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Abstract: A rational group is a finite group whose irreducible complex characters are rational valued. The aim of this

paper is to classify rational groups G for which every nonlinear irreducible character vanishes only on involutions.
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1. Introduction
Let G be a finite group and x be a nonlinear irreducible ordinary character of G. A well-known theorem of
Burnside states that there exists g € G such that y(g) = 0; such an element g is called a zero of x, and
we say x vanishes on g. Zeroes of characters are important in finding the structure of Sylow subgroups of a
finite group. Besides well-known theorems related to zeros of characters that usually appear in reference books,
e.g.[5], this subject has been well studied by many mathematicians such as Chillag [1]. An important result
obtained by Moreté and Navarro [9] applies when zeroes of characters occur on prime order elements. Dolfi et
al. in [3] also proved that if p is a prime number and all of the p-elements of G are nonvanishing, then G has
a normal Sylow p-subgroup.

Throughout this paper, we use the following notations and terminologies. The order of the group G and
the order of the element g € G are denoted by |G| and |g|, respectively. For the prime number p, O,(G)

denotes the unique largest normal p-subgroup of G and E(p™) denotes the elementary abelian p-group of order

T

p.
for the semidirect product of the groups K and H in which H acts on K. The cyclic group of order n is

For the elements = and ¢ belonging the group G, by 29 we mean g 'zg. The symbol K : H stands

denoted by Z,,. We reserve Z(G) for the center of G. If G is a group and N is a normal subgroup of G, then
Irr(G/N) = {x € Irr(G)|N C kerx}. Therefore, in this paper, wherever we choose x € Irr(G/N), we mean
that y is an irreducible character of G containing N in its kernel.

Here we are interested in classification of rational groups whose nonlinear irreducible characters vanish
only on elements of order 2. For this, we need some concepts and theorems of rational groups.

A finite group G is called a rational group or a Q-group if all irreducible complex characters of G are

rational-valued. We recall some relevant theorems from [7], which contains a comprehensive description of

Q-groups.
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Theorem 1.1 Let G be a nontrivial Q-group and p be a prime number. If p is a divisor of |G|, then p— 1

divides |G|. In particular, the order of a nontrivial Q-group is even.

Theorem 1.2 Let G be a rational group and N be a normal subgroup of G; then G/N is also a rational
group.

Theorem 1.3 Let G be an abelian rational group; then G is an elementary abelian 2-group.

Here we use [[5], Definition 6.21] to introduce a concept that is needed in the sequel.

Definition 1.1 Let N be a normal subgroup of G and x € Irr(G). Then x is a relative M -character with
respect to N if there exists H with N C H C G and ¢ € Irr(H) such that & = x and ¢, € Irr(N). If

every x € Irr(QG) is a relative M -character with respect to N, then G is a relative M -group with respect to
N.

Theorem 1.4 If N is a normal subgroup of G and G/N is nilpotent, then G is a relative M -group with
respect to N .

Proof See [[5], Theorem 6.22 and its subsequent note]. O
For n > 1 , let F, denote the Frobenius group FE(3") : Zsy, in which Zs acts on E(3™) by inverting

every nonidentity element. By [2], F, is a Q-group. The main result of this paper is as follows.

Main Theorem If every nonlinear irreducible character of a nonabelian Q-group G vanishes only on
involutions, then Z(G) is an elementary abelian 2-group (possibly trivial) and G is isomorphic to Z(G) x F,
for some n € N.

2. Proof of the main theorem
In order to prove our main theorem, first we prove that in Q-groups any irreducible character cannot vanish

on a p-element unless p = 2. We deduce this claim from the following theorem.

Theorem 2.1 Let G be a finite group and p be a prime divisor of |G|. If every nonlinear irreducible character
of G vanishes only on p-elements of G, then G has a normal p-complement.
Proof

We may assume that G is nonabelian. In the case that x is nonlinear, Burnside’s theorem [5] asserts that
there exists g € G such that x(g) = 0. By assumption, |g| = p™. Since x(g) is the sum of x(1), p™th roots of
unity, the main theorem of [8] implies that p divides x(1). Therefore, p divides the degree of every nonlinear

character of G, and hence, by one of Thompson’s theorems in [10], the group G has a normal p-complement. O

Corollary 2.1 With the assumption in Theorem 2.1, if every nonlinear irreducible character of a Q-group G
vanishes only on p-elements, then p =2, and G is solvable.

