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Abstract: Having as a model the metric contact case of V. Br̂ınzănescu; R. Slobodeanu, we study two similar subjects

in the paracontact (metric) geometry: a) distributions that are invariant with respect to the structure endomorphism φ ;

b) the class of vector fields of holomorphic type. As examples we consider both the 3-dimensional case and the general

dimensional case through a Heisenberg-type structure inspired also by contact geometry.
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1. Introduction

Paracontact geometry [7, 13] appears as a natural counterpart of the contact geometry in [9]. Compared with

the huge literature in (metric) contact geometry, it seems that new studies are necessary in almost paracontact

geometry; a very interesting paper connecting these fields is [5]. The present work is another step in this

direction, more precisely from the point of view of some subjects of [4].

The first section deals with the distributions V , which are invariant with respect to the structure

endomorphism φ , one trivial example being the canonical distribution D provided by the annihilator of the

paracontact 1-form η . As in the contact case, the characteristic vector field ξ must belong to V or V⊥ . Two

important tools in this study are the second fundamental form and the integrability tensor field, both satisfying

important (skew)-commutation formulas in the paracontact metric and para-Sasakian geometries. Let us remark

that another important class of paracontact geometries, namely the para-Kenmotsu case, was studied recently

in [2] from the same points of view.

The second subject of the present paper is the class of paracontact-holomorphic vector fields that form

a Lie subalgebra on a normal almost paracontact manifold; recently this type of vector fields was studied

as providing the potential vector field of Ricci solitons in (3-dimensional) almost paracontact geometries

in [1]. These vector fields vanish a ∂̄ -operator expressed in terms of Levi-Civita as well as the canonical

paracontact connection from [14]. We also give a relationship between the paracontact-holomorphicity on the

manifold M and the holomorphicity on the cone manifold C(M). The last result gives a characterization of

paracontact-holomorphic vector fields X in terms of para-Cauchy–Riemann equations for the components of X

in a paracontact-holomorphic frame.

Two types of examples are examined: firstly in dimension 3 and secondly in arbitrary dimension following

the Heisenberg-type example of contact metric geometry from [3, p. 60–61]. For the former case we compute the
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fundamental functions α, β occurring in the Levi-Civita differential of φ while for the latter we use an adapted

frame of D . Let us remark that our Heisenberg-type example 2.11 is different from the hyperbolic Heisenberg

group of [8, p. 85]. For the 3-dimensional example we point out the vanishing of the mixed sectional curvature

of the pair (D, ξ) of invariant distributions in a short Appendix.

2. Invariant distributions on almost paracontact metric manifolds

Let M be a (2n+ 1)-dimensional smooth manifold, φ a (1, 1)-tensor field called the structure endomorphism,

ξ a vector field called the characteristic vector field, η a 1-form called the paracontact form, and g a pseudo-

Riemannian metric on M of signature (n + 1, n). In this case, we say that (φ, ξ, η, g) defines an almost

paracontact metric structure on M if [14]:

φ2 = I − η ⊗ ξ, η(ξ) = 1, g(φX,φY ) = −g(X,Y ) + η(X)η(Y ). (2.1)

From the definition it follows φ(ξ) = 0, η ◦ φ = 0, η(X) = g(X, ξ), g(ξ, ξ) = 1 and the fact that φ is g -skew-

symmetric: g(φX, Y ) = −g(φY,X). The associated 2-form ω(X,Y ) := g(X,φY ) is skew-symmetric and is

called the fundamental form of the almost metric paracontact manifold (M,φ, ξ, η, g).

The 2n-dimensional distribution D := ker η is called the canonical distribution associated to the almost

paracontact metric structure (φ, ξ, η, g). The vector field ξ is g -orthogonal to D and we have the orthogonal

splitting of the tangent bundle TM = D ⊕ span{ξ} ; let vξ and hξ be the corresponding projectors; thus

vξ(X) = X − η(X)ξ .

We assume given a distribution V on M . The main hypothesis for our framework is the existence of

a g -orthogonal complementary distribution V⊥ . Let Γ(V) be the C∞(M)-module of its sections. We denote

with v and h the orthogonal projectors with respect to the decomposition TM = V ⊕ V⊥ .

