Turk J Math
(2015) 39: $556-563$
(c) TÜBİTAK
doi:10.3906/mat-1407-51

Existence of solutions for a first-order nonlocal boundary value problem with changing-sign nonlinearity

Erbil ÇETİN, Fatma Serap TOPAL*

Department of Mathematics, Ege University, Bornova, İzmir, Turkey
Received: 21.07.2014 $\bullet \quad$ Accepted/Published Online: 14.01.2015 \quad Printed: 30.07 .2015

Abstract

This work is concerned with the existence of positive solutions to a nonlinear nonlocal first-order multipoint problem. Here the nonlinearity is allowed to take on negative values, not only positive values.

Key words: Positive solution, nonlinear boundary condition, sign-changing problem

1. Introduction

In this paper, we are interested in the existence of positive solutions for the following first-order m-point nonlocal boundary value problem:

$$
\begin{align*}
& y^{\prime}(t)+p(t) y(t)=\sum_{i=1}^{n} f_{i}(t, y(t)), \quad t \in[0,1] \tag{1.1}\\
& y(0)=y(1)+\sum_{j=1}^{m} g_{j}\left(t_{j}, y\left(t_{j}\right)\right) \tag{1.2}
\end{align*}
$$

where $p:[0,1] \rightarrow[0, \infty)$ is continuous, the nonlocal points satisfy $0 \leq t_{1}<t_{2}<\ldots<t_{m} \leq 1$, and the nonlinear functions $f_{i}:[0,1] \times[0, \infty) \rightarrow(-\infty, \infty)$ and $g_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ are continuous.

First-order equations with various boundary conditions, including multipoint and nonlocal conditions, are of recent interest; see $[3-11,13]$ and the references therein.

In [12], Zhao applied a monotone iteration method to the problem (if $\mathbb{T}=\mathbb{R}$):

$$
\begin{gathered}
y^{\prime}(t)+p(t) y(t)=f(t, y(t)), \quad t \in[0,1] \\
y(0)=g(x(1))
\end{gathered}
$$

where the functions f and g are positive-valued continuous functions.
In [2], using the Guo-Krasnosel'skiı̆ fixed point theorem, Anderson was interested in the existence of at least one positive solution to the problem (if $\mathbb{T}=\mathbb{R}$):

$$
\begin{gathered}
y^{\prime}(t)+p(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1], \\
y(0)=y(1)+\sum_{j=2}^{n-1} \gamma_{i} y\left(t_{j}\right),
\end{gathered}
$$

[^0]where the function $f:(0,1) \times[0, \infty) \rightarrow(-\infty, \infty)$ is continuous.
In [3], using the Legget-Williams fixed point theorem, Anderson studied the existence of at least three positive solutions to the nonlinear first-order problem with a nonlinear nonlocal boundary condition given by
\[

$$
\begin{aligned}
& y^{\prime}(t)-r(t) y(t)=\lambda \sum_{i=1}^{m} f_{i}(t, y(t)), \quad t \in[0,1], \\
& \lambda y(0)=y(1)+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, y\left(\tau_{j}\right)\right),
\end{aligned}
$$
\]

where $r:[0,1] \rightarrow[0, \infty)$ is continuous, and the nonlinear functions $f_{i}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ and $\Lambda_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ are also continuous.

In [7], Goodrich considered the existence of at least one positive solution to the first-order semipositone discrete fractional boundary value problem:

$$
\begin{aligned}
& \triangle^{\nu} y(t)=\lambda f(t+\nu-1, y(t+\nu-1)), \quad t \in[0, T]_{\mathbb{Z}}, \\
& y(\nu-1)=y(\nu+T)+\sum_{i=1}^{N} F\left(\tau_{i}, y\left(\tau_{i}\right)\right) .
\end{aligned}
$$

In a recent paper $[8]$, using Krasnosel'skiul's fixed point theorem, Goodrich studied the existence of a positive solution to the first-order problem given by (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{aligned}
& y^{\prime}(t)+p(t) y(t)=\lambda f(t, y(t)), \quad t \in(a, b), \\
& y(a)=y(b)+\int_{\tau_{1}}^{\tau_{2}} F(s, y(s)) d s,
\end{aligned}
$$

where $\tau_{1}, \tau_{2} \in[a, b]_{\mathbb{T}}$ with $\tau_{1}<\tau_{2}, p$ and F are nonnegative functions, and the nonlinearity f can be negative for some values of t and y.

