http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $570-582$
(c) TÜBİTAK
doi:10.3906/mat-1412-72

The prime tournaments T with $\left|W_{5}(T)\right|=|T|-2$

Houmem BELKHECHINE ${ }^{1, *}$, Imed BOUDABBOUS ${ }^{2}$, Kaouthar HZAMI ${ }^{3}$
${ }^{1}$ Bizerte Preparatory Engineering Institute, Carthage University, Bizerte, Tunisia
${ }^{2}$ Sfax Preparatory Engineering Institute, Sfax University, Sfax, Tunisia
${ }^{3}$ Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine, Tunisia

Received: 30.12.2014 • Accepted/Published Online: 20.05.2015 \quad Printed: 30.07.2015

Abstract: We consider a tournament $T=(V, A)$. For $X \subseteq V$, the subtournament of T induced by X is $T[X]=$ $(X, A \cap(X \times X))$. A module of T is a subset X of V such that for $a, b \in X$ and $x \in V \backslash X,(a, x) \in A$ if and only if $(b, x) \in A$. The trivial modules of T are $\emptyset,\{x\}(x \in V)$, and V. A tournament is prime if all its modules are trivial. For $n \geq 2, W_{2 n+1}$ denotes the unique prime tournament defined on $\{0, \ldots, 2 n\}$ such that $W_{2 n+1}[\{0, \ldots, 2 n-1\}]$ is the usual total order. Given a prime tournament $T, W_{5}(T)$ denotes the set of $v \in V$ such that there is $W \subseteq V$ satisfying $v \in W$ and $T[W]$ is isomorphic to W_{5}. B.J. Latka characterized the prime tournaments T such that $W_{5}(T)=\emptyset$. The authors proved that if $W_{5}(T) \neq \emptyset$, then $\left|W_{5}(T)\right| \geq|V|-2$. In this article, we characterize the prime tournaments T such that $\left|W_{5}(T)\right|=|V|-2$.

Key words: Tournament, prime, embedding, critical, partially critical

1. Introduction

1.1. Preliminaries

A tournament $T=(V(T), A(T))$ (or $(V, A))$ consists of a finite set V of vertices together with a set A of ordered pairs of distinct vertices, called arcs, such that for all $x \neq y \in V,(x, y) \in A$ if and only if $(y, x) \notin A$. The cardinality of T, denoted by $|T|$, is that of $V(T)$. Given a tournament $T=(V, A)$, with each subset X of V is associated the subtournament $T[X]=(X, A \cap(X \times X))$ of T induced by X. For $X \subseteq V$ (resp. $x \in V$), the subtournament $T[V \backslash X]$ (resp. $T[V \backslash\{x\}]$) is denoted by $T-X$ (resp. $T-x$). Two tournaments $T=(V, A)$ and $T^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ are isomorphic, which is denoted by $T \simeq T^{\prime}$, if there exists an isomorphism from T onto T^{\prime}, i.e. a bijection f from V onto V^{\prime} such that for all $x, y \in V,(x, y) \in A$ if and only if $(f(x), f(y)) \in A^{\prime}$. We say that a tournament T^{\prime} embeds into T if T^{\prime} is isomorphic to a subtournament of T. Otherwise, we say that T omits T^{\prime}. The tournament T is said to be transitive if it omits the tournament $C_{3}=(\{0,1,2\},\{(0,1),(1,2),(2,0)\})$. For a finite subset V of \mathbb{N}, we denote by \vec{V} the usual total order defined on V, i.e., the transitive tournament $(V,\{(i, j): i<j\})$.

Some notations are needed. Let $T=(V, A)$ be a tournament. For two vertices $x \neq y \in V$, the notation $x \longrightarrow y$ signifies that $(x, y) \in A$. Similarly, given $x \in V$ and $Y \subseteq V$, the notation $x \longrightarrow Y$ (resp. $Y \longrightarrow x$) means that $x \longrightarrow y$ (resp. $y \longrightarrow x$) for all $y \in Y$. Given $x \in V$, we set $N_{T}^{+}(x)=\{y \in V: x \longrightarrow y\}$. For all

[^0]$n \in \mathbb{N} \backslash\{0\}$, the set $\{0, \ldots, n-1\}$ is denoted by \mathbb{N}_{n}.
Let $T=(V, A)$ be a tournament. A subset I of V is a module [11] (or a clan [7]) of T provided that for all $x \in V \backslash I, x \longrightarrow I$ or $I \longrightarrow x$. For example, $\emptyset,\{x\}$, where $x \in V$, and V are modules of T, called trivial modules. A tournament is prime [4] (or primitive [7]) if all its modules are trivial. Notice that a tournament $T=(V, A)$ and its dual $T^{\star}=(V,\{(x, y):(y, x) \in A\})$ share the same modules. Hence, T is prime if and only if T^{\star} is.

For $n \geq 2$, we introduce the tournament $W_{2 n+1}$ defined on $\mathbb{N}_{2 n+1}$ as follows: $W_{2 n+1}\left[\mathbb{N}_{2 n}\right]=\overrightarrow{\mathbb{N}_{2 n}}$ and $N_{W_{2 n+1}}^{+}(2 n)=\left\{2 i: i \in \mathbb{N}_{n}\right\}$ (see Figure 1). In 2003, B.J. Latka [8] characterized the prime tournaments omitting the tournament W_{5}. In 2012, the authors were interested in the set $W_{5}(T)$ of the vertices x of a prime tournament $T=(V, A)$ for which there exists a subset X of V such that $x \in X$ and $T[X] \simeq W_{5}$. They obtained the following.

Theorem 1 ([1]) Let T be a prime tournament into which W_{5} embeds. Then $\left|W_{5}(T)\right| \geq|T|-2$. If, in addition, $|T|$ is even, then $\left|W_{5}(T)\right| \geq|T|-1$.

Our main result in this paper, presented in [3] without detailed proof, gives a characterization of the class \mathcal{T} of the prime tournaments T on at least 3 vertices such that $\left|W_{5}(T)\right|=|T|-2$. This answers [1, Problem 4.4].

Figure 1. $W_{2 n+1}$

1.2. Partially critical tournaments and the class \mathcal{T}

Our characterization of the tournaments of the class \mathcal{T} requires the study of their partial criticality structure, a notion introduced as a weakening of the notion of criticality defined in Section 2. These notions are defined in terms of critical vertices. A vertex x of a prime tournament T is critical [10] if $T-x$ is not prime. The set of noncritical vertices of a prime tournament T was introduced in [9]. It is called the support of T and is denoted by $\sigma(T)$. Let T be a prime tournament and let X be a subset of $V(T)$ such that $|X| \geq 3$; we say that T is partially critical according to $T[X]$ (or $T[X]$-critical) [6] if $T[X]$ is prime and if $\sigma(T) \subseteq X$. We will see that: for $T \in \mathcal{T}, V(T) \backslash W_{5}(T)=\sigma(T)$. Partially critical tournaments are characterized by M.Y. Sayar in [9]. In order to recall this characterization, we first introduce the tools used to this end. Given a tournament $T=(V, A)$, with each subset X of V, such that $|X| \geq 3$ and $T[X]$ is prime, are associated the following subsets of $V \backslash X$:

- $\langle X\rangle=\{x \in V \backslash X: x \longrightarrow X$ or $X \longrightarrow x\}$.
- For all $u \in X, X(u)=\{x \in V \backslash X:\{u, x\}$ is a module of $T[X \cup\{x\}]\}$.
- $\operatorname{Ext}(X)=\{x \in V \backslash X: T[X \cup\{x\}]$ is prime $\}$.

