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Abstract: We consider a tournament T = (V,A) . For X ⊆ V , the subtournament of T induced by X is T [X] =

(X,A ∩ (X ×X)) . A module of T is a subset X of V such that for a, b ∈ X and x ∈ V \X , (a, x) ∈ A if and only if

(b, x) ∈ A . The trivial modules of T are ∅ , {x}(x ∈ V ) , and V . A tournament is prime if all its modules are trivial.

For n ≥ 2, W2n+1 denotes the unique prime tournament defined on {0, . . . , 2n} such that W2n+1[{0, . . . , 2n− 1}] is the
usual total order. Given a prime tournament T , W5(T ) denotes the set of v ∈ V such that there is W ⊆ V satisfying

v ∈ W and T [W ] is isomorphic to W5 . B.J. Latka characterized the prime tournaments T such that W5(T ) = ∅ . The
authors proved that if W5(T ) ̸= ∅ , then |W5(T ) |≥| V | −2. In this article, we characterize the prime tournaments T

such that |W5(T ) |=|V | −2.
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1. Introduction

1.1. Preliminaries

A tournament T = (V (T ), A(T )) (or (V,A)) consists of a finite set V of vertices together with a set A of

ordered pairs of distinct vertices, called arcs, such that for all x ̸= y ∈ V , (x, y) ∈ A if and only if (y, x) ̸∈ A .

The cardinality of T , denoted by | T | , is that of V (T ). Given a tournament T = (V,A), with each subset

X of V is associated the subtournament T [X] = (X,A ∩ (X × X)) of T induced by X . For X ⊆ V (resp.

x ∈ V ), the subtournament T [V \X] (resp. T [V \ {x} ]) is denoted by T −X (resp. T −x). Two tournaments

T = (V,A) and T ′ = (V ′, A′) are isomorphic, which is denoted by T ≃ T ′ , if there exists an isomorphism

from T onto T ′ , i.e. a bijection f from V onto V ′ such that for all x , y ∈ V , (x, y) ∈ A if and only if

(f(x), f(y)) ∈ A′ . We say that a tournament T ′ embeds into T if T ′ is isomorphic to a subtournament of

T . Otherwise, we say that T omits T ′ . The tournament T is said to be transitive if it omits the tournament

C3 = ({0, 1, 2}, {(0, 1), (1, 2), (2, 0)}). For a finite subset V of N , we denote by
−→
V the usual total order defined

on V , i.e., the transitive tournament (V, {(i, j) : i < j}).
Some notations are needed. Let T = (V,A) be a tournament. For two vertices x ̸= y ∈ V , the notation

x −→ y signifies that (x, y) ∈ A . Similarly, given x ∈ V and Y ⊆ V , the notation x −→ Y (resp. Y −→ x)

means that x −→ y (resp. y −→ x) for all y ∈ Y . Given x ∈ V , we set N+
T (x) = {y ∈ V : x −→ y} . For all

∗Correspondence: houmem@gmail.com

2010 AMS Mathematics Subject Classification: 05C20, 05C60, 05C75.

570



BELKHECHINE et al./Turk J Math

n ∈ N \ {0} , the set {0, . . . , n− 1} is denoted by Nn .

Let T = (V,A) be a tournament. A subset I of V is a module [11] (or a clan [7]) of T provided that for

all x ∈ V \ I , x −→ I or I −→ x . For example, ∅ , {x} , where x ∈ V , and V are modules of T , called trivial

modules. A tournament is prime [4] (or primitive [7]) if all its modules are trivial. Notice that a tournament

T = (V,A) and its dual T ⋆ = (V, {(x, y) : (y, x) ∈ A}) share the same modules. Hence, T is prime if and only

if T ⋆ is.

For n ≥ 2, we introduce the tournament W2n+1 defined on N2n+1 as follows: W2n+1[N2n] =
−−→
N2n and

N+
W2n+1

(2n) = {2i : i ∈ Nn} (see Figure 1). In 2003, B.J. Latka [8] characterized the prime tournaments

omitting the tournament W5 . In 2012, the authors were interested in the set W5(T ) of the vertices x of a

prime tournament T = (V,A) for which there exists a subset X of V such that x ∈ X and T [X] ≃ W5 . They

obtained the following.

Theorem 1 ([1]) Let T be a prime tournament into which W5 embeds. Then |W5(T ) |≥ | T | −2 . If, in

addition, |T | is even, then |W5(T ) |≥ |T | −1 .

Our main result in this paper, presented in [3] without detailed proof, gives a characterization of the class T
of the prime tournaments T on at least 3 vertices such that |W5(T ) |=|T | −2. This answers [1, Problem 4.4].

b b b b b b

b2n

0 1 2i 2i + 1 2n − 2 2n − 1

. . . . . .

Figure 1. W2n+1

1.2. Partially critical tournaments and the class T

Our characterization of the tournaments of the class T requires the study of their partial criticality structure,

a notion introduced as a weakening of the notion of criticality defined in Section 2. These notions are defined

in terms of critical vertices. A vertex x of a prime tournament T is critical [10] if T − x is not prime. The

set of noncritical vertices of a prime tournament T was introduced in [9]. It is called the support of T and is

denoted by σ(T ). Let T be a prime tournament and let X be a subset of V (T ) such that |X |≥ 3; we say

that T is partially critical according to T [X] (or T [X]-critical) [6] if T [X] is prime and if σ(T ) ⊆ X . We will

see that: for T ∈ T , V (T ) \W5(T ) = σ(T ). Partially critical tournaments are characterized by M.Y. Sayar in

[9]. In order to recall this characterization, we first introduce the tools used to this end. Given a tournament

T = (V,A), with each subset X of V , such that | X |≥ 3 and T [X] is prime, are associated the following

subsets of V \X :

• ⟨X⟩ = {x ∈ V \X : x −→ X or X −→ x} .

• For all u ∈ X , X(u) = {x ∈ V \X : {u, x} is a module of T [X ∪ {x}]} .