Proof The first part follows from Theorems 1.1, 1.2, and 2.1. Again, according to Theorem 2.1, for some
integer n, the nth derived subgroup of G is included in a normal 2-complement subgroup that has odd order.

Therefore, by the famous theorem of Feit and Thompson, G is solvable. O
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Remark 2.1 By Corollary 2.1, G is solvable. On the other hand, it is known that divisors of the order of
a solvable Q-group are included in {2,3,5} (see [/]). Therefore, divisors of the order of the 2-complement
subgroup of G are included in {3,5}, but the elements of the 2-complement subgroup of G are not zeros of any

irreducible character of G; hence, by [3], the 2-complement subgroup is nilpotent.

Lemma 2.1 Let G be a finite group such that every monlinear irreducible character of G wvanishes only on

involutions. Let P be a Sylow 2-subgroup of G. The following are then true:
(i) If a € P\ Z(P) then Cg(a) C P.

(i) If G is Q-group then Z(G) = O2(Q), and if Z(G) =1 then for every nonidentity element a € Z(P) we
have Cg(a) = P.

Proof By Theorem 2.1, there exists a normal 2-complement K. If a € P\Z(P), then there exists
x € Irr(G/K) such that x(a) = 0; otherwise, by Theorem B of [(], we get a € Z(P), a contradiction.
However, if 1 #y € KNCg(a), then x(ay) =0, and therefore by hypothesis |ay| = 2. Thus, |y| = 2, which is
again a contradiction, and therefore Cg(a) C P.

Now we assume that, G is a Q-group. By [[7], Corollary 14], Z(G) is an elementary abelian 2-group,
and thus Z(G) C O2(G). Since both K and O3(G) are normal in G and their intersection is trivial, O2(QG)
centralizes K. Now part (i) implies O2(G) C Z(P). Eventually as O2(G) centralizes both K and P, it
centralizes G; that is, O3(G) C Z(G). Therefore, O2(G) = Z(G).

Suppose that Z(G) =1 and 1 # a € Z(P). It is obvious that P C Cg(a). As G/K is nilpotent, by
Theorem 1.4, G is a relative M -group with respect to K. Let x € Irr(G) be nonlinear. Then x, cannot be
irreducible since otherwise xy would vanish on some element of K, which is not the case. Now by Definition 1.1,
X is induced from some proper subgroup containing K , and thus y is induced from a subgroup N of index 2.
Since N is normal, x vanishes on G\ N, and thus every element of G\ N is an involution. Let t € G\ N
and n € N. Then ¢ and tn are involutions, so n‘n = tntn = 1, and n’ = n~!. Since conjugation by ¢ defines
an automorphism of N, inverting every element, it follows that N is abelian. Now if z € Z(P) N N both P
and N are contained in Cg(z). Therefore, G = PN is contained in Cg(x), that is, x € Z(G) = 1. Therefore
Z(P)NN = 1. Now suppose that y € K C N. Since a € G\ N, we have ay € G\ N. Thus, ay is an involution
and therefore y* = y=1. Now if y € Cg(a), then y® = y; that is, |y| = 2, which is a contradiction as |K]| is
odd. Therefore, Cg(a) C P and eventually Cg(a) = P. O

Proof of the main theorem. Now we are ready to prove the main theorem. Suppose P is a Sylow
2-subgroup of G; then by Theorem 2.1 there is a normal 2-complement K. Now we consider two cases:

Case(1). Z(G) =1. We have G = KP and KNP =1. Now by Lemma 2.1 Cg(a) C P for all a € P,
and thus G = K : P is a Frobenius group with a Frobenius complement P. Now as the irreducible characters
of G that are induced from K vanish on P, we conclude that P is elementary abelian and therefore, by [2],
G = F,, for some n € N.

Case(2). Z(G) # 1. By Lemma 2.1 Z(G) = O2(G), but then as G/Z(G) is a Q-group, again using
Lemma 2.1, Z(G/Z(G)) = Z(G/O2(G)) = O2(G/0=2(G)) = 1. Since every x € Irr(G/Z(G)) is an irreducible
character of G that has K in its kernel, x vanishes only on involutions in G/Z(G). Now an argument similar
to Case(1) implies G/Z(G) = F,,. Therefore, G = Z(G) x F,, for some n € N and this completes the proof. O
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