Inspired by [4] we introduce:

Definition 2.1 The distribution V is called invariant if φ(V) ⊆ V , i.e. h ◦ φ ◦ v = 0 .

The first result provides an example and a characterization:

Proposition 2.2 On (M,φ, ξ, η, g) we have: i) D is an invariant distribution; ii) V is invariant if and only

if V⊥ is invariant. Hence the invariance means φ ◦ v = v ◦ φ respectively φ ◦ h = h ◦ φ .

Proof i) From η ◦ φ = 0. ii) From the skew-symmetry of φ . 2

With the same proof as that of Lemma 2.1. from [4, p. 194] we have:

Proposition 2.3 If V is an invariant distribution then ξ ∈ Γ(V) or ξ ∈ Γ(V⊥) . Moreover, if ξ ∈ Γ(V) then

V⊥ ⊆ D .

We consider a particular class of almost paracontact metric geometry after [14, p. 39]:

Proposition 2.4 The almost paracontact metric manifold (M,φ, ξ, η, g) is a paracontact metric manifold if

ω = dη where d is given by:

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]) (2.2)

for all vector fields X,Y .
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The same proof as that of Proposition 2.1 from [4, p. 195] yields:

Proposition 2.5 Suppose that V is an invariant distribution in a paracontact metric manifold satisfying one

of the following conditions:

(i) dim(V) = 2k + 1 with k ≤ n ,

(ii) V is integrable.

Then ξ ∈ Γ(V) . In particular, an integrable invariant distribution must be odd-dimensional.

Recall now two important tensor fields associated to a given distribution:

Definition 2.6 If V is a distribution on the Riemannian manifold (M, g) then:

i) its second fundamental form is BV : Γ(V)× Γ(V) → Γ(V⊥) given by:

BV(X,Y ) =
1

2
h(∇XY +∇Y X) (2.3)

where ∇ is the Levi-Civita connection of g ;

ii) its integrability tensor is BV : Γ(V)× Γ(V) → Γ(V⊥) given by:

IV(X,Y ) = h([X,Y ]). (2.4)

For the class of paracontact metric structures we determine a relationship between the second fundamental

form and the integrability tensor for invariant distributions transversally to the characteristic vector field:

Proposition 2.7 Let V be an invariant distribution on the paracontact metric manifold (M,φ, ξ, η, g) such

that ξ ∈ Γ(V⊥) . If X,Y ∈ Γ(V) then

2
[
BV(φX, Y )−BV(X,φY )

]
= φ ◦ IV(φX,φY )− φ ◦ IV(X,Y ). (2.5)

In particular, for V = D we have the symmetry

BD(φX, Y ) = BD(X,φY ), BD(φX,φY ) = BD(X,Y ). (2.6)

Proof From Lemma 2.7 of [14, p. 42] we have for all vector fields X,Y :

(∇φXφ)φY − (∇Xφ)Y = 2g(X,Y )ξ − (X − hX + η(X)ξ)η(Y ) (2.7)

where h = 1
2Lξφ . The Proposition 2.3 gives V ⊆ D and then the second term in the right hand-side is zero.

Hence

∇φXY − φ(∇φXφY )−∇XφY + φ(∇XY ) = 2g(X,Y )ξ = ∇φY X − φ(∇φY φX)−∇Y φX + φ(∇Y X)

gives

(∇φXY +∇Y φX)− (∇φY X +∇XφY ) = φ([φX,φY ]− [X,Y ])

yielding

2
(
BV(φX, Y )−BV(X,φY )

)
= h ◦ φ([φX,φY ]− [X,Y ]) (2.8)
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which is (2.5). For V = D we take the g -inner product of (2.8) with ξ and use the g -skew-symmetry of φ

and φ(ξ) = 0 to obtain (2.61). With Y replaced by φY in (2.61) it results (2.62). 2

Let us study now the complementary case when ξ ∈ Γ(V). We recall that a para-Sasakian manifold is a

normal paracontact metric manifold; the normality means the integrability of the almost paracomplex structure

J on the cone C(M) = M × R :

J

(
X, f

d

dt

)
=

(
φX + fξ, η(X)

d

dt

)
. (2.9)

A characterization of this case is given in [14, p. 42]

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X (2.10)

for all vector fields X,Y . In a para-Sasakian manifold we have

∇Xξ = −φX (2.11)

which yields the commutation formula

∇φXξ = φ(∇Xξ) = −φ2X. (2.12)