• Ext(X) = {x ∈ V \X : T [X ∪ {x}] is prime} .
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The family {X(u) : u ∈ X} ∪ {Ext(X), ⟨X⟩} is denoted by pTX .

Lemma 1 ([7]) Let T = (V,A) be a tournament and let X be a subset of V such that |X |≥ 3 and T [X] is

prime. The nonempty elements of pTX constitute a partition of V \X and satisfy the following assertions:

• For u ∈ X , x ∈ X(u) , and y ∈ V \ (X ∪X(u)) , if T [X ∪ {x, y}] is not prime, then {u, x} is a module

of T [X ∪ {x, y}] .

• For x ∈ ⟨X⟩ and y ∈ V \ (X ∪ ⟨X⟩) , if T [X ∪ {x, y}] is not prime, then X ∪ {y} is a module of

T [X ∪ {x, y}] .

• For x ̸= y ∈ Ext(X) , if T [X ∪ {x, y}] is not prime, then {x, y} is a module of T [X ∪ {x, y}] .

Furthermore, ⟨X⟩ is divided into X− = {x ∈ ⟨X⟩ : x −→ X} and X+ = {x ∈ ⟨X⟩ : X −→ x} . Similarly, for

all u ∈ X , X(u) is divided into X−(u) = {x ∈ X(u) : x −→ u} and X+(u) = {x ∈ X(u) : u −→ x} . We then

introduce the family qTX = {Ext(X), X−, X+} ∪ {X−(u) : u ∈ X} ∪ {X+(u) : u ∈ X} .
A graph G = (V (G), E(G)) (or (V,E)) consists of a finite set V of vertices together with a set

E of unordered pairs of distinct vertices, called edges. Given a vertex x of a graph G = (V,E), the

set {y ∈ V, {x, y} ∈ E} is denoted by NG(x). With each subset X of V is associated the subgraph

G[X] = (X,E∩
(
X
2

)
) of G induced by X . An isomorphism from a graph G = (V,E) onto a graph G′ = (V ′, E′)

is a bijection f from V onto V ′ such that for all x , y ∈ V , {x, y} ∈ E if and only if {f(x), f(y)} ∈ E′ . We

now introduce the graph G2n defined on N2n , where n ≥ 1, as follows. For all x , y ∈ N2n , {x, y} ∈ E(G2n)

if and only if |y − x |≥ n (see Figure 2).
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Figure 2. G2n

A graph G is connected if for all x ̸= y ∈ V (G), there is a sequence x0 = x, . . . , xm = y of vertices of G

such that for all i ∈ Nm , {xi, xi+1} ∈ E(G). For example, the graph G2n is connected. A connected component

of a graph G is a maximal subset X of V (G) (with respect to inclusion) such that G[X] is connected. The

set of the connected components of G is a partition of V (G), denoted by C(G). Let T = (V,A) be a prime

tournament. With each subset X of V such that |X |≥ 3 and T [X] is prime, is associated its outside graph

GT
X defined by V (GT

X) = V \X and E(GT
X) = {{x, y} ∈

(
V \X
2

)
: T [X ∪ {x, y}] is prime} . We now present the

characterization of partially critical tournaments.

Theorem 2 ([9]) Consider a tournament T = (V,A) with a subset X of V such that |X |≥ 3 and T [X] is

prime. The tournament T is T [X]-critical if and only if the assertions below hold.
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1. Ext(X) = ∅ .

2. For all u ∈ X , the tournaments T [X(u) ∪ {u}] and T [⟨X⟩ ∪ {u}] are transitive.

3. For each Q ∈ C(GT
X) , there is an isomorphism f from G2n onto GT

X [Q] such that Q1 , Q2 ∈ qTX , where

Q1 = f(Nn) and Q2 = f(N2n \ Nn) . Moreover, for all x ∈ Qi (i = 1 or 2) , |NGT
X
(x) |=|N+

T [Qi]
(x) | +1

(resp. n− |N+
T [Qi]

(x) |) if Qi = X+ or X−(u) (resp. Qi = X− or X+(u)) , where u ∈ X .

The next corollary follows from Theorem 2 and Lemma 1.

Corollary 1 Let T be a T [X]-critical tournament, T is entirely determined up to isomorphy by giving T [X] ,

qTX and C(GT
X) . Moreover, the tournament T is exactly determined by giving, in addition, either the graphs

GT
X [Q] for any Q ∈ C(GT

X) , or the transitive tournaments T [Y ] for any Y ∈ qTX .

We underline the importance of Theorem 2 and Corollary 1 in our description of the tournaments of the

class T . Indeed, these tournaments are introduced up to isomorphy as C3 -critical tournaments T defined by

giving C(GT
N3
) in terms of the nonempty elements of qTN3

. Figure 3 illustrates a tournament obtained from such

information. We refer to [10, Discussion] for more details about this purpose.

We now introduce the class H (resp. I , J , K , L) of the C3 -critical tournaments H (resp. I , J , K ,

L) such that:

• C(GH
N3
) = {N+

3 (0) ∪ N−
3 ,N

+
3 ∪ N−

3 (1)} (see Figure 3);

• C(GI
N3
) = {N+

3 (0) ∪ N+
3 (2),N

+
3 (1) ∪ N−

3 (0)} ;

• C(GJ
N3
) = {N+

3 (1) ∪ N−
3 ,N

−
3 (1) ∪ N−

3 (0)} ;

• C(GK
N3
) = {N+

3 (1) ∪ N−
3 ,N

+
3 (0) ∪ N−

3 (2)} ;

• C(GL
N3
) = {N+

3 (1) ∪ N−
3 ,N

+
3 (0) ∪ N−

3 (2),N
+
3 ∪ N−

3 (0)} .

Notice that for X = H , I , J or K , {| V (T ) |: T ∈ X} = {2n + 1 : n ≥ 3} and {| V (T ) |: T ∈ L} =

{2n + 1 : n ≥ 4} . We denote by H⋆ (resp. I⋆ , J ⋆ , K⋆ , L⋆ ) the class of the tournaments T ⋆ , where T ∈ H
(resp. I , J , K , L).