The family $\{X(u): u \in X\} \cup\{\operatorname{Ext}(X),\langle X\rangle\}$ is denoted by p_{X}^{T}.
Lemma 1 ([7]) Let $T=(V, A)$ be a tournament and let X be a subset of V such that $|X| \geq 3$ and $T[X]$ is prime. The nonempty elements of p_{X}^{T} constitute a partition of $V \backslash X$ and satisfy the following assertions:

- For $u \in X, x \in X(u)$, and $y \in V \backslash(X \cup X(u))$, if $T[X \cup\{x, y\}]$ is not prime, then $\{u, x\}$ is a module of $T[X \cup\{x, y\}]$.
- For $x \in\langle X\rangle$ and $y \in V \backslash(X \cup\langle X\rangle)$, if $T[X \cup\{x, y\}]$ is not prime, then $X \cup\{y\}$ is a module of $T[X \cup\{x, y\}]$.
- For $x \neq y \in \operatorname{Ext}(X)$, if $T[X \cup\{x, y\}]$ is not prime, then $\{x, y\}$ is a module of $T[X \cup\{x, y\}]$.

Furthermore, $\langle X\rangle$ is divided into $X^{-}=\{x \in\langle X\rangle: x \longrightarrow X\}$ and $X^{+}=\{x \in\langle X\rangle: X \longrightarrow x\}$. Similarly, for all $u \in X, X(u)$ is divided into $X^{-}(u)=\{x \in X(u): x \longrightarrow u\}$ and $X^{+}(u)=\{x \in X(u): u \longrightarrow x\}$. We then introduce the family $q_{X}^{T}=\left\{\operatorname{Ext}(X), X^{-}, X^{+}\right\} \cup\left\{X^{-}(u): u \in X\right\} \cup\left\{X^{+}(u): u \in X\right\}$.

A graph $G=(V(G), E(G))$ (or (V, E)) consists of a finite set V of vertices together with a set E of unordered pairs of distinct vertices, called edges. Given a vertex x of a graph $G=(V, E)$, the set $\{y \in V,\{x, y\} \in E\}$ is denoted by $N_{G}(x)$. With each subset X of V is associated the subgraph $G[X]=\left(X, E \cap\binom{X}{2}\right)$ of G induced by X. An isomorphism from a graph $G=(V, E)$ onto a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a bijection f from V onto V^{\prime} such that for all $x, y \in V,\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E^{\prime}$. We now introduce the graph $G_{2 n}$ defined on $\mathbb{N}_{2 n}$, where $n \geq 1$, as follows. For all $x, y \in \mathbb{N}_{2 n},\{x, y\} \in E\left(G_{2 n}\right)$ if and only if $|y-x| \geq n$ (see Figure 2).

Figure 2. $G_{2 n}$
A graph G is connected if for all $x \neq y \in V(G)$, there is a sequence $x_{0}=x, \ldots, x_{m}=y$ of vertices of G such that for all $i \in \mathbb{N}_{m},\left\{x_{i}, x_{i+1}\right\} \in E(G)$. For example, the graph $G_{2 n}$ is connected. A connected component of a graph G is a maximal subset X of $V(G)$ (with respect to inclusion) such that $G[X]$ is connected. The set of the connected components of G is a partition of $V(G)$, denoted by $\mathcal{C}(G)$. Let $T=(V, A)$ be a prime tournament. With each subset X of V such that $|X| \geq 3$ and $T[X]$ is prime, is associated its outside graph G_{X}^{T} defined by $V\left(G_{X}^{T}\right)=V \backslash X$ and $E\left(G_{X}^{T}\right)=\left\{\{x, y\} \in\binom{V \backslash X}{2}: T[X \cup\{x, y\}]\right.$ is prime $\}$. We now present the characterization of partially critical tournaments.

Theorem 2 ([9]) Consider a tournament $T=(V, A)$ with a subset X of V such that $|X| \geq 3$ and $T[X]$ is prime. The tournament T is $T[X]$-critical if and only if the assertions below hold.

1. $\operatorname{Ext}(X)=\emptyset$.
2. For all $u \in X$, the tournaments $T[X(u) \cup\{u\}]$ and $T[\langle X\rangle \cup\{u\}]$ are transitive.
3. For each $Q \in \mathcal{C}\left(G_{X}^{T}\right)$, there is an isomorphism f from $G_{2 n}$ onto $G_{X}^{T}[Q]$ such that $Q_{1}, Q_{2} \in q_{X}^{T}$, where $Q_{1}=f\left(\mathbb{N}_{n}\right)$ and $Q_{2}=f\left(\mathbb{N}_{2 n} \backslash \mathbb{N}_{n}\right)$. Moreover, for all $x \in Q_{i}(i=1$ or 2$),\left|N_{G_{X}^{T}}(x)\right|=\left|N_{T\left[Q_{i}\right]}^{+}(x)\right|+1$ (resp. $\left.n-\left|N_{T\left[Q_{i}\right]}^{+}(x)\right|\right)$ if $Q_{i}=X^{+}$or $X^{-}(u)\left(\right.$ resp. $Q_{i}=X^{-}$or $\left.X^{+}(u)\right)$, where $u \in X$.

The next corollary follows from Theorem 2 and Lemma 1.
Corollary 1 Let T be a $T[X]$-critical tournament, T is entirely determined up to isomorphy by giving $T[X]$, q_{X}^{T} and $\mathcal{C}\left(G_{X}^{T}\right)$. Moreover, the tournament T is exactly determined by giving, in addition, either the graphs $G_{X}^{T}[Q]$ for any $Q \in \mathcal{C}\left(G_{X}^{T}\right)$, or the transitive tournaments $T[Y]$ for any $Y \in q_{X}^{T}$.

We underline the importance of Theorem 2 and Corollary 1 in our description of the tournaments of the class \mathcal{T}. Indeed, these tournaments are introduced up to isomorphy as C_{3}-critical tournaments T defined by giving $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ in terms of the nonempty elements of $q_{\mathbb{N}_{3}}^{T}$. Figure 3 illustrates a tournament obtained from such information. We refer to [10, Discussion] for more details about this purpose.

We now introduce the class \mathcal{H} (resp. $\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L})$ of the C_{3}-critical tournaments H (resp. I, J, K, $L)$ such that:

- $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{H}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(1)\right\}$ (see Figure 3);
- $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{I}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(2), \mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}(0)\right\} ;$
- $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{J}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(0)\right\} ;$
- $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{K}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2)\right\} ;$
- $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{L}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2), \mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(0)\right\}$.

Notice that for $\mathcal{X}=\mathcal{H}, \mathcal{I}, \mathcal{J}$ or $\mathcal{K},\{|V(T)|: T \in \mathcal{X}\}=\{2 n+1: n \geq 3\}$ and $\{|V(T)|: T \in \mathcal{L}\}=$ $\{2 n+1: n \geq 4\}$. We denote by \mathcal{H}^{\star} (resp. $\left.\mathcal{I}^{\star}, \mathcal{J}^{\star}, \mathcal{K}^{\star}, \mathcal{L}^{\star}\right)$ the class of the tournaments T^{\star}, where $T \in \mathcal{H}$ (resp. $\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L})$.

Remark 1 We have $\mathcal{H}^{\star}=\mathcal{H}$ and $\mathcal{I}^{\star}=\mathcal{I}$.
Proof Let $T \in \mathcal{H}$. The permutation f of $V(T)$ defined by $f(1)=0, f(0)=1$, and $f(v)=v$ for all $v \in V(T) \backslash\{0,1\}$ is an isomorphism from T^{\star} onto a tournament T^{\prime} of the class \mathcal{H}. Let now $T \in \mathcal{I}$ and let x be the unique vertex of $\mathbb{N}_{3}^{+}(2)$ such that $\left|N_{T\left[\mathbb{N}_{3}^{+}(2)\right]}^{+}(x)\right|=0$. The permutation g of $V(T)$ defined by $g(1)=0$, $g(0)=1, g(x)=2, g(2)=x$, and $g(v)=v$ for $v \in V(T) \backslash\{0,1,2, x\}$ is an isomorphism from T^{\star} onto a tournament T^{\prime} of the class \mathcal{I}.

