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1. Introduction

In this paper, we are interested in the existence of positive solutions for the following first-order m-point

nonlocal boundary value problem:

y′(t) + p(t)y(t) =
∑n

i=1 fi(t, y(t)), t ∈ [0, 1], (1.1)

y(0) = y(1) +
∑m

j=1 gj(tj , y(tj)), (1.2)

where p : [0, 1] → [0,∞) is continuous, the nonlocal points satisfy 0 ≤ t1 < t2 < ... < tm ≤ 1, and the nonlinear

functions fi : [0, 1]× [0,∞) → (−∞,∞) and gj : [0, 1]× [0,∞) → [0,∞) are continuous.

First-order equations with various boundary conditions, including multipoint and nonlocal conditions,

are of recent interest; see [3–11,13] and the references therein.

In [12], Zhao applied a monotone iteration method to the problem (if T = R):

y′(t) + p(t)y(t) = f(t, y(t)), t ∈ [0, 1],

y(0) = g(x(1)),

where the functions f and g are positive-valued continuous functions.

In [2], using the Guo–Krasnosel’ski ı̆ fixed point theorem, Anderson was interested in the existence of at

least one positive solution to the problem (if T = R):

y′(t) + p(t)y(t) = λf(t, y(t)), t ∈ [0, 1],

y(0) = y(1) +
n−1∑
j=2

γiy(tj),
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where the function f : (0, 1)× [0,∞) → (−∞,∞) is continuous.

In [3], using the Legget–Williams fixed point theorem, Anderson studied the existence of at least three

positive solutions to the nonlinear first-order problem with a nonlinear nonlocal boundary condition given by

y′(t)− r(t)y(t) = λ
m∑
i=1

fi(t, y(t)), t ∈ [0, 1],

λy(0) = y(1) +
n∑

j=1

Λj(τj , y(τj)),

where r : [0, 1] → [0,∞) is continuous, and the nonlinear functions fi : [0, 1] × [0,∞) → [0,∞) and

Λj : [0, 1]× [0,∞) → [0,∞) are also continuous.

In [7], Goodrich considered the existence of at least one positive solution to the first-order semipositone

discrete fractional boundary value problem:

△νy(t) = λf(t+ ν − 1, y(t+ ν − 1)), t ∈ [0, T ]Z,

y(ν − 1) = y(ν + T ) +
N∑
i=1

F (τi, y(τi)).

In a recent paper [8], using Krasnosel’ski ı̆ ’s fixed point theorem, Goodrich studied the existence of a

positive solution to the first-order problem given by (if T = R)

y′(t) + p(t)y(t) = λf(t, y(t)), t ∈ (a, b),

y(a) = y(b) +
∫ τ2
τ1

F (s, y(s))ds,

where τ1, τ2 ∈ [a, b]T with τ1 < τ2 , p and F are nonnegative functions, and the nonlinearity f can be negative

for some values of t and y .

Motivated greatly by the above-mentioned works, in this paper, we are interested in the existence and

iteration of positive solutions for the nonlinear nonlocal first-order multipoint problem (1.1)−(1.2). By applying

the monotone iteration method, we not only obtain the existence of positive solutions, but we also establish

iterative schemes for approximating the solutions. The following monotone iteration method [1] is fundamental

and important to the proof of our main result.

Theorem 1.1 Let K be a cone in a Banach space E and v0 ≤ w0 . Suppose that:

(i) T : [v0, w0] → E is completely continuous;

(ii) T is monotone increasing on [v0, w0] ;

(iii) v0 is a lower solution of T , that is v0 ≤ Tv0 ;

(iv) w0 is an upper solution of T , that is Tw0 ≤ w0 .

Then the iterative sequences

vn = Tvn−1, wn = Twn−1(n = 1, 2, 3, ...)

satisfy
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v0 ≤ v1 ≤ ... ≤ vn ≤ ... ≤ wn ≤ ... ≤ w1 ≤ w0,

and converge to, respectively, v and w in [v0, w0] , which are fixed points of T.

2. Main results

In this section we will state the sufficient conditions for the m-point nonlocal boundary value problem (1.1)−
(1.2) to have positive solutions. For this purpose, first we will give some lemmas that will be used to give the

main result.

Lemma 2.1 The function y(t) is a solution of the problem (1.1)-(1.2) if and only if

y(t) =
n∑

i=1

∫ 1

0

G(t, s)fi(s, y(s))ds+
e−

∫ t
0
p(ξ)dξ

1 + e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , y(tj))

where G(t, s) is defined by

G(t, s) =
e−

∫ t
s
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

{
1, s < t,

e−
∫ 1
0
p(ξ)dξ t ≤ s.