Remark 1 We have H⋆ = H and I⋆ = I .
Proof Let T ∈ H . The permutation f of V (T ) defined by f(1) = 0, f(0) = 1, and f(v) = v for all

v ∈ V (T ) \ {0, 1} is an isomorphism from T ⋆ onto a tournament T ′ of the class H . Let now T ∈ I and let x

be the unique vertex of N+
3 (2) such that |N+

T [N+
3 (2)]

(x) |= 0. The permutation g of V (T ) defined by g(1) = 0,

g(0) = 1, g(x) = 2, g(2) = x , and g(v) = v for v ∈ V (T ) \ {0, 1, 2, x} is an isomorphism from T ⋆ onto a

tournament T ′ of the class I . 2

By setting M = H ∪ I ∪ J ∪ J ⋆ ∪ K ∪ K⋆ ∪ L ∪ L⋆ , we state our main result as follows.

Theorem 3 Up to isomorphy, the tournaments of the class T are those of the class M . Moreover, for all

T ∈ M , we have V (T ) \W5(T ) = σ(T ) = {0, 1} .
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T [N+
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−−−−−−−→
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⋆
;

for all (i, j) ∈ N+
3 (0) × N−

3 ,

i −→ j if and only if j − i ≥ k − 1 .

b
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for all (i, j) ∈ N+
3 × N−

3 (1) ,

i −→ j if and only if j − i ≥ n − k .

Figure 3. A tournament T of the class H

2. Critical tournaments and tournaments omitting W5

We begin by recalling the characterization of the critical tournaments and some of their properties. A prime

tournament T = (V,A), with | T |≥ 3, is critical if σ(T ) = ∅ , i.e. if all its vertices are critical. In order

to present the critical tournaments, characterized by J.H. Schmerl and W.T. Trotter in [10], we introduce the

tournaments T2n+1 and U2n+1 defined on N2n+1 , where n ≥ 2, as follows:

• A(T2n+1) = {(i, j) : j − i ∈ {1, . . . , n} mod. 2n+ 1} (see Figure 4).

• A(T2n+1) \A(U2n+1) = A(T2n+1[{n+ 1, . . . , 2n}]) (see Figure 5).

b b b b b b

b b b
n + 1 n + i + 1 2n

0 1 i i + 1 n − 1 n

. . . . . .

. . . . . .

Figure 4. T2n+1

b b b b b b

b b b
n + 1 n + i + 1 2n

0 1 i i + 1 n − 1 n

. . . . . .

. . . . . .

Figure 5. U2n+1

Theorem 4 ([10]) Up to isomorphy, T2n+1 , U2n+1 , and W2n+1 , where n ≥ 2 , are the only critical tourna-

ments.

Notice that a critical tournament is isomorphic to its dual. Moreover, as a tournament on 4 vertices is

not prime, we have:
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Fact 1 Up to isomorphy, T5 , U5 , and W5 are the only prime tournaments on 5 vertices.

As mentioned in [2], the next remark follows from the definition of the critical tournaments.

Remark 2 Up to isomorphy, the prime subtournaments on at least 5 vertices of T2n+1 (resp. U2n+1 , W2n+1) ,

where n ≥ 2 , are the tournaments T2m+1 (resp. U2m+1 , W2m+1) , where 2 ≤ m ≤ n .

To recall the characterization of the prime tournaments omitting W5 , we introduce the Paley tournament

P7 defined on N7 by A(P7) = {(i, j) : j−i ∈ {1, 2, 4} mod. 7} . Notice that for all x ̸= y ∈ N7 , P7−x ≃ P7−y ,

and let B6 = P7 − 6.

Theorem 5 ([8]) Up to isomorphy, the prime tournaments on at least 5 vertices and omitting W5 are the

tournaments B6 , P7 , T2n+1 , and U2n+1 , where n ≥ 2 .

3. Some useful configurations

In this section, we introduce a number of configurations that occur in the proof of Theorem 3. These configu-

rations involve mainly partially critical tournaments. We begin with the two following lemmas obtained in [2].

Lemma 2 ([2]) If B6 embeds into a prime tournament T on 7 vertices and if T ̸≃ P7 , then |W5(T ) |= 7 .

Lemma 3 ([2]) Let T be a U5 -critical tournament on 7 vertices. If T ̸≃ U7 , then W5(T ) ∩ {3, 4} ≠ ∅ .

Lemma 4 specifies the C3 -critical tournaments with a connected outside graph. It follows from the examination

of the different possible configurations obtained by using Theorem 2.

Lemma 4 Given a C3 -critical tournament T on at least 5 vertices, if GT
N3

is connected, then T is critical.

More precisely, the different configurations are as follows where i ∈ N3 and i+ 1 is considered modulo 3.

1. If C(GT
N3
) = {N−

3 (i) ∪ N+
3 (i+ 1)} , then T ≃ T2n+1 for some n ≥ 2 .

2. If C(GT
N3
) = {N−

3 ∪N+
3 (i)} , {N

+
3 ∪N−

3 (i)} , {N
+
3 (i)∪N+

3 (i+1)} , or {N−
3 (i)∪N−

3 (i+1)} , then T ≃ U2n+1

for some n ≥ 2 .

3. If C(GT
N3
) = {N−

3 ∪ N−
3 (i)} , {N+

3 ∪ N+
3 (i)} , or {N+

3 (i) ∪ N−
3 (i+ 1)} , then T ≃ W2n+1 for some n ≥ 2 .

For a transitive tournament T , recall that minT denotes its smallest element and maxT its largest.

Lemma 5 Given a C3 -critical tournament T on at least 5 vertices, if T [N3∪ e] ≃ T5 for all e ∈ E(GT
N3
) , then

T ≃ T2n+1 for some n ≥ 2 .

Proof Let T be a C3 -critical tournament on at least 5 vertices such that for all e ∈ E(GT
N3
), T [N3 ∪ e] ≃ T5 .

