
Turk J Math

(2015) 39: 453 – 466

c⃝ TÜBİTAK
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Abstract: We introduce warped product skew semi-invariant submanifolds of order 1 of a locally product Riemannian

manifold. We give a necessary and sufficient condition for a skew semi-invariant submanifold of order 1 to be a locally

warped product. We also establish an inequality between the warping function and the squared norm of the second

fundamental form for such submanifolds. The equality case is also discussed.
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1. Introduction

The theory of submanifolds is a popular research area in differential geometry. In an almost Hermitian manifold,

its almost complex structure determines several types of submanifolds. For example, holomorphic (invariant)

submanifolds and totally real (anti-invariant) submanifolds are determined by the behavior of the almost

complex structure. In the first case, the tangent space of the submanifolds is invariant under the action of the

almost complex structure. In the second case, the tangent space of the submanifolds is anti-invariant, that is, it

is mapped into the normal space. Bejancu [5] introduced the notion of CR-submanifolds of a Kählerian manifold

as a natural generalization of invariant and anti-invariant submanifolds. A CR-submanifold is said to be proper

if it is neither invariant nor anti-invariant. The theory of CR-submanifolds has been an interesting topic since

then. Slant submanifolds are another generalization of invariant and anti-invariant submanifolds. These types of

submanifolds were defined by Chen [10]. Subsequently, such submanifolds have been studied by many geometers

(see [3, 8, 9, 18] and references therein). If a slant submanifold is neither invariant nor anti-invariant, then it is

said to be proper. We observe that a proper CR-submanifold is never a slant submanifold. In [19], Papaghiuc

introduced the notion of semi-slant submanifolds obtaining CR-submanifolds and slant submanifolds as special

cases. Carriazo [9] introduced bi-slant submanifolds, which are a generalization of semi-slant submanifolds.

One of the classes of such submanifolds is that of anti-slant submanifolds. These types of submanifolds are

also generalizations of slant and CR-submanifolds. However, Şahin [24] called these submanifolds hemi-slant

submanifolds because the name anti-slant implies that it has no slant factor. He also observed that there is no

inclusion between proper hemi-slant submanifolds and proper semi-slant submanifolds. We note that hemi-slant

submanifolds are also studied under the name of pseudo-slant submanifolds (see [15, 28]).
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Skew CR-submanifolds of a Kählerian manifold were first defined by Ronsse in [20]. Such submanifolds

are generalizations of bi-slant submanifolds. Consequently, invariant, anti-invariant, CR, slant, semi-slant, and

hemi-slant submanifolds are particular cases of skew CR-submanifolds. We notice that CR-submanifolds in

Kählerian manifolds correspond to semi-invariant submanifolds [6] in locally product Riemannian manifolds.

Therefore, skew CR-submanifolds in Kählerian manifolds correspond to skew semi-invariant submanifolds in lo-

cally product Riemannian manifolds. The fundamental properties and further studies of skew CR-submanifolds

are discussed in [20, 27]. Skew semi-invariant submanifolds of a locally product Riemannian manifold were

firstly studied by Liu and Shao in [17].

The notion of warped product was initiated by Bishop and O’Neill [7]. Let M1 and M2 be two Riemanian

manifolds with Riemannian metrics g1 and g2 , respectively. Let f be a positive differentiable function on M1 .

The warped product M = M1 ×f M2 of M1 and M2 is the Riemannian manifold (M1 ×M2, g), where

g = g1 + f2g2 .

More explicitly, if U ∈ TpM , then

∥U∥2 = ∥dπ1(U)∥2 + (f2 ◦ π1)∥dπ2(U)∥2 ,

where πi, i = 1, 2, are the canonical projections M1 ×M2 onto M1 and M2 , respectively. The function f is

called the warping function of the warped product. If the warping function is constant, then the manifold M

is said to be trivial. It is well known that M1 is totally geodesic and M2 is totally umbilical from [7]. For a

warped product M1 ×f M2 , we denote by D1 and D2 the distributions given by the vectors that are tangent

to leaves and fibers, respectively. Thus, D1 is obtained from tangent vectors to M1 via horizontal lift and D2

is obtained by tangent vectors of M2 via vertical lift. Let U be a vector field on M1 and V be vector field on

M2 ; then from Lemma 7.3 of [7], we have

∇UV = ∇V U = U(ln f)V , (1.1)

where ∇ is the Levi-Civita connection on M1 ×f M2 .

Warped product submanifolds have been studied very actively, since Chen [11] introduced the notion of

CR-warped product in Kählerian manifolds. In fact, different types of warped product submanifolds of several

kinds of structures have been studied in the last fourteen years. (see [2, 16, 22, 23, 24, 25, 28]). Most of the studies

related to this topic can be found in the survey book [12]. Recently, Şahin [25] introduced the notion of skew

CR-warped product submanifolds of Kählerian manifolds, which are generalizations of different kinds of warped

product submanifolds studied by many authors. We note that the warped product skew CR-submanifolds of a

cosymplectic manifold were studied in [16].