Motivated greatly by the above-mentioned works, in this paper, we are interested in the existence and iteration of positive solutions for the nonlinear nonlocal first-order multipoint problem (1.1)-(1.2). By applying the monotone iteration method, we not only obtain the existence of positive solutions, but we also establish iterative schemes for approximating the solutions. The following monotone iteration method [1] is fundamental and important to the proof of our main result.

Theorem 1.1 Let K be a cone in a Banach space E and $v_{0} \leq w_{0}$. Suppose that:
(i) $T:\left[v_{0}, w_{0}\right] \rightarrow E$ is completely continuous;
(ii) T is monotone increasing on $\left[v_{0}, w_{0}\right]$;
(iii) v_{0} is a lower solution of T, that is $v_{0} \leq T v_{0}$;
(iv) w_{0} is an upper solution of T, that is $T w_{0} \leq w_{0}$.

Then the iterative sequences

$$
v_{n}=T v_{n-1}, \quad w_{n}=T w_{n-1}(n=1,2,3, \ldots)
$$

satisfy

$$
v_{0} \leq v_{1} \leq \ldots \leq v_{n} \leq \ldots \leq w_{n} \leq \ldots \leq w_{1} \leq w_{0}
$$

and converge to, respectively, v and w in $\left[v_{0}, w_{0}\right]$, which are fixed points of T.

2. Main results

In this section we will state the sufficient conditions for the m-point nonlocal boundary value problem (1.1) (1.2) to have positive solutions. For this purpose, first we will give some lemmas that will be used to give the main result.

Lemma 2.1 The function $y(t)$ is a solution of the problem (1.1)-(1.2) if and only if

$$
y(t)=\sum_{i=1}^{n} \int_{0}^{1} G(t, s) f_{i}(s, y(s)) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1+e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, y\left(t_{j}\right)\right)
$$

where $G(t, s)$ is defined by

$$
G(t, s)=\frac{e^{-\int_{s}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \begin{cases}1, & s<t \\ e^{-\int_{0}^{1} p(\xi) d \xi} & t \leq s\end{cases}
$$

If we take the derivation of $y(t)$, we can easily see that $y(t)$ is the solution of the problem (1.1)-(1.2). In the proof of Theorem 2.2 in [3], a similar result was given. Therefore, we do not restate the proof here.

In [8], Goodrich found the upper and lower bounds for Green's function on the general time scales in Lemma 2.4. Since the following lemma can be proven in a similar way, we give the lemma without the proof.

Lemma 2.2 Green's function $G(t, s)$ satisfies

$$
e^{-\int_{0}^{1} p(\xi) d \xi} G(s, s) \leq G(t, s) \leq e^{\int_{0}^{1} p(\xi) d \xi} G(s, s)
$$

The main result of this paper as follows.

Theorem 2.1 Assume that conditions $f_{i}:[0,1] \times[0, \infty) \rightarrow(-\infty, \infty), i=1,2, \ldots, n$ and $g_{j}:[0,1] \times[0, \infty) \rightarrow$ $[0, \infty), j=1,2, \ldots, m$ are continuous and there exists a constant $M>0$ such that $f_{i}(t, y)>-M$ for all $(t, y) \in[0,1] \times[0, \infty)$ and $\int_{0}^{1}\left(f_{i}+M\right) d s>0$. If there exist positive constants r and R such that $r>\frac{2 M}{\gamma^{2}}$ and the following conditions are satisfied:

$$
\begin{aligned}
& \left(A_{1}\right) f_{i}(t, u) \leq f_{i}(t, v) \leq \frac{1-e^{-\int_{0}^{1} p(\xi) d \xi}}{2 n} R-M, \quad t \in[0,1], \quad \frac{r}{2} \leq u \leq v \leq R \\
& \left(A_{2}\right) \frac{1-e^{-\int_{0}^{1} p(\xi) d \xi}}{e^{-\int_{0}^{1} p(\xi) d \xi}} \frac{r}{m} \leq g_{j}(t, u) \leq g_{j}(t, v) \leq \frac{1-e^{-\int_{0}^{1} p(\xi) d \xi}}{2 m} R, \quad t \in[0,1], \quad \frac{r}{2} \leq u \leq v \leq R
\end{aligned}
$$

where $\gamma=\frac{1-e^{-\int_{0}^{1} p(\xi) d \xi}}{1+e^{\int_{0}^{1} p(\xi) d \xi}} e^{-\int_{0}^{1} p(\xi) d \xi}$, then the boundary value problem $(1.1)-(1.2)$ has positive solutions.

