof By Lemma 2.6, G is insoluble and if K is the maximal normal soluble subgroup of G, then K is a π -group, where $\pi = \pi(3(p-1))$.

Lemma 3.3 The quotient group G/K is an almost simple group. In fact, $S \leq G/K \leq \operatorname{Aut}(S)$.

Proof Let $\overline{G} = G/K$ and S = Soc(G). Then $S = B_1 \times B_2 \times \cdots \times B_m$, where $B_i(1 \le i \le m)$ are non-abelian simple groups and $S \lesssim \overline{G} \lesssim \text{Aut}(S)$. In the following, we will prove that m = 1.

Let $m \ge 2$. Then we have that $p \nmid |S|$. For otherwise, $2 \sim p$ and hence $\deg(p) \ge 2$ contradicting Lemma 2.5. Thus for every $i, B_i \in \mathfrak{F}_p$, where \mathfrak{F}_p is the set of non-abelian finite simple groups S such that $p \in \pi(G) \subseteq \{2, 3, 5, \dots, p\}$ and p is a prime. By Lemma 3.2, $p \nmid |K|$ and so $p \in \pi(\overline{G}) \subseteq \pi(\operatorname{Aut}(S))$. Hence $p \mid |\operatorname{Out}(S)|$. We know that

$$\operatorname{Out}(S) = \operatorname{Out}(S_1) \times \operatorname{Out}(S_2) \times \cdots \times \operatorname{Out}(S_r),$$

where the groups $S_j (j = 1, 2, \dots, r)$ are direct products of all isomorphic B'_i s such that

$$S = S_1 \times S_2 \times \cdots \times S_r.$$

Therefore, for certain j, p divides the order of an outer-automorphism of a direct product S_j of t isomorphic simple groups B_i for some $1 \le j \le m$. Since $B_i \in \mathfrak{F}_p$, it follows from Lemma 2.13 that $p \nmid |\operatorname{Out}(B_i)|$. However, by Lemma 2.1, $|\operatorname{Aut}(S_j)| = |\operatorname{Aut}(S_j)|^t \cdot t!$. Thus $t \ge p$. Since B_j is a non-abelian simple group, $4^p | |\operatorname{Aut}(B_i)|^t$, and hence $2^{2p} | |G|$, which contradicts Lemma 2.4. Hence m = 1 and $S = B_i$.

Lemma 3.4 The order |S| of S is divisible by p.

Proof If $r > \frac{p+3}{2}$, then by Lemma 2.4, r |||G|. Assume that $p \nmid |S|$. Then by Lemma 3.3 $p \mid |K|$ or $p \mid |\operatorname{Out}(S)|$.

If $p \mid |K|$, then by Lemma 3.2, $p \in \pi(p-1)$. Thus $p \leq p-1$, a contradiction. Therefore, $p \mid |\operatorname{Out}(S)|$, which contradicts Lemma 2.13.

Lemma 3.5 S is isomorphic to A_n with n = p, p + 1, p + 2, p + 3.

Proof By hypothesis and Lemma 3.4, $|G_p| = |G|_p = |S_p| = p$. According to the classification of simple groups, we see that the possibilities for S are the alternating groups A_n with $n \ge 6$, one of the 26 sporadic simple groups, or simple groups of Lie type.

• Case 1. $S \cong A_n$ with $n \ge 6$.

Then n = p, p+1, p+2, n = p+3 or p+k with $k \ge 4$. If n = p+k and $k \ge 4$, then order consideration rules out this case. Therefore, $S \cong A_n$ with n = p, p+1, p+2, p+3.

- Case 2. S is not isomorphic to a sporadic simple group according to [2].
- Case 3. S is isomorphic to a simple group of Lie type.

Let q be a prime power.