In this paper, we define and study warped product skew semi-invariant submanifolds of order 1 of a

locally product Riemannian manifold. We give an example and prove a characterization theorem for the mixed

totally geodesic proper skew semi-invariant submanifold using some lemmas. We also obtain an inequality

between the warping function and the squared norm of the second fundamental form for such submanifolds.

The equality case is also considered.
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2. Preliminaries

Let (M̄, g, F ) be a locally product Riemannian manifold (briefly, l.p.R. manifold). It means that [29] M̄ has a

tensor field F of type (1, 1) on M̄ such that ∀Ū , V̄ ∈ TM̄ ; we have

F 2 = I, (F ̸= ±I), g(FŪ, F V̄ ) = g(Ū , V̄ ) , and (∇̄Ū F )V̄ = 0 , (2.1)

where g is the Riemannian metric, ∇̄ is the Levi-Civita connection on M̄ , and I is the identifying operator

on the tangent bundle TM̄ of M̄ .

Let M be an isometrically immersed submanifold of a l.p.R. manifold (M̄, g, F ). Let ∇ and ∇⊥ be the

induced and induced normal connection in M and the normal bundle T⊥M of M , respectively. Then for all

U, V ∈ TM and ξ ∈ T⊥M the Gauss and Weingarten formulas are given by

∇̄UV = ∇UV + h(U, V ) (2.2)

and

∇̄Uξ = −AξU +∇⊥
Uξ (2.3)

where h is the second fundamental form of M and Aξ is the Weingarten endomorphism associated with ξ.

The second fundamental form h and the shape operator A are related by

g(h(U, V ), ξ) = g(AξU, V ) . (2.4)

The mean curvature vector field H is given by H = 1
m (trace h), where dim(M) = m. The submanifold M is

called totally geodesic in M̄ if h = 0, and minimal if H = 0. If h(U, V ) = g(U, V )H for all U, V ∈ TM , then

M is totally umbilical.

3. Skew semi-invariant submanifolds of order 1 of a locally product Riemannian manifold

Let M̄ be a l.p.R. manifold with a Riemannian metric g and almost product structure F. Let M be a

Riemannian submanifold isometrically immersed in M̄ . For any U ∈ TM , we write

FU = TU +NU . (3.1)

Here TU is the tangential part of FU and NU is the normal part of FU. Similarly, for any ξ ∈ T⊥M , we put

Fξ = tξ + ωξ , (3.2)

where tξ is the tangential part of Fξ and ωξ is the normal part of Fξ. Then, using (2.1), (3.1), and (3.2), we

have

(a) T 2 + tN = I, (b) ω2 +Nt = I,

(c) NT + ωN = 0, (d) Tt+ tω = 0. (3.3)

Using (2.1) and (3.1), we have g(T 2U, V ) = g(T 2V,U) for all U, V ∈ TM . It means that T 2 is a

symmetric operator on the tangent space TpM,p ∈ M . Therefore, its eigenvalues are real and diagonalizable.

Moreover, its eigenvalues are bounded by 0 and 1. For each p ∈ M , we set

Dλ
p = Ker{T 2 − λ2(p)I}p ,
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where I is the identity endomorphism and λ(p) belongs to closed interval [0, 1] such that λ2(p) is an eigenvalue

of T 2
p . Since T 2

p is symmetric and diagonalizable, there is some integer k such that λ2
1(p), ..., λ

2
k(p) are distinct

eigenvalues of T 2
p , and TpM can be decomposed as a direct sum of mutually orthogonal eigenspaces, i.e.

TpM = Dλ1
p ⊕ ...⊕Dλk

p .

For i ∈ {1, ..., k} , Dλi
p is a T -invariant subspace of TpM . We note that D0

p = KerTp and D1
p = KerNp. D0

p

is the maximal anti F -invariant subspace of TpM , whereas D1
p is the maximal F -invariant subspace of TpM .

From now on, we denote the distributions D0 and D1 by D⊥ and DT , respectively.

Definition 3.1 ([17]) Let M be a submanifold of a l.p.R. manifold M̄ . Then M is said to be a generic

submanifold if there exists an integer k and functions λi, i ∈ {1, ..., k} defined on M with values in (0, 1) such

that

(i) Each λ2
i (p), i ∈ {1, ..., k} is a distinct eigenvalue of T 2

p with

TpM = D⊥
p ⊕DT

p ⊕Dλ1
p ⊕ ...⊕Dλk

p

for p∈M .

(ii) The dimensions of D⊥ , DT , and Dλi , for1 ≤ i ≤ k are independent of p∈M .

Moreover, if each λi is constant on M , then we say that M is a skew semi-invariant submanifold of M̄ .

Let M be a skew semi-invariant submanifold of a l.p.R. manifold M̄ as in definition 3.1. Then we observe the

following special cases:

(a) If k=0 and D⊥={0} , then M is an invariant submanifold [1].