Given e ∈ E(GT
N3
), by using Lemma 4 and Remark 2, e = {v, v′} , where v ∈ N−

3 (i), v
′ ∈ N+

3 (i+1), i ∈ N3 and

i+1 is considered modulo 3. Then, by Theorem 2, the connected components of T are the nonempty elements

of the family {N−
3 (j) ∪ N+

3 (j + 1)}j∈N3 , where j + 1 is considered modulo 3. The tournament T is critical.

Indeed, by using Theorem 2, for each k ∈ N3 , {maxT [N+
3 (k+1)∪{k+1}],minT [N−

3 (k+2)∪{k+2}]} , where

575



BELKHECHINE et al./Turk J Math

k + 1 and k + 2 are considered modulo 3, is a nontrivial module of T − k . It follows that T ≃ T2n+1 for some

n ≥ 2 by Remark 2. 2

Lemma 6 Given a U5 -critical tournament, if T [N5 ∪ e] ≃ U7 for all e ∈ E(GT
N5
) , then T ≃ U2n+1 for some

n ≥ 2 .

Proof The subsets X of N7 such that U7[X] ≃ U5 are the sets N7\{i, j} , where {i, j} = {0, 4} , {4, 1} , {1, 5} ,

{5, 2} , {2, 6} , or {6, 3} . By observing qU7

X for such subsets X and by Theorem 2, we deduce that the elements

of C(GT
N5
) are the nonempty elements among the following six sets: N+

5 ∪N−
5 (0), N

+
5 (0)∪N

+
5 (3), N

−
5 (1)∪N

−
5 (3),

N+
5 (1) ∪ N+

5 (4), N−
5 (2) ∪ N−

5 (4), and N−
5 ∪ N+

5 (2). Suppose first that | C(GT
N5
) |= 6. The tournament T

is critical. Indeed, by using Theorem 2, {minT [N+
5 ],maxT [N+

5 (3)]} (resp. {minT [N−
5 (3)],maxT [N+

5 (4)]} ,
{minT [N−

5 (4)],maxT [N−
5 ]} , {minT [N−

5 (1)],maxT [N+
5 (0)]} , {minT [N−

5 (2)],maxT [N+
5 (1)]}) is a nontrivial

module of T − 0 (resp. T − 1, T − 2, T − 3, T − 4). By Remark 2, T ≃ U2n+1 for some n ≥ 8. Suppose now

that | C(GT
N5
) |≤ 5. Then T embeds into a U5 -critical tournament T ′ with | C(GT ′

N5
) |= 6. By the first case,

T ′ ≃ U2n+1 for some n ≥ 8 and thus T ≃ U2n+1 for some n ≥ 2 by Remark 2. 2

Lemma 7 Let T = (V,A) be a T [X]-critical tournament with | V \ X |≥ 2 , let Q = N2n be a connected

component of GT
X such that GT

X [Q] = G2n , and let e = {i, i+n} , where i ∈ Nn . Then the tournament T −e is

T [X]-critical. Moreover, Q is included in any subset Z of V such that T [Z] ≃ W5 and Z∩(V \(Q∪W5(T−e)) ̸=
∅ .
Proof For n ≥ 2, the function

fi : Q \ e −→ N2n−2

k 7−→

 k if 0 ≤ k ≤ i− 1
k − 1 if i+ 1 ≤ k ≤ n+ i− 1
k − 2 if n+ i+ 1 ≤ k ≤ 2n− 1,

is an isomorphism from G2n−e onto G2n−2 . It follows from Theorem 2 that T−e is T [X] -critical. Now suppose

that there is Z ⊆ V such that T [Z] ≃ W5 and Z ∩ (V \ (Q∪W5(T − e)) ̸= ∅ . Therefore, we have |Z ∩ e |= 1 or

e ⊂ Z . Suppose for a contradiction that |Z∩e |= 1, and set {z} = Z∩e . As Ext(V \e) = ∅ , then by Lemma 1,

either z ∈ ⟨V ′⟩ or z ∈ V ′(u), where V ′ = V \ e and u ∈ V ′ . If z ∈ ⟨V ′⟩ , then Z \ {z} is a nontrivial module

of T [Z] , a contradiction. If z ∈ V ′(u), then u ̸∈ Z , otherwise {u, z} is a nontrivial module of T [Z] . Thus,

T [Z ′] ≃ W5 , where Z ′ = (Z \ {z}) ∪ {u} ⊂ V \ e . A contradiction because Z ′ ∩ (V \W5(T − e)) ̸= ∅ . Finally,
for all e′ ∈ {{j, j +n} : j ∈ Nn} , the bijection f from V \ e onto V \ e′ , defined by f V \Q = IdV \Q and f Q\e

= f−1
j ◦fi , is an isomorphism from T −e onto T −e′ . It follows that V \(Q∪W5(T −e′)) = V \(Q∪W5(T −e)).

Thus, as proved above, e′ ⊂ Z , so that Q ⊂ Z . 2
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4. Proof of Theorem 3

We begin by establishing the partial criticality structure of the tournaments of the class T . For this purpose,

we use the notion of minimal tournaments for two vertices. Given a prime tournament T = (V,A) of cardinality

≥ 3 and two distinct vertices x ̸= y ∈ V , T is said to be minimal for {x, y} (or {x, y}-minimal) when for all

proper subset X of V , if {x, y} ⊂ X ( |X |≥ 3), then T [X] is not prime. These tournaments were introduced

and characterized by A. Cournier and P. Ille in [5]. From this characterization, the following fact, observed in

[1], is obtained by a simple and quick verification.

Fact 2 ([1, 5]) Up to isomorphy, the tournaments C3 and U5 are the unique minimal tournaments for two

vertices T such that |W5(T ) |≤|T | −2 . Moreover, {3, 4} is the unique unordered pair of vertices for which U5

is minimal.

Proposition 1 Let T = (V,A) be a tournament of the class T . Then the vertices of W5(T ) are critical and

there exists z ∈ W5(T ) such that T [(V \W5(T ))∪{z}] ≃ C3 . In particular, T is T [(V \W5(T ))∪{z}]-critical.

