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Abstract: This work is concerned with the existence of positive solutions to a nonlinear nonlocal first-order multipoint

problem. Here the nonlinearity is allowed to take on negative values, not only positive values.
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1. Introduction
In this paper, we are interested in the existence of positive solutions for the following first-order m-point

nonlocal boundary value problem:

y'(0) +pMy(t) = 25 filty(®), 0,1, (1.1)
y(0) = y(1) + 37, 9(t. y(t), (1.2)

where p: [0,1] — [0, 00) is continuous, the nonlocal points satisfy 0 < t; < t3 < ... < ¢, < 1, and the nonlinear
functions f; : [0,1] x [0,00) = (—00,00) and g; : [0,1] X [0,00) — [0,00) are continuous.
First-order equations with various boundary conditions, including multipoint and nonlocal conditions,

are of recent interest; see [3-11,13] and the references therein.

In [12], Zhao applied a monotone iteration method to the problem (if T = R):

y'(t) +p)y(t) = f(t,y@), te[0,1],
y(0) = g(x(1)),

where the functions f and g are positive-valued continuous functions.
In [2], using the Guo—Krasnosel’skii fixed point theorem, Anderson was interested in the existence of at

least one positive solution to the problem (if T =R):
(1) +p0y(t) = M (ty(),  te(o1],

y0) = (1) + Y (e,
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where the function f:(0,1) x [0,00) — (—00,00) is continuous.
In [3], using the Legget—Williams fixed point theorem, Anderson studied the existence of at least three

positive solutions to the nonlinear first-order problem with a nonlinear nonlocal boundary condition given by
(1) —r(ty(t) =AY filty(r),  te(o1],
i=1
Ay(0) = y(1) + Y Ay(7,y(5)),
j=1

where r : [0,1] — [0,00) is continuous, and the nonlinear functions f; : [0,1] x [0,00) — [0,00) and
A;j :10,1] x [0,00) — [0,00) are also continuous.
In [7], Goodrich considered the existence of at least one positive solution to the first-order semipositone

discrete fractional boundary value problem:

Ny(t)=Aft+v—1ylt+v-—1)), t €10,7T)z,
N

yv-1)=ylv+T)+ ZF(T’Hy(T’L))
i=1

In a recent paper [8], using Krasnosel’skii’s fixed point theorem, Goodrich studied the existence of a

positive solution to the first-order problem given by (if T = R)

y'(t) +p()y(t) = Af(ty), te(ab),
yla) = y(b) + [ F(s,y(s))ds,

where 71,72 € [a, by with 71 < 79, p and F' are nonnegative functions, and the nonlinearity f can be negative
for some values of ¢ and y.

Motivated greatly by the above-mentioned works, in this paper, we are interested in the existence and
iteration of positive solutions for the nonlinear nonlocal first-order multipoint problem (1.1)—(1.2). By applying
the monotone iteration method, we not only obtain the existence of positive solutions, but we also establish
iterative schemes for approximating the solutions. The following monotone iteration method [1] is fundamental

and important to the proof of our main result.

Theorem 1.1 Let K be a cone in a Banach space E and vy < wq. Suppose that:
(1) T : [vg,wo] = E is completely continuous;
(ii) T is monotone increasing on [vg, wo) ;
(7i1) wvo is a lower solution of T, that is vo < Tvg;
(v) wg is an upper solution of T, that is Twy < wy .

Then the iterative sequences

Up = T0n_1, wp=Tw,_1(n=1,2,3,...)

satisfy
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vg <vp <. <oy <L Swy <. S wyp < wo,

and converge to, respectively, v and w in [vg, wo], which are fized points of T.

2. Main results
In this section we will state the sufficient conditions for the m-point nonlocal boundary value problem (1.1) —
(1.2) to have positive solutions. For this purpose, first we will give some lemmas that will be used to give the

main result.
Lemma 2.1 The function y(t) is a solution of the problem (1.1)-(1.2) if and only if

o= Jip©de M

Z/ G(t,s) fi(s, y(s ))d8+ PR Zlgj(tj»y(tj))

where G(t,s) is defined by

— JJ p(&)de 1 <t
G(t,s) = —< {’ s b

m e Jo p(&)dg t<s.

If we take the derivation of y(t), we can easily see that y(t) is the solution of the problem (1.1)-(1.2). In
the proof of Theorem 2.2 in [3], a similar result was given. Therefore, we do not restate the proof here.

In [8], Goodrich found the upper and lower bounds for Green’s function on the general time scales in

Lemma 2.4. Since the following lemma can be proven in a similar way, we give the lemma without the proof.

Lemma 2.2 Green’s function G(t,s) satisfies
e lo POEG (s 5) < Gt s) < elo POILEG (s 5).

The main result of this paper as follows.