(b) If k = 0 and DT ={0} , then M is an anti-invariant submanifold [1].

(c) If k=0, then M is a semi-invariant submanifold [6].

(d) If D⊥={0}=DT and k=1, then M is a slant submanifold [21].

(e) If D⊥={0},DT ̸={0} and k=1, then M is a semi-slant submanifold [21].

(f) If DT ={0},D⊥ ̸={0} and k=1, then M is a hemi-slant submanifold [26].

(g) If D⊥={0}=DT and k=2, then M is a bi-slant submanifold [9].

Definition 3.2 A submanifold M of a l.p.R. manifold M̄ is called a skew semi-invariant submanifold of order

1 , if M is a skew semi-invariant submanifold with k=1 .

In this case, we have

TM = D⊥ ⊕DT ⊕Dθ , (3.4)

where Dθ = Dλ1 and λ1 is constant. We say that a skew semi-invariant submanifold of order 1 is proper, if

D⊥ ̸={0} and DT ̸={0} .

A slant submanifold M of a l.p.R. manifold M̄ is characterized by

T 2U = λU (3.5)
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TAŞTAN/Turk J Math

such that λ ∈ [0, 1], where U ∈ TM . Details can be found in [21]. Moreover, if θ is the slant angle of M , then

we have λ = cos2θ.

Throughout this paper, the letters V and W will denote the vector fields of the anti-invariant distribution

D⊥ , U and Z will denote the vector fields of the slant distribution Dθ , and X and Y will denote the vector

fields of the invariant distribution DT .

For the further study of skew semi-invariant submanifold of order 1 of a l.p.R. manifold, we need the

following lemmas.

Lemma 3.3 Let M be a proper skew semi-invariant submanifold of order 1 of a l.p.R. manifold M̄. Then we

have

g(∇V W,X) = −g(AFWV, FX) , (3.6)

g(∇V Z,X) = − csc2θ{g(ANTZV,X) + g(ANZV, FX)} , (3.7)

g(∇ZV,X) = −g(AFV Z,FX) , (3.8)

for V,W ∈ D⊥, Z ∈ Dθ , and X ∈ DT .

Proof Using (2.2) and (2.1), we have g(∇V W,X) = g(∇̄V FW,FX) for V,W ∈ D⊥ and X ∈ DT . Hence,

using (2.3), we get (3.6). In a similar way, we have g(∇V Z,X) = g(∇̄V FZ,FX), where Z ∈ Dθ . Then, using

(3.1) and (2.1), we obtain

g(∇V Z,X) = g(∇̄V FTZ,X) + g(∇̄V NZ,FX) .

Hence, using (3.1) and (2.3), we arrive at

g(∇V Z,X) = g(∇̄V T
2Z,X) + g(∇̄V N(TZ), X)− g(ANZV, FX) .

With the help of (3.5), (2.2), and (2.3), we get (3.7). Similarly, one can obtain (3.8). 2

Lemma 3.4 Let M be a proper skew semi-invariant submanifold of order 1 of a l.p.R. manifold M̄. Then we

have

g(∇UZ,X) = − csc2θ{g(ANTZU,X) + g(ANZU,FX)} , (3.9)

g(∇XY, Z) = csc2θ{g(ANTZX,Y ) + g(ANZX,FY )} , (3.10)

g(∇XY, V ) = g(AFV X,FY ) , (3.11)

for X,Y ∈ DT , U,Z ∈ Dθ , and V ∈ D⊥ .

Proof Let U,Z ∈ Dθ and X ∈ DT . Then, using (2.2), (2.1), and (3.1), we have

g(∇UZ,X) = g(∇̄UFZ,FX) = g(∇̄UTZ, FX) + g(∇̄UNZ,FX) .

Again, using (2.1) and (2.3), we obtain

g(∇UZ,X) = g(∇̄UFTZ,X)− g(ANZU,FX) .
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TAŞTAN/Turk J Math

Here, if we use (3.3)-(a) and (3.5), then we get

g(∇UZ,X) = cos2θg(∇UZ,X) + g(∇̄UNTZ,X)− g(ANZU,FX) .

After some calculation, we find (3.9). For the proof of (3.10), using (2.2), (2.1), and (3.1), we have

g(∇XY,Z) = g(∇̄XFY, FZ) = g(∇̄XFY, TZ) + g(∇̄XFY,NZ)

for X,Y ∈ DT and Z ∈ Dθ . Again, using (2.1) and (2.3), we obtain

g(∇XY, Z) = g(∇̄XY, FTZ) + g(h(X,FY ), NZ) .

With the help of (3.3)-(a) and (3.5), we get

g(∇XY, Z) = cos2θg(∇XY, Z) + g(∇̄XY,NTZ) + g(h(X,FY ), NZ) .

