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Abstract: Let {θn}∞n=1 be a sequence of words. If there exists a positive integer n such that θm(G) = 1 for every

m ≥ n , then we say that G satisfies (*) and denote the class of all groups satisfying (*) by X{θn}∞n=1
. If for every proper

subgroup K of G , K ∈ X{θn}∞n=1
but G /∈ X{θn}∞n=1

, then we call G a minimal non-X{θn}∞n=1
-group. Assume that G

is an infinite locally finite group with trivial center and θi(G) = G for all i ≥ 1. In this case we mainly prove that there

exists a positive integer t such that for every proper normal subgroup N of G , either θt(N) = 1 or θt(CG(N)) = 1.

We also give certain useful applications of the main result.
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1. Introduction

Let F be a free group generated by an infinite countable set X and consider the words v(x1, . . . , xn) for n ≥ 1

and x1, . . . , xn ∈ X . We denote by w(v) the number of variables xi in v , i.e. w(v) = n . We mainly refer the

reader to [2] to see some properties of words.

Let {θn}∞n=1 be a sequence of words and G be a group. If there exists a positive integer n such that for

every m ≥ n we have θm(G) = 1 then we say that G satisfies (*) and denote the class of all groups satisfying

(*) by X{θn}∞
n=1

. See Section 3 for some examples. For a group G ∈ X{θn}∞
n=1

, we shall use c(G) to denote the

least positive integer such that for every m ≥ c(G) we have θm(G) = 1 .

Let Y be a class of groups. A group G is called a minimal non-Y-group, if every proper subgroup

of G is in Y , but G itself is not. In the present paper we consider in this case Y = X{θn}∞
n=1

and minimal

non-X{θn}∞
n=1

-groups. Clearly, for various choices of the sequences {θn}∞n=1 we obtain a minimal non-X{θn}∞
n=1

-

group like minimal non-S-groups, minimal non-H-groups, where S and H are the class of all soluble and

hypercentral groups respectively. Therefore, the results we proved here are general in some sense.

In [1] the authors proved useful results for certain minimal non-S -groups. In the present paper our main

aim is to extend the results in [1] to more general contexts:

Theorem 1.1 Let {θn}∞n=1 be a sequence of words and G be an infinite locally finite minimal non-X{θn}∞
n=1

-

group with trivial center. Assume that θi(G) = G for all i ≥ 1 . Then there exists a positive integer t such that
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for every proper normal subgroup N of G , either θt(N) = 1 or θt(CG(N)) = 1 , i.e.

c(N) ≤ t or c(CG(N)) ≤ t.

In particular, if c(N) > t for a proper normal subgroup N of G , then c(Z(N)) ≤ t .

2. Proof of Theorem 1.1

Before we embark on the proof of Theorem 1.1, we prove the following general result.

Theorem 2.1 Let {θn}∞n=1 be a sequence of words and let G be an infinite locally finite minimal non-X{θn}∞
n=1

-

group with trivial center. Assume that θi(G) = G for all i ≥ 1 and G is not generated by finitely many proper

subgroups. Then there exists a finite subgroup U of G , a positive integer t such that for every proper subgroup

R of G , either θt(R) = 1 or θt(CG(R
U )) = 1 , i.e.

c(R) ≤ t or c(CG(R
U )) ≤ t.

Proof Put

Yi :=
{
θi(y1, . . . , yw(θi)) : y1, . . . , yw(θi) ∈ G

}
then by hypothesis ⟨Yi⟩ = θi(G) = G for every i ≥ 1.

We first show that there exists a nontrivial finite subgroup U of G , a positive integer n such that∩
θn(x1,...,xw(θn))∈Yn\⟨1⟩

⟨U, x1, . . . , xw(θn)⟩ ̸= U.