 $-1. S \cong B_n(q)$ with $n \ge 2.$

In this situation, by hypothesis, $\pi(G) = \{2, 3, 5, 7, \dots, p\}$ and so

$$\frac{1}{(2,q-1)}q^{n^2}\prod_{i=1}^n(q^{2i}-1)\mid p!$$

It follows that $p \mid q$ or $p \mid \prod_{i=1}^{n} (q^{2i} - 1)$. If $p \mid q$, then q is a power of p. Since $|G_p| = p$ by hypothesis, this is impossible as $n \geq 2$. Therefore, $p \mid \prod_{i=1}^{n} (q^{2i} - 1)$. It follows that $p \mid q^{2t} - 1$ for some $1 \leq t \leq n$ as p is prime. If $p \mid q^2 - 1$, then $p \mid q^4 - 1$ and hence $p \mid q^{2n} - 1$. Since $|G_p| = p$, then $p \nmid q^{2n-2} - 1$. Then, without loss of generality, we assume that $p = q^n - 1$ or $p = q^n + 1$ and hence $2 \mid q$ by Lemma 2.8. By Fermat's little theorem, $n \leq (p-1)/2$ and so $n^2 \leq n$ by Lemma 2.4, a contradiction.

 $-2. S \cong D_n(q)$ with $n \ge 4.$

Therefore, we have

$$\frac{1}{(4,q^n-1)}q^{n(n-1)}(q^n-1)\prod_{i=1}^{n-1}(q^{2i}-1)\mid p!.$$

Since the Sylow *p*-subgroup of *G* is of order *p*, $p \nmid q$ as otherwise, q = p and thus n = 1, a contradiction. It follows that $p \mid q^n - 1$ or $p \mid q^{2t} - 1$ for some integer $1 \leq t \leq n - 1$. If $p \mid q^2 - 1$, then $p \mid q^{2t} - 1$ and hence $p \mid q^{2n-2} - 1$ or $p \mid q^n - 1$. If $p \mid q^n - 1$, then since $|G_p| = p$ we can assume that $p = q^n - 1$ and hence by Lemma 2.8, $2 \mid q$. By Remark 2.10, $n \mid p - 1$ and so $n + 3 \leq p + 2$. By Lemma 2.4, $\frac{n(n+1)}{2} \leq n+3$ and hence n = 3, a contradiction.

 $-3. S \cong^2 A_n(q)$ with $n \ge 2.$

In this situation,

$$\frac{1}{(n+1,q+1)}q^{\frac{1}{2}n(n+1)}\prod_{i=1}^{n}(q^{i+1}-(-1)^{i+1})\mid p!.$$

Since the Sylow *p*-subgroup of *G* is of order *p* and $n \ge 2$, we obtain that $p \mid q^{t+1} - (-1)^{t+1}$ for some integer $1 \le t \le n$.

Let n be odd. Then $p \mid q^{n+1}+1$. If q is odd, then $2 \parallel q^{n+1}+1$ and hence we assume that $p = \frac{q^{n+1}+1}{2}$, contradicting Lemma 2.8. Hence q is even. We can assume that $p = q^{n+1}+1$ is a Mersenne prime. Obviously $p \mid q^{2(n+1)}-1$ and hence by Remark 2.10, $2(n+1) \mid p-1$. It follows from Lemma 2.4 that $\frac{n(n+1)}{2} \leq 2(n+1)+3$ and so n = 5, 3. Order consideration and Lemma 2.13 imply that it is impossible.

Let *n* be even. Then $p \mid q^{n+1} - 1$. If *q* is odd, then by Lemma 2.9, $p \mid q - 1$ and hence we assume that $p = \frac{q^{n+1}-1}{q-1}$. Therefore, $n+1 \leq p-1$. By Lemma 2.4, $\frac{n(n+1)}{2} \leq \frac{n+1}{2}$, a contradiction. Thus *q* is even. Similarly we have $n+4 \leq p+2$ and $\frac{n(n+1)}{2} \leq n+4$. Therefore, n = 2, 4, 6. Order consideration and Lemma 2.13 rule out this case.

$$-4. S \cong E_8(q).$$

Therefore, we have

$$q^{120}(q^{30}-1)(q^{24}-1)(q^{20}-1)(q^{18}-1)(q^{14}-1)(q^{12}-1)(q^8-1)(q^2-1) \mid p!.$$

It follows that

$$p \mid q^{120}(q^{30}-1)(q^{24}-1)(q^{20}-1)(q^{18}-1)(q^{14}-1)(q^{12}-1)(q^8-1)(q^2-1).$$

Hence $p \mid q^t - 1$, where $t \in \{14, 18, 20, 24, 30\}$.

