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Abstract: Let {0,}52; be a sequence of words. If there exists a positive integer n such that 6,,(G) = 1 for every
m > n, then we say that G satisfies (*) and denote the class of all groups satisfying (*) by X(g,,}o¢ . If for every proper
subgroup K of G, K € Xyp,3o2 , but G' ¢ Xyp,120 , then we call G a minimal non-Xyg,1o0  -group. Assume that G
is an infinite locally finite group with trivial center and 0;(G) = G for all 7+ > 1. In this case we mainly prove that there
exists a positive integer ¢ such that for every proper normal subgroup N of G, either 6;(N) =1 or 6,(Cg(N)) = 1.

We also give certain useful applications of the main result.
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1. Introduction

Let F be a free group generated by an infinite countable set X and consider the words v(z1,...,z,) for n > 1
and z1,...,z, € X. We denote by w(v) the number of variables z; in v, i.e. w(v) =n. We mainly refer the
reader to [2] to see some properties of words.

Let {6,}52; be a sequence of words and G be a group. If there exists a positive integer n such that for
every m > n we have 0,,(G) = 1 then we say that G satisfies (*) and denote the class of all groups satisfying
(*) by Xgg, 32, - See Section 3 for some examples. For a group G € X4, = , we shall use ¢(G) to denote the
least positive integer such that for every m > ¢(G) we have 6,,,(G) =1 .

Let Q) be a class of groups. A group G is called a minimal non-%)-group, if every proper subgroup
of G isin 9, but G itself is not. In the present paper we consider in this case ) = X(y,1 and minimal
non-X(g, 1=  -groups. Clearly, for various choices of the sequences {0n}52, we obtain a minimal non- X, o -

group like minimal non-&-groups, minimal non-$)-groups, where & and $) are the class of all soluble and

hypercentral groups respectively. Therefore, the results we proved here are general in some sense.
In [1] the authors proved useful results for certain minimal non- &-groups. In the present paper our main

aim is to extend the results in [1] to more general contexts:

Theorem 1.1 Let {0,}52, be a sequence of words and G be an infinite locally finite minimal non-Xyg, o -

group with trivial center. Assume that 0;(G) = G for all i > 1. Then there exists a positive integer t such that
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for every proper normal subgroup N of G, either 6,(N) =1 or 6,(Cg(N)) =1, i.e.
c¢(N) <t orc(Ca(N)) <t.

In particular, if ¢(N) >t for a proper normal subgroup N of G, then ¢(Z(N)) <'t.

2. Proof of Theorem 1.1

Before we embark on the proof of Theorem 1.1, we prove the following general result.

Theorem 2.1 Let {0,,}72, be a sequence of words and let G be an infinite locally finite minimal non-Xg, o -

group with trivial center. Assume that 0;(G) = G for all i > 1 and G is not generated by finitely many proper
subgroups. Then there exists a finite subgroup U of G, a positive integer t such that for every proper subgroup
R of G, either 0;(R) =1 or 6,(Cg(RY)) =1, i.e.

¢(R) <t or ¢(Ca(RY)) < t.
Proof Put
Y= {01, Yuw(on) : Y1s- - Ywio) € G}

then by hypothesis (Y;) = 6;(G) = G for every i > 1.

We first show that there exists a nontrivial finite subgroup U of G, a positive integer n such that

m <U,x1,...,xw(9n)> #U

en(xly-“vxw(gn))eYn\<1>

Now assume that the assertion is false. Clearly G has elements ygl),...,yyu(@l)) € Y7 such that

0, (yg), cey ygw(el))) #1. Put Uy := (yg), cey ygw(el))> , then

N U120, ey Z

02 (xS ,..,al 2 v\ (1)
by assumption. Let a € G \ Uy, then there exist elements
yél), ... ,yéw(ez)) e

such that
w (0 w(0
ad ULy, 8"y and Oy, .8 ")) £ 1.