Now assume that the assertion is false. Clearly G has elements y
(1)
1 , . . . , y

(w(θ1))
1 ∈ Y1 such that

θ1(y
(1)
1 , . . . , y

(w(θ1))
1 ) ̸= 1. Put U1 := ⟨y(1)1 , . . . , y

(w(θ1))
1 ⟩ , then∩

θ2(x
(1)
2 ,...,x

(w(θ2))
2 )∈Y2\⟨1⟩

⟨U1, x
(1)
2 , . . . , x

(w(θ2))
2 ⟩ = U1

by assumption. Let a ∈ G \ U1 , then there exist elements

y
(1)
2 , . . . , y

(w(θ2))
2 ∈ G

such that

a /∈ ⟨U1, y
(1)
2 , . . . , y

(w(θ2))
2 ⟩ and θ2(y

(1)
2 , . . . , y

(w(θ2))
2 ) ̸= 1.

Put U2 := ⟨U1, y
(1)
2 , . . . , y

(w(θ2))
2 ⟩ . Now suppose that we have found elements

y(1)m , . . . , y(w(θm))
m ∈ G

such that

a /∈ Um := ⟨Um−1, y
(1)
m , . . . , y(w(θm))

m ⟩ and θm(y(1)m , . . . , y(w(θm))
m ) ̸= 1

for m > 1. Then again by assumption∩
θm+1(x

(1)
m+1,...,x

(w(θm+1)

m+1 )∈Ym+1\⟨1⟩

⟨Um, x(1)
m , . . . , x

(w(θm+1))
m+1 ⟩ = Um.
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Therefore, there exist elements y
(1)
m+1, . . . , y

(w(θm+1))
m+1 ∈ G such that

a /∈ Um+1 := ⟨Um, y
(1)
m+1, . . . , y

(w(θm+1))
m+1 ⟩ and θm+1(y

(1)
m+1, . . . , y

(w(θm+1))
m+1 ) ̸= 1.

Now put X :=
∪

i≥1 Ui ; then clearly X ̸= G , since a /∈ X and θn(y
(1)
n , . . . , y

(w(θn))
n ) ̸= 1 for all n ≥ 1,

i.e. X /∈ X{θi}∞
i=1

. This contradiction completes the proof of our first assertion. Hence there exists a nontrivial

finite subgroup U of G and a positive integer n such that

W :=
∩

θn(y1,...,yw(θn))∈Yn\⟨1⟩

⟨U, y1, . . . , yw(θn)⟩ ̸= U.

Let a ∈ W \ U , then a ∈ ⟨U, y1, . . . , yw(θn)⟩ = U⟨U, y1, . . . , yw(θn)⟩U for every y1, . . . , yw(θn) ∈ G with

θn(y1, . . . , yw(θn)) ̸= 1.

Now put U = {u1, u2, . . . , ur} then a = uic for some 1 ≤ i ≤ r and c ∈ ⟨U, y1, . . . , yw(θn)⟩U . Also if

a = uic = uid for d ∈ ⟨U, y′1, . . . , y′w(θn)
⟩U with θn(y

′
1, . . . , y

′
w(θn)

) ̸= 1, then c = d . Now define

Si =
{
θn(y1, . . . , yw(θn)) : a = uib, b ∈ ⟨y1, . . . , yw(θn)⟩

U
}
,

then Yn \ ⟨1⟩ =
∪r

i=1 Si .

If we put

Ki =
∩

θn(y1,...,yw(θn))∈Si

⟨y1, . . . , yw(θn)⟩
U ,

then Ki ̸= ⟨1⟩ for every i ∈ {1, . . . , r} , since b ∈ Ki .

Let R be a proper subgroup of G with c(R) > m := n+1. Since θm(R) = θn+1(R) ̸= 1 and R satisfies

(*) by hypothesis, we have that θn(R) is not contained in ⟨1⟩ . Hence there exists a nonnegative integer j such

that θn(R) ∩ Sj ̸= ∅ . Let θn(y1, . . . , yw(θn)) ∈ (θn(R) ∩ Sj) such that y1, . . . , yw(θn) ∈ R . It follows that

