Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $564-569$
(C) TÜBİTAK
doi:10.3906/mat-1406-31

On certain minimal non- \mathfrak{Y}-groups for some classes \mathfrak{Y}

Ahmet ARIKAN*, Selami ERCAN
Department of SSME, Division of Mathematics Education, Gazi Faculty of Education, Gazi University, Ankara, Turkey

| Received: 17.06 .2014 | Accepted/Published Online: 22.02 .2015 | Printed: 30.07 .2015 |
| :--- | :--- | :--- | :--- |

Abstract

Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words. If there exists a positive integer n such that $\theta_{m}(G)=1$ for every $m \geq n$, then we say that G satisfies $\left(^{*}\right)$ and denote the class of all groups satisfying $\left({ }^{*}\right)$ by $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$. If for every proper subgroup K of $G, K \in \mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ but $G \notin \mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$, then we call G a minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty} \text {-group. Assume that } G}$ is an infinite locally finite group with trivial center and $\theta_{i}(G)=G$ for all $i \geq 1$. In this case we mainly prove that there exists a positive integer t such that for every proper normal subgroup N of G, either $\theta_{t}(N)=1$ or $\theta_{t}\left(C_{G}(N)\right)=1$. We also give certain useful applications of the main result.

Key words: Locally finite groups, soluble groups, nilpotent groups, sequence of words, outer commutator words

1. Introduction

Let F be a free group generated by an infinite countable set X and consider the words $v\left(x_{1}, \ldots, x_{n}\right)$ for $n \geq 1$ and $x_{1}, \ldots, x_{n} \in X$. We denote by $w(v)$ the number of variables x_{i} in v, i.e. $w(v)=n$. We mainly refer the reader to [2] to see some properties of words.

Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words and G be a group. If there exists a positive integer n such that for every $m \geq n$ we have $\theta_{m}(G)=1$ then we say that G satisfies $\left(^{*}\right)$ and denote the class of all groups satisfying $\left(^{*}\right)$ by $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$. See Section 3 for some examples. For a group $G \in \mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$, we shall use $c(G)$ to denote the least positive integer such that for every $m \geq c(G)$ we have $\theta_{m}(G)=1$.

Let \mathfrak{Y} be a class of groups. A group G is called a minimal non- \mathfrak{Y}-group, if every proper subgroup of G is in \mathfrak{Y}, but G itself is not. In the present paper we consider in this case $\mathfrak{Y}=\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ and minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$-groups. Clearly, for various choices of the sequences $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ we obtain a minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ group like minimal non- \mathfrak{S}-groups, minimal non- \mathfrak{H}-groups, where \mathfrak{S} and \mathfrak{H} are the class of all soluble and hypercentral groups respectively. Therefore, the results we proved here are general in some sense.

In [1] the authors proved useful results for certain minimal non- \mathfrak{S}-groups. In the present paper our main aim is to extend the results in [1] to more general contexts:

Theorem 1.1 Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words and G be an infinite locally finite minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ group with trivial center. Assume that $\theta_{i}(G)=G$ for all $i \geq 1$. Then there exists a positive integer t such that

[^0]
ARIKAN and ERCAN/Turk J Math

for every proper normal subgroup N of G, either $\theta_{t}(N)=1$ or $\theta_{t}\left(C_{G}(N)\right)=1$, i.e.

$$
c(N) \leq t \text { or } c\left(C_{G}(N)\right) \leq t
$$

In particular, if $c(N)>t$ for a proper normal subgroup N of G, then $c(Z(N)) \leq t$.

2. Proof of Theorem 1.1

Before we embark on the proof of Theorem 1.1, we prove the following general result.
Theorem 2.1 Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words and let G be an infinite locally finite minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ group with trivial center. Assume that $\theta_{i}(G)=G$ for all $i \geq 1$ and G is not generated by finitely many proper subgroups. Then there exists a finite subgroup U of G, a positive integer t such that for every proper subgroup R of G, either $\theta_{t}(R)=1$ or $\theta_{t}\left(C_{G}\left(R^{U}\right)\right)=1$, i.e.

$$
c(R) \leq t \text { or } c\left(C_{G}\left(R^{U}\right)\right) \leq t
$$

Proof Put

$$
Y_{i}:=\left\{\theta_{i}\left(y_{1}, \ldots, y_{w\left(\theta_{i}\right)}\right): y_{1}, \ldots, y_{w\left(\theta_{i}\right)} \in G\right\}
$$

then by hypothesis $\left\langle Y_{i}\right\rangle=\theta_{i}(G)=G$ for every $i \geq 1$.
We first show that there exists a nontrivial finite subgroup U of G, a positive integer n such that

$$
\bigcap_{\theta_{n}\left(x_{1}, \ldots, x_{\left.w\left(\theta_{n}\right)\right) \in Y_{n} \backslash\langle 1\rangle}\left\langle U, x_{1}, \ldots, x_{w\left(\theta_{n}\right)}\right\rangle \neq U\right.}
$$

