http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $467-476$
(c) TÜBİTAK
doi:10.3906/mat-1412-24

Invariant distributions and holomorphic vector fields in paracontact geometry

Mircea CRASMAREANU ${ }^{1}$, Laurian-Ioan PIŞCORAN ${ }^{2, *}$
${ }^{1}$ Faculty of Mathematics, University "Al. I. Cuza", Iaşi, Romania
${ }^{2}$ North University Center of Baia Mare, Technical University of Cluj, Baia Mare, Romania

Received: 09.12.2014 • Accepted/Published Online: 13.05.2015 • Printed: 30.07.2015

Abstract

Having as a model the metric contact case of V. Brînzănescu; R. Slobodeanu, we study two similar subjects in the paracontact (metric) geometry: a) distributions that are invariant with respect to the structure endomorphism φ; b) the class of vector fields of holomorphic type. As examples we consider both the 3 -dimensional case and the general dimensional case through a Heisenberg-type structure inspired also by contact geometry.

Key words: Paracontact metric manifold, invariant distribution, paracontact-holomorphic vector field

1. Introduction

Paracontact geometry [7,13] appears as a natural counterpart of the contact geometry in [9]. Compared with the huge literature in (metric) contact geometry, it seems that new studies are necessary in almost paracontact geometry; a very interesting paper connecting these fields is [5]. The present work is another step in this direction, more precisely from the point of view of some subjects of [4].

The first section deals with the distributions \mathcal{V}, which are invariant with respect to the structure endomorphism φ, one trivial example being the canonical distribution \mathcal{D} provided by the annihilator of the paracontact 1 -form η. As in the contact case, the characteristic vector field ξ must belong to \mathcal{V} or \mathcal{V}^{\perp}. Two important tools in this study are the second fundamental form and the integrability tensor field, both satisfying important (skew)-commutation formulas in the paracontact metric and para-Sasakian geometries. Let us remark that another important class of paracontact geometries, namely the para-Kenmotsu case, was studied recently in [2] from the same points of view.

The second subject of the present paper is the class of paracontact-holomorphic vector fields that form a Lie subalgebra on a normal almost paracontact manifold; recently this type of vector fields was studied as providing the potential vector field of Ricci solitons in (3-dimensional) almost paracontact geometries in [1]. These vector fields vanish a $\bar{\partial}$-operator expressed in terms of Levi-Civita as well as the canonical paracontact connection from [14]. We also give a relationship between the paracontact-holomorphicity on the manifold M and the holomorphicity on the cone manifold $\mathcal{C}(M)$. The last result gives a characterization of paracontact-holomorphic vector fields X in terms of para-Cauchy-Riemann equations for the components of X in a paracontact-holomorphic frame.

Two types of examples are examined: firstly in dimension 3 and secondly in arbitrary dimension following the Heisenberg-type example of contact metric geometry from [3, p. 60-61]. For the former case we compute the

[^0]fundamental functions α, β occurring in the Levi-Civita differential of φ while for the latter we use an adapted frame of \mathcal{D}. Let us remark that our Heisenberg-type example 2.11 is different from the hyperbolic Heisenberg group of [8, p. 85]. For the 3-dimensional example we point out the vanishing of the mixed sectional curvature of the pair (\mathcal{D}, ξ) of invariant distributions in a short Appendix.

2. Invariant distributions on almost paracontact metric manifolds

Let M be a $(2 n+1)$-dimensional smooth manifold, φ a $(1,1)$-tensor field called the structure endomorphism, ξ a vector field called the characteristic vector field, η a 1 -form called the paracontact form, and g a pseudoRiemannian metric on M of signature $(n+1, n)$. In this case, we say that (φ, ξ, η, g) defines an almost paracontact metric structure on M if [14]:

$$
\begin{equation*}
\varphi^{2}=I-\eta \otimes \xi, \quad \eta(\xi)=1, \quad g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

From the definition it follows $\varphi(\xi)=0, \eta \circ \varphi=0, \eta(X)=g(X, \xi), g(\xi, \xi)=1$ and the fact that φ is g-skewsymmetric: $g(\varphi X, Y)=-g(\varphi Y, X)$. The associated 2 -form $\omega(X, Y):=g(X, \varphi Y)$ is skew-symmetric and is called the fundamental form of the almost metric paracontact manifold $(M, \varphi, \xi, \eta, g)$.

The $2 n$-dimensional distribution $\mathcal{D}:=\operatorname{ker} \eta$ is called the canonical distribution associated to the almost paracontact metric structure (φ, ξ, η, g). The vector field ξ is g-orthogonal to \mathcal{D} and we have the orthogonal splitting of the tangent bundle $T M=\mathcal{D} \oplus \operatorname{span}\{\xi\}$; let v_{ξ} and h_{ξ} be the corresponding projectors; thus $v_{\xi}(X)=X-\eta(X) \xi$.