Kj ≤ ⟨y1, . . . , yw(θn)⟩
U ≤ RU

and hence CG(R
U ) ≤ CG(Kj). Put

Z := ⟨CG(R
U ) : R ≨ G, c(R) > m⟩,

then we have that

Z ≤ ⟨CG(K1), . . . , CG(Kr)⟩ ̸= G

by hypothesis. Therefore, Z ̸= G . Now put t := max{c(CG(K1)), . . . , c(CG(Kr)),m} . If R is a proper sub-

group of G such that c(R) > m , then CG(R
U ) ≤ CG(Ki) for some i . Hence, c(CG(R

U )) ≤ t . If c(R) ≤ m ,

then we already have that c(R) ≤ t and the proof is complete. 2

Proof of Theorem 1.1. We argue similarly as in the proof of [1, Theorem 1.1]. First assume that G = MN

for some proper normal subgroups M , N of G . Then there is a positive integer s such that θs(G) ≤ M .
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However, this contradicts the hypothesis and so G is not the product of finitely many proper normal subgroups.

Put

Ei :=
∩

θn(y1,...,yw(θn))∈Si

⟨y1, . . . , yw(θn)⟩
G

for every i ∈ {1, . . . , r} . Since ⟨1⟩ ̸= Ki ≤ Ei we have Ei ̸= ⟨1⟩ for every 1 ≤ i ≤ r .

Let N be a proper normal subgroup of G with c(N) > m := n + 1. Since θm(N) = θn+1(N) ̸= ⟨1⟩ ,
θn(N) is not contained in ⟨1⟩ . Hence there exists a nonnegative integer j such that θn(N) ∩ Sj ̸= ∅ . Now let

θn(y1, . . . , yw(θn)) ∈ (θn(N) ∩ Sj) such that y1, . . . , yw(θn) ∈ N . It follows that

Ej ≤ ⟨y1, . . . , yw(θn)⟩
G ≤ N

and hence CG(N) ≤ CG(Ej). Put

V := ⟨CG(N) : N ◁ G, c(N) > m⟩,

then we have that

V ≤ CG(E1) . . . CG(Er) ̸= G.

Therefore, V ̸= G . Now put t = max{c(CG(E1)), . . . , c(CG(Er)),m} . If N is a proper normal subgroup of G

such that c(N) > m , then CG(N) ≤ CG(Ei) for some i . Hence c(CG(N)) ≤ t . If c(N) ≤ m , then we have

c(N) ≤ t and the result follows. 2

Now we can give some further useful results.

Corollary 2.2 Let {θn}∞n=1 be a sequence of words and let G be an infinite locally finite minimal non-X{θn}∞
n=1

-

group with trivial center. Assume that θi(G) = G for all i ≥ 1 . If N and M are proper normal subgroups of

G such that c(N) > t and c(M) > t , then [N,M ] ̸= ⟨1⟩ and thus N ∩M ̸= ⟨1⟩

Proof If [N,M ] = ⟨1⟩ , then N ≤ CG(M). However, this is a contradiction by Theorem 2.1. In particular,

N ∩M ̸= ⟨1⟩ . 2

Corollary 2.3 Let {θn}∞n=1 be the sequence of words and let G be an infinite locally finite minimal non-

X{θn}∞
n=1

-group with trivial center. Assume that θi(G) = G for all i ≥ 1 . If

⟨CG(N) : N ◁ G⟩ = G,

then there is a positive integer t such that

⟨CG(N) : N ◁ G, c(N) ≤ t⟩ = G.

Proof We have

G = ⟨CG(N) : N ◁ G, c(N) ≤ t⟩⟨CG(N) : N ◁ G, c(N) > t⟩

By Theorem 2.1 we follow the result. 2
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Corollary 2.4 Let {θn}∞n=1 be a sequence of words and let G be an infinite locally finite minimal non-X{θn}∞
n=1

-

group with trivial center. Assume that θi(G) = G for all i ≥ 1 . If for every proper normal subgroup N of G ,

CG(N) ̸= ⟨1⟩ , then there is a positive integer t such that

⟨CG(N) : N ◁ G, c(N) ≤ t⟩ = G.