By setting $\mathcal{M}=\mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{J}^{\star} \cup \mathcal{K} \cup \mathcal{K}^{\star} \cup \mathcal{L} \cup \mathcal{L}^{\star}$, we state our main result as follows.
Theorem 3 Up to isomorphy, the tournaments of the class \mathcal{T} are those of the class \mathcal{M}. Moreover, for all $T \in \mathcal{M}$, we have $V(T) \backslash W_{5}(T)=\sigma(T)=\{0,1\}$.

Figure 3. A tournament T of the class \mathcal{H}

2. Critical tournaments and tournaments omitting W_{5}

We begin by recalling the characterization of the critical tournaments and some of their properties. A prime tournament $T=(V, A)$, with $|T| \geq 3$, is critical if $\sigma(T)=\emptyset$, i.e. if all its vertices are critical. In order to present the critical tournaments, characterized by J.H. Schmerl and W.T. Trotter in [10], we introduce the tournaments $T_{2 n+1}$ and $U_{2 n+1}$ defined on $\mathbb{N}_{2 n+1}$, where $n \geq 2$, as follows:

- $A\left(T_{2 n+1}\right)=\{(i, j): j-i \in\{1, \ldots, n\} \bmod .2 n+1\}$ (see Figure 4).
- $A\left(T_{2 n+1}\right) \backslash A\left(U_{2 n+1}\right)=A\left(T_{2 n+1}[\{n+1, \ldots, 2 n\}]\right)$ (see Figure 5).

Figure 4. $T_{2 n+1}$

Figure 5. $U_{2 n+1}$
Theorem 4 ([10]) Up to isomorphy, $T_{2 n+1}, U_{2 n+1}$, and $W_{2 n+1}$, where $n \geq 2$, are the only critical tournaments.

Notice that a critical tournament is isomorphic to its dual. Moreover, as a tournament on 4 vertices is not prime, we have:

Fact 1 Up to isomorphy, T_{5}, U_{5}, and W_{5} are the only prime tournaments on 5 vertices.
As mentioned in [2], the next remark follows from the definition of the critical tournaments.

Remark 2 Up to isomorphy, the prime subtournaments on at least 5 vertices of $T_{2 n+1}$ (resp. $U_{2 n+1}, W_{2 n+1}$), where $n \geq 2$, are the tournaments $T_{2 m+1}$ (resp. $U_{2 m+1}, W_{2 m+1}$), where $2 \leq m \leq n$.

To recall the characterization of the prime tournaments omitting W_{5}, we introduce the Paley tournament P_{7} defined on \mathbb{N}_{7} by $A\left(P_{7}\right)=\{(i, j): j-i \in\{1,2,4\} \bmod .7\}$. Notice that for all $x \neq y \in \mathbb{N}_{7}, P_{7}-x \simeq P_{7}-y$, and let $B_{6}=P_{7}-6$.

Theorem 5 ([8]) Up to isomorphy, the prime tournaments on at least 5 vertices and omitting W_{5} are the tournaments $B_{6}, P_{7}, T_{2 n+1}$, and $U_{2 n+1}$, where $n \geq 2$.

3. Some useful configurations

In this section, we introduce a number of configurations that occur in the proof of Theorem 3. These configurations involve mainly partially critical tournaments. We begin with the two following lemmas obtained in [2].

Lemma 2 ([2]) If B_{6} embeds into a prime tournament T on 7 vertices and if $T \not \approx P_{7}$, then $\left|W_{5}(T)\right|=7$.
Lemma 3 ([2]) Let T be a U_{5}-critical tournament on 7 vertices. If $T \not \approx U_{7}$, then $W_{5}(T) \cap\{3,4\} \neq \emptyset$.
Lemma 4 specifies the C_{3}-critical tournaments with a connected outside graph. It follows from the examination of the different possible configurations obtained by using Theorem 2.

Lemma 4 Given a C_{3}-critical tournament T on at least 5 vertices, if $G_{\mathbb{N}_{3}}^{T}$ is connected, then T is critical. More precisely, the different configurations are as follows where $i \in \mathbb{N}_{3}$ and $i+1$ is considered modulo 3.

1. If $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{-}(i) \cup \mathbb{N}_{3}^{+}(i+1)\right\}$, then $T \simeq T_{2 n+1}$ for some $n \geq 2$.
2. If $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{+}(i)\right\},\left\{\mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(i)\right\},\left\{\mathbb{N}_{3}^{+}(i) \cup \mathbb{N}_{3}^{+}(i+1)\right\}$, or $\left\{\mathbb{N}_{3}^{-}(i) \cup \mathbb{N}_{3}^{-}(i+1)\right\}$, then $T \simeq U_{2 n+1}$
for some $n \geq 2$.
3. If $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{-}(i)\right\},\left\{\mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{+}(i)\right\}$, or $\left\{\mathbb{N}_{3}^{+}(i) \cup \mathbb{N}_{3}^{-}(i+1)\right\}$, then $T \simeq W_{2 n+1}$ for some $n \geq 2$.

For a transitive tournament T, recall that $\min T$ denotes its smallest element and max T its largest.

Lemma 5 Given a C_{3}-critical tournament T on at least 5 vertices, if $T\left[\mathbb{N}_{3} \cup e\right] \simeq T_{5}$ for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right)$, then $T \simeq T_{2 n+1}$ for some $n \geq 2$.

Proof Let T be a C_{3}-critical tournament on at least 5 vertices such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right), T\left[\mathbb{N}_{3} \cup e\right] \simeq T_{5}$. Given $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right)$, by using Lemma 4 and Remark 2, $e=\left\{v, v^{\prime}\right\}$, where $v \in \mathbb{N}_{3}^{-}(i), v^{\prime} \in \mathbb{N}_{3}^{+}(i+1), i \in \mathbb{N}_{3}$ and $i+1$ is considered modulo 3. Then, by Theorem 2, the connected components of T are the nonempty elements of the family $\left\{\mathbb{N}_{3}^{-}(j) \cup \mathbb{N}_{3}^{+}(j+1)\right\}_{j \in \mathbb{N}_{3}}$, where $j+1$ is considered modulo 3 . The tournament T is critical. Indeed, by using Theorem 2, for each $k \in \mathbb{N}_{3},\left\{\max T\left[\mathbb{N}_{3}^{+}(k+1) \cup\{k+1\}\right], \min T\left[\mathbb{N}_{3}^{-}(k+2) \cup\{k+2\}\right]\right\}$, where
$k+1$ and $k+2$ are considered modulo 3 , is a nontrivial module of $T-k$. It follows that $T \simeq T_{2 n+1}$ for some $n \geq 2$ by Remark 2 .