Proposition 2.8 Let V be an invariant distribution with ξ ∈ Γ(V ) in a para-Sasakian manifold. Then for all

X,Y ∈ Γ(V) we have

2
[
BV(X,φY )− φ ◦BV(X,Y )

]
= −φ ◦ IV(X,φY )− φ ◦ IV(X,Y ). (2.13)

In particular,

2BV(X, ξ) = −IV(X, ξ) (2.14)

and if V is integrable then

BV(φX, Y ) = φ ◦BV(X,Y ) = BV(X,φY ). (2.15)

Proof By using the relation (2.10) the left-hand side of (2.13) is

h(∇XφY +∇φY X − φ(∇XY )− φ(∇Y X)) = h(∇φY X − φ(∇Y X)).

Now, using the metric character of ∇ , the last term is h(∇XφY − [X,φY ]−φ(∇XY )−φ([X,Y ])) and we get

the conclusion (2.13). With Y = ξ in (2.13) we obtain (2.14) while (2.15) is a direct consequence of (2.13).

2

Corollary 2.9 Let N be an invariant submanifold of the para-Sasakian manifold (M,φ, ξ, η, g) containing ξ

and B its second fundamental form. Then for all X,Y ∈ Γ(N) we have:

B(X, ξ) = 0, B(φX, Y ) = φ ◦B(X,Y ) = B(X,φY ). (2.16)

We finish this section with some examples other than those of [8]:

Example 2.10 Suppose that n = 1. After [11, p. 379] we have
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(∇Xφ)Y = g(φ(∇Xξ), Y )ξ − η(Y )φ(∇Xξ) (2.17)

and (M,φ, ξ, η, g) is normal if and only if there exist smooth functions α, β on M such that

(∇Xφ)Y = β (g(X,Y )ξ − η(Y )X) + α (g(φX, Y )ξ − η(Y )φ(X)) ,∇Xξ = α(X − η(X)ξ) + βφ(X). (2.18)

Hence, the para-Sasakian case is provided by α = 0 and β = −1. (M,φ, ξ, η, g) admits locally a frame

{ξ, E, φE} with g(E,E) = 1 = −g(φE,φE), which means that ξ and E are space-like vector fields while φE

is a time-like vector field. We have ID(E,φE) = η([E,φE])ξ .

In order to handle a concrete example let N be an open connected subset of R2 , (a, b) an open interval

in R , and let us consider the manifold M = N × (a, b). Let (x, y) be the coordinates on N induced from the

Cartesian coordinates on R2 and let z be the coordinate on (a, b) induced from the Cartesian coordinate on

R . Thus (x, y, z) are the coordinates on M . Now we choose the functions

ω1, ω2 : N → R, σ, f : M → R∗
+, (2.19)

and following the idea from [10] we define

g =
1

4

 ω2
1 + σe2f ω1ω2 ω1

ω1ω2 ω2
2 − σe2f ω2

ω1 ω2 1

 =
1

4
σe2f

(
dx2 − dy2

)
+ η ⊗ η, η =

1

2
(dz + ω1dx+ ω2dy), (2.20)

ξ = 2
∂

∂z
, φ =

 0 1 0
1 0 0

−ω2 −ω1 0

 . (2.21)

It follows an almost paracontact metric manifold with

E =
2e−f

√
σ

(
∂

∂x
− ω1

∂

∂z

)
, φE =

2e−f

√
σ

(
∂

∂y
− ω2

∂

∂z

)
. (2.22)

From  [E, ξ] = 2fzσ+σz

σ E, [φE, ξ] = 2fzσ+σz

σ φE

[E,φE] =
√
σ

e−f

[
E( e

−f
√
σ
)φE − φE( e

−f
√
σ
)E

]
+ 2e−2f

σ

(
∂ω1

∂y − ∂ω2

∂x

)
ξ

(2.23)

it follows that D is integrable if and only if the 1-form ω1dx+ ω2dy is closed; hence η is closed. We have the