Proof We have N ≤ ⟨CG(⟨xG⟩) for some x ∈ CG(N). This implies

⟨CG(N) : N ◁ G⟩ = G.

We follow the result by Corollary 2.3. 2

3. Certain applications of Theorem 1.1

If u = u(x1, . . . , xs) and v = v(x1, . . . , xt) are two words in F , then the composite of u and v , u ◦ v , is defined
as follows (see [3]):

u ◦ v = u(v(x1, . . . , xt), . . . , v(x(s−1)t+1, . . . , xst)).

Let {ωn}∞n=1 be a sequence of words. Define θ1 = ω1 and θi = ωi ◦ θi−1 for i ≥ 2, and let G be a group

such that θr(G) = ⟨1⟩ for some positive integer r . Then θs(G) = ⟨1⟩ for every positive integer s ≥ r and thus

G satisfies (*).

Clearly if δn = γ2 ◦ · · · ◦ γ2︸ ︷︷ ︸
n times

for n ≥ 0, where γ2 is the nilpotent word of two variables (i.e. γ2(x, y) =

[x, y]) and δ0(x) = x , then a group G is soluble of derived length at most k ≥ 1 if and only if δk(G) = 1.

Hence S ≤ X{δn}∞
n=1

, where S is the class of all soluble groups. We also have that the composite of some

nilpotent words is called a polynilpotent word, i.e.

γct+1,...,c1+1 = γct+1 ◦ · · · ◦ γc1+1,

where γci+1 (1 ≤ i ≤ t) is a nilpotent word in distinct variables. Then P ≤ X{γci+1}∞
i=1

, where P denotes the

class of all polynilpotent groups. Therefore, our results shall cover a large number of classes of groups.

Corollary 3.1 Let G be a locally finite group of infinite exponent with trivial center. Let us define ωi(x) = xki

for some ki ≥ 2 and for all i ≥ 1 and assume that G is a minimal non-X{θi}∞
i=1

-group, where θ1 = ω1 and

θi = ωi ◦ θi−1 for i > 1 . Then there exists a positive integer r such that either Nr = 1 or CG(N)r = 1 , i.e.

exp(N) ≤ r or exp(CG(N)) ≤ r for every proper normal subgroup N of G .

Proof Assume that Gn ̸= G for some positive integer n ≥ 2. Hence θm(Gn) = 1 for some positive integer m .

Then G has a finite exponent, a contradiction, and so θi(G) = G for all i ≥ 1. We also have that there exists

a positive integer t such that θt(N) = 1 or θt(CG(N)) = 1. Put r := k1 . . . kt , then Nr = 1 or CG(N)r = 1,

i.e. exp(N) ≤ r or exp(CG(N)) ≤ r by Theorem 1.1, as desired. 2

Corollary 3.2 Let {γci+1}∞i=1 be a sequence of nilpotent words and let

θi = γci+1 ◦ · · · ◦ γc1+1
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be a sequence of polynilpotent words. If G is a perfect infinite locally finite minimal non-{θi}∞i=1 -group with

trivial center, then there exists a positive integer t such that either

θt(N) = (γct+1 ◦ · · · ◦ γc1+1)(N) = 1 or θi(CG(N)) = (γct+1 ◦ · · · ◦ γc1+1)(CG(N)) = 1

for every proper normal subgroup N of G .

Proof Since G is perfect, we have that θi(G) = G for all i ≥ 1 and the result follows by Theorem 1.1. 2

Let us define the k -Engel word ϵk(x, y) = [x,k y] for every k ≥ 1 and εr = ϵkr ◦ · · · ◦ ϵk1 for every r ≥ 1

and for some k1 , . . . , kr ≥ 1.

Corollary 3.3 Let G be an infinite locally finite minimal non-{εi}∞i=1 -group with trivial center. If εi(G) = G

for all i ≥ 1 , then there exists a positive integer t such that either

εt(N) = 1 or εt(CG(N)) = 1

for every proper normal subgroup N of G .

Proof The result follows by Theorem 1.1. 2
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