Proof First we consider the following boundary value problem:

$$
\begin{align*}
& u^{\prime}(t)+p(t) u(t)=\sum_{i=1}^{n} F_{i}\left(t, u_{x}(t)\right), \quad t \in[0,1] \tag{2.1}\\
& u(0)=u(1)+\sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right) \tag{2.2}
\end{align*}
$$

where $F_{i}\left(t, u_{x}(t)\right)=f_{i}\left(t, u_{x}(t)\right)+M$ and $u_{x}(t)=\max \{(u-x)(t), 0\}$ such that $x(t)=M \omega(t)$ and $\omega(t)$ is the solution of

$$
\begin{gathered}
y^{\prime}(t)+p(t) y(t)=1, \quad t \in[0,1], \\
y(0)=y(1) .
\end{gathered}
$$

Using Lemma 2.1 and Lemma 2.2 we can easily see that the unique solution $\omega(t)$ of the above problem satisfies

$$
\omega(t)=\int_{0}^{1} G(t, s) d s \leq \int_{0}^{1} e^{\int_{0}^{1} p(\xi) d \xi} G(s, s) d s=\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}<\frac{1+e^{\int_{0}^{1} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}=\frac{e^{-\int_{0}^{1} p(\xi) d \xi}}{\gamma}<\frac{1}{\gamma}
$$

Let $E:=\{y \mid \quad y:[0,1] \rightarrow \mathrm{R}$ continuous $\}$ with the norm $\|y\|=\max _{t \in[0,1]}|y(t)|$. Denote $K:=\{y \in E:$ $y(t) \geq \gamma\|y\|, t \in[0,1]\}$. Then K is a normal cone of E. Now we define an operator $T: K \rightarrow K$ by

$$
T u(t):=\int_{0}^{1} G(t, s) \sum_{i=1}^{n} F_{i}\left(s, u_{x}(s)\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1+e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right)
$$

and then it is easy to see that fixed points of T are nonnegative solutions of the BVP (2.3)-(2.4).
Let $v_{0}(t)=r$ and $w_{0}(t)=R$ for $t \in[0,1]$.
Now we will verify that $T:\left[v_{0}, w_{0}\right] \rightarrow K$ is completely continuous.
First, T is continuous. Let $u_{n}(n=1,2, \ldots), u \in\left[v_{0}, w_{0}\right]$ and $\lim _{n \rightarrow \infty} u_{n}=u$. Then,

$$
r \leq u_{n} \leq R, \quad r \leq u \leq R, \quad t \in[0,1]
$$

For any given $\epsilon>0$, since f_{i} are uniformly continuous on $[0,1] \times\left[\frac{r}{2}, R\right]$, there exists $\delta_{1}>0$ such that for any $u_{1}, u_{2} \in\left[\frac{r}{2}, R\right]$ with $\left|u_{1}-u_{2}\right|<\delta_{1}$

$$
\left|f_{i}\left(s, u_{1}\right)-f_{i}\left(s, u_{2}\right)\right|<\frac{\epsilon}{2 n}\left(1-e^{-\int_{0}^{1} p(\xi) d \xi}\right), \quad s \in[0,1] .
$$

On the other hand, since g_{j} are uniformly continuous on $[0,1] \times\left[\frac{r}{2}, R\right]$, there exists $\delta_{2}>0$ such that for any $u_{1}, u_{2} \in\left[\frac{r}{2}, R\right]$ with $\left|u_{1}-u_{2}\right|<\delta_{2}$

$$
\left|g_{j}\left(s, u_{1}\right)-g_{j}\left(s, u_{2}\right)\right|<\frac{\epsilon}{2 m}, \quad s \in[0,1] .
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then it follows from $\lim _{n \rightarrow \infty} u_{n}=u$ that there exists a positive N such that for any $n>N$,

$$
\left|u_{n}(s)-u(s)\right|<\delta, \quad s \in[0,1] .
$$

We can easily see that $\left|u_{n}-u\right|<\delta$ implies $\left|u_{n_{x}}-u_{x}\right|<\delta$.
Thus, using Lemma 2.2 and the continuity of the functions $f_{i}(i=1,2, \ldots, n)$ and $g_{j}(j=1,2, \ldots, m)$, we can easily get