Proof By Theorem 1, | T | is odd and ≥ 7. First, suppose by contradiction that there is α ∈ W5(T ) such

that T −α is prime. Since |T −α | is even and ≥ 6 with |V (T −α) \W5(T −α) |≥ 2, then by Theorems 1 and

5, T − α ≃ B6 and T ̸≃ P7 . A contradiction by Lemma 2. Second, let X be a minimal subset of V such that

V \W5(T ) ⊂ X ( |X |≥ 3) and T [X] is prime, so that T [X] is (V \W5(T ))-minimal. By Fact 2, T [X] ≃ C3

or U5 . Suppose, toward a contradiction that T [X] ≃ U5 and take T [X] = U5 . By Fact 2, V \W5(T ) = {3, 4} .
As T is U5 -critical, then by Lemma 6 and Theorem 5, there exists e ∈ E(GT

X) such that T [X ∪ e] is prime and

not isomorphic to U7 . It follows from Lemma 3, that there exists a subset Z of X ∪ e such that T [Z] ≃ W5

and Z ∩ (V \W5(T )) ̸= ∅ , a contradiction. 2

Now, we prove Theorem 3 for tournaments on 7 vertices.

Proposition 2 Up to isomorphy, the class M and the class T have the same tournaments on 7 vertices.

Moreover, for each tournament T on 7 vertices of the class M , we have V (T ) \W5(T ) = σ(T ) = {0, 1} .

Proof Let T = (V,A) be a tournament on 7 vertices of the class M . T ∈ M \ (L ∪ L⋆) because the

tournaments of the class L have at least 9 vertices. Let e ∈ E(GT
N3
). By Lemma 4, T − e ≃ U5 or T5 . By

Lemma 7, if there exists a subset Z ⊂ V such that T [Z] ≃ W5 , then e ⊂ Z . It follows that V \ N3 ⊂ Z .

Thus V \ W5(T ) = {0, 1} by verifying that T − {1, 2} ̸≃ W5 , T − {0, 2} ̸≃ W5 and T − {0, 1} ≃ W5 . As T

is C3 -critical, σ(T ) = {0, 1} from the following. First, T − 2 is not prime because {0} ∪ N−
3 ∪ N+

3 (0) (resp.

{1} ∪N+
3 (0), {0, 1} ∪N−

3 (0)∪N−
3 (1), {1} ∪N+

3 (0)) is a nontrivial module of T − 2 if T ∈ H (resp. I , J , K).

Second, by Lemma 1, we have Ext(X) = {0, 1} , where X = V \ {0, 1} , because {0, 1} ∩ ⟨X⟩ = ∅ , and for all

u ∈ X , {0, 1} ∩X(u) = ∅ because V \W5(T ) = {0, 1} .
Conversely, let T be a tournament on 7 vertices of the class T . By Proposition 1, we can assume that

T is C3 -critical with V (T ) \ W5(T ) ⊂ N3 . By Lemma 4 and Theorem 5, | C(GT
N3
) |= 2. We distinguish the

following cases.

• N+
3 ̸= ∅ and N−

3 ̸= ∅ . By Theorem 2, |N−
3 |=|N+

3 |= 1. Therefore, we can assume that N3(0) ̸= ∅ and

N3(2) = ∅ . It suffices to verify that |N3(0) |=|N+
3 (0) |= 1 because, in this case, by using Theorem 2 and

Lemma 4, T ∈ H . By using again Theorem 2 and Lemma 4, we verify the following. First, if |N3(0) |= 2,
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then C(GT
N3
) = {N+

3 ∪ N−
3 (0),N

−
3 ∪ N+

3 (0)} . Therefore, T − {0, 1} ≃ T − {0, 2} ≃ W5 , a contradiction.

Second, if |N−
3 (0) |= 1, then C(GT

N3
) = {N+

3 ∪ N−
3 (0),N

−
3 ∪ N+

3 (1)} . Therefore, T ≃ U7 , a contradiction

by Theorem 5.

• ⟨N3⟩ = ∅ . By Theorem 2, we can assume that |N−
3 (0) |=|N+

3 (0) |= 1. We have | N3(1) |= 1. Otherwise,

by Theorem 2 and Lemma 4, we can suppose that C(GT
N3
) = {N+

3 (0)∪N+
3 (1),N

−
3 (0)∪N−

3 (1)} . Therefore,

T − {1, 2} ≃ T − {0, 2} ≃ W5 , a contradiction. We have also C(GT
N3
) = {N+

3 (0) ∪ N3(2),N−
3 (0) ∪ N3(1)} .

Otherwise, again by Theorem 2 and Lemma 4, C(GT
N3
) = {N+

3 (0)∪N
+
3 (1),N

−
3 (0)∪N

−
3 (2)} , so that T ≃ U7 ,

a contradiction by Theorem 5. Thus, we distinguish four cases. If |N−
3 (2) |=|N+

3 (1) |= 1, then T ≃ T7 ,

which contradicts Theorem 5. If |N+
3 (2) |=|N−

3 (1) |= 1, then T−{0, 2} ≃ T−{0, 1} ≃ W5 , a contradiction.

If |N+
3 (2) |=|N+

3 (1) |= 1, then T ∈ I . If |N−
3 (2) |=|N−

3 (1) |= 1, then T is isomorphic to a tournament of

the class I with V (T ) \W5(T ) = {0, 2} .

• ∅ ̸= ⟨N3⟩ ∈ qTN3
. By interchanging T and T ⋆ , we can suppose that ⟨N3⟩ = N−

3 . In this case, |N−
3 |= 1

by Theorem 2. First, suppose that |N3(0) |= 2 and |N3(1) |= 1. By Theorem 2 and Lemma 4, C(GT
N3
) =

{N+
3 (0) ∪ N−

3 ,N
−
3 (0) ∪ N3(1)} . We have |N+

3 (1) |= 1, otherwise T ≃ U7 , a contradiction by Theorem 5.