If we take the derivation of y(t), we can easily see that y(t) is the solution of the problem (1.1)-(1.2). In

the proof of Theorem 2.2 in [3], a similar result was given. Therefore, we do not restate the proof here.

In [8], Goodrich found the upper and lower bounds for Green’s function on the general time scales in

Lemma 2.4. Since the following lemma can be proven in a similar way, we give the lemma without the proof.

Lemma 2.2 Green’s function G(t, s) satisfies

e−
∫ 1
0
p(ξ)dξG(s, s) ≤ G(t, s) ≤ e

∫ 1
0
p(ξ)dξG(s, s).

The main result of this paper as follows.

Theorem 2.1 Assume that conditions fi : [0, 1] × [0,∞) → (−∞,∞), i = 1, 2, ..., n and gj : [0, 1] × [0,∞) →
[0,∞), j = 1, 2, ...,m are continuous and there exists a constant M > 0 such that fi(t, y) > −M for all

(t, y) ∈ [0, 1]× [0,∞) and
∫ 1

0
(fi +M)ds > 0 . If there exist positive constants r and R such that r > 2M

γ2 and

the following conditions are satisfied:

(A1)fi(t, u) ≤ fi(t, v) ≤
1− e−

∫ 1
0
p(ξ)dξ

2n
R−M, t ∈ [0, 1],

r

2
≤ u ≤ v ≤ R,

(A2)
1− e−

∫ 1
0
p(ξ)dξ

e−
∫ 1
0
p(ξ)dξ

r

m
≤ gj(t, u) ≤ gj(t, v) ≤

1− e−
∫ 1
0
p(ξ)dξ

2m
R, t ∈ [0, 1],

r

2
≤ u ≤ v ≤ R,

where γ =
1− e−

∫ 1
0
p(ξ)dξ

1 + e
∫ 1
0
p(ξ)dξ

e−
∫ 1
0
p(ξ)dξ, then the boundary value problem (1.1)− (1.2) has positive solutions.
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Proof First we consider the following boundary value problem:

u′(t) + p(t)u(t) =
n∑

i=1

Fi(t, ux(t)), t ∈ [0, 1], (2.1)

u(0) = u(1) +

m∑
j=1

gj(tj , ux(tj)), (2.2)

where Fi(t, ux(t)) = fi(t, ux(t)) +M and ux(t) = max{(u− x)(t), 0} such that x(t) = Mω(t) and ω(t) is the

solution of

y′(t) + p(t)y(t) = 1, t ∈ [0, 1],

y(0) = y(1).

Using Lemma 2.1 and Lemma 2.2 we can easily see that the unique solution ω(t) of the above problem satisfies

ω(t) =

∫ 1

0

G(t, s)ds ≤
∫ 1

0

e
∫ 1
0
p(ξ)dξG(s, s)ds =

1

1− e−
∫ 1
0
p(ξ)dξ

<
1 + e

∫ 1
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

=
e−

∫ 1
0
p(ξ)dξ

γ
<

1

γ
.

Let E := {y| y : [0, 1] → R continuous } with the norm ∥y∥ = maxt∈[0,1] |y(t)| . Denote K := {y ∈ E :

y(t) ≥ γ∥y∥, t ∈ [0, 1]} . Then K is a normal cone of E. Now we define an operator T : K → K by

Tu(t) :=

∫ 1

0

G(t, s)
n∑

i=1

Fi(s, ux(s))ds+
e−

∫ t
0
p(ξ)dξ

1 + e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , ux(tj)),

and then it is easy to see that fixed points of T are nonnegative solutions of the BVP (2.3)-(2.4).

Let v0(t) = r and w0(t) = R for t ∈ [0, 1].

Now we will verify that T : [v0, w0] → K is completely continuous.

First, T is continuous. Let un(n = 1, 2, ...), u ∈ [v0, w0] and limn→∞ un = u. Then,

r ≤ un ≤ R, r ≤ u ≤ R, t ∈ [0, 1].

For any given ϵ > 0, since fi are uniformly continuous on [0, 1]× [ r2 , R] , there exists δ1 > 0 such that for any

u1, u2 ∈ [ r2 , R] with |u1 − u2| < δ1

|fi(s, u1)− fi(s, u2)| <
ϵ

2n

(
1− e−

∫ 1
0
p(ξ)dξ

)
, s ∈ [0, 1].