Let t = 14. If q is odd, then by Lemma 2.11, there is a prime r > p, a contradiction. Hence $p \mid q^{30}-1$ and by Remark 2.10, $30 + 3 \le p + 2$. It follows from Lemmas 2.9 and 2.4 that $2^{14} \cdot (q-1)_2^8 \le 33$, a contradiction. If q is odd, then similarly we have $q^{120} \mid 2^{33}$, a contradiction. Similarly, we can exclude that $H/K \cong E_6(q), E_7(q)$ and $F_4(q)$.

$$-5. S \cong G_2(q).$$

Then we have $q^6(q^6-1)(q^2-1) \mid p!$. It follows that $p \mid q^6-1$ or $p \mid q^2-1$. If $p \mid q^2-1$, then $p \mid q^6-1$. Hence we only consider $p \mid q^6-1$ and hence $6 \mid p-1$. If q is odd, then $6 \mid 3$, a contradiction. Hence q is even,

 $- 6. S \cong^2 E_6(q).$

It is easy to see that

$$\frac{1}{(3,q+1)}q^{36}(q^{12}-1)(q^9+1)(q^8-1)(q^6-1)(q^5+1)(q^2-1) \mid p!.$$

It follows that $p \mid q^t - 1$ with t = 12, 8, or $p \mid q^k + 1$ with k = 9, 5.

Let t = 12. If q is odd, then 2 | q - 1 and 2 | q + 1. It follows from Lemma 2.4 that $|S|_2 = 2^7 \cdot (q - 1)_2^4 \cdot (q + 1)_2^2$ and $\exp(|S|, 2) \ge 15$. On the other hand, $15 \le p + 2$. We have q = 3 and so p = 73. Order consideration rules this out. If q is even, then by Lemma 2.4, $36 | 2^m + 1$, a contradiction. Similarly we can rule out "t = 8".

Let t = 9. If q is odd, then similarly we have $\exp(|S|, 2) \ge 15$. On the other hand, $18 \le p+2$. Thus we also have q = 3 and so p = 703. Order consideration rules this out. If q is even, $36 \mid q^9 + 3$, a contradiction. Similarly, we can rule out "t = 5".

 $-7. S \cong^2 B_2(q)$ with $q = 2^{2m+1}$.

It follows that $q^2(q^2+1)(q-1) | p!$. Thus $p | q^2+1$ or p | q-1.

Let $p \mid q^2 + 1$. We can assume that $p = q^2 + 1$ and hence, m = 0. By [2, pp. xv], $S \cong 5:4$ is soluble, a contradiction.

Let $p \mid q-1$, then we can assume that $p = 2^{2m+1} - 1$ and hence 2m+1 is a prime. Thus by Lemma 2.4, $4m+2 \mid 2^{2m+1}+1$, a contradiction.

Similarly $S \not\cong^2 F_4(2^{2m+1})$.

- 8. $S \cong^2 G_2(q), q = 3^{2n+1}$ with $n \ge 1$.

We see that $q^3(q^3 + 1)(q - 1) | p!$. It follows that $p | q^3 + 1$ or p | q - 1. If $p | q^3 + 1$, then we can assume that $p = \frac{q^3+1}{4}$ and so $6n + 3 | \frac{q^2+9}{2}$. It follows that n = 1 and p = 73. We can rule out this case by order consideration. If p | q - 1 and r | q, then there exists a Frobenius group of $r \cdot p$ with a Kernel of order r and a complement of order p respectively, and so there is an element of order $r \cdot p$, which contradicts the fact that $\deg(p) = 1$.