By direct calculation, we find (3.10). In a similar way, we can obtain (3.11). 2

Lemma 3.5 Let M be a proper skew semi-invariant submanifold of order 1 of a l.p.R. manifold M̄. Then we

have

g(∇UZ, V ) = sec2θ{g(AFV U, TZ) + g(ANTZU, V )} , (3.12)

g(∇XV, Z) = − sec2θ{g(AFV X,TZ) + g(ANTZX,V )} , (3.13)

for X ∈ DT , U,Z ∈ Dθ , and V ∈ D⊥ .

Proof For any U,Z ∈ Dθ and V ∈ D⊥ , using (2.2), (2.1), and (3.1), we have

g(∇UZ, V ) = g(∇̄UTZ, FV ) + g(∇̄UNZ,FV ) .

Hence, using (2.2) and (2.1), we obtain

g(∇UZ, V ) = g(h(U, TZ), FV ) + g(∇̄UFNZ, V ) .

Here, if we use (3.2) and (2.4), we get

g(∇UZ, V ) = g(AFV U, TZ) + g(∇̄U tNZ, V ) + g(∇̄UωNZ, V ) .

With the help of (3.3)-(a), (3.3)-(c), (3.5), and (2.3), we arrive at

g(∇UZ, V ) = g(AFV U, TZ) + g(∇̄U (1− cos2θ)Z, V ) + g(ANTZU, V ) .

By direct calculation, we find (3.12). On the other hand, for any X ∈ DT , Z ∈ Dθ , and V ∈ D⊥ , using (2.2),

(2.1) and (3.1), we have

g(∇XV,Z) = g(∇̄XFV, FZ) = g(∇̄XFV, TZ) + g(∇̄XFV,NZ) .
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Again, using (2.3), (2.1), and (3.2), we obtain

g(∇XV, Z) = −g(AFV X,TZ) + g(∇̄XV, tNZ) + g(∇̄XV, ωNZ) .

Here, using (3.3)-(a) and (3.3)-(c), we get

g(∇XV,Z) = −g(AFV X,TZ)− g(∇̄XV, sin2θZ)− g(∇̄XV,NTZ) .

Hence, using (2.2), we arrive at

cos2θg(∇XV, Z) = −g(AFV X,TZ)− g(h(X,V ), NTZ) .

According to direct calculation, we find (3.13). 2

4. Warped product skew semi-invariant submanifolds of order 1 of a locally product Riemannian

manifold

In this section, we consider a warped product submanifold of type M =M1×fMT in a l.p.R. manifold M̄,

where M1 is a hemi-slant submanifold and MT is an invariant submanifold. Then it is clear that M is a

proper skew semi-invariant submanifold of order 1 of M̄. Thus, by definition of hemi-slant submanifold and

skew semi-invariant submanifold of order 1, we have

TM = Dθ ⊕D⊥ ⊕DT . (4.1)

In particular, if Dθ = {0} , then M is a warped product semi-invariant submanifold [22]. If D⊥ = {0} , then
M is a warped product semi-slant submanifold [23].

On the other hand, since M1 is a hemi-slant submanifold, by the equation (3.2) of [26], the normal bundle

of T⊥M1 of M1 is decomposed as T⊥M1 = F (D⊥)⊕N(Dθ)⊕ µ . Thus, we also have

T⊥M = F (D⊥)⊕N(Dθ)⊕ µ , (4.2)

since DT is an invariant distribution, where µ is the orthogonal complementary distribution of F (D⊥)⊕N(Dθ)

in T⊥M and it is an invariant subbundle of T⊥M with respect to F.

Remark 4.1 From Theorem 3.1 of [22], we know that there is no proper warped product semi-invariant

submanifold of type MT ×f M⊥ of a l.p.R. manifold M̄ such that MT is an invariant submanifold and M⊥ is

an anti-invariant submanifold of M̄ . On the other hand, from Theorem 3.1 of [23] or Theorem 3.3 of [4], we

know that there is no proper warped product submanifold in the form MT ×f Mθ of a l.p.R. manifold M̄ such

that Mθ is a proper slant submanifold and MT is an invariant submanifold of M̄ . Thus, we conclude that there

is no warped product skew semi-invariant submanifold of order 1 in the form MT ×f M1 of a l.p.R. manifold

M̄ such that M1 is a hemi-slant submanifold and MT is an invariant submanifold of M̄ .

We now present an example of warped product semi-invariant submanifold of order 1 of type M1 ×f MT in a

l.p.R. manifold.
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Example 4.2 Consider the locally product Riemannian manifold R10 = R5 × R5 with the usual metric g and

almost product structure F defined by

F (∂i) = ∂i, F (∂j) = −∂j ,

where i ∈ {1, ..., 5}, j ∈ {6, ..., 10}, ∂k = ∂
∂xk

, and (x1, ..., x10) are natural coordinates of R10 . Let M be a

submanifold of M̄ = (R10, g, F ) given by

ϕ(x, y, z, u, v) = (x+ y, x− y, xcosu, xsinu, z, −z, x, 2√
3
y, xcosv, xsinv) ,

where x > 0.