Thus, T is isomorphic to a tournament of the class K with V (T ) \W5(T ) = {0, 2} . Second, suppose that
|N3(0) |= 1 and |N3(1) |= 2. Again by Theorem 2 and Lemma 4, C(GT

N3
) = {N+

3 (1)∪N−
3 ,N

−
3 (1)∪N−

3 (0)} ,
so that T ∈ J . Lastly, suppose that | N3(0) |=| N3(1) |= 1. By Theorem 2 and Lemma 4, we can

suppose that C(GT
N3
) = {N+

3 (1) ∪ N−
3 ,N3(0) ∪ N3(2)} . By Lemma 4, we distinguish only three cases. If

|N−
3 (2) |=|N−

3 (0) |= 1, then T −{0, 1} ≃ T −{1, 2} ≃ W5 , a contradiction. If |N+
3 (0) |=|N+

3 (2) |= 1, then

T ≃ U7 , which contradicts Theorem 5. If | N−
3 (2) |=|N+

3 (0) |= 1, then T ∈ K .

2

We complete our structural study of the tournaments of the class T by the following two corollaries.

Corollary 2 Let T be a C3 -critical tournament such that V (T ) \ W5(T ) = {0, 1} . Then there exist Q ̸=
Q′ ∈ C(GT

N3
) and a tournament R on 7 vertices of the class M such that for all e ∈ E(GT

N3
[Q]) and for all

e′ ∈ E(GT
N3
[Q′]) , there exists an isomorphism f from R onto T [N3 ∪ e ∪ e′] . Moreover, f(0) = 0 , f(1) = 1

and we have:

1. If R ∈ H ∪ J ∪ J ⋆ , then f(2) = 2 ;

2. If R ∈ I ∪ K ∪ K⋆ , then f(2) = 2 or N3(2) = {f(2)} .

Proof To begin, notice the following remark: given a D[X] -critical tournament D , for any edges a and

b belonging to a same connected component of GD
X , we have D[X ∪ a] ≃ D[X ∪ b] . Therefore, by Fact 1,

Lemma 5, and Theorem 5, there exists Q ∈ C(GT
N3
) such that for all a ∈ E(GT

N3
[Q]) , T [N3 ∪ a] ≃ U5 . By

Lemma 4 and Remark 2, the tournament T [N3 ∪ Q] is isomorphic to U2n+1 , for some n ≥ 2, and does not

admit a prime subtournament on 7 vertices other than U7 . Therefore, by Lemma 6, Theorem 5, and the remark

above, there exists Q′ ∈ C(GT
N3
)\{Q} such that for all e ∈ E(GT

N3
[Q]) and for all e′ ∈ E(GT

N3
[Q′]) , T [N3∪e∪e′]

is prime and not isomorphic to U7 . Moreover, T [N3 ∪ e∪ e′] ̸≃ P7 because the vertices of P7 are all noncritical.
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Likewise, T [N3 ∪ e ∪ e′] ̸≃ T7 by Remark 2. It follows from Theorem 5 and Proposition 2 that there exists an

isomorphism f from a tournament R on 7 vertices of the class M onto T [N3∪ e∪ e′] . As (0, 1) ∈ A(R)∩A(T )

and V (R) \ W5(R) = V (T ) \ W5(T ) = {0, 1} by Proposition 2, then f fixes 0 and 1. If R ∈ H ∪ J ∪ J ⋆ ,

then f fixes 2 because 2 is the unique vertex x of R such that R[{0, 1, x}] ≃ C3 . If R ∈ I ∪ K ∪ K⋆ , then

| {x ∈ V (R) : R[{0, 1, x}] ≃ C3} |= 2. Therefore, f(2) = 2 or α , where α is the unique vertex of N3(2) in the

tournament T [N3 ∪ e ∪ e′] . 2

Corollary 3 For all T ∈ T , we have V (T ) \W5(T ) = σ(T ) .

Proof Let T be a tournament of the class T such that V (T ) \W5(T ) = {0, 1} . By Proposition 1, we can

assume that T is C3 -critical. By the same proposition, it suffices to prove that {0, 1} ⊆ σ(T ). By Corollary 2,

there is a subset X of V (T ) such that N3 ⊂ X and T [X] is isomorphic to a tournament on 7 vertices of the

class M . Suppose for a contradiction that T admits a critical vertex i ∈ {0, 1} , and let Y = X \ {i} . By

Proposition 2, T [Y ] is prime. As T is T [Y ] -critical, then i ̸∈ Ext(Y ) by Theorem 2. This is a contradiction

because T [X] is prime. 2

Now, we prove that M ⊆ T . More precisely:

Proposition 3 For all tournament T of the class M , we have V (T ) \W5(T ) = σ(T ) = {0, 1} .

Proof Let T be a tournament on (2n + 1) vertices of the class M for some n ≥ 3. By Corollary 3, it

suffices to prove that V (T ) \W5(T ) = {0, 1} . We proceed by induction on n . By Proposition 2, the statement

is satisfied for n = 3. Let now n ≥ 4. Therefore, either T is a tournament on 9 vertices of the class L ∪ L⋆

or there is Q ∈ C(GT
N3
) such that |Q |≥ 4. In the first case, for all e ∈ E(GT

N3
), T − e is isomorphic to U7

or to a tournament on 7 vertices of the class K ∪ K⋆ . Therefore, if there exists a subset Z of V (T ) such that

Z ∩ {0, 1} ̸= ∅ and T [Z] ≃ W5 , then, for all e ∈ E(GT
N3
), e ⊂ Z by Lemma 7. Thus, V (T ) \ N3 ⊂ Z , a

contradiction. As, furthermore, W5 embeds into T , then V (T ) \W5(T ) = {0, 1} by Theorem 1. In the second

case, let Q ∈ C(GT
N3
) such that |Q |≥ 4. Let X = H , I , J , K , or L . For T ∈ X , by Lemma 7, there is

e ∈ E(GT
N3
[Q]) such that T − e is C3 -critical. Moreover, T − e is isomorphic to a tournament of the class