 $-9. S \cong^{3} D_4(q).$

We have $q^{12}(q^8 + q^4 + 1)(q^6 - 1)(q^2 - 1) | p!$. In this case, since G has a Sylow p-subgroup of order p, then $p | q^8 + q^4 + 1$, or $q | q^6 - 1$. If $p | q^8 + q^4 + 1$, then by Remark 2.10, 12 | p - 1. If q is odd, then 12l | 6, a contradiction.

If $p \mid q^6 - 1$, then $6 \mid p - 1$ and similarly we also can rule this out.

Similarly we can rule out this case " $p \mid q^2 - 1$ ".

 $-10. S \cong A_n(q)$ with $n \ge 1$.

It is easy to get

$$\frac{1}{(n+1,q-1)}q^{n(n+1)/2}\prod_{i=1}^{n}(q^{i+1}-1)\mid p!.$$

It follows that $p \mid \prod_{i=1}^{n} (q^{i+1} - 1)$ and so $p \mid q^{t+1} - 1$ for some integer t = n, n - 1.

Let t = n - 1. Then $p \mid q^n - 1$ and so $n \leq p - 1$. If q is odd, then by Lemma 2.9 $|S|_2 = (q-1)_2^n \cdot \prod_{i=1}^n (i+1)_2$ and hence $\exp(|S|, 2) \geq \frac{3n}{2}$. By Lemma 2.4, we conclude that $\frac{3n}{2} \leq n+3$ and $n \leq 6$. Order consideration can rule out this case. If q is even, then similarly $\exp(|S|, 2) \geq \frac{n(n+1)}{2}$ and hence $\frac{n(n+1)}{2} \leq n+3$. Thus we get $n \leq 3$; order consideration rules this out. Let t = n. Then similarly we can rule out "t = n - 1".

This completes the proof of the lemma.

Lemma 3.6 G is isomorphic to A_{p+3} .

Proof By Lemma 3.3, $S \leq G/K \leq Aut(S)$. By Lemma 3.5, $S \cong A_n$ with n = p, p + 1, p + 2, p + 3. We consider the following cases.

Case 1. $S \cong A_p$.

Therefore, $A_p \leq G/K \leq S_p$.

If $G/K \cong A_p$, then order consideration of G, we have that |K| = (p+1)(p+2)(p+3). Obviously $2 \in \pi(K)$. It follows that there is an element of order $2 \cdot p$, which contradicts the fact that $\deg(p) = 1$.

If $G/K \cong S_p$, we have |K| = (p+1)(p+2)(p+3)/2 and also $2 \in \pi(K)$. It means that $2 \sim p$, contradicting deg(p) = 1.

Case 2. $S \cong A_{p+1}$.

In this case, $A_{p+1} \leq G/K \leq S_{p+1}$.

If $G/K \cong A_{p+1}$, then |K| = (p+2)(p+3). Obviously $2 \in \pi(K)$ and so there exists an element of order $2 \cdot p$. It follows that $\deg(p) \ge 2$, a contradiction.

If $G/K \cong S_{p+1}$, then |K| = (p+2)(p+3)/2. If $2 \nmid |K|$, then there is a prime r such that p > r > 3and $r \leq \frac{p+3}{2}$. It follows that there exists an element of order $r \cdot p$ and hence $r \sim p$, contradicting Lemma 2.5. If $4 \mid |K|$, then also we can rule out this case.

Case 3. $S \cong A_{p+2}$. We have $A_{p+2} \leq G/K \leq S_{p+2}$. If $G/K \cong A_{p+2}$, then |K| = p+3. Obviously $2 \in \pi(K)$, we rule out this case as "Case 1". If $G/K \cong S_{p+2}$, then |K| = (p+3)/2. We rule out this case as "Case 2". **Case 4.** $S \cong A_{p+3}$. It is easy to get $A_{p+3} \leq G/K \cong S_{p+3}$. If $G/K \cong S_{p+3}$, then $(p+3)! \mid \frac{(p+3)!}{2}$, a contradiction. If $G/K \cong A_{p+3}$, then K = 1 and hence $G \cong A_{p+3}$. This completes the proof of the Lemma and also of the main theorem.