Theorem 2.1 Assume that conditions f; : [0,1] x [0,00) = (—00,00),i = 1,2,...,n and g; : [0,1] x [0,00) —
[0,00),7 = 1,2,...,m are continuous and there exists a constant M > 0 such that fi(t,y) > —M for all
(t,y) € [0,1] x [0,00) and fol(fi + M)ds > 0. If there exist positive constants r and R such that r > 2,7]‘2{[ and

the following conditions are satisfied:

1 — e~ Jo p(&)d¢

Mﬂﬂt@ﬁﬁ@@SA——g———RfM}te&ﬂ,ggugvgﬁ
n
1 — e Jo p(&)dE . 1 — e Jo p(&)de r
—7< i < g, < - _<u<ov<
(A2) ok m gi(t,u) < gj(t,v) < o R, te[0,1], ;<usv<R

1 — e~ Jo p(&)de

We*fo POE  then, the boundary value problem (1.1) — (1.2) has positive solutions.
1+elo

where v =
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Proof First we consider the following boundary value problem:

n

u' (t) + p(t)u(t) = Z Fi(t, ug(t)), te0,1], (2.1)
u(0) = u(1) + Zgj (tj,ue(ty)), (2.2)

where F;(t,uz(t)) = fi(t,us(t)) + M and ug(t) = max{(u — z)(t),0} such that z(t) = Mw(t) and w(t) is the
solution of
y' () +pt)y(t) = 1, t€0,1],
y(0) = y(1).

Using Lemma 2.1 and Lemma 2.2 we can easily see that the unique solution w(t) of the above problem satisfies

1 1 1 _r1
1 1+ elo pO)de Jop@©de

w(t) :/ G(t,s)ds < / elo p<§)d£G(S,S)d$ _ i < +e 01 _ e ) L

0 0 1 — e Jo P(E)E ~ 1 _ o= Jy p(€)dE ~ ~

Let E:={y| y:[0,1] — R continuous } with the norm ||y|| = max;c[o 1] |y(¢)|. Denote K :={y € E :
y(t) > v|lyll,t € [0,1]}. Then K is a normal cone of E. Now we define an operator T : K — K by

e fop(f
/Gts il we(s))ds + e ngggtj,ux

and then it is easy to see that fixed points of T' are nonnegative solutions of the BVP (2.3)-(2.4).
Let vo(t) =7 and wy(t) = R for ¢ € [0,1].
Now we will verify that T : [vg, wy] — K is completely continuous.

First, T is continuous. Let u,(n =1,2,...),u € [vg, wp] and lim,,_, o u, = u. Then,
r<u, <R, r<u<R, te]l0,1].

For any given € > 0, since f; are uniformly continuous on [0, 1] x [5, R], there exists ; > 0 such that for any

Uy, Ug € [§7R} with |U1 —’LL2| < 01

|fi(s,u1) = fi(s,u2)| < i (1 —e folp@)df) , selo,1].

On the other hand, since g; are uniformly continuous on [0, 1] x [, R], there exists d > 0 such that for any

uy,uz € [5, R] with [u; —ua| < 02

€
l9;(s,u1) — gj(s,u2)| < o’ s€[0,1].

Let 6 = min{d1,d2}. Then it follows from lim,_,oc un, = u that there exists a positive N such that for any
n> N,
lun(s) —u(s)] <4, se€][0,1].
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We can easily see that |u, —u| < ¢ implies |u,, —uy| <d.
Thus, using Lemma 2.2 and the continuity of the functions f;(i =1,2,...,n) and g¢;(j = 1,2,...,m), we

can easily get

Tun(t) — Tu(t)|

IN

1 n
/0 G(ta5)2|fi(5aunx(s))7fi(57ur( Ids+2\gg tj,un, (t;)) = g;(t5, ux(t;))|

Jj=1

< Jo &G i(l_ flp@)ds)d -
hS /Oeo ss;2n elo S+ng

j=1
1 €

1 €
T 1 i r©dEm (1 —eb pwg) mh oo

which indicates that lim,, o, Tu, = Tu. So T : [vg, we] — K is continuous.
Next, we will show that T : [vg,wo] — K is compact. Let A C [vg,wp] be a bounded set. Define
Q = max(o)x(z,g fi(t,u(t)) and S = maxpjx(z r) gj(tj,u(t;)). If w € [r,R] we can see easily that

2

uy = max{(u — z)(t),0} > u(t) — x(t) = u(t) — Mw(t) > u(t) — % >r—45=+¢4and u, <u <RIt
shows that u, € 3, R].