On the other hand, since gj are uniformly continuous on [0, 1] × [ r2 , R] , there exists δ2 > 0 such that for any

u1, u2 ∈ [ r2 , R] with |u1 − u2| < δ2

|gj(s, u1)− gj(s, u2)| <
ϵ

2m
, s ∈ [0, 1].

Let δ = min{δ1, δ2} . Then it follows from limn→∞ un = u that there exists a positive N such that for any

n > N,

|un(s)− u(s)| < δ, s ∈ [0, 1].
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We can easily see that |un − u| < δ implies |unx − ux| < δ .

Thus, using Lemma 2.2 and the continuity of the functions fi(i = 1, 2, ..., n) and gj(j = 1, 2, ...,m), we

can easily get

|Tun(t)− Tu(t)| ≤
∫ 1

0

G(t, s)
n∑

i=1

|fi(s, unx(s))− fi(s, ux(s))|ds+
m∑
j=1

|gj(tj , unx(tj))− gj(tj , ux(tj))|

≤
∫ 1

0

e
∫ 1
0
p(ξ)dξG(s, s)

n∑
i=1

ϵ

2n

(
1− e

∫ 1
0
p(ξ)dξ

)
ds+

m∑
j=1

ϵ

2m

=
1

1− e−
∫ 1
0
p(ξ)dξ

ϵ

2n

(
1− e

∫ 1
0
p(ξ)dξ

)
n+

ϵ

2m
m = ϵ,

which indicates that limn→∞ Tun = Tu. So T : [v0, w0] → K is continuous.

Next, we will show that T : [v0, w0] → K is compact. Let A ⊂ [v0, w0] be a bounded set. Define

Q := max[0,1]×[ r2 ,R] fi(t, u(t)) and S := max[0,1]×[ r2 ,R] gj(tj , u(tj)). If u ∈ [r,R] we can see easily that

ux = max{(u − x)(t), 0} ≥ u(t) − x(t) = u(t) − Mw(t) ≥ u(t) − M
γ ≥ r − r

2 = r
2 and ux ≤ u ≤ R . It

shows that ux ∈ [ r2 , R] .

For u ∈ A and t ∈ [0, 1], using Lemma 2.2,

Tu(t) ≤ 1

1− e−
∫ 1
0
p(ξ)dξ

∫ 1

0

n∑
i=1

(fi(s, ux(s)) +M)ds+
1

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , ux(tj))

≤ 1

1− e−
∫ 1
0
p(ξ)dξ

{(Q+M)n+ Sm},

which shows that T (A) is uniformly bounded.

On the other hand, for any u ∈ A and t1, t2 ∈ [0, 1] with t1 ≥ t2 and c ∈ (t2, t1), we have

|Tu(t1)− Tu(t2)| ≤

∣∣∣∣∣
∫ 1

0

(G(t1, s)−G(t2, s))
n∑

i=1

(fi(s, ux(s)) +M)ds

∣∣∣∣∣
+

∣∣∣∣∣∣e
−

∫ t1
0 p(ξ)dξ − e−

∫ t2
0 p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , ux(tj))

∣∣∣∣∣∣
≤

∫ 1

0

∣∣∣∣∣e−
∫ t1
s

p(ξ)dξ − e−
∫ t2
s

p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

∣∣∣∣∣
n∑

i=1

(fi(s, ux(s)) +M)ds

+

∣∣∣∣∣e−
∫ t1
0 p(ξ)dξ − e−

∫ t2
0 p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

∣∣∣∣∣
m∑
j=1

gj(tj , ux(tj))

≤ 1

1− e−
∫ 1
0
p(ξ)dξ

|p(c)||t1 − t2|


∫ 1

0

n∑
i=1

(fi(s, ux(s)) +M)ds+
m∑
j=1

gj(tj , ux(tj))


≤ 1

1− e−
∫ 1
0
p(ξ)dξ

|p(c)||t1 − t2|{(Q+M)n+ Sm},
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which implies that T (A) is equi-continuous.

Consequently, T : [v0, w0] → K is compact.

Now we will show that T is monotone increasing on [v0, w0] .

Suppose that u, v ∈ [v0, w0] and u ≤ v . Then r ≤ u(t) ≤ v(t) ≤ R for t ∈ [0, 1]. As we have shown

previously for ux , we easily have vx ∈ [ r2 , R] , and so we get r
2 ≤ ux(t) ≤ vx(t) ≤ R . Thus, by (A1) and (A2),

for t ∈ [0, 1], we have

Tu(t) =

∫ 1

0

G(t, s)
n∑

i=1

(fi(s, ux(s)) +M)ds+
e−

∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , ux(tj))

≤
∫ 1

0

G(t, s)
n∑

i=1

(fi(s, vx(s)) +M)ds+
e−

∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , vx(tj)) = Tv(t),

which shows that Tu ≤ Tv .