$$
\begin{aligned}
\left|T u_{n}(t)-T u(t)\right| & \leq \int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left|f_{i}\left(s, u_{n_{x}}(s)\right)-f_{i}\left(s, u_{x}(s)\right)\right| d s+\sum_{j=1}^{m}\left|g_{j}\left(t_{j}, u_{n_{x}}\left(t_{j}\right)\right)-g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right)\right| \\
& \leq \int_{0}^{1} e^{\int_{0}^{1} p(\xi) d \xi} G(s, s) \sum_{i=1}^{n} \frac{\epsilon}{2 n}\left(1-e^{\int_{0}^{1} p(\xi) d \xi}\right) d s+\sum_{j=1}^{m} \frac{\epsilon}{2 m} \\
& =\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \frac{\epsilon}{2 n}\left(1-e^{\int_{0}^{1} p(\xi) d \xi}\right) n+\frac{\epsilon}{2 m} m=\epsilon
\end{aligned}
$$

which indicates that $\lim _{n \rightarrow \infty} T u_{n}=T u$. So $T:\left[v_{0}, w_{0}\right] \rightarrow K$ is continuous.
Next, we will show that $T:\left[v_{0}, w_{0}\right] \rightarrow K$ is compact. Let $A \subset\left[v_{0}, w_{0}\right]$ be a bounded set. Define $Q:=\max _{[0,1] \times\left[\frac{r}{2}, R\right]} f_{i}(t, u(t))$ and $S:=\max _{[0,1] \times\left[\frac{r}{2}, R\right]} g_{j}\left(t_{j}, u\left(t_{j}\right)\right)$. If $u \in[r, R]$ we can see easily that $u_{x}=\max \{(u-x)(t), 0\} \geq u(t)-x(t)=u(t)-M w(t) \geq u(t)-\frac{M}{\gamma} \geq r-\frac{r}{2}=\frac{r}{2}$ and $u_{x} \leq u \leq R$. It shows that $u_{x} \in\left[\frac{r}{2}, R\right]$.

For $u \in A$ and $t \in[0,1]$, using Lemma 2.2,

$$
\begin{aligned}
T u(t) & \leq \frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \int_{0}^{1} \sum_{i=1}^{n}\left(f_{i}\left(s, u_{x}(s)\right)+M\right) d s+\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right) \\
& \leq \frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}\{(Q+M) n+S m\}
\end{aligned}
$$

which shows that $T(A)$ is uniformly bounded.
On the other hand, for any $u \in A$ and $t_{1}, t_{2} \in[0,1]$ with $t_{1} \geq t_{2}$ and $c \in\left(t_{2}, t_{1}\right)$, we have

$$
\begin{aligned}
\left|T u\left(t_{1}\right)-T u\left(t_{2}\right)\right| \leq & \left|\int_{0}^{1}\left(G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right) \sum_{i=1}^{n}\left(f_{i}\left(s, u_{x}(s)\right)+M\right) d s\right| \\
& +\left|\frac{e^{-\int_{0}^{t_{1}} p(\xi) d \xi}-e^{-\int_{0}^{t_{2}} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right)\right| \\
\leq & \int_{0}^{1}\left|\frac{e^{-\int_{s}^{t_{1}} p(\xi) d \xi}-e^{-\int_{s}^{t_{2}} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}\right| \sum_{i=1}^{n}\left(f_{i}\left(s, u_{x}(s)\right)+M\right) d s \\
& +\left|\frac{e^{-\int_{0}^{t_{1}} p(\xi) d \xi}-e^{-\int_{0}^{t_{2}} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}\right| \sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right) \\
\leq & \left.\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}|p(c)|\left|t_{1}-t_{2}\right|\left\{\int_{0}^{1} \sum_{i=1}^{n}\left(f_{i}\left(s, u_{x}(s)\right)+M\right) d s+\sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right)\right\}}\right\} \\
\leq & \frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}|p(c)|\left|t_{1}-t_{2}\right|\{(Q+M) n+S m\}} .
\end{aligned}
$$

which implies that $T(A)$ is equi-continuous.
Consequently, $T:\left[v_{0}, w_{0}\right] \rightarrow K$ is compact.
Now we will show that T is monotone increasing on $\left[v_{0}, w_{0}\right]$.
Suppose that $u, v \in\left[v_{0}, w_{0}\right]$ and $u \leq v$. Then $r \leq u(t) \leq v(t) \leq R$ for $t \in[0,1]$. As we have shown previously for u_{x}, we easily have $v_{x} \in\left[\frac{r}{2}, R\right]$, and so we get $\frac{r}{2} \leq u_{x}(t) \leq v_{x}(t) \leq R$. Thus, by $\left(A_{1}\right)$ and $\left(A_{2}\right)$, for $t \in[0,1]$, we have