We assume given a distribution \mathcal{V} on M. The main hypothesis for our framework is the existence of a g-orthogonal complementary distribution \mathcal{V}^{\perp}. Let $\Gamma(\mathcal{V})$ be the $C^{\infty}(M)$-module of its sections. We denote with v and h the orthogonal projectors with respect to the decomposition $T M=\mathcal{V} \oplus \mathcal{V}^{\perp}$.

Inspired by [4] we introduce:
Definition 2.1 The distribution \mathcal{V} is called invariant if $\varphi(\mathcal{V}) \subseteq \mathcal{V}$, i.e. $h \circ \varphi \circ v=0$.
The first result provides an example and a characterization:

Proposition 2.2 On $(M, \varphi, \xi, \eta, g)$ we have: i) \mathcal{D} is an invariant distribution; ii) \mathcal{V} is invariant if and only if \mathcal{V}^{\perp} is invariant. Hence the invariance means $\varphi \circ v=v \circ \varphi$ respectively $\varphi \circ h=h \circ \varphi$.
Proof i) From $\eta \circ \varphi=0$. ii) From the skew-symmetry of φ.
With the same proof as that of Lemma 2.1. from [4, p. 194] we have:

Proposition 2.3 If \mathcal{V} is an invariant distribution then $\xi \in \Gamma(\mathcal{V})$ or $\xi \in \Gamma\left(\mathcal{V}^{\perp}\right)$. Moreover, if $\xi \in \Gamma(\mathcal{V})$ then $\mathcal{V}^{\perp} \subseteq \mathcal{D}$.

We consider a particular class of almost paracontact metric geometry after [14, p. 39]:
Proposition 2.4 The almost paracontact metric manifold $(M, \varphi, \xi, \eta, g)$ is a paracontact metric manifold if $\omega=d \eta$ where d is given by:

$$
\begin{equation*}
2 d \eta(X, Y)=X(\eta(Y))-Y(\eta(X))-\eta([X, Y]) \tag{2.2}
\end{equation*}
$$

for all vector fields X, Y.

The same proof as that of Proposition 2.1 from [4, p. 195] yields:

Proposition 2.5 Suppose that \mathcal{V} is an invariant distribution in a paracontact metric manifold satisfying one of the following conditions:
(i) $\operatorname{dim}(\mathcal{V})=2 k+1$ with $k \leq n$,
(ii) \mathcal{V} is integrable.

Then $\xi \in \Gamma(\mathcal{V})$. In particular, an integrable invariant distribution must be odd-dimensional.
Recall now two important tensor fields associated to a given distribution:

Definition 2.6 If \mathcal{V} is a distribution on the Riemannian manifold (M, g) then:
i) its second fundamental form is $B^{\mathcal{V}}: \Gamma(\mathcal{V}) \times \Gamma(\mathcal{V}) \rightarrow \Gamma\left(\mathcal{V}^{\perp}\right)$ given by:

$$
\begin{equation*}
B^{\mathcal{V}}(X, Y)=\frac{1}{2} h\left(\nabla_{X} Y+\nabla_{Y} X\right) \tag{2.3}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g;
ii) its integrability tensor is $B^{\mathcal{V}}: \Gamma(\mathcal{V}) \times \Gamma(\mathcal{V}) \rightarrow \Gamma\left(\mathcal{V}^{\perp}\right)$ given by:

$$
\begin{equation*}
I^{\mathcal{V}}(X, Y)=h([X, Y]) \tag{2.4}
\end{equation*}
$$

For the class of paracontact metric structures we determine a relationship between the second fundamental form and the integrability tensor for invariant distributions transversally to the characteristic vector field:

Proposition 2.7 Let \mathcal{V} be an invariant distribution on the paracontact metric manifold $(M, \varphi, \xi, \eta, g)$ such that $\xi \in \Gamma\left(\mathcal{V}^{\perp}\right)$. If $X, Y \in \Gamma(\mathcal{V})$ then

$$
\begin{equation*}
2\left[B^{\mathcal{V}}(\varphi X, Y)-B^{\mathcal{V}}(X, \varphi Y)\right]=\varphi \circ I^{\mathcal{V}}(\varphi X, \varphi Y)-\varphi \circ I^{\mathcal{V}}(X, Y) \tag{2.5}
\end{equation*}
$$

In particular, for $\mathcal{V}=\mathcal{D}$ we have the symmetry

$$
\begin{equation*}
B^{\mathcal{D}}(\varphi X, Y)=B^{\mathcal{D}}(X, \varphi Y), \quad B^{\mathcal{D}}(\varphi X, \varphi Y)=B^{\mathcal{D}}(X, Y) \tag{2.6}
\end{equation*}
$$