Now assume that the assertion is false. Clearly G has elements $y_{1}^{(1)}, \ldots, y_{1}^{\left(w\left(\theta_{1}\right)\right)} \in Y_{1}$ such that $\theta_{1}\left(y_{1}^{(1)}, \ldots, y_{1}^{\left(w\left(\theta_{1}\right)\right)}\right) \neq 1$. Put $U_{1}:=\left\langle y_{1}^{(1)}, \ldots, y_{1}^{\left(w\left(\theta_{1}\right)\right)}\right\rangle$, then

$$
\bigcap_{\theta_{2}\left(x_{2}^{(1)}, \ldots, x_{2}^{\left(w\left(\theta_{2}\right)\right)}\right) \in Y_{2} \backslash\langle 1\rangle}\left\langle U_{1}, x_{2}^{(1)}, \ldots, x_{2}^{\left(w\left(\theta_{2}\right)\right)}\right\rangle=U_{1}
$$

by assumption. Let $a \in G \backslash U_{1}$, then there exist elements

$$
y_{2}^{(1)}, \ldots, y_{2}^{\left(w\left(\theta_{2}\right)\right)} \in G
$$

such that

$$
a \notin\left\langle U_{1}, y_{2}^{(1)}, \ldots, y_{2}^{\left(w\left(\theta_{2}\right)\right)}\right\rangle \text { and } \theta_{2}\left(y_{2}^{(1)}, \ldots, y_{2}^{\left(w\left(\theta_{2}\right)\right)}\right) \neq 1
$$

Put $U_{2}:=\left\langle U_{1}, y_{2}^{(1)}, \ldots, y_{2}^{\left(w\left(\theta_{2}\right)\right)}\right\rangle$. Now suppose that we have found elements

$$
y_{m}^{(1)}, \ldots, y_{m}^{\left(w\left(\theta_{m}\right)\right)} \in G
$$

such that

$$
a \notin U_{m}:=\left\langle U_{m-1}, y_{m}^{(1)}, \ldots, y_{m}^{\left(w\left(\theta_{m}\right)\right)}\right\rangle \text { and } \theta_{m}\left(y_{m}^{(1)}, \ldots, y_{m}^{\left(w\left(\theta_{m}\right)\right)}\right) \neq 1
$$

for $m>1$. Then again by assumption

$$
\bigcap_{\theta_{m+1}\left(x_{m+1}^{(1)}, \ldots, x_{m+1}^{\left(w\left(\theta_{m+1}\right)\right.}\right) \in Y_{m+1} \backslash\langle 1\rangle}\left\langle U_{m}, x_{m}^{(1)}, \ldots, x_{m+1}^{\left(w\left(\theta_{m+1}\right)\right)}\right\rangle=U_{m}
$$

Therefore, there exist elements $y_{m+1}^{(1)}, \ldots, y_{m+1}^{\left(w\left(\theta_{m+1}\right)\right)} \in G$ such that

$$
a \notin U_{m+1}:=\left\langle U_{m}, y_{m+1}^{(1)}, \ldots, y_{m+1}^{\left(w\left(\theta_{m+1}\right)\right)}\right\rangle \text { and } \theta_{m+1}\left(y_{m+1}^{(1)}, \ldots, y_{m+1}^{\left(w\left(\theta_{m+1}\right)\right)}\right) \neq 1
$$

Now put $X:=\bigcup_{i \geq 1} U_{i}$; then clearly $X \neq G$, since $a \notin X$ and $\theta_{n}\left(y_{n}^{(1)}, \ldots, y_{n}^{\left(w\left(\theta_{n}\right)\right)}\right) \neq 1$ for all $n \geq 1$, i.e. $X \notin \mathfrak{X}_{\left\{\theta_{i}\right\}_{i=1}^{\infty}}$. This contradiction completes the proof of our first assertion. Hence there exists a nontrivial finite subgroup U of G and a positive integer n such that

$$
W:=\bigcap_{\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \in Y_{n} \backslash\langle 1\rangle}\left\langle U, y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle \neq U .
$$

Let $a \in W \backslash U$, then $a \in\left\langle U, y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle=U\left\langle U, y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{U}$ for every $y_{1}, \ldots, y_{w\left(\theta_{n}\right)} \in G$ with $\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \neq 1$.