Then we easily see that the local frame of TM is spanned by

ϕx = ∂1 + ∂2 + cosu∂3 + sinu∂4 + ∂7 + cosv∂9 + sinv∂10 ,

ϕy = ∂1 − ∂2 +
2√
3
∂8, ϕz = ∂5 − ∂6 ,

ϕu = −xsinu∂3 + xcosu∂4, ϕv = −xsinv∂9 + xcosv∂10 .

By direct calculation, we see that Dθ = span{ϕx, ϕy} is a slant distribution with slant angle θ = arccos 1
5

and D⊥ = span{ϕz} is an anti-invariant distribution since F (ϕz) is orthogonal to TM. Moreover, DT =

span{ϕu, ϕv} is an invariant distribution. Thus, we conclude that M is a proper skew semi-invariant subman-

ifold of order 1 of M̄ . Furthermore, one can easily see that Dθ ⊕D⊥ and DT are integrable. If we denote the

integral submanifolds of Dθ,D⊥ , and DT by Mθ,M⊥ , and MT , respectively, then the induced metric tensor of

M is

ds2 = 5dx2 + 10
3 dy2 + 2dz2 + x2(du2 + dv2)

= gMθ
+ gM⊥ + x2gMT .

Thus, M = (Mθ × M⊥) ×x2 MT is a warped product skew semi-invariant submanifold of order 1 of M̄ with

warping function f = x.

Let Dθ and DT be slant and invariant distributions on M , respectively. Then M is called (Dθ,DT )-mixed

totally geodesic if h(Z,X)=0, where Z∈Dθ and X∈DT [20].

Before giving a necessary and sufficient condition for skew semi-invariant submanifold of order 1 to be

a locally warped product, we recall Hiepko’s result [14], (cf. [13], Remark 2.1): Let D1 be a vector subbundle

in the tangent bundle of a Riemannian manifold M and let D2 be its normal bundle. Suppose that the two

distributions are involutive. If we denote by M1 and M2 the integral manifolds of D1 and D2 , respectively,

then M is locally isometric to warped product M1 ×f M2 if the integral manifold M1 is totally geodesic and

the integral manifold M2 is an extrinsic sphere; in other words, M2 is a totally umbilical submanifold with a

parallel mean curvature vector.

Theorem 4.3 Let M =M1×fMT be a (Dθ,DT )-mixed totally geodesic proper skew semi-invariant submanifold

of order 1 with integrable distribution DT of a l.p.R. manifold M̄ . Then M is a locally warped product

submanifold if and only if

AFV FX = −V [σ]X , (4.3)
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and

ANZFX +ANTZX = −Z[σ] sin2θX (4.4)

for X ∈ DT , Z ∈ Dθ , V ∈ D⊥ , and a function σ defined on M such that Y [σ] = 0 for Y ∈ DT .

Proof Let M =M1×fMT be a (Dθ,DT )-mixed totally geodesic warped product proper skew semi-invariant

submanifold of order 1 with integrable distribution DT of a l.p.R. manifold M̄ . Then, using (3.6) and (3.8), we

have g(AFV W,FX) = 0, and g(AFV Z,FX) = 0 for any V,W ∈ D⊥ , Z ∈ Dθ and X ∈ DT . Since A is self

adjoint, we deduce that AFV FX has no components in TM1 . Therefore, AFV FX ∈ DT . Thus, using (2.2),

(2.1), and (1.1), for any Y ∈ DT , we obtain

g(AFV FX, Y ) = −g(∇̄Y FV, FX) = −g(∇̄Y V,X) = −g(∇Y V,X) = −V (lnf)g(X,Y ) ,

which proves (4.3). Since M is (Dθ,DT )-mixed totally geodesic for any Z ∈ Dθ and X ∈ DT , we have

g(ANTZX,Z)= 0. It means that ANTZX has no components in Dθ . On the other hand, from Lemma 3.3 of [26],

we know that TZ∈Dθ for any Z∈Dθ . Thus, using this fact and (1.1), from (3.13), we get g(ANTZX,V )= 0),

that is, ANTZX has no components in D⊥. Thus, from (4.1), we conclude that ANTZX ∈ DT . We also have

ANZX ∈ DT . Then, for X,Y ∈ DT and Z ∈ Dθ , using (1.1), from (3.10), we have

g(ANTZY,X) + g(ANZFY,X) = − sin2θg(∇XZ, Y ) = − sin2θZ(lnf)g(Y,X) .

This proves (4.4). Moreover, since Y (lnf) = 0 for a warped product proper skew semi-invariant submanifold

of order 1, we obtain σ = lnf.

Conversely, suppose that M is (Dθ,DT )-mixed totally geodesic proper skew semi-invariant submanifold

of order 1 with integrable distribution DT of a l.p.R. manifold M̄ such that (4.3) and (4.4) hold. Using

(3.6)∼(3.9), (4.3), and (4.4), it is not difficult to see that g(∇Û V̂ , X) = 0 for Û , V̂ ∈ TM1 and X ∈ D⊥.