Proof From Lemma 2.7 of [14, p. 42] we have for all vector fields X, Y :

$$
\begin{equation*}
\left(\nabla_{\varphi X} \varphi\right) \varphi Y-\left(\nabla_{X} \varphi\right) Y=2 g(X, Y) \xi-(X-h X+\eta(X) \xi) \eta(Y) \tag{2.7}
\end{equation*}
$$

where $h=\frac{1}{2} \mathcal{L}_{\xi} \varphi$. The Proposition 2.3 gives $\mathcal{V} \subseteq \mathcal{D}$ and then the second term in the right hand-side is zero. Hence

$$
\nabla_{\varphi X} Y-\varphi\left(\nabla_{\varphi X} \varphi Y\right)-\nabla_{X} \varphi Y+\varphi\left(\nabla_{X} Y\right)=2 g(X, Y) \xi=\nabla_{\varphi Y} X-\varphi\left(\nabla_{\varphi Y} \varphi X\right)-\nabla_{Y} \varphi X+\varphi\left(\nabla_{Y} X\right)
$$

gives

$$
\left(\nabla_{\varphi X} Y+\nabla_{Y} \varphi X\right)-\left(\nabla_{\varphi Y} X+\nabla_{X} \varphi Y\right)=\varphi([\varphi X, \varphi Y]-[X, Y])
$$

yielding

$$
\begin{equation*}
2\left(B^{\mathcal{V}}(\varphi X, Y)-B^{\mathcal{V}}(X, \varphi Y)\right)=h \circ \varphi([\varphi X, \varphi Y]-[X, Y]) \tag{2.8}
\end{equation*}
$$

which is (2.5). For $\mathcal{V}=\mathcal{D}$ we take the g-inner product of (2.8) with ξ and use the g-skew-symmetry of φ and $\varphi(\xi)=0$ to obtain $\left(2.6_{1}\right)$. With Y replaced by φY in $\left(2.6_{1}\right)$ it results $\left(2.6_{2}\right)$.

Let us study now the complementary case when $\xi \in \Gamma(\mathcal{V})$. We recall that a para-Sasakian manifold is a normal paracontact metric manifold; the normality means the integrability of the almost paracomplex structure J on the cone $\mathcal{C}(M)=M \times \mathbb{R}$:

$$
\begin{equation*}
J\left(X, f \frac{d}{d t}\right)=\left(\varphi X+f \xi, \eta(X) \frac{d}{d t}\right) \tag{2.9}
\end{equation*}
$$

A characterization of this case is given in [14, p. 42]

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.10}
\end{equation*}
$$

for all vector fields X, Y. In a para-Sasakian manifold we have

$$
\begin{equation*}
\nabla_{X} \xi=-\varphi X \tag{2.11}
\end{equation*}
$$

which yields the commutation formula

$$
\begin{equation*}
\nabla_{\varphi X} \xi=\varphi\left(\nabla_{X} \xi\right)=-\varphi^{2} X \tag{2.12}
\end{equation*}
$$

Proposition 2.8 Let \mathcal{V} be an invariant distribution with $\xi \in \Gamma(V)$ in a para-Sasakian manifold. Then for all $X, Y \in \Gamma(\mathcal{V})$ we have

$$
\begin{equation*}
2\left[B^{\mathcal{V}}(X, \varphi Y)-\varphi \circ B^{\mathcal{V}}(X, Y)\right]=-\varphi \circ I^{\mathcal{V}}(X, \varphi Y)-\varphi \circ I^{\mathcal{V}}(X, Y) \tag{2.13}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
2 B^{\mathcal{V}}(X, \xi)=-I^{\mathcal{V}}(X, \xi) \tag{2.14}
\end{equation*}
$$

and if \mathcal{V} is integrable then

$$
\begin{equation*}
B^{\mathcal{V}}(\varphi X, Y)=\varphi \circ B^{\mathcal{V}}(X, Y)=B^{\mathcal{V}}(X, \varphi Y) \tag{2.15}
\end{equation*}
$$

Proof By using the relation (2.10) the left-hand side of (2.13) is

$$
h\left(\nabla_{X} \varphi Y+\nabla_{\varphi Y} X-\varphi\left(\nabla_{X} Y\right)-\varphi\left(\nabla_{Y} X\right)\right)=h\left(\nabla_{\varphi Y} X-\varphi\left(\nabla_{Y} X\right)\right)
$$

Now, using the metric character of ∇, the last term is $h\left(\nabla_{X} \varphi Y-[X, \varphi Y]-\varphi\left(\nabla_{X} Y\right)-\varphi([X, Y])\right)$ and we get the conclusion (2.13). With $Y=\xi$ in (2.13) we obtain (2.14) while (2.15) is a direct consequence of (2.13).

Corollary 2.9 Let N be an invariant submanifold of the para-Sasakian manifold (M, φ, ξ, η, g) containing ξ and B its second fundamental form. Then for all $X, Y \in \Gamma(N)$ we have:

$$
\begin{equation*}
B(X, \xi)=0, \quad B(\varphi X, Y)=\varphi \circ B(X, Y)=B(X, \varphi Y) \tag{2.16}
\end{equation*}
$$

We finish this section with some examples other than those of [8]:

Example 2.10 Suppose that $n=1$. After [11, p. 379] we have

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(\varphi(\nabla X \xi), Y) \xi-\eta(Y) \varphi\left(\nabla_{X} \xi\right) \tag{2.17}
\end{equation*}
$$

and $(M, \varphi, \xi, \eta, g)$ is normal if and only if there exist smooth functions α, β on M such that