Now put $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ then $a=u_{i} c$ for some $1 \leq i \leq r$ and $c \in\left\langle U, y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{U}$. Also if $a=u_{i} c=u_{i} d$ for $d \in\left\langle U, y_{1}^{\prime}, \ldots, y_{w\left(\theta_{n}\right)}^{\prime}\right\rangle^{U}$ with $\theta_{n}\left(y_{1}^{\prime}, \ldots, y_{w\left(\theta_{n}\right)}^{\prime}\right) \neq 1$, then $c=d$. Now define

$$
S_{i}=\left\{\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right): a=u_{i} b, b \in\left\langle y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{U}\right\}
$$

then $Y_{n} \backslash\langle 1\rangle=\bigcup_{i=1}^{r} S i$.
If we put

$$
K_{i}=\bigcap_{\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \in S_{i}}\left\langle y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{U}
$$

then $K_{i} \neq\langle 1\rangle$ for every $i \in\{1, \ldots, r\}$, since $b \in K_{i}$.
Let R be a proper subgroup of G with $c(R)>m:=n+1$. Since $\theta_{m}(R)=\theta_{n+1}(R) \neq 1$ and R satisfies $\left(^{*}\right)$ by hypothesis, we have that $\theta_{n}(R)$ is not contained in $\langle 1\rangle$. Hence there exists a nonnegative integer j such that $\theta_{n}(R) \cap S_{j} \neq \emptyset$. Let $\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \in\left(\theta_{n}(R) \cap S_{j}\right)$ such that $y_{1}, \ldots, y_{w\left(\theta_{n}\right)} \in R$. It follows that

$$
K_{j} \leq\left\langle y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{U} \leq R^{U}
$$

and hence $C_{G}\left(R^{U}\right) \leq C_{G}\left(K_{j}\right)$. Put

$$
Z:=\left\langle C_{G}\left(R^{U}\right): R \varsubsetneqq G, c(R)>m\right\rangle
$$

then we have that

$$
Z \leq\left\langle C_{G}\left(K_{1}\right), \ldots, C_{G}\left(K_{r}\right)\right\rangle \neq G
$$

by hypothesis. Therefore, $Z \neq G$. Now put $t:=\max \left\{c\left(C_{G}\left(K_{1}\right)\right), \ldots, c\left(C_{G}\left(K_{r}\right)\right), m\right\}$. If R is a proper subgroup of G such that $c(R)>m$, then $C_{G}\left(R^{U}\right) \leq C_{G}\left(K_{i}\right)$ for some i. Hence, $c\left(C_{G}\left(R^{U}\right)\right) \leq t$. If $c(R) \leq m$, then we already have that $c(R) \leq t$ and the proof is complete.

Proof of Theorem 1.1. We argue similarly as in the proof of [1, Theorem 1.1]. First assume that $G=M N$ for some proper normal subgroups M, N of G. Then there is a positive integer s such that $\theta_{s}(G) \leq M$.

ARIKAN and ERCAN/Turk J Math

However, this contradicts the hypothesis and so G is not the product of finitely many proper normal subgroups. Put

$$
E_{i}:=\bigcap_{\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \in S_{i}}\left\langle y_{1}, \ldots, y_{\left.w\left(\theta_{n}\right)\right\rangle^{G}}\right.
$$

for every $i \in\{1, \ldots, r\}$. Since $\langle 1\rangle \neq K_{i} \leq E_{i}$ we have $E_{i} \neq\langle 1\rangle$ for every $1 \leq i \leq r$.
Let N be a proper normal subgroup of G with $c(N)>m:=n+1$. Since $\theta_{m}(N)=\theta_{n+1}(N) \neq\langle 1\rangle$, $\theta_{n}(N)$ is not contained in $\langle 1\rangle$. Hence there exists a nonnegative integer j such that $\theta_{n}(N) \cap S_{j} \neq \emptyset$. Now let $\theta_{n}\left(y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right) \in\left(\theta_{n}(N) \cap S_{j}\right)$ such that $y_{1}, \ldots, y_{w\left(\theta_{n}\right)} \in N$. It follows that

$$
E_{j} \leq\left\langle y_{1}, \ldots, y_{w\left(\theta_{n}\right)}\right\rangle^{G} \leq N
$$