Lemma 6 Given a U_{5}-critical tournament, if $T\left[\mathbb{N}_{5} \cup e\right] \simeq U_{7}$ for all $e \in E\left(G_{\mathbb{N}_{5}}^{T}\right)$, then $T \simeq U_{2 n+1}$ for some $n \geq 2$.
Proof The subsets X of \mathbb{N}_{7} such that $U_{7}[X] \simeq U_{5}$ are the sets $\mathbb{N}_{7} \backslash\{i, j\}$, where $\{i, j\}=\{0,4\},\{4,1\},\{1,5\}$, $\{5,2\},\{2,6\}$, or $\{6,3\}$. By observing $q_{X}^{U_{7}}$ for such subsets X and by Theorem 2, we deduce that the elements of $\mathcal{C}\left(G_{\mathbb{N}_{5}}^{T}\right)$ are the nonempty elements among the following six sets: $\mathbb{N}_{5}^{+} \cup \mathbb{N}_{5}^{-}(0), \mathbb{N}_{5}^{+}(0) \cup \mathbb{N}_{5}^{+}(3), \mathbb{N}_{5}^{-}(1) \cup \mathbb{N}_{5}^{-}(3)$, $\mathbb{N}_{5}^{+}(1) \cup \mathbb{N}_{5}^{+}(4), \mathbb{N}_{5}^{-}(2) \cup \mathbb{N}_{5}^{-}(4)$, and $\mathbb{N}_{5}^{-} \cup \mathbb{N}_{5}^{+}(2)$. Suppose first that $\left|\mathcal{C}\left(G_{\mathbb{N}_{5}}^{T}\right)\right|=6$. The tournament T is critical. Indeed, by using Theorem 2, $\left\{\min T\left[\mathbb{N}_{5}^{+}\right], \max T\left[\mathbb{N}_{5}^{+}(3)\right]\right\}$ (resp. $\left\{\min T\left[\mathbb{N}_{5}^{-}(3)\right], \max T\left[\mathbb{N}_{5}^{+}(4)\right]\right\}$, $\left.\left\{\min T\left[\mathbb{N}_{5}^{-}(4)\right], \max T\left[\mathbb{N}_{5}^{-}\right]\right\}, \quad\left\{\min T\left[\mathbb{N}_{5}^{-}(1)\right], \max T\left[\mathbb{N}_{5}^{+}(0)\right]\right\}, \quad\left\{\min T\left[\mathbb{N}_{5}^{-}(2)\right], \max T\left[\mathbb{N}_{5}^{+}(1)\right]\right\}\right)$ is a nontrivial module of $T-0$ (resp. $T-1, T-2, T-3, T-4$). By Remark $2, T \simeq U_{2 n+1}$ for some $n \geq 8$. Suppose now that $\left|\mathcal{C}\left(G_{\mathbb{N}_{5}}^{T}\right)\right| \leq 5$. Then T embeds into a U_{5}-critical tournament T^{\prime} with $\left|\mathcal{C}\left(G_{\mathbb{N}_{5}}^{T^{\prime}}\right)\right|=6$. By the first case, $T^{\prime} \simeq U_{2 n+1}$ for some $n \geq 8$ and thus $T \simeq U_{2 n+1}$ for some $n \geq 2$ by Remark 2 .

Lemma 7 Let $T=(V, A)$ be a $T[X]$-critical tournament with $|V \backslash X| \geq 2$, let $Q=\mathbb{N}_{2 n}$ be a connected component of G_{X}^{T} such that $G_{X}^{T}[Q]=G_{2 n}$, and let $e=\{i, i+n\}$, where $i \in \mathbb{N}_{n}$. Then the tournament $T-e$ is $T[X]$-critical. Moreover, Q is included in any subset Z of V such that $T[Z] \simeq W_{5}$ and $Z \cap\left(V \backslash\left(Q \cup W_{5}(T-e)\right) \neq\right.$ \emptyset.
Proof For $n \geq 2$, the function

$$
\begin{aligned}
f_{i}: Q \backslash e & \longrightarrow \mathbb{N}_{2 n-2} \\
k & \longmapsto\left\{\begin{array}{cl}
k & \text { if } 0 \leq k \leq i-1 \\
k-1 & \text { if } i+1 \leq k \leq n+i-1 \\
k-2 & \text { if } n+i+1 \leq k \leq 2 n-1
\end{array}\right.
\end{aligned}
$$

is an isomorphism from $G_{2 n}-e$ onto $G_{2 n-2}$. It follows from Theorem 2 that $T-e$ is $T[X]$-critical. Now suppose that there is $Z \subseteq V$ such that $T[Z] \simeq W_{5}$ and $Z \cap\left(V \backslash\left(Q \cup W_{5}(T-e)\right) \neq \emptyset\right.$. Therefore, we have $|Z \cap e|=1$ or $e \subset Z$. Suppose for a contradiction that $|Z \cap e|=1$, and set $\{z\}=Z \cap e . \operatorname{As} \operatorname{Ext}(V \backslash e)=\emptyset$, then by Lemma 1 , either $z \in\left\langle V^{\prime}\right\rangle$ or $z \in V^{\prime}(u)$, where $V^{\prime}=V \backslash e$ and $u \in V^{\prime}$. If $z \in\left\langle V^{\prime}\right\rangle$, then $Z \backslash\{z\}$ is a nontrivial module of $T[Z]$, a contradiction. If $z \in V^{\prime}(u)$, then $u \notin Z$, otherwise $\{u, z\}$ is a nontrivial module of $T[Z]$. Thus, $T\left[Z^{\prime}\right] \simeq W_{5}$, where $Z^{\prime}=(Z \backslash\{z\}) \cup\{u\} \subset V \backslash e$. A contradiction because $Z^{\prime} \cap\left(V \backslash W_{5}(T-e)\right) \neq \emptyset$. Finally, for all $e^{\prime} \in\left\{\{j, j+n\}: j \in \mathbb{N}_{n}\right\}$, the bijection f from $V \backslash e$ onto $V \backslash e^{\prime}$, defined by $\left.f\right|_{V \backslash Q}=\operatorname{Id}_{V \backslash Q}$ and $\left.f\right|_{Q \backslash e}$ $=f_{j}^{-1} \circ f_{i}$, is an isomorphism from $T-e$ onto $T-e^{\prime}$. It follows that $V \backslash\left(Q \cup W_{5}\left(T-e^{\prime}\right)\right)=V \backslash\left(Q \cup W_{5}(T-e)\right)$. Thus, as proved above, $e^{\prime} \subset Z$, so that $Q \subset Z$.

4. Proof of Theorem 3

We begin by establishing the partial criticality structure of the tournaments of the class \mathcal{T}. For this purpose, we use the notion of minimal tournaments for two vertices. Given a prime tournament $T=(V, A)$ of cardinality ≥ 3 and two distinct vertices $x \neq y \in V, T$ is said to be minimal for $\{x, y\}$ (or $\{x, y\}$-minimal) when for all proper subset X of V, if $\{x, y\} \subset X(|X| \geq 3)$, then $T[X]$ is not prime. These tournaments were introduced and characterized by A. Cournier and P. Ille in [5]. From this characterization, the following fact, observed in [1], is obtained by a simple and quick verification.

Fact $2([1,5])$ Up to isomorphy, the tournaments C_{3} and U_{5} are the unique minimal tournaments for two vertices T such that $\left|W_{5}(T)\right| \leq|T|-2$. Moreover, $\{3,4\}$ is the unique unordered pair of vertices for which U_{5} is minimal.

Proposition 1 Let $T=(V, A)$ be a tournament of the class \mathcal{T}. Then the vertices of $W_{5}(T)$ are critical and there exists $z \in W_{5}(T)$ such that $T\left[\left(V \backslash W_{5}(T)\right) \cup\{z\}\right] \simeq C_{3}$. In particular, T is $T\left[\left(V \backslash W_{5}(T)\right) \cup\{z\}\right]$-critical. Proof By Theorem $1,|T|$ is odd and ≥ 7. First, suppose by contradiction that there is $\alpha \in W_{5}(T)$ such that $T-\alpha$ is prime. Since $|T-\alpha|$ is even and ≥ 6 with $\left|V(T-\alpha) \backslash W_{5}(T-\alpha)\right| \geq 2$, then by Theorems 1 and 5, $T-\alpha \simeq B_{6}$ and $T \not \approx P_{7}$. A contradiction by Lemma 2. Second, let X be a minimal subset of V such that $V \backslash W_{5}(T) \subset X(|X| \geq 3)$ and $T[X]$ is prime, so that $T[X]$ is $\left(V \backslash W_{5}(T)\right)$-minimal. By Fact $2, T[X] \simeq C_{3}$ or U_{5}. Suppose, toward a contradiction that $T[X] \simeq U_{5}$ and take $T[X]=U_{5}$. By Fact $2, V \backslash W_{5}(T)=\{3,4\}$. As T is U_{5}-critical, then by Lemma 6 and Theorem 5, there exists $e \in E\left(G_{X}^{T}\right)$ such that $T[X \cup e]$ is prime and not isomorphic to U_{7}. It follows from Lemma 3, that there exists a subset Z of $X \cup e$ such that $T[Z] \simeq W_{5}$ and $Z \cap\left(V \backslash W_{5}(T)\right) \neq \emptyset$, a contradiction.