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\beta(g(X, Y) \xi-\eta(Y) X)+\alpha(g(\varphi X, Y) \xi-\eta(Y) \varphi(X)), \nabla_{X} \xi=\alpha(X-\eta(X) \xi)+\beta \varphi(X) \tag{2.18}
\end{equation*}
$$

Hence, the para-Sasakian case is provided by $\alpha=0$ and $\beta=-1 . \quad(M, \varphi, \xi, \eta, g)$ admits locally a frame $\{\xi, E, \varphi E\}$ with $g(E, E)=1=-g(\varphi E, \varphi E)$, which means that ξ and E are space-like vector fields while φE is a time-like vector field. We have $I^{\mathcal{D}}(E, \varphi E)=\eta([E, \varphi E]) \xi$.

In order to handle a concrete example let N be an open connected subset of $\mathbb{R}^{2},(a, b)$ an open interval in \mathbb{R}, and let us consider the manifold $M=N \times(a, b)$. Let (x, y) be the coordinates on N induced from the Cartesian coordinates on \mathbb{R}^{2} and let z be the coordinate on (a, b) induced from the Cartesian coordinate on \mathbb{R}. Thus (x, y, z) are the coordinates on M. Now we choose the functions

$$
\begin{equation*}
\omega_{1}, \omega_{2}: N \rightarrow \mathbb{R}, \quad \sigma, f: M \rightarrow \mathbb{R}_{+}^{*} \tag{2.19}
\end{equation*}
$$

and following the idea from [10] we define

$$
\begin{gather*}
g=\frac{1}{4}\left(\begin{array}{ccc}
\omega_{1}^{2}+\sigma e^{2 f} & \omega_{1} \omega_{2} & \omega_{1} \\
\omega_{1} \omega_{2} & \omega_{2}^{2}-\sigma e^{2 f} & \omega_{2} \\
\omega_{1} & \omega_{2} & 1
\end{array}\right)=\frac{1}{4} \sigma e^{2 f}\left(d x^{2}-d y^{2}\right)+\eta \otimes \eta, \eta=\frac{1}{2}\left(d z+\omega_{1} d x+\omega_{2} d y\right) \tag{2.20}\\
\xi=2 \frac{\partial}{\partial z}, \quad \varphi=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
-\omega_{2} & -\omega_{1} & 0
\end{array}\right) . \tag{2.21}
\end{gather*}
$$

It follows an almost paracontact metric manifold with

$$
\begin{equation*}
E=\frac{2 e^{-f}}{\sqrt{\sigma}}\left(\frac{\partial}{\partial x}-\omega_{1} \frac{\partial}{\partial z}\right), \quad \varphi E=\frac{2 e^{-f}}{\sqrt{\sigma}}\left(\frac{\partial}{\partial y}-\omega_{2} \frac{\partial}{\partial z}\right) \tag{2.22}
\end{equation*}
$$

From

$$
\left\{\begin{array}{l}
{[E, \xi]=\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} E, \quad[\varphi E, \xi]=\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} \varphi E} \tag{2.23}\\
{[E, \varphi E]=\frac{\sqrt{\sigma}}{e^{-f}}\left[E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) \varphi E-\varphi E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) E\right]+\frac{2 e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) \xi}
\end{array}\right.
$$

it follows that \mathcal{D} is integrable if and only if the 1 -form $\omega_{1} d x+\omega_{2} d y$ is closed; hence η is closed. We have the Levi-Civita connection

$$
\begin{gather*}
\left\{\begin{array}{l}
\nabla_{E} E=-\frac{\sqrt{\sigma}}{e^{-f}} E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) \varphi E+\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} \xi \\
\nabla_{E} \varphi E=-\frac{4 \sqrt{\sigma}}{e^{-f}} \varphi E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) E+\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) \xi \\
\nabla_{E} \xi=\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} E+\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) \varphi E
\end{array}\right. \tag{2.24}\\
\left\{\begin{array}{l}
\nabla_{\varphi E} E=-\frac{4 \sqrt{\sigma}}{e^{-f}} E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) \varphi E-\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) \xi \\
\nabla_{\varphi E} \varphi E=-\frac{4 \sqrt{\sigma}}{e^{-f}} \varphi E\left(\frac{e^{-f}}{\sqrt{\sigma}}\right) E+\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} \xi \\
\nabla_{\varphi E} \xi=\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) E+\frac{2 f_{z} \sigma+\sigma_{z}}{\sigma} \varphi E
\end{array}\right. \tag{2.25}\\
\nabla_{\xi} E=\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) \varphi E, \quad \nabla_{\xi} \varphi E=\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) E, \quad \nabla_{\xi} \xi=0 \tag{2.26}
\end{gather*}
$$

and then

$$
\begin{equation*}
\alpha=2 f_{z}+\frac{\sigma_{z}}{\sigma}, \quad \beta=\frac{e^{-2 f}}{\sigma}\left(\frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}\right) . \tag{2.27}
\end{equation*}
$$