Now we will prove that v0 = r is a lower solution of T. For any t ∈ [0, 1], since v0x ∈ [ r2 , R] , it is obvious

that

Tv0(t) =

∫ 1

0

G(t, s)

n∑
i=1

(fi(s, v0x(s)) +M)ds+
e−

∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , v0x(tj))

≥ e−
∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , v0x(tj))

≥ e−
∫ 1
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

1− e−
∫ 1
0
p(ξ)dξ

e−
∫ 1
0
p(ξ)dξ

r

m
= r = v0(t),

which implies that v0 ≤ Tv0 .

We show that w0 = R is an upper solution of T . In view of (A1) and (A2) and using w0x =

max{w0 − x, 0} ≤ w0 = R , we have

Tw0(t) =

∫ 1

0

G(t, s)
n∑

i=1

(fi(s, w0x(s)) +M)ds+
e−

∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , w0x(tj))

≤
∫ 1

0

G(t, s)
n∑

i=1

(fi(s,R) +M)ds+
e−

∫ t
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , R)

≤
∫ 1

0

1

1− e−
∫ 1
0
p(ξ)dξ

n∑
i=1

(
R

2n

)(
1− e−

∫ 1
0
p(ξ)dξ

)
ds+

1

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

(
R

2m

)(
1− e−

∫ 1
0
p(ξ)dξ

)

=
1

1− e−
∫ 1
0
p(ξ)dξ

(
R

2
+

R

2

)(
1− e−

∫ 1
0
p(ξ)dξ

)
= R = w0(t),

which implies that Tw0 ≤ w0 .

If we construct sequences {vn}∞n=1 and {wn}∞n=1 as follows:

vn = Tvn−1, wn = Twn−1, n = 1, 2, 3, ...,
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then it follows from Theorem 1 that

v0 ≤ v1 ≤ ... ≤ vn ≤ ... ≤ wn ≤ ... ≤ w1 ≤ w0,

and {vn} and {wn} converge to, respectively, v and w , which are the solutions of the problem (2.1)-(2.2).

It follows from

Tv0(1) =

∫ 1

0

G(1, s)
n∑

i=1

(fi(s, v0x(s)) +M)ds+
e−

∫ 1
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ

m∑
j=1

gj(tj , v0x(tj))

≥ e−
∫ 1
0
p(ξ)dξ

1− e−
∫ 1
0
p(ξ)dξ


n∑

i=1

∫ 1

0

(fi(s, v0x(s)) +M)ds+
m∑
j=1

gj(tj , v0x(tj))

 > 0

that
0 < (Tv0)(1) ≤ (Tv)(1) = v(1) ≤ w(1),

which shows that v and w are positive solutions of the problem (2.1)-(2.2).

Moreover, we get

v(t) ≥ γ∥v∥ ≥ γr ≥ 2Mγ−1 and w(t) ≥ γ∥w∥ ≥ 2Mγ−1.

Hence, for t ∈ [0, 1]

y(t) = v(t)− x(t) ≥ 2M

γ
− M

γ
=

M

γ
> 0 and ỹ(t) = w(t)− x(t) > 0,

and it can be easily seen that y and ỹ are the positive solutions of the problem (1.1)-(1.2). 2

Example 2.1 We consider the following first-order m-point nonlocal boundary value problem:

y′(t) +
3
√
ty(t) = f1(t, y) + f2(t, y) + f3(t, y), t ∈ [0, 1], (2.3)

y(0) = y(1) + g1(t, y), (2.4)

where f1(t, y) =
1

20
t 4
√
y(t) + 3 , f2(t, y) =

1

4
((t− 2)3 +

√
y(t)) , f3(t, y) =

1

200
(y(t)− 2) and

g1(t, y) =


1

2

145 + e
−

1

y( 12 )− 32

 , y > 32;

145

2
, y ≤ 32.

Since f1 ≤ 0, f2 ≤ −2 and f3 ≤ − 1
100 , then M = 2 and we can calculate γ ∼= 0, 08 . If we choose

r = 64 and R = 280 , then all the conditions of Theorem 2.1 are fulfilled. Thus, the problem (2.5)-(2.6) has

positive solutions y and ỹ . Furthermore, if we construct sequences {vn} and {wn} such that vn = Tvn−1

and wn = Twn−1 , n = 1, 2, ... where v0(t) = 32 and w0(t) = 280, then limn→∞ vn − x = v − x = y and

limn→∞ wn − x = w − x = ỹ.
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