$$
\begin{aligned}
T u(t) & =\int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left(f_{i}\left(s, u_{x}(s)\right)+M\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, u_{x}\left(t_{j}\right)\right) \\
& \leq \int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left(f_{i}\left(s, v_{x}(s)\right)+M\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, v_{x}\left(t_{j}\right)\right)=T v(t),
\end{aligned}
$$

which shows that $T u \leq T v$.
Now we will prove that $v_{0}=r$ is a lower solution of T. For any $t \in[0,1]$, since $v_{0_{x}} \in\left[\frac{r}{2}, R\right]$, it is obvious that

$$
\begin{aligned}
T v_{0}(t) & =\int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left(f_{i}\left(s, v_{0_{x}}(s)\right)+M\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, v_{0_{x}}\left(t_{j}\right)\right) \\
& \geq \frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, v_{0_{x}}\left(t_{j}\right)\right) \\
& \geq \frac{e^{-\int_{0}^{1} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} \frac{1-e^{-\int_{0}^{1} p(\xi) d \xi}}{e^{-\int_{0}^{1} p(\xi) d \xi}} \frac{r}{m}=r=v_{0}(t)
\end{aligned}
$$

which implies that $v_{0} \leq T v_{0}$.
We show that $w_{0}=R$ is an upper solution of T. In view of $\left(A_{1}\right)$ and $\left(A_{2}\right)$ and using $w_{0_{x}}=$ $\max \left\{w_{0}-x, 0\right\} \leq w_{0}=R$, we have

$$
\begin{aligned}
T w_{0}(t) & =\int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left(f_{i}\left(s, w_{0_{x}}(s)\right)+M\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, w_{0_{x}}\left(t_{j}\right)\right) \\
& \leq \int_{0}^{1} G(t, s) \sum_{i=1}^{n}\left(f_{i}(s, R)+M\right) d s+\frac{e^{-\int_{0}^{t} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, R\right) \\
& \leq \int_{0}^{1} \frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{i=1}^{n}\left(\frac{R}{2 n}\right)\left(1-e^{-\int_{0}^{1} p(\xi) d \xi}\right) d s+\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m}\left(\frac{R}{2 m}\right)\left(1-e^{-\int_{0}^{1} p(\xi) d \xi}\right) \\
& =\frac{1}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}\left(\frac{R}{2}+\frac{R}{2}\right)\left(1-e^{-\int_{0}^{1} p(\xi) d \xi}\right)=R=w_{0}(t),
\end{aligned}
$$

which implies that $T w_{0} \leq w_{0}$.
If we construct sequences $\left\{v_{n}\right\}_{n=1}^{\infty}$ and $\left\{w_{n}\right\}_{n=1}^{\infty}$ as follows:

$$
v_{n}=T v_{n-1}, \quad w_{n}=T w_{n-1}, \quad n=1,2,3, \ldots
$$

then it follows from Theorem 1 that

$$
v_{0} \leq v_{1} \leq \ldots \leq v_{n} \leq \ldots \leq w_{n} \leq \ldots \leq w_{1} \leq w_{0}
$$

and $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ converge to, respectively, v and w, which are the solutions of the problem (2.1)-(2.2). It follows from

$$
\begin{aligned}
T v_{0}(1) & =\int_{0}^{1} G(1, s) \sum_{i=1}^{n}\left(f_{i}\left(s, v_{0_{x}}(s)\right)+M\right) d s+\frac{e^{-\int_{0}^{1} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}} \sum_{j=1}^{m} g_{j}\left(t_{j}, v_{0_{x}}\left(t_{j}\right)\right) \\
& \geq \frac{e^{-\int_{0}^{1} p(\xi) d \xi}}{1-e^{-\int_{0}^{1} p(\xi) d \xi}}\left\{\sum_{i=1}^{n} \int_{0}^{1}\left(f_{i}\left(s, v_{0_{x}}(s)\right)+M\right) d s+\sum_{j=1}^{m} g_{j}\left(t_{j}, v_{0_{x}}\left(t_{j}\right)\right)\right\}>0
\end{aligned}
$$

that

$$
0<\left(T v_{0}\right)(1) \leq(T v)(1)=v(1) \leq w(1)
$$

which shows that v and w are positive solutions of the problem (2.1)-(2.2).
Moreover, we get

$$
v(t) \geq \gamma\|v\| \geq \gamma r \geq 2 M \gamma^{-1} \text { and } w(t) \geq \gamma\|w\| \geq 2 M \gamma^{-1}
$$

Hence, for $t \in[0,1]$

$$
y(t)=v(t)-x(t) \geq \frac{2 M}{\gamma}-\frac{M}{\gamma}=\frac{M}{\gamma}>0 \text { and } \tilde{y}(t)=w(t)-x(t)>0
$$

and it can be easily seen that y and \tilde{y} are the positive solutions of the problem (1.1)-(1.2).