Hence, $(M, \varphi, \xi, \eta, g)$ is a para-Sasakian manifold if and only if

$$
\begin{equation*}
\sigma e^{2 f}=\sigma e^{2 f}(x, y), \quad \frac{\partial \omega_{1}}{\partial y}-\frac{\partial \omega_{2}}{\partial x}=-\sigma e^{2 f} . \tag{2.28}
\end{equation*}
$$

The first relation expresses the normality of the paracontact structure while the second condition means the metrical condition of the Definition 2.4 and yields the nonintegrability of \mathcal{D} since $I^{\mathcal{D}}(E, \varphi E)=-2 \xi$. Some cases when both equations hold are: i) $\omega_{1}=-y, \omega_{2}=0=f, \sigma=1$; ii) $\omega_{1}=-y, \omega_{2}=x, \sigma=2, f=0$.

Other examples of 3 -dimensional (almost) paracontact manifolds appear in [6, 11, 12].
Example 2.11 On $M=\mathbb{R}^{2 n+1}$ with the splitting $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$ we consider a Heisenberg-type structure inspired by the contact metric example from [3, p. 60-61]:

$$
g=\frac{1}{4}\left(\begin{array}{ccc}
\delta_{i j}+y^{i} y^{j} & 0 & -y^{i} \tag{2.29}\\
0 & -\delta_{i j} & 0 \\
-y^{j} & 0 & 1
\end{array}\right), \varphi=\left(\begin{array}{ccc}
0 & \delta_{i j} & 0 \\
\delta_{i j} & 0 & 0 \\
0 & y^{j} & 0
\end{array}\right), \xi=2 \frac{\partial}{\partial z}, \eta=\frac{1}{2}\left(d z-\sum_{i=1}^{n} y^{i} d x^{i}\right) .
$$

It follows that $\left(\mathbb{R}^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a paracontact metric manifold with

$$
\begin{equation*}
\mathcal{D}=\operatorname{span}\left\{A_{i}=\frac{\partial}{\partial x^{i}}+y^{i} \frac{\partial}{\partial z}, B_{i}=\frac{\partial}{\partial y^{i}} ; 1 \leq i \leq n\right\} . \tag{2.30}
\end{equation*}
$$

Two classes of invariant distributions are indexed by $k \in\{1, \ldots, n-1\}$:

$$
\begin{equation*}
\mathcal{V}_{k}^{\text {even }}=\operatorname{span}\left\{A_{\alpha}, B_{\alpha} ; 1 \leq \alpha \leq k\right\}, \mathcal{V}_{k}^{\text {odd }}=\mathcal{V}_{k}^{\text {even }} \cup\{\xi\} . \tag{2.31}
\end{equation*}
$$

Let us remark that for $n=1$ we recover the previous Example with: $\omega_{1}=-y, \omega_{2}=0=f, \sigma=1$. It is a para-Sasakian manifold with nonintegrable $\mathcal{D}:[E, \xi]=[\varphi E, \xi]=0, \quad[E, \varphi E]=-2 \xi$. The sectional curvature of the plane spanned by E and φE is

$$
\begin{equation*}
p K=K^{M}(E, \varphi E)=g(R(E, \varphi E) \varphi E, E)=g\left(\nabla_{\varphi E} \xi+2 \nabla_{\xi} \varphi E, E\right)=g(-E-2 E, E)=-3 \tag{2.32}
\end{equation*}
$$

similar to the metric contact case.

3. Infinitesimal paracontact-holomorphicity

Definition 3.1 The vector field $X \in \Gamma(T M)$ is called paracontact-holomorphic if

$$
\begin{equation*}
v_{\xi} \circ \mathcal{L}_{X} \varphi=0 \tag{3.1}
\end{equation*}
$$

Let $\mathfrak{p h o l}(M)$ be the set of all paracontact-holomorphic vector fields. The distribution \mathcal{V} is paracontactholomorphic if its sections are elements of $\mathfrak{p h o l}(M)$.

The condition (3.1) says that for all vector fields Y we have that $\left(\mathcal{L}_{X} \varphi\right) Y$ is collinear with ξ; let us denote $\alpha_{X}(Y)$ the collinearity factor. We have

$$
\begin{equation*}
\alpha_{X}(Y)=g([X, \varphi Y]-\varphi([X, Y]), \xi)=\eta([X, \varphi Y]) . \tag{3.2}
\end{equation*}
$$

The next result shows the invariance of the above defined holomorphicity and its proof is exactly as in [4]:

Proposition 3.2 Let X be a paracontact-holomorphic vector field on the normal almost paracontact metric manifold $(M, \varphi, \xi, \eta, g)$. Then φX is also a paracontact-holomorphic vector field.