Put Uy := (U, yél), . ,yéw(ez))>. Now suppose that we have found elements
WD g0 € G

such that
a¢ U, := <Um,17y,(ﬁ), e y,(,’f(em))> and Hm(yr(rll), . ,yﬁff(e"”))) #1

for m > 1. Then again by assumption

w (O,
ﬂ <Um,z§;),...,x£ﬂ_’(_1 +1))>

(w(Op41)
‘9m+1($£yll>+1v'“717:+1 + )6Y7n+1\(1>

Uﬂ’l .
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Therefore, there exist elements y,(ill, o ,yfﬁﬁm“)) € G such that
1 Ot 1 0 (O,
a ¢ Um-‘rl = <UTYL7 yinz,-la e 7y£:1”-i,(-1 * ))> a‘nd o"m-i-l(ygnl-h cee 3/7(:;.:,(.1 +1))) 7é 1

Now put X := UZ.21 U;; then clearly X # G, since a ¢ X and Hn(y£1)7...,y£w(0"))) #1forall n>1,
ie. X ¢ X{(6,yo¢ - This contradiction completes the proof of our first assertion. Hence there exists a nontrivial

finite subgroup U of G and a positive integer n such that

W= ﬂ <U7y17-"ayw(0n)> #U
00 (Y150, Yw(0,)) EYn \(1)

Let a € W\ U, then a € (U,y1,-..,Yuwo,)) = UU Y1, Yuo,))¥ for every y1,...,yue,) € G with
On (Y1, Yuw(o,)) # 1.

Now put U = {uqy,usg,...,u,} then a = wu;c for some 1 < i <r and ¢ € <U,y1,...,yw(9")>U. Also if
a =u;c=wu;d for d € (U,yi,. .. 7ygu(9n)>U with 6, (], ... ,y;)(en)) # 1, then ¢ = d. Now define

Si= {en(yla s 7yw(0”)) ra=wub, be <y1a s 7yw(9n)>U}7

then Y, \ (1) = U;_, Si.
If we put

K; = ﬂ <y17"'7yw(9n)>Ua
00 (Y15 Yw(0,,)) ESi

then K; # (1) for every i € {1,...,r}, since b € K;.

Let R be a proper subgroup of G with ¢(R) > m :=n+1. Since 0,,(R) = 0,+1(R) # 1 and R satisfies
(*) by hypothesis, we have that 6,,(R) is not contained in (1). Hence there exists a nonnegative integer j such
that 0, (R)NS; # 0. Let 0,(y1,-- -, Yw(o,)) € (0n(R) NS;) such that y1,...,yuwe,) € R. It follows that

K_] S <y17 cee 7yw(9n)>U < RU
and hence Cg(RY) < Cg(K;). Put
Z = {(Cq(RY): RS G, ¢(R) >m),

then we have that
Z < (Ca(Ky),...,Ca(K,) £ G

by hypothesis. Therefore, Z # G. Now put ¢ := max{c(Cs(K1)),...,¢(Cc(K,)),m}. If R is a proper sub-
group of G such that ¢(R) > m, then Cg(RY) < Cg(K;) for some i. Hence, ¢(Cq(RY)) <t. If ¢(R) < m,
then we already have that ¢(R) <t and the proof is complete. O

Proof of Theorem 1.1. We argue similarly as in the proof of [1, Theorem 1.1]. First assume that G = M N
for some proper normal subgroups M, N of G. Then there is a positive integer s such that 0,(G) < M.
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However, this contradicts the hypothesis and so G is not the product of finitely many proper normal subgroups.
Put

E; = ﬂ <y17 e 7yw(0n,)>G

Or (Y15 Yw(0,,)) €S

for every i € {1,...,r}. Since (1) # K; < E; we have E; # (1) for every 1 <i <r.

Let N be a proper normal subgroup of G with ¢(N) > m :=n+ 1. Since ,,(N) = 0,41 (N) # (1),
0,(N) is not contained in (1). Hence there exists a nonnegative integer j such that 6, (N)NS; # (. Now let
On (Y15 -+ Yw(o,)) € (00 (N)NS;) such that yi,...,Yue,) € N. It follows that

Ej < <y17 s ayw(Gn)>G <N
and hence Cg(N) < Cg(Ej). Put
V:=(Cg(N): NaG, ¢(N) > m),

then we have that
V <Cq(Ey)...Cq(E,) #G.

Therefore, V # G. Now put t = max{c(Cg(F1)),...,c(Cq(E,)),m}. If N is a proper normal subgroup of G
such that ¢(N) > m, then Cg(N) < Cg(E;) for some i. Hence ¢(Cg(N)) <t. If ¢(N) < m, then we have
¢(N) <t and the result follows. O

Now we can give some further useful results.