It means that M1 is totally geodesic in M . Let MT be the integral manifold of DT and hT be the second

fundamental form of MT in M . Using (2.2), we have g(hT (X,Y ), V ) = g(∇XY, V ) for X,Y ∈ DT and

V ∈ D⊥. Then (3.11) implies that g(hT (X,Y ), V ) = g(AFV FY,X). Thus, using (4.3), we obtain

g(hT (X,Y ), V ) = −V [σ]g(Y,X) . (4.5)

Similarly, using (2.2), we have g(hT (X,Y ), Z) = g(∇XY,Z) for X,Y ∈ DT and Z ∈ Dθ. By (3.10), we obtain

g(hT (X,Y ), Z) = csc2θ{g(ANTZY,X) + g(ANZFY,X)} .

Using (4.4), we get

g(hT (X,Y ), Z) = −Z[σ]g(X,Y ) . (4.6)

Thus, for any E = V + Z ∈ TM1 , from (4.4) and (4.5), we arrive at

g(hT (X,Y ), E) = g(hT (X,Y ), V ) + g(hT (X,Y ), Z)
= −{V [σ] + Z[σ]}g(X,Y ).

(4.7)
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(4.7) states that MT is totally umbilical in M. Let us denote the gradient of σ on D⊥ and Dθ by grad⊥σ and

gradθσ , respectively. From (4.7), we write

hT (X,Y ) = −{grad⊥σ + gradθσ}g(X,Y ). (4.8)

Thus, for any E = V + Z ∈ TM1 , we have

g(∇X(grad⊥σ + gradθσ), E) = g(∇Xgrad⊥σ,E) + g(∇Xgradθσ,E)
= {Xg(grad⊥σ, V )− g(grad⊥σ,∇XE)}
+{Xg(gradθσ,Z)− g(gradθσ,∇XE)}

= X[V [σ]]− g(grad⊥σ,∇XE) +X[Z[σ]]− g(gradθσ,∇XE).

At this point, since M1 is totally geodesic in M , we have g(AFV X,TZ) = 0 from (3.8). We have also

g(ANTZX,V ) = 0, since M is (Dθ,DT )-mixed totally geodesic. Thus, using these equations in (3.13), we get

g(∇XV,Z) = −g(∇XZ, V ) = 0. Using this fact, we obtain

g(∇X(grad⊥σ + gradθσ), E) = X[V [σ]]− g(grad⊥σ,∇XZ) +X[Z[σ]]− g(gradθσ,∇XV ) .

By direct calculation, we arrive at

g(∇X(grad⊥σ + gradθσ), E) = {X[Z[σ]]− [X,Z][σ] + g(grad⊥σ,∇ZX)}
+{X[V [σ]− [X,V ][σ] + g(gradθσ,∇V X)}.

After some calculation, we get

g(∇X(grad⊥σ + gradθσ), E) = {Z[X[σ]] + g(grad⊥σ,∇ZX) + V [X[σ]] + g(gradθσ,∇V X)}.

Since X[σ] = 0, from the last equation, we derive

g(∇X(grad⊥σ + gradθσ), E) = −g(∇Zgrad
⊥σ,X)− g(∇V grad

θσ,X)

Here, we know that ∇Zgrad
⊥σ,∇V grad

θσ ∈ TM1 , since M1 is totally geodesic. Hence, we obtain g(∇X(grad⊥σ+

gradθσ), E) = 0. It means that grad⊥σ + gradθσ is parallel in M. This fact and (4.8) imply that MT is an

extrinsic sphere. This completes the proof. 2

5. A Chen-type inequality for warped product skew semi-invariant submanifolds of order 1

In this section, we give an inequality similar to Chen’s inequality [11] for the squared norm of the second

fundamental form in terms of the warping function for such submanifolds. We first give the following two

lemmas for later use.

Lemma 5.1 Let M = M1 ×fMT be a warped product proper skew semi-invariant submanifold of order 1 of a

l.p.R. manifold M̄. Then we have

g(h(X,V ), FW ) = 0 (5.1)

and

g(h(X,V ), NZ) = 0 , (5.2)

for X ∈ DT , Z ∈ Dθ , and V,W ∈ D⊥ .
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Proof For any V,W ∈ D⊥ and X ∈ DT , using (2.2), (2.1), and (1.1), we get

g(h(X,V ), FW ) = g(∇̄V X,FW ) = g(∇̄V FX,W ) = g(∇V FX,W ) = V (lnf)g(FX,W ) = 0,

since g(FX,W ) = 0. Hence, (5.1) follows. In a similar way, using (2.2), (2.1), (3.1), and (1.1), we have

g(h(X,V ), NZ) = g(∇̄V X,NZ) = g(∇̄V X,FZ)− g(∇̄V X,TZ)
= g(∇̄V FX,Z)− g(∇̄V X,TZ)
= g(∇V FX,Z)− g(∇V X,TZ)
= V (lnf)g(FX,Z)− V (lnf)g(X,TZ) = 0,

since g(FX,Z) = 0 and g(X,TZ) = 0. 2

Lemma 5.2 Let M = M1 ×fMT be a warped product proper skew semi-invariant submanifold of order 1 of a

l.p.R. manifold M̄. Then we have

g(h(X,FY ), FV ) = −V (lnf)g(X,Y ) (5.3)

and

g(h(X,Y ), NZ) = TZ(lnf)g(X,Y ) (5.4)

for X,Y ∈ DT , Z ∈ Dθ , and V ∈ D⊥ .