Now, we prove Theorem 3 for tournaments on 7 vertices.
Proposition 2 Up to isomorphy, the class \mathcal{M} and the class \mathcal{T} have the same tournaments on 7 vertices. Moreover, for each tournament T on 7 vertices of the class \mathcal{M}, we have $V(T) \backslash W_{5}(T)=\sigma(T)=\{0,1\}$.
Proof Let $T=(V, A)$ be a tournament on 7 vertices of the class \mathcal{M}. $T \in \mathcal{M} \backslash\left(\mathcal{L} \cup \mathcal{L}^{\star}\right)$ because the tournaments of the class \mathcal{L} have at least 9 vertices. Let $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right)$. By Lemma $4, T-e \simeq U_{5}$ or T_{5}. By Lemma 7, if there exists a subset $Z \subset V$ such that $T[Z] \simeq W_{5}$, then $e \subset Z$. It follows that $V \backslash \mathbb{N}_{3} \subset Z$. Thus $V \backslash W_{5}(T)=\{0,1\}$ by verifying that $T-\{1,2\} \nsucceq W_{5}, T-\{0,2\} \nsucceq W_{5}$ and $T-\{0,1\} \simeq W_{5}$. As T is C_{3}-critical, $\sigma(T)=\{0,1\}$ from the following. First, $T-2$ is not prime because $\{0\} \cup \mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{+}$(0) (resp. $\left.\{1\} \cup \mathbb{N}_{3}^{+}(0),\{0,1\} \cup \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(1),\{1\} \cup \mathbb{N}_{3}^{+}(0)\right)$ is a nontrivial module of $T-2$ if $T \in \mathcal{H}$ (resp. $\left.\mathcal{I}, \mathcal{J}, \mathcal{K}\right)$. Second, by Lemma 1, we have $\operatorname{Ext}(X)=\{0,1\}$, where $X=V \backslash\{0,1\}$, because $\{0,1\} \cap\langle X\rangle=\emptyset$, and for all $u \in X,\{0,1\} \cap X(u)=\emptyset$ because $V \backslash W_{5}(T)=\{0,1\}$.

Conversely, let T be a tournament on 7 vertices of the class \mathcal{T}. By Proposition 1, we can assume that T is C_{3}-critical with $V(T) \backslash W_{5}(T) \subset \mathbb{N}_{3}$. By Lemma 4 and Theorem $5,\left|\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)\right|=2$. We distinguish the following cases.

- $\mathbb{N}_{3}^{+} \neq \emptyset$ and $\mathbb{N}_{3}^{-} \neq \emptyset$. By Theorem 2, $\left|\mathbb{N}_{3}^{-}\right|=\left|\mathbb{N}_{3}^{+}\right|=1$. Therefore, we can assume that $\mathbb{N}_{3}(0) \neq \emptyset$ and $\mathbb{N}_{3}(2)=\emptyset$. It suffices to verify that $\left|\mathbb{N}_{3}(0)\right|=\left|\mathbb{N}_{3}^{+}(0)\right|=1$ because, in this case, by using Theorem 2 and Lemma $4, T \in \mathcal{H}$. By using again Theorem 2 and Lemma 4, we verify the following. First, if $\left|\mathbb{N}_{3}(0)\right|=2$,
then $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(0), \mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{+}(0)\right\}$. Therefore, $T-\{0,1\} \simeq T-\{0,2\} \simeq W_{5}$, a contradiction. Second, if $\left|\mathbb{N}_{3}^{-}(0)\right|=1$, then $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(0), \mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{+}(1)\right\}$. Therefore, $T \simeq U_{7}$, a contradiction by Theorem 5 .
- $\left\langle\mathbb{N}_{3}\right\rangle=\emptyset$. By Theorem 2, we can assume that $\left|\mathbb{N}_{3}^{-}(0)\right|=\left|\mathbb{N}_{3}^{+}(0)\right|=1$. We have $\left|\mathbb{N}_{3}(1)\right|=1$. Otherwise, by Theorem 2 and Lemma 4, we can suppose that $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(1), \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(1)\right\}$. Therefore, $T-\{1,2\} \simeq T-\{0,2\} \simeq W_{5}$, a contradiction. We have also $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}(2), \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}(1)\right\}$. Otherwise, again by Theorem 2 and Lemma $4, \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(1), \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(2)\right\}$, so that $T \simeq U_{7}$, a contradiction by Theorem 5 . Thus, we distinguish four cases. If $\left|\mathbb{N}_{3}^{-}(2)\right|=\left|\mathbb{N}_{3}^{+}(1)\right|=1$, then $T \simeq T_{7}$, which contradicts Theorem 5. If $\left|\mathbb{N}_{3}^{+}(2)\right|=\left|\mathbb{N}_{3}^{-}(1)\right|=1$, then $T-\{0,2\} \simeq T-\{0,1\} \simeq W_{5}$, a contradiction. If $\left|\mathbb{N}_{3}^{+}(2)\right|=\left|\mathbb{N}_{3}^{+}(1)\right|=1$, then $T \in \mathcal{I}$. If $\left|\mathbb{N}_{3}^{-}(2)\right|=\left|\mathbb{N}_{3}^{-}(1)\right|=1$, then T is isomorphic to a tournament of the class \mathcal{I} with $V(T) \backslash W_{5}(T)=\{0,2\}$.
- $\emptyset \neq\left\langle\mathbb{N}_{3}\right\rangle \in q_{\mathbb{N}_{3}}^{T}$. By interchanging T and T^{\star}, we can suppose that $\left\langle\mathbb{N}_{3}\right\rangle=\mathbb{N}_{3}^{-}$. In this case, $\left|\mathbb{N}_{3}^{-}\right|=1$ by Theorem 2. First, suppose that $\left|\mathbb{N}_{3}(0)\right|=2$ and $\left|\mathbb{N}_{3}(1)\right|=1$. By Theorem 2 and Lemma 4, $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=$ $\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}(1)\right\}$. We have $\left|\mathbb{N}_{3}^{+}(1)\right|=1$, otherwise $T \simeq U_{7}$, a contradiction by Theorem 5 . Thus, T is isomorphic to a tournament of the class \mathcal{K} with $V(T) \backslash W_{5}(T)=\{0,2\}$. Second, suppose that $\left|\mathbb{N}_{3}(0)\right|=1$ and $\left|\mathbb{N}_{3}(1)\right|=2$. Again by Theorem 2 and Lemma $4, \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(0)\right\}$, so that $T \in \mathcal{J}$. Lastly, suppose that $\left|\mathbb{N}_{3}(0)\right|=\left|\mathbb{N}_{3}(1)\right|=1$. By Theorem 2 and Lemma 4, we can suppose that $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}(0) \cup \mathbb{N}_{3}(2)\right\}$. By Lemma 4 , we distinguish only three cases. If $\left|\mathbb{N}_{3}^{-}(2)\right|=\left|\mathbb{N}_{3}^{-}(0)\right|=1$, then $T-\{0,1\} \simeq T-\{1,2\} \simeq W_{5}$, a contradiction. If $\left|\mathbb{N}_{3}^{+}(0)\right|=\left|\mathbb{N}_{3}^{+}(2)\right|=1$, then $T \simeq U_{7}$, which contradicts Theorem 5. If $\left|\mathbb{N}_{3}^{-}(2)\right|=\left|\mathbb{N}_{3}^{+}(0)\right|=1$, then $T \in \mathcal{K}$.