X because C(GT−e
N3

) is as described in the same class. By induction hypothesis, W5 embeds into T − e , and

thus into T . By Theorem 1, it suffices to verify that {0, 1} ⊆ V (T ) \ W5(T ). Therefore, suppose that there

exists Z ⊂ V (T ) such that Z ∩ {0, 1} ≠ ∅ and T [Z] ≃ W5 . By induction hypothesis and by Lemma 7, Q ⊂ Z ,

so that Z ⊂ Q∪N3 . This is a contradiction by Theorem 5, because T [N3∪Q] ≃ U|Q|+3 or T|Q|+3 by Lemma 4. 2

We are now ready to construct the tournaments of the class T . We partition these tournaments T

according to the following invariant c(T ). For T ∈ T , c(T ) is the minimum of | C(GT
σ(T )∪{x}) | , the minimum

being taken over all the vertices x of W5(T ) such that T [σ(T ) ∪ {x}] ≃ C3 . Notice that c(T ) = c(T ⋆). As

T is T [σ(T ) ∪ {x}] -critical by Proposition 1, then c(T ) ≤ 4. Moreover, c(T ) ≥ 2 by Lemma 4. Proposition 1

leads us to classify the tournaments T of the class T according to the different values of c(T ). We will see that

c(T ) = 2 or 3. Theorem 3 results from Propositions 3, 4, 5, and 6.

Proposition 4 Up to isomorphy, the tournaments T of the class T such that c(T ) = 2 are those of the class

M\ (L ∪ L⋆) .
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Proof For all T ∈ M \ (L ∪ L⋆), we have T ∈ T by Proposition 3, and c(T ) = 2 by Lemma 4. Now

let T be a tournament on (2n + 1) vertices of the class T such that c(T ) = 2. By Proposition 1, we

can assume that T is C3 -critical with V (T ) \ W5(T ) = {0, 1} and | C(GT
N3
) |= 2. By Corollary 2 and by

interchanging T and T ⋆ , there is a tournament R on 7 vertices of the class H ∪ I ∪ J ∪ K such that for

all e ∈ E(GT
N3
[Q]) and for all e′ ∈ E(GT

N3
[Q′]) , there exists an isomorphism f , fixing 0 and 1, from R

onto T [N3 ∪ e ∪ e′] , where Q and Q′ are the two different connected components of GT
N3

. If f(2) = 2,

then, by Theorem 2, T and R are in the same class H , I , J , or K . Suppose now that f(2) ̸= 2. By

Corollary 2, R ∈ I ∪ K . If R ∈ I (resp. K), then T [N3 ∪ e ∪ e′] is a tournament on 7 vertices of the

class I ′ (resp. K′ ) of the C3 -critical tournaments Z such that C(GZ
N3
) = {N−

3 (0) ∪ N+
3 (1),N

−
3 (1) ∪ N−

3 (2)}

(resp. C(GZ
N3
) = {N+

3 (1) ∪ N−
3 ,N

−
3 (1) ∪ N+

3 (2)}). By Theorem 2, T ∈ I ′ (resp. K′ ). Moreover, by

considering the vertex α = minT [N−
3 (2)] (resp. maxT [N+

3 (2)]) and by using Corollary 3, T is also

T [{0, 1, α}] -critical with C(GT
{0,1,α}) = {{0, 1, α}−(0) ∪ {0, 1, α}+(1), {0, 1, α}+(0) ∪ {0, 1, α}+(α)} (resp.

C(GT
{0,1,α}) = {{0, 1, α}+(1) ∪ {0, 1, α}−, {0, 1, α}+(0) ∪ {0, 1, α}−(α)}). It follows that T is isomorphic to a

tournament of the class I (resp. K). 2

Proposition 5 Up to isomorphy, the tournaments T of the class T such that c(T ) = 3 are those of the class

L ∪ L⋆ .

Proof Let T be a tournament of the class L ∪ L⋆ . T ∈ T by Proposition 3. Moreover, c(T ) = 3 by

Theorem 2. Indeed, it suffices to observe that for all x ∈ {i ∈ V (T ) \ N3 : T [{0, 1, i}] ≃ C3} = N−
3 (2), we have

maxT [N+
3 (1)] ∈ X+(1), minT [N−

3 ] ∈ X− , minT [N+
3 ] ∈ X+ , maxT [N−

3 (0)] ∈ X−(0) and 2 ∈ X+(x), where

X = {0, 1, x} .
Now let T be a tournament on (2n + 1) vertices of T such that c(T ) = 3. By Proposition 1, we

can assume that T is C3 -critical with V (T ) \ W5(T ) = {0, 1} and | C(GT
N3
) |= 3. By Corollary 2 and by

interchanging T and T ⋆ , there is a tournament R on 7 vertices of the class H ∪ I ∪ J ∪ K such that for

all e ∈ E(GT
N3
[Q]) and e′ ∈ E(GT

N3
[Q′]) , there exists an isomorphism f , which fixes 0 and 1, from R onto

T [N3 ∪ e ∪ e′] , where Q ̸= Q′ ∈ C(GT
N3
). Take e′′ ∈ (GT

N3
[Q′′]) , where Q′′ = C(GT

N3
) \ {Q,Q′} . Suppose,

toward a contradiction, that R ∈ H ∪ J . By Theorem 2 and by Corollary 2, if R ∈ H (resp. R ∈ J ),

then {Q,Q′} = {N+
3 (0) ∪ N−

3 ,N
−
3 (1) ∪ N+

3 } (resp. {N+
3 (1) ∪ N−

3 ,N
−
3 (0) ∪ N−

3 (1)}). Therefore, by Lemma 4,

Q′′ = {N+
3 (1)∪N+

3 (2)} , {N
−
3 (0)∪N+

3 (1)} or {N−
3 (0)∪N−

3 (2)} (resp. {N+
3 (0)∪N3(2)} or {N+

3 ∪N−
3 (2)}). We

verify that in each of these cases, either T [{0} ∪ e ∪ e′′] , T [{0} ∪ e′ ∪ e′′] , T [{1} ∪ e ∪ e′′] or T [{1} ∪ e′ ∪ e′′]

is isomorphic to W5 , a contradiction. Therefore, R ∈ I ∪ K . By Corollary 2, f(2) = 2 or α , where α is the

unique vertex of N3(2) in T [N3 ∪ e ∪ e′] .