Levi-Civita connection 
∇EE = −

√
σ

e−f E( e
−f
√
σ
)φE + 2fzσ+σz

σ ξ

∇EφE = −4
√
σ

e−f φE( e
−f
√
σ
)E + e−2f

σ

(
∂ω1

∂y − ∂ω2

∂x

)
ξ

∇Eξ = 2fzσ+σz

σ E + e−2f

σ

(
∂ω1

∂y − ∂ω2

∂x

)
φE

(2.24)


∇φEE = −4

√
σ

e−f E( e
−f
√
σ
)φE − e−2f

σ

(
∂ω1

∂y − ∂ω2

∂x

)
ξ

∇φEφE = −4
√
σ

e−f φE( e
−f
√
σ
)E + 2fzσ+σz

σ ξ

∇φEξ = e−2f

σ

(
∂ω1

∂y − ∂ω2

∂x

)
E + 2fzσ+σz

σ φE

(2.25)

∇ξE =
e−2f

σ

(
∂ω1

∂y
− ∂ω2

∂x

)
φE, ∇ξφE =

e−2f

σ

(
∂ω1

∂y
− ∂ω2

∂x

)
E, ∇ξξ = 0 (2.26)
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and then

α = 2fz +
σz

σ
, β =

e−2f

σ

(
∂ω1

∂y
− ∂ω2

∂x

)
. (2.27)

Hence, (M,φ, ξ, η, g) is a para-Sasakian manifold if and only if

σe2f = σe2f (x, y),
∂ω1

∂y
− ∂ω2

∂x
= −σe2f . (2.28)

The first relation expresses the normality of the paracontact structure while the second condition means the

metrical condition of the Definition 2.4 and yields the nonintegrability of D since ID(E,φE) = −2ξ . Some

cases when both equations hold are: i) ω1 = −y , ω2 = 0 = f , σ = 1; ii) ω1 = −y , ω2 = x , σ = 2, f = 0.

Other examples of 3-dimensional (almost) paracontact manifolds appear in [6, 11, 12].

Example 2.11 On M = R2n+1 with the splitting Rn ×Rn ×R we consider a Heisenberg-type structure

inspired by the contact metric example from [3, p. 60-61]:

g =
1

4

 δij + yiyj 0 −yi

0 −δij 0
−yj 0 1

 , φ =

 0 δij 0
δij 0 0
0 yj 0

 , ξ = 2
∂

∂z
, η =

1

2
(dz −

n∑
i=1

yidxi). (2.29)

It follows that (R2n+1, φ, ξ, η, g) is a paracontact metric manifold with

D = span

{
Ai =

∂

∂xi
+ yi

∂

∂z
,Bi =

∂

∂yi
; 1 ≤ i ≤ n

}
. (2.30)

Two classes of invariant distributions are indexed by k ∈ {1, ..., n− 1} :

Veven
k = span {Aα, Bα; 1 ≤ α ≤ k} ,Vodd

k = Veven
k ∪ {ξ}. (2.31)

Let us remark that for n = 1 we recover the previous Example with: ω1 = −y , ω2 = 0 = f , σ = 1. It is a

para-Sasakian manifold with nonintegrable D : [E, ξ] = [φE, ξ] = 0, [E,φE] = −2ξ . The sectional curvature

of the plane spanned by E and φE is

pK = KM (E,φE) = g(R(E,φE)φE,E) = g(∇φEξ + 2∇ξφE,E) = g(−E − 2E,E) = −3 (2.32)

similar to the metric contact case.

3. Infinitesimal paracontact-holomorphicity

Definition 3.1 The vector field X ∈ Γ(TM) is called paracontact-holomorphic if

vξ ◦ LXφ = 0. (3.1)

Let phol(M) be the set of all paracontact-holomorphic vector fields. The distribution V is paracontact-

holomorphic if its sections are elements of phol(M) .

The condition (3.1) says that for all vector fields Y we have that (LXφ)Y is collinear with ξ ; let us

denote αX(Y ) the collinearity factor. We have

αX(Y ) = g([X,φY ]− φ([X,Y ]), ξ) = η([X,φY ]). (3.2)

The next result shows the invariance of the above defined holomorphicity and its proof is exactly as in [4]:
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Proposition 3.2 Let X be a paracontact-holomorphic vector field on the normal almost paracontact metric

manifold (M,φ, ξ, η, g) . Then φX is also a paracontact-holomorphic vector field.