We complete our structural study of the tournaments of the class \mathcal{T} by the following two corollaries.
Corollary 2 Let T be a C_{3}-critical tournament such that $V(T) \backslash W_{5}(T)=\{0,1\}$. Then there exist $Q \neq$ $Q^{\prime} \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ and a tournament R on 7 vertices of the class \mathcal{M} such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ and for all $e^{\prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime}\right]\right)$, there exists an isomorphism f from R onto $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$. Moreover, $f(0)=0, f(1)=1$ and we have:

1. If $R \in \mathcal{H} \cup \mathcal{J} \cup \mathcal{J}^{\star}$, then $f(2)=2$;
2. If $R \in \mathcal{I} \cup \mathcal{K} \cup \mathcal{K}^{\star}$, then $f(2)=2$ or $\mathbb{N}_{3}(2)=\{f(2)\}$.

Proof To begin, notice the following remark: given a $D[X]$-critical tournament D, for any edges a and b belonging to a same connected component of G_{X}^{D}, we have $D[X \cup a] \simeq D[X \cup b]$. Therefore, by Fact 1 , Lemma 5, and Theorem 5, there exists $Q \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ such that for all $a \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right), T\left[\mathbb{N}_{3} \cup a\right] \simeq U_{5}$. By Lemma 4 and Remark 2, the tournament $T\left[\mathbb{N}_{3} \cup Q\right]$ is isomorphic to $U_{2 n+1}$, for some $n \geq 2$, and does not admit a prime subtournament on 7 vertices other than U_{7}. Therefore, by Lemma 6, Theorem 5 , and the remark above, there exists $Q^{\prime} \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right) \backslash\{Q\}$ such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ and for all $e^{\prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime}\right]\right), T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$ is prime and not isomorphic to U_{7}. Moreover, $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right] \not \nsim P_{7}$ because the vertices of P_{7} are all noncritical.

Likewise, $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right] \not \approx T_{7}$ by Remark 2. It follows from Theorem 5 and Proposition 2 that there exists an isomorphism f from a tournament R on 7 vertices of the class \mathcal{M} onto $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$. As $(0,1) \in A(R) \cap A(T)$ and $V(R) \backslash W_{5}(R)=V(T) \backslash W_{5}(T)=\{0,1\}$ by Proposition 2, then f fixes 0 and 1 . If $R \in \mathcal{H} \cup \mathcal{J} \cup \mathcal{J}^{\star}$, then f fixes 2 because 2 is the unique vertex x of R such that $R[\{0,1, x\}] \simeq C_{3}$. If $R \in \mathcal{I} \cup \mathcal{K} \cup \mathcal{K}^{\star}$, then $\left|\left\{x \in V(R): R[\{0,1, x\}] \simeq C_{3}\right\}\right|=2$. Therefore, $f(2)=2$ or α, where α is the unique vertex of $\mathbb{N}_{3}(2)$ in the tournament $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$.

Corollary 3 For all $T \in \mathcal{T}$, we have $V(T) \backslash W_{5}(T)=\sigma(T)$.
Proof Let T be a tournament of the class \mathcal{T} such that $V(T) \backslash W_{5}(T)=\{0,1\}$. By Proposition 1, we can assume that T is C_{3}-critical. By the same proposition, it suffices to prove that $\{0,1\} \subseteq \sigma(T)$. By Corollary 2, there is a subset X of $V(T)$ such that $\mathbb{N}_{3} \subset X$ and $T[X]$ is isomorphic to a tournament on 7 vertices of the class \mathcal{M}. Suppose for a contradiction that T admits a critical vertex $i \in\{0,1\}$, and let $Y=X \backslash\{i\}$. By Proposition 2, $T[Y]$ is prime. As T is $T[Y]$-critical, then $i \notin \operatorname{Ext}(Y)$ by Theorem 2. This is a contradiction because $T[X]$ is prime.

Now, we prove that $\mathcal{M} \subseteq \mathcal{T}$. More precisely:
Proposition 3 For all tournament T of the class \mathcal{M}, we have $V(T) \backslash W_{5}(T)=\sigma(T)=\{0,1\}$.
Proof Let T be a tournament on $(2 n+1)$ vertices of the class \mathcal{M} for some $n \geq 3$. By Corollary 3, it suffices to prove that $V(T) \backslash W_{5}(T)=\{0,1\}$. We proceed by induction on n. By Proposition 2, the statement is satisfied for $n=3$. Let now $n \geq 4$. Therefore, either T is a tournament on 9 vertices of the class $\mathcal{L} \cup \mathcal{L}^{\star}$ or there is $Q \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ such that $|Q| \geq 4$. In the first case, for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right), T-e$ is isomorphic to U_{7} or to a tournament on 7 vertices of the class $\mathcal{K} \cup \mathcal{K}^{\star}$. Therefore, if there exists a subset Z of $V(T)$ such that $Z \cap\{0,1\} \neq \emptyset$ and $T[Z] \simeq W_{5}$, then, for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}\right), e \subset Z$ by Lemma 7. Thus, $V(T) \backslash \mathbb{N}_{3} \subset Z$, a contradiction. As, furthermore, W_{5} embeds into T, then $V(T) \backslash W_{5}(T)=\{0,1\}$ by Theorem 1. In the second case, let $Q \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ such that $|Q| \geq 4$. Let $\mathcal{X}=\mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}$, or \mathcal{L}. For $T \in \mathcal{X}$, by Lemma 7 , there is $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ such that $T-e$ is C_{3}-critical. Moreover, $T-e$ is isomorphic to a tournament of the class \mathcal{X} because $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T-e}\right)$ is as described in the same class. By induction hypothesis, W_{5} embeds into $T-e$, and thus into T. By Theorem 1, it suffices to verify that $\{0,1\} \subseteq V(T) \backslash W_{5}(T)$. Therefore, suppose that there exists $Z \subset V(T)$ such that $Z \cap\{0,1\} \neq \emptyset$ and $T[Z] \simeq W_{5}$. By induction hypothesis and by Lemma $7, Q \subset Z$, so that $Z \subset Q \cup \mathbb{N}_{3}$. This is a contradiction by Theorem 5, because $T\left[\mathbb{N}_{3} \cup Q\right] \simeq U_{|Q|+3}$ or $T_{|Q|+3}$ by Lemma 4 .

We are now ready to construct the tournaments of the class \mathcal{T}. We partition these tournaments T according to the following invariant $c(T)$. For $T \in \mathcal{T}, c(T)$ is the minimum of $\left|\mathcal{C}\left(G_{\sigma(T) \cup\{x\}}^{T}\right)\right|$, the minimum being taken over all the vertices x of $W_{5}(T)$ such that $T[\sigma(T) \cup\{x\}] \simeq C_{3}$. Notice that $c(T)=c\left(T^{\star}\right)$. As T is $T[\sigma(T) \cup\{x\}]$-critical by Proposition 1 , then $c(T) \leq 4$. Moreover, $c(T) \geq 2$ by Lemma 4. Proposition 1 leads us to classify the tournaments T of the class \mathcal{T} according to the different values of $c(T)$. We will see that $c(T)=2$ or 3 . Theorem 3 results from Propositions $3,4,5$, and 6 .