and hence $C_{G}(N) \leq C_{G}\left(E_{j}\right)$. Put

$$
V:=\left\langle C_{G}(N): N \triangleleft G, c(N)>m\right\rangle
$$

then we have that

$$
V \leq C_{G}\left(E_{1}\right) \ldots C_{G}\left(E_{r}\right) \neq G
$$

Therefore, $V \neq G$. Now put $t=\max \left\{c\left(C_{G}\left(E_{1}\right)\right), \ldots, c\left(C_{G}\left(E_{r}\right)\right), m\right\}$. If N is a proper normal subgroup of G such that $c(N)>m$, then $C_{G}(N) \leq C_{G}\left(E_{i}\right)$ for some i. Hence $c\left(C_{G}(N)\right) \leq t$. If $c(N) \leq m$, then we have $c(N) \leq t$ and the result follows.

Now we can give some further useful results.

Corollary 2.2 Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words and let G be an infinite locally finite minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$ group with trivial center. Assume that $\theta_{i}(G)=G$ for all $i \geq 1$. If N and M are proper normal subgroups of G such that $c(N)>t$ and $c(M)>t$, then $[N, M] \neq\langle 1\rangle$ and thus $N \cap M \neq\langle 1\rangle$
Proof If $[N, M]=\langle 1\rangle$, then $N \leq C_{G}(M)$. However, this is a contradiction by Theorem 2.1. In particular, $N \cap M \neq\langle 1\rangle$.

Corollary 2.3 Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be the sequence of words and let G be an infinite locally finite minimal non-$\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}}$-group with trivial center. Assume that $\theta_{i}(G)=G$ for all $i \geq 1$. If

$$
\left\langle C_{G}(N): N \triangleleft G\right\rangle=G
$$

then there is a positive integer t such that

$$
\left\langle C_{G}(N): N \triangleleft G, c(N) \leq t\right\rangle=G
$$

Proof We have

$$
G=\left\langle C_{G}(N): N \triangleleft G, c(N) \leq t\right\rangle\left\langle C_{G}(N): N \triangleleft G, c(N)>t\right\rangle
$$

By Theorem 2.1 we follow the result.

Corollary 2.4 Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be a sequence of words and let G be an infinite locally finite minimal non- $\mathfrak{X}_{\left\{\theta_{n}\right\}_{n=1}^{\infty}-}$ group with trivial center. Assume that $\theta_{i}(G)=G$ for all $i \geq 1$. If for every proper normal subgroup N of G, $C_{G}(N) \neq\langle 1\rangle$, then there is a positive integer t such that

$$
\left\langle C_{G}(N): N \triangleleft G, c(N) \leq t\right\rangle=G
$$

Proof We have $N \leq\left\langle C_{G}\left(\left\langle x^{G}\right\rangle\right)\right.$ for some $x \in C_{G}(N)$. This implies

$$
\left\langle C_{G}(N): N \triangleleft G\right\rangle=G
$$

We follow the result by Corollary 2.3.

3. Certain applications of Theorem 1.1

If $u=u\left(x_{1}, \ldots, x_{s}\right)$ and $v=v\left(x_{1}, \ldots, x_{t}\right)$ are two words in F, then the composite of u and $v, u \circ v$, is defined as follows (see [3]):

$$
u \circ v=u\left(v\left(x_{1}, \ldots, x_{t}\right), \ldots, v\left(x_{(s-1) t+1}, \ldots, x_{s t}\right)\right)
$$

Let $\left\{\omega_{n}\right\}_{n=1}^{\infty}$ be a sequence of words. Define $\theta_{1}=\omega_{1}$ and $\theta_{i}=\omega_{i} \circ \theta_{i-1}$ for $i \geq 2$, and let G be a group such that $\theta_{r}(G)=\langle 1\rangle$ for some positive integer r. Then $\theta_{s}(G)=\langle 1\rangle$ for every positive integer $s \geq r$ and thus G satisfies $\left(^{*}\right)$.

$$
\text { Clearly if } \delta_{n}=\underbrace{\gamma_{2} \circ \cdots \circ \gamma_{2}}_{n \text { times }} \text { for } n \geq 0 \text {, where } \gamma_{2} \text { is the nilpotent word of two variables (i.e. } \gamma_{2}(x, y)=
$$ $[x, y])$ and $\delta_{0}(x)=x$, then a group G is soluble of derived length at most $k \geq 1$ if and only if $\delta_{k}(G)=1$. Hence $\mathfrak{S} \leq \mathfrak{X}_{\left\{\delta_{n}\right\}_{n=1}^{\infty}}$, where \mathfrak{S} is the class of all soluble groups. We also have that the composite of some nilpotent words is called a polynilpotent word, i.e.