Remarks 3.3 i) Fix X a paracontact-holomorphic vector field. Then computing αX(ξ) with (3.2) we get

αX(ξ) = 0 (3.3)

which means that [X, ξ] is collinear with ξ , i.e. vξ([X, ξ]) = 0.

ii) The vanishing of the tensor field N (3) = Lξφ means that ξ is a paracontact-holomorphic vector field with

αξ = 0.

iii) The paracontact-holomorphicity of a fixed X implies for every vector field Y

LXY = η(LXY )ξ + φ(LXφY ), LXφY = αX(Y )ξ + φ([X,Y ]). (3.4)

In both relations, the first term in the right-hand side belongs to spanξ while the second belongs to D .

By using these remarks we get:

Proposition 3.4 If (M,φ, ξ, η, g) is a normal almost paracontact manifold then phol(M) is a Lie subalgebra

in the Lie algebra of vector fields of M .

Proof Let X and Y be paracontact-holomorphic vector fields and Z an arbitrary vector field. Then

(L[X,Y ]φ)Z = [X, (LY φ)Z]− (LY )([X,Z])− [Y, (LXφ)Z] + (LXφ)([Y,Z]). (3.5)

From the property of X , Y we have that the second and fourth terms are collinear with ξ . Also

[X, (LY φ)Z] = X(αY (Z))ξ − αY (Z)[X, ξ]

and the first relation (3.4) gives that this expression is collinear with ξ . The same fact holds for the third term

of (3.5). 2

As in the contact case we can express the paracontact-holomorphicity by the vanishing of some ∂̄ -operator.

More precisely, we define the map ∂̄ : Γ(TM) → End(TM) given by

∂̄(X)(Y ) = φ (∇Y X − φ(∇φY X) + φ(∇Xφ)Y ) . (3.6)

Thus, X is a paracontact-holomorphic vector field if and only if ∂̄(X) = 0. For a general vector field X , if

(M,φ, ξ, η, g) is a para-Sasakian manifold then

∂̄(X)(ξ) = φ([ξ,X]) (3.7)

and for Y ∈ D we have

∂̄(X)(Y ) = φ (∇Y X − φ(∇φY X)) . (3.8)

If n = 1 then the expression (3.6) reduces to

∂̄(X)(Y ) = φ (∇Y X − φ(∇φY X)− η(Y )(αX + βφX)) . (3.9)
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For the general n and using the canonical paracontact connection ∇̃ of [14, p. 49] we have

∂̄(X)(Y ) = φ
(
∇̃Y X − φ(∇̃φY X) + φ(∇̃Xφ)Y + 2η(X)(φN (3)Y − φ2N (3)φY )− η(Y )φN (3)X

)
. (3.6can)

Recall now that on the cone C(M) we have

[(X, f
d

dt
), (Y, g

d

dt
)] =

(
[X,Y ], (X(g)− Y (f) + f

dg

dt
− g

df

dt
)
d

dt

)
(3.10)

which yields:

Proposition 3.5 Fix X ∈ Γ(TM) and f ∈ C∞(M ×R) . Then (X, f d
dt ) is a paraholomorphic vector field on

the cone C(M) if and only if the following three conditions hold:

i) (LXφ)Y = −Y (f)ξ ,

ii) (LXη)(Y ) = φY (f) + η(Y )dfdt ,

iii) LXξ = −df
dt ξ ,

where Y ∈ Γ(TM) is arbitrary. Consequently, if (X, f d
dt ) is a paraholomorphic vector field on C(M) then X

is paracontact-holomorphic vector field on M and f is a first integral if ξ .

Proof By using (3.10) we get with respect to J of (2.9)

(L(X,f d
dt )

J)(Y, 0) =

(
(LXφ)Y + Y (f)ξ, (X(η(Y ))− φY (g)− η(Y )

df

dt
− η([X,Y ]))

d

dt

)
(3.11)

(L(X,f d
dt )

J)(0,
d

dt
) =

(
[X, ξ] +

df

dt
,−ξ(f)

d

dt

)
. (3.12)

The paraholomorphicity of (X, f d
dt ) means the vanishing of the above left-hand sides and this is equivalent

with f being first integral of ξ and the relations i)-iii). However, with Y = ξ in i) and using iii) it follows that

ξ(f) = 0. The equation i) means that X is a paracontact-holomorphic vector field. 2

Corollary 3.6 The paracontact-holomorphic vector fields on M , which come about by projection of the para-

holomorphic fields on C(M) , form a Lie subalgebra of phol(M) , denoted by pholpr(M) . They are paracontact-

holomorphic fields X with two additional properties:

a) The 1-form αX is exact: there exists a smooth function f on M such that αX = d(−f) ,

b) η([X, ξ]) is a (locally) constant, i.e. constant on any connected component of M .