4. Some applications

We knew that alternating groups A_p , A_{p+1} , and A_{p+2} , where p is a prime, are *OD*-characterizable (see [11]) and by our main theorem, we have the following.

Theorem 4.1 The alternating group A_n except A_{10} with n = p, p+1, p+2, p+3 are OD-characterization.

Shi gave the following conjecture.

Conjecture [13] Let G be a group and H a finite simple group. Then $G \cong H$ if and only if (a) $\omega(G) = \omega(H)$ and (b) |G| = |H|.

Then we have the following corollary.

Corollary 4.2 Let G be a group and $p \ge 5$ is a prime. Then $G \cong A_n$ where n = p, p + 1, p + 2, p + 3 if and only if $\omega(G) = \omega(A_n)$ and $|G| = |A_n|$.

Acknowledgments

This work was supported by the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant Nos: 2013QYJ02 and 2014QYJ04), by the Scientific Research Project of Sichuan University of Science and Engineering (Grant No: 2014RC02) and by the department of education of Sichuan Province (Grant No: 15ZA0235). The author is very grateful for the helpful suggestions of the referee.

References

- Akbari M, Moghaddamfar AR. Some quantitative characterizations of certain symplectic groups over the binary field. Int Electron J Algebra 2014; 16: 32–52.
- [2] Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. Atlas of finite groups. New York, NY, Oxford: Oxford University Press, 1985.
- [3] Crescenzo P. A Diophantine equation which arises in the theory of finite groups. Advances in Math 1975; 17: 25–29.
- [4] Grechkoseeva MA. Recognition of finite simple linear groups over fields of characteristic 2 by the spectrum. Algebra Logika 2008; 47: 405–427.
- [5] Hall, Jr., M. The theory of groups, Reprinting of the 1968 edition. New York NY: Chelsea Publishing Co., 1976.
- [6] Hoseini AA, Moghaddamfar AR. Recognizing alternating groups A_{p+3} for certain primes p by their orders and degree patterns. Front Math China 2010; 5: 541–553.
- [7] Kleidman P, Liebeck M. The subgroup structure of the finite classical groups, vol. 129 of London Mathematical Society Lecture Note Series. New York, NY, Cambridge: Cambridge University Press, 1990.
- [8] Kondratiev AS, Mazurov VD. Recognition of alternating groups of prime degree from the orders of their elements. Siberian Math J 2000; 41: 294–302.
- [9] Liu S, Yang Y. On Thompson's conjecture for alternating groups A_{p+3}. Sci World J 2014; 2014: Article ID 752598, 10 pages.
- [10] Moghaddamfar AR, Rahbariyan S. More on the OD-characterizability of a finite group. Algebra Colloq 2011; 18: 663–674.
- [11] Moghaddamfar AR, Zokayi AR. Recognizing finite groups through order and degree pattern. Algebra Colloq 2008; 15: 449–456.
- [12] Moghaddamfar AR, Zokayi AR, Darafsheh MR. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq 2005; 12: 431–442.
- [13] Shi WJ. A new characterization of the sporadic simple groups. In Group theory (Singapore, 1987). Berlin, B, Berlin: de Gruyter, 1989, pp. 531–540.

LIU/Turk J Math

- [14] Vasiliev AV. On the recognition of all finite nonabelian simple groups with orders having prime divisors at most 13, Sibirsk Mat Zh 2005; 46: 315–324.
- [15] Zavarnitsin AV. Recognition of alternating groups of degrees r + 1 and r + 2 for prime r and of a group of degree 16 by the set of their element orders. Algebra Log 2000; 39: 648–661.
- [16] Zavarnitsin AV, Mazurov VD. Element orders in coverings of symmetric and alternating groups. Algebra Log 1999; 38: 296–315.
- [17] Zsigmondy K. Zur Theorie der Potenzreste. Monatsh Math Phys 1892; 3: 265–284.