Corollary 2.2 Let {0,}52; be a sequence of words and let G be an infinite locally finite minimal non-Xyg, y -

group with trivial center. Assume that 0;(G) = G for all i > 1. If N and M are proper normal subgroups of
G such that ¢(N) >t and c¢(M) > t, then [N, M] # (1) and thus NN M # (1)

Proof If [N,M] = (1), then N < Cg(M). However, this is a contradiction by Theorem 2.1. In particular,
NAM# (). 0

Corollary 2.3 Let {0,}52, be the sequence of words and let G be an infinite locally finite minimal non-
X{,y , -group with trivial center. Assume that 0;(G) = G for all i > 1. If

(Cq(N): N«G) =G,
then there is a positive integer t such that

(Ca(N): N <G, ¢(N)<t) =G.

Proof We have
G =(Ce(N): NaG, ¢(N) <t)({Cg(N): NaG, ¢(N) >t)

By Theorem 2.1 we follow the result. O
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Corollary 2.4 Let {6,152, be a sequence of words and let G be an infinite locally finite minimal non- X012, -

group with trivial center. Assume that 0;(G) = G for all i > 1. If for every proper normal subgroup N of G,
Ca(N) # (1), then there is a positive integer t such that

(Ca(N): N<G, ¢(N)<t)=0G.
Proof We have N < (Ce((x%)) for some x € Cg(N). This implies

(Ca(N): N<G) =G.

We follow the result by Corollary 2.3. O

3. Certain applications of Theorem 1.1
If u=wu(zy,...,zs) and v = v(x1,...,2:) are two words in F', then the composite of v and v, uow, is defined
as follows (see [3]):

wov =u(v(T1,. .., %), V(T(s—1)t41)- - Tst))-

Let {w,}22; be a sequence of words. Define 1 = w; and 6; = w; 06,1 for i > 2, and let G be a group
such that 6,(G) = (1) for some positive integer r. Then 0,(G) = (1) for every positive integer s > r and thus
G satisfies (*).

Clearly if 6, = y20--- 07y for n > 0, where 75 is the nilpotent word of two variables (i.e. Yo(x,y) =

-

n times
[z,y]) and d¢(z) = x, then a group G is soluble of derived length at most k& > 1 if and only if 0;(G) = 1.

Hence & < X5,y , where & is the class of all soluble groups. We also have that the composite of some

nilpotent words is called a polynilpotent word, i.e.
Yertl,nei+l = Ve t1 O © Ve 41,

where 7.,41 (1 <@ <) is a nilpotent word in distinct variables. Then P < f{{%_ﬂ};ﬁl , where 3 denotes the

class of all polynilpotent groups. Therefore, our results shall cover a large number of classes of groups.

Corollary 3.1 Let G be a locally finite group of infinite exponent with trivial center. Let us define w;(x) = x*i
for some ki > 2 and for all i > 1 and assume that G is a minimal non-X{g,}= -group, where 61 = wi and
0; =w;00;_1 for i > 1. Then there exists a positive integer v such that either N* =1 or Cg(N)" =1, i.e.
exp(N) <r or exp(Ce(N)) <r for every proper normal subgroup N of G.

Proof Assume that G™ # G for some positive integer n > 2. Hence 6,,(G™) = 1 for some positive integer m.
Then G has a finite exponent, a contradiction, and so ;(G) = G for all ¢ > 1. We also have that there exists
a positive integer ¢t such that 6,(N) =1 or 0;(Cg(N)) =1. Put r:=ky... k¢, then N" =1 or Cg(N)" =1,
i.e. exp(N) <71 or exp(Cg(N)) <r by Theorem 1.1, as desired. O

Corollary 3.2 Let {v¢,+1}52, be a sequence of nilpotent words and let

0i = Ve, 410 0 Ve, +1
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be a sequence of polynilpotent words. If G is a perfect infinite locally finite minimal non-{0;}32, -group with

trivial center, then there exists a positive integer t such that either

0:(N) = (Yep41 0+ 0 Ye,41) (V) = 1 07 8:i(Ca(N)) = (Ve 410+ © Yy +1)(Ca(N)) = 1

for every proper normal subgroup N of G.
Proof Since G is perfect, we have that 6;(G) = G for all ¢ > 1 and the result follows by Theorem 1.1. O

Let us define the k-Engel word e (z,y) = [z,x y| for every k> 1 and &, = ¢, o0--- o€, for every r > 1

and for some ky, ..., k. > 1.

Corollary 3.3 Let G be an infinite locally finite minimal non-{e;}$2, -group with trivial center. If ¢;(G) =G

for all i > 1, then there exists a positive integer t such that either
et(N) =1 ore(Cq(N)) =1

for every proper normal subgroup N of G.

Proof The result follows by Theorem 1.1. O
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