Suppose, again by contradiction, that R ∈ I . We begin by the case where f(2) = 2. By Theorem 2,

we can suppose that Q = {N+
3 (0) ∪ N+

3 (2)} and Q′ = {N−
3 (0) ∪ N+

3 (1)} . By Lemma 4, Q′′ = {N−
3 (1) ∪ N+

3 } ,
{N−

3 (2)∪N
+
3 } , or {N

−
3 (1)∪N

−
3 (2)} . If Q′′ = {N−

3 (1)∪N
+
3 } (resp. {N−

3 (2)∪N
+
3 }), then T [{0}∪e∪e′′] ≃ W5 (resp.

T [{1} ∪ e′ ∪ e′′] ≃ W5 ), a contradiction. If Q′′ = {N−
3 (1) ∪ N−

3 (2)} , then, by taking X = {0, 1, x} , where x =

minT [N−
3 (2)] , we obtain a contradiction because, by Corollary 3, T is T [X] -critical with |C(GT

X) |= 2. Indeed,

C(GT
X) = {X−(0)∪X+(1), X+(0)∪X+(x)} , with X−(0) = N−

3 (0), X
+(1) = N+

3 (1), X
+(0) = N+

3 (0)∪N−
3 (1),
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and X+(x) = N+
3 (2)∪ {2} ∪ (N−

3 (2) \ {x}). Now if f(2) = α , then we obtain again a contradiction. Indeed, by

replacing T by T ⋆ and by interchanging the vertices 0 and 1, {Q,Q′} = {N+
3 (0) ∪ N+

3 (2),N
−
3 (0) ∪ N+

3 (1)} as

in the case where f(2) = 2.

At present, R ∈ K . We begin by the case where f(2) = 2. By Theorem 2, we can suppose

that Q = {N−
3 ∪ N+

3 (1)} and Q′ = {N+
3 (0) ∪ N−

3 (2)} . By Lemma 4, Q′′ = {N−
3 (0) ∪ N+

3 } , {N−
3 (1) ∪ N+

3 } ,
{N−

3 (0)∪N
−
3 (1)} or {N−

3 (1)∪N
+
3 (2)} . If Q′′ = {N−

3 (1)∪N
+
3 } (resp. {N−

3 (1)∪N
−
3 (0)}), then T [{0}∪e∪e′′] ≃ W5

(resp. T [{1}∪ e′ ∪ e′′] ≃ W5 ), a contradiction. If Q′′ = {N−
3 (1)∪N+

3 (2)} , then, by taking X = {0, 1, x} , where
x = maxT [N+

3 (2)] , we have a contradiction because, by Corollary 3, T is T [X] -critical with | C(GT
X) |= 2.

Indeed, C(GT
X) = {X− ∪X+(1), X+(0) ∪X−(x)} , with X− = N−

3 , X+(1) = N+
3 (1), X

+(0) = N−
3 (1) ∪ N+

3 (0)

and X−(x) = N−
3 (2) ∪ {2} ∪ (N+

3 (2) \ {x}). If Q′′ = {N−
3 (0) ∪ N+

3 } , then T ∈ L . Now suppose that

f(2) = α . By Theorem 2, we can suppose that Q = {N+
2 (1) ∪ N−

2 } and Q′ = {N−
2 (1) ∪ N+

3 (2)} . By Lemma 4,

Q′′ = {N−
3 (2) ∪ N+

3 } , {N
−
3 (2) ∪ N3(0)} , or {N−

3 (0) ∪ N+
3 } . If Q′′ = {N−

3 (2) ∪ N+
3 } or {N−

3 (0) ∪ N−
3 (2)} , then

T [{0} ∪ e∪ e′′] ≃ W5 , a contradiction. If Q′′ = {N+
3 (0)∪N−

3 (2)} , then we obtain the same configuration giving

|C(GT
X) |= 2 in the case where f(2) = 2. If Q′′ = {N−

3 (0) ∪N+
3 } , then T is isomorphic to a tournament of the

class L⋆ . 2

Proposition 6 For any tournament T of the class T , we have c(T ) = 2 or 3.

Proof Let T be a tournament on (2n+1) vertices of the class T for some n ≥ 3. We proceed by induction on

n . By Propositions 4 and 5, the statement is satisfied for n = 3 and for n = 4. Let n ≥ 5. By Proposition 1,

we can assume that T is C3 -critical with V (T ) \W5(T ) = {0, 1} . By Theorem 2 and Lemma 4, 2 ≤ c(T ) ≤ 4.

Therefore, we only consider the case where | C(GT
N3
) |= 4. By Corollary 2, there exist Q ̸= Q′ ∈ C(GT

N3
) and

a tournament R on 7 vertices of the class M , such that for all e ∈ E(GT
N3
[Q]) and for all e′ ∈ E(GT

N3
[Q′]) ,

T [N3∪e∪e′] ≃ R . By Lemma 7, there exists e′′ ∈ E(GT
N3
[Q′′]) , where Q′′ ∈ C(GT

N3
)\{Q,Q′} , such that T −e′′

is C3 -critical. As W5 embeds into T − e′′ , then V (T − e′′) \W5(T − e′′) = {0, 1} by Theorem 1. Therefore,

T − e′′ ∈ T . By induction hypothesis, c(T − e′′) = 2 or 3. By Theorem 2, if c(T − e′′) = 2, then c(T ) = 2 or

3. Therefore, suppose that c(T − e′′) = 3. By Proposition 5 and by interchanging T and T ⋆ , we can assume

that T − e′′ ∈ L . By Theorem 2 and by taking e′′ = {x, x′} , we can assume that x ∈ N−
3 (1) and x′ ∈ N+

3 (2).

Thus, for X = {0, 1, x′} , we have T [X] ≃ C3 and X+(x′) = ∅ . It follows from Theorem 2 that c(T ) < 4. 2
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