$$
\gamma_{c_{t}+1, \ldots, c_{1}+1}=\gamma_{c_{t}+1} \circ \cdots \circ \gamma_{c_{1}+1}
$$

where $\gamma_{c_{i}+1}(1 \leq i \leq t)$ is a nilpotent word in distinct variables. Then $\mathfrak{P} \leq \mathfrak{X}_{\left\{\gamma_{c_{i}+1}\right\}_{i=1}^{\infty}}$, where \mathfrak{P} denotes the class of all polynilpotent groups. Therefore, our results shall cover a large number of classes of groups.

Corollary 3.1 Let G be a locally finite group of infinite exponent with trivial center. Let us define $\omega_{i}(x)=x^{k_{i}}$ for some $k_{i} \geq 2$ and for all $i \geq 1$ and assume that G is a minimal non- $\mathfrak{X}_{\left\{\theta_{i}\right\}_{i=1}^{\infty}}$-group, where $\theta_{1}=\omega_{1}$ and $\theta_{i}=\omega_{i} \circ \theta_{i-1}$ for $i>1$. Then there exists a positive integer r such that either $N^{r}=1$ or $C_{G}(N)^{r}=1$, i.e. $\exp (N) \leq r$ or $\exp \left(C_{G}(N)\right) \leq r$ for every proper normal subgroup N of G.
Proof Assume that $G^{n} \neq G$ for some positive integer $n \geq 2$. Hence $\theta_{m}\left(G^{n}\right)=1$ for some positive integer m. Then G has a finite exponent, a contradiction, and so $\theta_{i}(G)=G$ for all $i \geq 1$. We also have that there exists a positive integer t such that $\theta_{t}(N)=1$ or $\theta_{t}\left(C_{G}(N)\right)=1$. Put $r:=k_{1} \ldots k_{t}$, then $N^{r}=1$ or $C_{G}(N)^{r}=1$, i.e. $\exp (N) \leq r$ or $\exp \left(C_{G}(N)\right) \leq r$ by Theorem 1.1, as desired.

Corollary 3.2 Let $\left\{\gamma_{c_{i}+1}\right\}_{i=1}^{\infty}$ be a sequence of nilpotent words and let

$$
\theta_{i}=\gamma_{c_{i}+1} \circ \cdots \circ \gamma_{c_{1}+1}
$$

ARIKAN and ERCAN/Turk J Math

be a sequence of polynilpotent words. If G is a perfect infinite locally finite minimal non- $\left\{\theta_{i}\right\}_{i=1}^{\infty}$-group with trivial center, then there exists a positive integer t such that either

$$
\theta_{t}(N)=\left(\gamma_{c_{t}+1} \circ \cdots \circ \gamma_{c_{1}+1}\right)(N)=1 \text { or } \theta_{i}\left(C_{G}(N)\right)=\left(\gamma_{c_{t}+1} \circ \cdots \circ \gamma_{c_{1}+1}\right)\left(C_{G}(N)\right)=1
$$

for every proper normal subgroup N of G.
Proof Since G is perfect, we have that $\theta_{i}(G)=G$ for all $i \geq 1$ and the result follows by Theorem 1.1.
Let us define the k-Engel word $\epsilon_{k}(x, y)=\left[x,{ }_{k} y\right]$ for every $k \geq 1$ and $\varepsilon_{r}=\epsilon_{k_{r}} \circ \cdots \circ \epsilon_{k_{1}}$ for every $r \geq 1$ and for some $k_{1}, \ldots, k_{r} \geq 1$.

Corollary 3.3 Let G be an infinite locally finite minimal non- $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$-group with trivial center. If $\varepsilon_{i}(G)=G$ for all $i \geq 1$, then there exists a positive integer t such that either

$$
\varepsilon_{t}(N)=1 \text { or } \varepsilon_{t}\left(C_{G}(N)\right)=1
$$

for every proper normal subgroup N of G.
Proof The result follows by Theorem 1.1.

References

[1] Arıkan A, Sezer S, Smith H. On locally finite minimal non-solvable groups. Cent Eur J Math 2010; 8: 266-273.
[2] Neumann H. Varieties of Groups. New York, NY, USA: Springer-Verlag, 1967.
[3] Moghaddam MRR. On the Schur-Baer Property. J Austral Math Soc (Series A) 1981; 31: 343-361.

[^0]: *Correspondence: arikan@gazi.edu.tr