Proof Using (2.2) and (2.1), we have

g(h(X,FY ), FV ) = g(∇̄XFY, FV ) = g(∇̄XY, V ) = g(∇XY, V ) = −g(∇XV, Y )

for any X,Y ∈ DT and V ∈ D⊥ . Hence, using (1.1), we easily obtain (5.3). The last assertion (5.4) follows

from Lemma 3.1-(ii) of [2] by using linearity. 2

Theorem 5.3 Let M = M1 ×f MT be a (q + m)-dimensional warped product proper skew semi-invariant

submanifold of order 1 of a l.p.R. manifold M̄ of dimension 2q+m, where dim(M1) = q and dim(MT ) = m.

Then M is (D⊥,DT )-mixed totally geodesic; in other words, h(D⊥,DT ) = 0.

Proof Let M = M1×f MT be a (q+m)-dimensional warped product proper skew semi-invariant submanifold

of order 1 of a l.p.R. manifold M̄ of dimension 2q +m. Then by the dimension argument in the hypothesis,

the distribution µ involved in the definition of the normal bundle T⊥M of M vanishes. Therefore, from (4.2),

we have T⊥M = F (D⊥) ⊕N(Dθ). Thus, from (5.1) and (5.2), we deduce that h(V,X) = 0 for X ∈ DT and

V ∈ D⊥ . It means that M is a (D⊥,DT )-mixed totally geodesic. 2

Let M be a (k + n + m)-dimensional warped product proper skew semi-invariant submanifold of

order 1 of a (2k + 2n + m)-dimensional l.p.R. manifold M̄. We choose a canonical orthonormal basis

{e1, ..., em, ē1, ..., ēk, ẽ1, ..., ẽn, e
∗
1, ..., e

∗
k, F ẽ1, ..., F ẽn} such that {e1, ..., em} is an orthonormal basis of DT ,

{ē1, ..., ēk} is an orthonormal basis of Dθ , {ẽ1, ..., ẽn} is an orthonormal basis of D⊥ , {e∗1, ..., e∗k} is an or-

thonormal basis of NDθ , and {F ẽ1, ..., F ẽn} is an orthonormal basis of FD⊥ .
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Remark 5.4 From (2.1), we can observe that {Fe1, ..., F em} is also an orthonormal basis of DT . On the

other hand, with the help of the equations (3.5) and (3.6) of [26], we can see that {secθT ē1, ..., secθT ēk} is also

an orthonormal basis of Dθ and {cscθNē1, ..., cscθNēk} is also an orthonormal basis of NDθ .

We now state the main result of this section.

Theorem 5.5 Let M = M1 ×f MT be a (k + n+m)-dimensional warped product proper skew semi-invariant

submanifold of order 1 of a (2k+2n+m)-dimensional l.p.R. manifold M̄. Then the squared norm of the second

fundamental form of M satisfies

∥h∥2 ≥ m{∥∇⊥(lnf)∥2 + cot2θ∥∇θ(lnf)∥2} , (5.5)

where m = dim(MT ) , and ∇⊥(lnf) and ∇θ(lnf) are gradients of lnf on D⊥ and Dθ, respectively. If the

equality case of (5.5) holds identically, then M1 is a totally geodesic submanifold of M̄ and M is a mixed

totally geodesic. Moreover, MT cannot be minimal.

Proof In view of decomposition (4.1), the squared norm of the second fundamental form h can be decomposed
as

∥h∥2 = ∥h(DT ,DT )∥2 + ∥h(Dθ,Dθ)∥2 + ∥h(D⊥,D⊥)∥2
+2∥h(DT ,D⊥)∥2 + 2∥h(DT ,Dθ)∥2 + 2∥h(D⊥,Dθ)∥2.