For uw € A and t € [0,1], using Lemma 2.2,

m

Tu(t) < (5,1 (5)) + M)d (t, ua(t
U() - 1—e" fop(f)df/ Zf 5, + )S+1_e fo Z gt

IA

which shows that T'(A) is uniformly bounded.
On the other hand, for any u € A and t1,ts € [0,1] with ¢; >t and ¢ € (t2,t1), we have

n

/0 (Gt 5) — G(t2, ) 3" (fils, ua(5)) + M)ds

i=1

|Tu(t1) — Tu(t2)| S

effcilp dg—e fo p(§)dg ™

t 5um
1—effop Zg] J
Ul o= [ p(©)de _ o[22 p(&)de
€ e
= : M)d
- /0 1 e S p(e)de ;(fz(saux(S))‘F )ds
— J3rp(&)de _ — [32 p(€)de
€ e
(t5,
1— e Jor® Zg] i Ua(t
= M)
T l-e fop(ad&' o)t = o] /Zfsuw + ds+;gj (t;,us(t;))
1
=< [p(e)|t1 — t2|{(Q + M)n + Sm},

1—e" fol p(§)dE
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which implies that T'(A) is equi-continuous.

Consequently, T : [vg, wo] — K is compact.

Now we will show that T' is monotone increasing on [vg, wo].

Suppose that u,v € [vg,wo] and u < v. Then r < u(t) < v(t) < R for t € [0,1]. As we have shown
previously for u,, we easily have v, € [5, R], and so we get § < u,(t) <v.(t) < R. Thus, by (A4;) and (As),
for t € [0,1], we have

1 n e~ Jo p(E)dE
| 610 Yol + M+ e Zgj oty

1 n o fip©de M
< G1.8) Y o)+ M)+ e 3 ot tty) = T,

which shows that Tu < Tw.
Now we will prove that vy = 7 is a lower solution of T For any ¢ € [0, 1], since wo, € [, R], it is obvious
that
n o Jip©)de M

Too(t) = [ Gl Y (ilsvva.(s) + Mds + T 2
=1

1—e" fop

e~ Jo p(&)d m

i(t
1—e" fo p(&)d Z j’vow

Y

e~ fol p(ﬁ)dﬁ 1— e fo d€ r
1 — e Jo P&)dE ; e—Jo p(O)dE m

=r =uvg(t),

which implies that vy < Tvg.
We show that wy = R is an upper solution of T'. In view of (A;) and (A2) and using wy, =

max{wg — z,0} < wp = R, we have

1 n o Jip©)ds M
Tun(t) = [ G193 oo, (o) + My + T e X .

1 n f
e 0
<
< /OG(tsz_ZlfzsR +M)d3+ - fop(g)dgzgﬂ R
1 1 n R . 1 m R
< _ 2V (1 = e Jo p(&)dE I RN () e
< /ol—e_f01p(§)d§;<2n>( e Jo )dS—Fl_e_fOlp(E)dE; o ( e Jo )
1 R R
= —— 1 o Jin@©de) _ p _
1_e—f01p<¢)ds<2+2>( e ) R = wo(t),

which implies that Twy < wg.

If we construct sequences {v,}52; and {w,}°; as follows:

Vp =Tvn_1, wp,=Tw,—1, n=12,3,..,
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then it follows from Theorem 1 that

. .<v, <. .Zfw, <. Zw L wy,

and {v,} and {w,} converge to, respectively, v and w, which are the solutions of the problem (2.1)-(2.2).

It follows from

1 r e Jor
TUo(l) = /O G(l S Z fz S, Vo, +M)d8+ ngj tJ,’Uo (t ))
=1

o= Jo P(&)dE LA m
e 1 | s (6 + M + 300 (1) >0
T )| 2

Jj=1

that
0 < (Twe)(1) < (Tw)(1) = v(1) < w(1),

which shows that v and w are positive solutions of the problem (2.1)-(2.2).

Moreover, we get
o(t) > Aol > yr > 2MAy " and w(t) > yljwl| > 2My !

Hence, for t € [0,1]

2M M M
y(t) =v(t) —z(t) > — — — = — >0 and g(t) = w(t) — z(t) > 0,
v v v
and it can be easily seen that y and ¢ are the positive solutions of the problem (1.1)-(1.2). O

Example 2.1 We consider the following first-order m-point nonlocal boundary value problem:

y/(t) + %y(t) = fl(t’y) + f2<t7 y) + f3(tay)7 te [07 1]7 (23)
y(0) = y(1) + g1(t, ), (2.4)

1
%(y(t) —2) and

where f1(t,y) ft\/ ) +3, falty) = t—2)3+vy(t)), f3(t,y) =

1

1
1454+ Y(2) =32 45 39

N =

gi(ty) =

145

DR

Since f1 < 0,fs < =2 and f3 < —ﬁ, then M = 2 and we can calculate v = 0,08. If we choose

r =64 and R = 280, then all the conditions of Theorem 2.1 are fulfilled. Thus, the problem (2.5)-(2.6) has

positive solutions y and §. Furthermore, if we construct sequences {v,} and {w,} such that v, = Tv,_1

y < 32.

and wy, = Tw,—1, n = 1,2,... where vo(t) = 32 and wo(t) = 280, then lim, ,oov, —x = v —x =y and

lim, yoowp —T=w—12=7.
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