Example 2.1 We consider the following first-order m-point nonlocal boundary value problem:

$$
\begin{align*}
y^{\prime}(t)+\sqrt[3]{t} y(t)=f_{1}(t, y)+f_{2}(t, y)+f_{3}(t, y), \quad t \in[0,1] \tag{2.3}\\
y(0)=y(1)+g_{1}(t, y) \tag{2.4}
\end{align*}
$$

where $f_{1}(t, y)=\frac{1}{20} t \sqrt[4]{y(t)+3}, \quad f_{2}(t, y)=\frac{1}{4}\left((t-2)^{3}+\sqrt{y(t)}\right), \quad f_{3}(t, y)=\frac{1}{200}(y(t)-2)$ and

$$
g_{1}(t, y)= \begin{cases}\frac{1}{2}\left(145+e^{-\frac{1}{y\left(\frac{1}{2}\right)-32}}\right), & y>32 \\ \frac{145}{2}, & y \leq 32\end{cases}
$$

Since $f_{1} \leq 0, f_{2} \leq-2$ and $f_{3} \leq-\frac{1}{100}$, then $M=2$ and we can calculate $\gamma \cong 0,08$. If we choose $r=64$ and $R=280$, then all the conditions of Theorem 2.1 are fulfilled. Thus, the problem (2.5)-(2.6) has positive solutions y and \tilde{y}. Furthermore, if we construct sequences $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ such that $v_{n}=T v_{n-1}$ and $w_{n}=T w_{n-1}, n=1,2, \ldots$ where $v_{0}(t)=32$ and $w_{0}(t)=280$, then $\lim _{n \rightarrow \infty} v_{n}-x=v-x=y$ and $\lim _{n \rightarrow \infty} w_{n}-x=w-x=\tilde{y}$.

Acknowledgment

The authors thank the referee for his/her careful reading of this manuscript and many helpful suggestions.

References

[1] Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev 1976; 18: 620-709.
[2] Anderson DR. Existence of solutions for first-order multi-point problems with changing-sign nonlinearity, J Differ Equ Appl 2008; 14: 657-666.
[3] Anderson DR. Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions. J Math Anal Appl 2013; 408: 318-323 .
[4] Cabada A, Vivero DR. Existence of solutions of first-order dynamic equations with nonlinear functional boundary value conditions. Nonlinear Anal 2005; 63: 697-706.
[5] Gao CH, Luo H. Positive solutions to nonlinear first-order nonlocal bvps with parameter on time scales. Bound Value Probl 2011; 15: 198598.
[6] Goodrich CS. Positive solutions to boundary value problems with nonlinear boundary conditions. Nonlinear Anal 2012; 75: 417-432.
[7] Goodrich CS. On a first-order semipositone discrete fractional boundary value problem. Arc Math (Basel) 2012; 99: 509-518.
[8] Goodrich CS. On a first-order semipositone boundary value problem on a time scale. Appl Anal Discrete Math 2014; 8: 269-287.
[9] Graef JR, Kong L. First-order singular boundary value problems with p-Laplacian on time scales. J Differ Equ Appl 2011; 17: 831-839.
[10] Nieto JJ, Rodrguez-Löpez R. Greens function for first-order multipoint boundary value problems and applications to the existence of solutions with constant sign. J Math Anal Appl 2012; 388: 952-963.
[11] Otero-Espinar V, Vivero DR. The existence and approximation of extremal solutions to several first-order discontinuous dynamic equations with nonlinear boundary value conditions. Nonlinear Anal 2008; 68: 2027-2037.
[12] Zhao YH. First-order boundary value problem with nonlinear boundary condition on time scales. Discrete Dyn Nat Soc 2011; 8: 845107.
[13] Zhao YH, Sun JP. Monotone iterative technique for first-order nonlinear periodic boundary value problems on time scales. Adv Differ Equ-NY 2010; 10: 620459.

[^0]: *Correspondence: f.serap.topal@ege.edu.tr
 2010 AMS Mathematics Subject Classification: 34B15, 34B18.