Proposition 4 Up to isomorphy, the tournaments T of the class \mathcal{T} such that $c(T)=2$ are those of the class $\mathcal{M} \backslash\left(\mathcal{L} \cup \mathcal{L}^{\star}\right)$.

Proof For all $T \in \mathcal{M} \backslash\left(\mathcal{L} \cup \mathcal{L}^{\star}\right)$, we have $T \in \mathcal{T}$ by Proposition 3, and $c(T)=2$ by Lemma 4. Now let T be a tournament on $(2 n+1)$ vertices of the class \mathcal{T} such that $c(T)=2$. By Proposition 1, we can assume that T is C_{3}-critical with $V(T) \backslash W_{5}(T)=\{0,1\}$ and $\left|\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)\right|=2$. By Corollary 2 and by interchanging T and T^{\star}, there is a tournament R on 7 vertices of the class $\mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{K}$ such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ and for all $e^{\prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime}\right]\right)$, there exists an isomorphism f, fixing 0 and 1 , from R onto $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$, where Q and Q^{\prime} are the two different connected components of $G_{\mathbb{N}_{3}}^{T}$. If $f(2)=2$, then, by Theorem 2, T and R are in the same class $\mathcal{H}, \mathcal{I}, \mathcal{J}$, or \mathcal{K}. Suppose now that $f(2) \neq 2$. By Corollary $2, R \in \mathcal{I} \cup \mathcal{K}$. If $R \in \mathcal{I}$ (resp. \mathcal{K}), then $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$ is a tournament on 7 vertices of the class $\mathcal{I}^{\prime}\left(\right.$ resp. $\left.\mathcal{K}^{\prime}\right)$ of the C_{3}-critical tournaments Z such that $\mathcal{C}\left(G_{\mathbb{N}_{3}}^{Z}\right)=\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}(1), \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(2)\right\}$ (resp. $\left.\mathcal{C}\left(G_{\mathbb{N}_{3}}^{Z}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}(2)\right\}\right)$. By Theorem 2, $T \in \mathcal{I}^{\prime}$ (resp. \mathcal{K}^{\prime}). Moreover, by considering the vertex $\alpha=\min T\left[\mathbb{N}_{3}^{-}(2)\right]$ (resp. $\max T\left[\mathbb{N}_{3}^{+}(2)\right]$) and by using Corollary $3, T$ is also $T[\{0,1, \alpha\}]$-critical with $\mathcal{C}\left(G_{\{0,1, \alpha\}}^{T}\right)=\left\{\{0,1, \alpha\}^{-}(0) \cup\{0,1, \alpha\}^{+}(1),\{0,1, \alpha\}^{+}(0) \cup\{0,1, \alpha\}^{+}(\alpha)\right\} \quad$ (resp. $\left.\mathcal{C}\left(G_{\{0,1, \alpha\}}^{T}\right)=\left\{\{0,1, \alpha\}^{+}(1) \cup\{0,1, \alpha\}^{-},\{0,1, \alpha\}^{+}(0) \cup\{0,1, \alpha\}^{-}(\alpha)\right\}\right)$. It follows that T is isomorphic to a tournament of the class \mathcal{I} (resp. \mathcal{K}).

Proposition 5 Up to isomorphy, the tournaments T of the class \mathcal{T} such that $c(T)=3$ are those of the class $\mathcal{L} \cup \mathcal{L}^{\star}$.
Proof Let T be a tournament of the class $\mathcal{L} \cup \mathcal{L}^{\star}$. $T \in \mathcal{T}$ by Proposition 3. Moreover, $c(T)=3$ by Theorem 2. Indeed, it suffices to observe that for all $x \in\left\{i \in V(T) \backslash \mathbb{N}_{3}: T[\{0,1, i\}] \simeq C_{3}\right\}=\mathbb{N}_{3}^{-}(2)$, we have $\max T\left[\mathbb{N}_{3}^{+}(1)\right] \in X^{+}(1), \min T\left[\mathbb{N}_{3}^{-}\right] \in X^{-}, \min T\left[\mathbb{N}_{3}^{+}\right] \in X^{+}, \max T\left[\mathbb{N}_{3}^{-}(0)\right] \in X^{-}(0)$ and $2 \in X^{+}(x)$, where $X=\{0,1, x\}$.

Now let T be a tournament on $(2 n+1)$ vertices of \mathcal{T} such that $c(T)=3$. By Proposition 1, we can assume that T is C_{3}-critical with $V(T) \backslash W_{5}(T)=\{0,1\}$ and $\left|\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)\right|=3$. By Corollary 2 and by interchanging T and T^{\star}, there is a tournament R on 7 vertices of the class $\mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{K}$ such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ and $e^{\prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime}\right]\right)$, there exists an isomorphism f, which fixes 0 and 1 , from R onto $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$, where $Q \neq Q^{\prime} \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$. Take $e^{\prime \prime} \in\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime \prime}\right]\right)$, where $Q^{\prime \prime}=\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right) \backslash\left\{Q, Q^{\prime}\right\}$. Suppose, toward a contradiction, that $R \in \mathcal{H} \cup \mathcal{J}$. By Theorem 2 and by Corollary 2, if $R \in \mathcal{H}$ (resp. $R \in \mathcal{J}$), then $\left\{Q, Q^{\prime}\right\}=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}\right\}$(resp. $\left.\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(1)\right\}\right)$. Therefore, by Lemma 4, $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{+}(2)\right\},\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}(1)\right\}$ or $\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(2)\right\}\left(\right.$ resp. $\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}(2)\right\}$ or $\left.\left\{\mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(2)\right\}\right)$. We verify that in each of these cases, either $T\left[\{0\} \cup e \cup e^{\prime \prime}\right], T\left[\{0\} \cup e^{\prime} \cup e^{\prime \prime}\right], T\left[\{1\} \cup e \cup e^{\prime \prime}\right]$ or $T\left[\{1\} \cup e^{\prime} \cup e^{\prime \prime}\right]$ is isomorphic to W_{5}, a contradiction. Therefore, $R \in \mathcal{I} \cup \mathcal{K}$. By Corollary $2, f(2)=2$ or α, where α is the unique vertex of $\mathbb{N}_{3}(2)$ in $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right]$.

Suppose, again by contradiction, that $R \in \mathcal{I}$. We begin by the case where $f(2)=2$. By Theorem 2, we can suppose that $Q=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(2)\right\}$ and $Q^{\prime}=\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}(1)\right\}$. By Lemma $4, Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}\right\}$, $\left\{\mathbb{N}_{3}^{-}(2) \cup \mathbb{N}_{3}^{+}\right\}$, or $\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(2)\right\}$. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}\right\}$(resp. $\left\{\mathbb{N}_{3}^{-}(2) \cup \mathbb{N}_{3}^{+}\right\}$), then $T\left[\{0\} \cup e \cup e^{\prime \prime}\right] \simeq W_{5}$ (resp. $T\left[\{1\} \cup e^{\prime} \cup e^{\prime \prime}\right] \simeq W_{5}$), a contradiction. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(2)\right\}$, then, by taking $X=\{0,1, x\}$, where $x=$ $\min T\left[\mathbb{N}_{3}^{-}(2)\right]$, we obtain a contradiction because, by Corollary $3, T$ is $T[X]$-critical with $\left|\mathcal{C}\left(G_{X}^{T}\right)\right|=2$. Indeed, $\mathcal{C}\left(G_{X}^{T}\right)=\left\{X^{-}(0) \cup X^{+}(1), X^{+}(0) \cup X^{+}(x)\right\}$, with $X^{-}(0)=\mathbb{N}_{3}^{-}(0), X^{+}(1)=\mathbb{N}_{3}^{+}(1), X^{+}(0)=\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(1)$,
and $X^{+}(x)=\mathbb{N}_{3}^{+}(2) \cup\{2\} \cup\left(\mathbb{N}_{3}^{-}(2) \backslash\{x\}\right)$. Now if $f(2)=\alpha$, then we obtain again a contradiction. Indeed, by replacing T by T^{\star} and by interchanging the vertices 0 and $1,\left\{Q, Q^{\prime}\right\}=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(2), \mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}(1)\right\}$ as in the case where $f(2)=2$.