Remarks 3.3 i) Fix X a paracontact-holomorphic vector field. Then computing $\alpha_{X}(\xi)$ with (3.2) we get

$$
\begin{equation*}
\alpha_{X}(\xi)=0 \tag{3.3}
\end{equation*}
$$

which means that $[X, \xi]$ is collinear with ξ, i.e. $v_{\xi}([X, \xi])=0$.
ii) The vanishing of the tensor field $N^{(3)}=\mathcal{L}_{\xi} \varphi$ means that ξ is a paracontact-holomorphic vector field with $\alpha_{\xi}=0$.
iii) The paracontact-holomorphicity of a fixed X implies for every vector field Y

$$
\begin{equation*}
\mathcal{L}_{X} Y=\eta\left(\mathcal{L}_{X} Y\right) \xi+\varphi\left(\mathcal{L}_{X} \varphi Y\right), \quad \mathcal{L}_{X} \varphi Y=\alpha_{X}(Y) \xi+\varphi([X, Y]) \tag{3.4}
\end{equation*}
$$

In both relations, the first term in the right-hand side belongs to span ξ while the second belongs to \mathcal{D}.
By using these remarks we get:

Proposition 3.4 If $(M, \varphi, \xi, \eta, g)$ is a normal almost paracontact manifold then $\mathfrak{p h o l}(M)$ is a Lie subalgebra in the Lie algebra of vector fields of M.
Proof Let X and Y be paracontact-holomorphic vector fields and Z an arbitrary vector field. Then

$$
\begin{equation*}
\left(\mathcal{L}_{[X, Y]} \varphi\right) Z=\left[X,\left(\mathcal{L}_{Y} \varphi\right) Z\right]-\left(\mathcal{L}_{Y}\right)([X, Z])-\left[Y,\left(\mathcal{L}_{X} \varphi\right) Z\right]+\left(\mathcal{L}_{X} \varphi\right)([Y, Z]) \tag{3.5}
\end{equation*}
$$

From the property of X, Y we have that the second and fourth terms are collinear with ξ. Also

$$
\left[X,\left(\mathcal{L}_{Y} \varphi\right) Z\right]=X\left(\alpha_{Y}(Z)\right) \xi-\alpha_{Y}(Z)[X, \xi]
$$

and the first relation (3.4) gives that this expression is collinear with ξ. The same fact holds for the third term of (3.5).

As in the contact case we can express the paracontact-holomorphicity by the vanishing of some $\bar{\partial}$-operator. More precisely, we define the map $\bar{\partial}: \Gamma(T M) \rightarrow \operatorname{End}(T M)$ given by

$$
\begin{equation*}
\bar{\partial}(X)(Y)=\varphi\left(\nabla_{Y} X-\varphi\left(\nabla_{\varphi Y} X\right)+\varphi\left(\nabla_{X} \varphi\right) Y\right) \tag{3.6}
\end{equation*}
$$

Thus, X is a paracontact-holomorphic vector field if and only if $\bar{\partial}(X)=0$. For a general vector field X, if $(M, \varphi, \xi, \eta, g)$ is a para-Sasakian manifold then

$$
\begin{equation*}
\bar{\partial}(X)(\xi)=\varphi([\xi, X]) \tag{3.7}
\end{equation*}
$$

and for $Y \in \mathcal{D}$ we have

$$
\begin{equation*}
\bar{\partial}(X)(Y)=\varphi\left(\nabla_{Y} X-\varphi\left(\nabla_{\varphi Y} X\right)\right) \tag{3.8}
\end{equation*}
$$

If $n=1$ then the expression (3.6) reduces to

$$
\begin{equation*}
\bar{\partial}(X)(Y)=\varphi\left(\nabla_{Y} X-\varphi\left(\nabla_{\varphi Y} X\right)-\eta(Y)(\alpha X+\beta \varphi X)\right) \tag{3.9}
\end{equation*}
$$

For the general n and using the canonical paracontact connection $\tilde{\nabla}$ of [14, p. 49] we have

$$
\begin{equation*}
\bar{\partial}(X)(Y)=\varphi\left(\tilde{\nabla}_{Y} X-\varphi\left(\tilde{\nabla}_{\varphi Y} X\right)+\varphi\left(\tilde{\nabla}_{X} \varphi\right) Y+2 \eta(X)\left(\varphi N^{(3)} Y-\varphi^{2} N^{(3)} \varphi Y\right)-\eta(Y) \varphi N^{(3)} X\right) \tag{3.6can}
\end{equation*}
$$

Recall now that on the cone $\mathcal{C}(M)$ we have

$$
\begin{equation*}
\left[\left(X, f \frac{d}{d t}\right),\left(Y, g \frac{d}{d t}\right)\right]=\left([X, Y],\left(X(g)-Y(f)+f \frac{d g}{d t}-g \frac{d f}{d t}\right) \frac{d}{d t}\right) \tag{3.10}
\end{equation*}
$$

which yields:

Proposition 3.5 Fix $X \in \Gamma(T M)$ and $f \in C^{\infty}(M \times \mathbb{R})$. Then $\left(X, f \frac{d}{d t}\right)$ is a paraholomorphic vector field on the cone $\mathcal{C}(M)$ if and only if the following three conditions hold:
i) $\left(\mathcal{L}_{X} \varphi\right) Y=-Y(f) \xi$,
ii) $\left(\mathcal{L}_{X} \eta\right)(Y)=\varphi Y(f)+\eta(Y) \frac{d f}{d t}$,
iii) $\mathcal{L}_{X} \xi=-\frac{d f}{d t} \xi$,
where $Y \in \Gamma(T M)$ is arbitrary. Consequently, if $\left(X, f \frac{d}{d t}\right)$ is a paraholomorphic vector field on $\mathcal{C}(M)$ then X is paracontact-holomorphic vector field on M and f is a first integral if ξ.
Proof By using (3.10) we get with respect to J of (2.9)

$$
\begin{align*}
&\left(\mathcal{L}_{(X, f} \frac{d}{d t}\right) \tag{3.11}\\
&J)(Y, 0)=\left(\left(\mathcal{L}_{X} \varphi\right) Y+Y(f) \xi,\left(X(\eta(Y))-\varphi Y(g)-\eta(Y) \frac{d f}{d t}-\eta([X, Y])\right) \frac{d}{d t}\right) \tag{3.12}\\
&\left(\mathcal{L}_{\left(X, f \frac{d}{d t}\right)} J\right)\left(0, \frac{d}{d t}\right)=\left([X, \xi]+\frac{d f}{d t},-\xi(f) \frac{d}{d t}\right)
\end{align*}
$$

The paraholomorphicity of $\left(X, f \frac{d}{d t}\right)$ means the vanishing of the above left-hand sides and this is equivalent with f being first integral of ξ and the relations i)-iii). However, with $Y=\xi$ in i) and using iii) it follows that $\xi(f)=0$. The equation i) means that X is a paracontact-holomorphic vector field.

Corollary 3.6 The paracontact-holomorphic vector fields on M, which come about by projection of the paraholomorphic fields on $\mathcal{C}(M)$, form a Lie subalgebra of $\mathfrak{p h o l}(M)$, denoted by $\mathfrak{p h o l}_{p r}(M)$. They are paracontactholomorphic fields X with two additional properties:
a) The 1-form α_{X} is exact: there exists a smooth function f on M such that $\alpha_{X}=d(-f)$,
b) $\eta([X, \xi])$ is a (locally) constant, i.e. constant on any connected component of M.

Proof a) it results by applying η to i); more precisely $Y(-f)=\eta([X, \varphi Y])$ for all vector fields Y. By applying η to iii) we get $\frac{d f}{d t}=\eta([\xi, X])$ and then around a point $p_{0} \in M$ we have the following expression of f :

$$
\begin{equation*}
f(p, t)=\eta([\xi, X])(p) t-F(p) \tag{3.13}
\end{equation*}
$$

Plugging this expression in a) we get: $Y(F)+Y(\eta([X, \xi])) t=\eta([X, \varphi Y])$ and it results in b).

CRASMAREANU and PIŞCORAN/Turk J Math

Corollary 3.7 On a normal almost paracontact metric manifold (M, φ, ξ, η, g) we have:
iv) $a \xi$ is a contact-holomorphic vector field, for any function $a \in M$; so $a \xi \in \mathfrak{p h o l}(M)$ but it is not necessarily the case that $a \xi \in \mathfrak{p h o l}_{p r}(M)$,
v) $\left(\xi, c \frac{d}{d t}\right)$ is a holomorphic vector field on $\mathcal{C}(M)$ if and only if c is a constant.

Proof The first part is a direct consequence of

$$
\begin{equation*}
\left(\mathcal{L}_{a \xi} \varphi\right) Y=a\left(\mathcal{L}_{\xi} \varphi\right) Y-\varphi Y(a) \xi \tag{3.14}
\end{equation*}
$$

Let us remark that the normality implies that $\alpha_{a \xi}(Y)=-\varphi Y(a)$. For the second part, from iii) of Proposition 3.5 it results that $\frac{d c}{d t}=0$ while i) gives that $Y(c)=0$ for all vector fields Y.

Proposition 3.8 Let $(M, \varphi, \xi, \eta, g)$ be a paracontact metric manifold. Then any two of the following conditions imply the third one:
(i) $\left(\mathcal{L}_{X} g\right)(Y, Z)=0$ for all $Y, Z \in \Gamma(\mathcal{D})$,
(ii) $i_{X} d \eta$ is a closed form,
(iii) X is a paracontact-holomorphic vector field.

Proof It is a direct consequence of the formula

$$
\begin{equation*}
\left(\mathcal{L}_{X} g\right)(Y, \varphi Z)=\left(\mathcal{L}_{X} d \eta\right)(Y, Z)-g\left(Y,\left(\mathcal{L}_{X} \varphi\right) Z\right) \tag{3.15}
\end{equation*}
$$

for all vector fields Y, Z.