By Theorem 5.3, M is (D⊥,DT )-mixed totally geodesic; thus we get

∥h∥2 = ∥h(DT ,DT )∥2 + ∥h(Dθ,Dθ)∥2 + ∥h(D⊥,D⊥)∥2
+2∥h(DT ,Dθ)∥2 + 2∥h(D⊥,Dθ)∥2,

which can be written as follows:

∥h∥2 =
m∑

i,j=1

n∑
a=1

g(h(ei, ej), F ẽa)
2 +

m∑
i,j=1

k∑
r=1

g(h(ei, ej), e
∗
r)

2

+
n∑

a,b,c=1

g(h(ẽa, ẽb), F ẽc)
2 +

n∑
a,b=1

k∑
r=1

g(h(ẽa, ẽb), e
∗
r)

2

+

k∑
r,s=1

n∑
a=1

g(h(ēr, ēs), F ẽa)
2 +

k∑
r,s,q=1

g(h(ēr, ēs), e
∗
q)

2

+2

m∑
i=1

k∑
r=1

n∑
a=1

g(h(ei, ēr), F ẽa)
2 + 2

m∑
i=1

k∑
r,s=1

g(h(ei, ēr), e
∗
s)

2

+2
k∑

r=1

n∑
a,b=1

g(h(ēr, ẽa), F ẽb)
2 + 2

k∑
r,s=1

n∑
a=1

g(h(ēr, ẽa), e
∗
s)

2.

(5.6)

Here, using (5.1)∼(5.3) and Remark 5.4, we have

m∑
i,j=1

n∑
a=1

g(h(ei, ej), F ẽa)
2 =

m∑
i,j=1

n∑
a=1

(−ẽa(lnf)g(ei, ej))
2

(5.7)

and
m∑

i,j=1

k∑
r=1

g(h(ei, ej), e
∗
r)

2 =

m∑
i,j=1

k∑
r=1

g(h(ei, ej), Nēr)
2csc2θ. (5.8)
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Moreover, using (5.4) in (5.8), we get

m∑
i,j=1

k∑
r=1

g(h(ei, ej), e
∗
r)

2 =
m∑

i,j=1

k∑
r=1

(T ēr(lnf)g(ei, ej))
2csc2θ. (5.9)

Using (5.7) and (5.9) in (5.6), we get

∥h∥2 ≥ m∥∇⊥(lnf)∥2 +
m∑

i,j=1

k∑
r=1

(T ēr(lnf)g(ei, ej))
2csc2θ . (5.10)

By Remark 5.4, we replace ēr by secθT ēr in the last term of (5.10) and using (3.5) we have

m∑
i,j=1

k∑
r=1

(T ēr(lnf)g(ei, ej))
2csc2θ

=

m∑
i,j=1

k∑
r=1

cos4θ(ēr(lnf)g(ei, ej))
2csc2θ = m cot2θ∥∇θ(lnf)∥2.

(5.11)

Thus, using (5.11) in (5.10), we find (5.5).

Next, if the equality case of (5.5) holds identically, then from (5.6) we have

h(D⊥,D⊥) = 0, h(Dθ,Dθ) = 0, h(D⊥,Dθ) = 0 (5.12)

and

h(DT ,Dθ) = 0. (5.13)

Since M1 is totally geodesic in M , from (5.12) it follows that M1 is also totally geodesic in M̄. On the other

hand, Theorem 5.3 and the equation (5.13) imply that M is a mixed totally geodesic. Finally, if we suppose

that M is minimal, then from (5.3) and (5.4) we conclude that ∥∇(lnf)∥ = 0, which is a contradiction. 2

Remark 5.6 Theorem 5.5 coincides with Theorem 4.2 of [22] if Dθ = {0} . In other words, Theorem 5.5 is a

generalization of Theorem 4.2 of [22].
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Math Al 1984; 22: 3–11.

[7] Bishop RL, O’Neill B. Manifolds of negative curvature. Trans Amer Math Soc 1969; 145: 1–49.

[8] Cabrerizo JL, Carriazo A, Fernández LM, Fernández M. Slant submanifolds in Sasakian manifolds. Glasgow Math

J 2000; 42: 125–138.

[9] Carriazo A. Bi-slant immersions. In: Proc ICRAMS 2000, Kharagpur, India, 2000, 88–97.

[10] Chen BY. Slant immersions. Bull Austral Math Soc 1990; 41: 135–147.

[11] Chen BY. Geometry of warped product in Kaehler manifolds. Monatsh Math 2001; 133: 177–195.

[12] Chen BY. Geometry of warped product submanifolds: a survey. J Adv Math Stud 2013; 6: 1–43.

[13] Dillen F, Nölker S. Semi-paralellity multi rotation surfaces and the helix property. J Reine Angew Math 1993; 435:

33–63.

[14] Hiepko S. Eine innere Kennzeichnung der verzertten Produkte. Math Ann 1979; 241: 209–215 (in German).

[15] Khan VA, Khan MA. Pseudo-slant submanifolds of a Sasakian manifold. Indian J Pure Appl Math 2007; 38: 31–42.

[16] Khursheed Haider SM, Thakur M, Advin M. Warped product skew CR-submanifolds of a Cosymplectic manifold.

Lobachevskii J Math 2012; 33: 262–273.

[17] Liu X, Shao FM. Skew semi-invariant submanifolds of a locally product manifold. Portugaliae Math 1999; 56:

319–327.

[18] Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Sci Roumanie 1996; 39: 183–198.

[19] Papaghiuc N. Semi-slant submanifolds of a Kählerian manifold. Ann Şt Al I Cuza Univ Iaşi 1994; 40: 55–61.
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