At present, $R \in \mathcal{K}$. We begin by the case where $f(2)=2$. By Theorem 2, we can suppose that $Q=\left\{\mathbb{N}_{3}^{-} \cup \mathbb{N}_{3}^{+}(1)\right\}$ and $Q^{\prime}=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2)\right\}$. By Lemma 4, $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}\right\},\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}\right\}$, $\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(1)\right\}$ or $\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}(2)\right\}$. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}\right\}\left(\right.$resp. $\left.\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(0)\right\}\right)$, then $T\left[\{0\} \cup e \cup e^{\prime \prime}\right] \simeq W_{5}$ (resp. $T\left[\{1\} \cup e^{\prime} \cup e^{\prime \prime}\right] \simeq W_{5}$), a contradiction. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}(2)\right\}$, then, by taking $X=\{0,1, x\}$, where $x=\max T\left[\mathbb{N}_{3}^{+}(2)\right]$, we have a contradiction because, by Corollary $3, T$ is $T[X]$-critical with $\left|\mathcal{C}\left(G_{X}^{T}\right)\right|=2$. Indeed, $\mathcal{C}\left(G_{X}^{T}\right)=\left\{X^{-} \cup X^{+}(1), X^{+}(0) \cup X^{-}(x)\right\}$, with $X^{-}=\mathbb{N}_{3}^{-}, X^{+}(1)=\mathbb{N}_{3}^{+}(1), X^{+}(0)=\mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{+}(0)$ and $X^{-}(x)=\mathbb{N}_{3}^{-}(2) \cup\{2\} \cup\left(\mathbb{N}_{3}^{+}(2) \backslash\{x\}\right)$. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}\right\}$, then $T \in \mathcal{L}$. Now suppose that $f(2)=\alpha$. By Theorem 2, we can suppose that $Q=\left\{\mathbb{N}_{2}^{+}(1) \cup \mathbb{N}_{2}^{-}\right\}$and $Q^{\prime}=\left\{\mathbb{N}_{2}^{-}(1) \cup \mathbb{N}_{3}^{+}(2)\right\}$. By Lemma 4, $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(2) \cup \mathbb{N}_{3}^{+}\right\},\left\{\mathbb{N}_{3}^{-}(2) \cup \mathbb{N}_{3}(0)\right\}$, or $\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}\right\}$. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(2) \cup \mathbb{N}_{3}^{+}\right\}$or $\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{-}(2)\right\}$, then $T\left[\{0\} \cup e \cup e^{\prime \prime}\right] \simeq W_{5}$, a contradiction. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2)\right\}$, then we obtain the same configuration giving $\left|\mathcal{C}\left(G_{X}^{T}\right)\right|=2$ in the case where $f(2)=2$. If $Q^{\prime \prime}=\left\{\mathbb{N}_{3}^{-}(0) \cup \mathbb{N}_{3}^{+}\right\}$, then T is isomorphic to a tournament of the class \mathcal{L}^{\star}.

Proposition 6 For any tournament T of the class \mathcal{T}, we have $c(T)=2$ or 3 .
Proof Let T be a tournament on $(2 n+1)$ vertices of the class \mathcal{T} for some $n \geq 3$. We proceed by induction on n. By Propositions 4 and 5 , the statement is satisfied for $n=3$ and for $n=4$. Let $n \geq 5$. By Proposition 1 , we can assume that T is C_{3}-critical with $V(T) \backslash W_{5}(T)=\{0,1\}$. By Theorem 2 and Lemma $4,2 \leq c(T) \leq 4$. Therefore, we only consider the case where $\left|\mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)\right|=4$. By Corollary 2 , there exist $Q \neq Q^{\prime} \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ and a tournament R on 7 vertices of the class \mathcal{M}, such that for all $e \in E\left(G_{\mathbb{N}_{3}}^{T}[Q]\right)$ and for all $e^{\prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime}\right]\right)$, $T\left[\mathbb{N}_{3} \cup e \cup e^{\prime}\right] \simeq R$. By Lemma 7 , there exists $e^{\prime \prime} \in E\left(G_{\mathbb{N}_{3}}^{T}\left[Q^{\prime \prime}\right]\right)$, where $Q^{\prime \prime} \in \mathcal{C}\left(G_{\mathbb{N}_{3}}^{T}\right) \backslash\left\{Q, Q^{\prime}\right\}$, such that $T-e^{\prime \prime}$ is C_{3}-critical. As W_{5} embeds into $T-e^{\prime \prime}$, then $V\left(T-e^{\prime \prime}\right) \backslash W_{5}\left(T-e^{\prime \prime}\right)=\{0,1\}$ by Theorem 1. Therefore, $T-e^{\prime \prime} \in \mathcal{T}$. By induction hypothesis, $c\left(T-e^{\prime \prime}\right)=2$ or 3 . By Theorem 2 , if $c\left(T-e^{\prime \prime}\right)=2$, then $c(T)=2$ or 3. Therefore, suppose that $c\left(T-e^{\prime \prime}\right)=3$. By Proposition 5 and by interchanging T and T^{\star}, we can assume that $T-e^{\prime \prime} \in \mathcal{L}$. By Theorem 2 and by taking $e^{\prime \prime}=\left\{x, x^{\prime}\right\}$, we can assume that $x \in \mathbb{N}_{3}^{-}(1)$ and $x^{\prime} \in \mathbb{N}_{3}^{+}(2)$. Thus, for $X=\left\{0,1, x^{\prime}\right\}$, we have $T[X] \simeq C_{3}$ and $X^{+}\left(x^{\prime}\right)=\emptyset$. It follows from Theorem 2 that $c(T)<4$.

References

[1] Belkhechine H, Boudabbous I, Hzami K. Sous-tournois isomorphes à W_{5} dans un tournoi indécomposable. C R Acad Sci I Paris 2012; 350: 333-337 (in French).
[2] Belkhechine H, Boudabbous I, Hzami K. Subtournaments isomorphic to W_{5} of an indecomposable tournament. J Korean Math Soc 2012; 49: 1259-1271.
[3] Belkhechine H, Boudabbous I, Hzami K. The indecomposable tournaments T with $\left|W_{5}(T)\right|=|T|-2$. C R Acad Sci I Paris 2013; 351: 501-504.
[4] Cournier A, Habib M. An efficient algorithm to recognize prime undirected graphs. Lect Notes Comput Sci 1993; 657: 212-224.
[5] Cournier A, Ille P. Minimal indecomposable graphs. Discrete Math 1998; 183: 61-80.
[6] Dubey CK, Mehta SK, Deogun JS. Conditionally critical indecomposable graphs. Lect Notes Comput Sci 2005; 3595: 690-700.
[7] Ehrenfeucht A, Rozenberg G. Primitivity is hereditary for 2-structures. Theor Comput Sci 1990; 70: 343-358.
[8] Latka BJ. Structure theorem for tournaments omitting N_{5}. J Graph Theor 2003; 42: 165-192.
[9] Sayar MY. Partially critical indecomposable tournaments and partially critical supports. Contrib Discrete Math 2011; 6: 52-76.
[10] Schmerl JH, Trotter WT. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Math 1993; 113: 191-205.
[11] Spinrad J. P4-trees and substitution decomposition. Discrete Appl Math 1992; 39: 263-291.

[^0]: *Correspondence: houmem@gmail.com
 2010 AMS Mathematics Subject Classification: 05C20, 05C60, 05C75.