Example 3.9 Returning to Example 2.11, let

$$
\begin{equation*}
X=\alpha^{i} A_{i}+\beta^{i} B_{i}+\gamma \xi=\alpha^{i} \frac{\partial}{\partial x^{i}}+\beta^{i} \frac{\partial}{\partial y^{i}}+\left(2 \gamma+\left(\sum_{j=1}^{n} y^{j} \alpha^{j}\right)\right) \frac{\partial}{\partial z} \tag{3.16}
\end{equation*}
$$

Then $X \in \mathfrak{p h o l}(M)$ if and only if the coefficients α and β satisfy the para-Cauchy-Riemann equations with respect to the variables (x, y) and are constant with respect to z :

$$
\left\{\begin{array}{l}
\frac{\partial \alpha^{i}}{\partial x^{j}}=\frac{\partial \beta^{i}}{\partial y^{j}}, \quad \frac{\partial \alpha^{i}}{\partial y^{j}}=\frac{\partial \beta^{i}}{\partial x^{j}} \tag{3.17}\\
\frac{\partial \alpha^{i}}{\partial z}=\frac{\partial \beta^{i}}{\partial z}=0
\end{array}\right.
$$

The following analogy with the contact case shows that these computations have a general nature:
Proposition 3.10 On a normal almost paracontact metric manifold there always exist (local) adapted frames $\left(E_{i}, \varphi E_{i}, \xi\right)$ consisting of contact-holomorphic vector fields. If the vector field X has the expression $X=$ $\alpha^{i} E_{i}+\beta^{i} \varphi E_{i}+\gamma \xi$ then X is a paracontact-holomorphic vector field if and only if the coefficients α, β satisfy the generalized para-Cauchy-Riemann equations:

$$
\begin{equation*}
E_{j}\left(\alpha^{i}\right)=\varphi E_{j}\left(\beta^{i}\right), \quad \varphi E_{j}\left(\alpha^{i}\right)=E_{j}\left(\beta^{i}\right) \tag{3.18}
\end{equation*}
$$

and are first integrals of ξ.

4. Appendix: The mixed sectional curvature

The main result of [4] is the Bochner-type Theorem 5.1 stated on page 206. The technical ingredient of this result is the mixed sectional curvature:

$$
\begin{equation*}
s_{m i x}\left(\mathcal{V}, \mathcal{V}^{\perp}\right)=\sum K^{M}\left(e_{i} \wedge f_{\alpha}\right) \tag{a.1}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ respectively $\left\{f_{\alpha}\right\}$ are local orthonormal frames for the given distribution. The cited Bochner-type result deals with an invariant distribution \mathcal{V} of dimension $2 p+1$ in the Sasakian case and concerns the case $s_{\text {mix }} \geq 2(n-p)$.

The aim of this short Appendix is to compute this quantity for our example 2.10:

$$
\begin{equation*}
s_{\operatorname{mix}}(\mathcal{D}, \xi)=K^{M}(E \wedge \xi)+K^{M}(\varphi E \wedge \xi)=g(R(E, \xi) \xi, E)+g(R(\varphi E, \xi) \xi, \varphi E) \tag{a.2}
\end{equation*}
$$

Since E is a space-like vector field while φE is a time-like one, a direct computation yields the vanishing: $s_{\text {mix }}(\mathcal{D}, \xi)=0$.

Acknowledgments

The authors are grateful to both referees for their several constructive remarks.

References

[1] Bejan CL, Crasmareanu M. Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann Global Anal Geom 2014; 46: 117-127.
[2] Blaga AM. Invariant and holomorphic distributions on para-Kenmotsu manifolds. Annali dell'Universita' di Ferrara (in press) DOI 10.1007/s11565-014-0220-5.
[3] Blair DE. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, Vol. 203. 2nd ed. Boston, MA, USA: Birkhäuser, 2010.
[4] Brînzănescu V, Slobodeanu R. Holomorphicity and Walczak formula on Sasakian manifolds. J Geom Phys 2006; 57: 193-207.
[5] Cappelletti Montano B. Bi-paracontact structures and Legendre foliations. Kodai Math J 2010; 33: 473-512.
[6] Dacko P, Olszak Z. On weakly para-cosymplectic manifolds of dimension 3. J Geom Phys 2007; 57: 561-570.
[7] Gündüzalp Y, Şahin B. Paracontact semi-Riemannian submersions. Turk J Math 2013; 37: 114-128.
[8] Ivanov S, Vassilev D, Zamkovoy S. Conformal paracontact curvature and the local flatness theorem. Geom Dedicata 2010; 144: 79-100.
[9] Kaneyuki S, Williams FL. Almost paracontact and parahodge structures on manifolds. Nagoya Math J 1985; 99: 173-187.
[10] Welyczko J. On Legendre curves in 3-dimensional normal almost contact metric manifolds. Soochow J Math 2007; 33: 929-937.
[11] Welyczko J. On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results Math 2009; 54: 377-387.
[12] Welyczko J. Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr J Math 2014; 11: 965-978.
[13] Yüksel Perktas S, Tripathi MM, Kiliç K, Keles S. ξ^{\perp}-submanifolds of para-Sasakian manifolds. Turk J Math 2014; 38: 905-919.
[14] Zamkovoy S. Canonical connections on paracontact manifolds. Ann Global Anal Geom 2008; 36: 37-60.

[^0]: *Correspondence: plaurian@gmail.com
 2010 AMS Mathematics Subject Classification: 53C15; 53C25.