Proof a) it results by applying η to i); more precisely Y (−f) = η([X,φY ]) for all vector fields Y . By

applying η to iii) we get df
dt = η([ξ,X]) and then around a point p0 ∈ M we have the following expression of

f :

f(p, t) = η([ξ,X])(p)t− F (p). (3.13)

Plugging this expression in a) we get: Y (F ) + Y (η([X, ξ]))t = η([X,φY ]) and it results in b). 2
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Corollary 3.7 On a normal almost paracontact metric manifold (M,φ, ξ, η, g) we have:

iv) aξ is a contact-holomorphic vector field, for any function a ∈ M ; so aξ ∈ phol(M) but it is not necessarily

the case that aξ ∈ pholpr(M) ,

v) (ξ, c d
dt ) is a holomorphic vector field on C(M) if and only if c is a constant.

Proof The first part is a direct consequence of

(Laξφ)Y = a(Lξφ)Y − φY (a)ξ. (3.14)

Let us remark that the normality implies that αaξ(Y ) = −φY (a). For the second part, from iii) of Proposition

3.5 it results that dc
dt = 0 while i) gives that Y (c) = 0 for all vector fields Y . 2

Proposition 3.8 Let (M,φ, ξ, η, g) be a paracontact metric manifold. Then any two of the following conditions

imply the third one:

(i) (LXg)(Y,Z) = 0 for all Y, Z ∈ Γ(D) ,

(ii) iXdη is a closed form,

(iii) X is a paracontact-holomorphic vector field.

Proof It is a direct consequence of the formula

(LXg)(Y, φZ) = (LXdη)(Y,Z)− g(Y, (LXφ)Z) (3.15)

for all vector fields Y, Z . 2

Example 3.9 Returning to Example 2.11, let

X = αiAi + βiBi + γξ = αi ∂

∂xi
+ βi ∂

∂yi
+ (2γ + (

n∑
j=1

yjαj))
∂

∂z
. (3.16)

Then X ∈ phol(M) if and only if the coefficients α and β satisfy the para-Cauchy–Riemann equations with

respect to the variables (x, y) and are constant with respect to z :{
∂αi

∂xj = ∂βi

∂yj ,
∂αi

∂yj = ∂βi

∂xj

∂αi

∂z = ∂βi

∂z = 0.
(3.17)

The following analogy with the contact case shows that these computations have a general nature:

Proposition 3.10 On a normal almost paracontact metric manifold there always exist (local) adapted frames

(Ei, φEi, ξ) consisting of contact-holomorphic vector fields. If the vector field X has the expression X =

αiEi + βiφEi + γξ then X is a paracontact-holomorphic vector field if and only if the coefficients α, β satisfy

the generalized para-Cauchy–Riemann equations:

Ej(α
i) = φEj(β

i), φEj(α
i) = Ej(β

i) (3.18)

and are first integrals of ξ .
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4. Appendix: The mixed sectional curvature

The main result of [4] is the Bochner-type Theorem 5.1 stated on page 206. The technical ingredient of this

result is the mixed sectional curvature:

smix(V,V⊥) =
∑

KM (ei ∧ fα) (a.1)

where {ei} respectively {fα} are local orthonormal frames for the given distribution. The cited Bochner-type

result deals with an invariant distribution V of dimension 2p + 1 in the Sasakian case and concerns the case

smix ≥ 2(n− p).

The aim of this short Appendix is to compute this quantity for our example 2.10:

smix(D, ξ) = KM (E ∧ ξ) +KM (φE ∧ ξ) = g(R(E, ξ)ξ, E) + g(R(φE, ξ)ξ, φE) (a.2)

Since E is a space-like vector field while φE is a time-like one, a direct computation yields the vanishing:

smix(D, ξ) = 0.
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