

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Invariant distributions and holomorphic vector fields in paracontact geometry

Mircea CRASMAREANU¹, Laurian-Ioan PIŞCORAN^{2,*}

¹Faculty of Mathematics, University "Al. I. Cuza", Iaşi, Romania
²North University Center of Baia Mare, Technical University of Cluj, Baia Mare, Romania

Received: 09.12.2014 • Accepted/Published Online: 13.05.2015	•	Printed: 30.07.2015
--	---	----------------------------

Abstract: Having as a model the metric contact case of V. Brînzănescu; R. Slobodeanu, we study two similar subjects in the paracontact (metric) geometry: a) distributions that are invariant with respect to the structure endomorphism φ ; b) the class of vector fields of holomorphic type. As examples we consider both the 3-dimensional case and the general dimensional case through a Heisenberg-type structure inspired also by contact geometry.

Key words: Paracontact metric manifold, invariant distribution, paracontact-holomorphic vector field

1. Introduction

Paracontact geometry [7, 13] appears as a natural counterpart of the contact geometry in [9]. Compared with the huge literature in (metric) contact geometry, it seems that new studies are necessary in almost paracontact geometry; a very interesting paper connecting these fields is [5]. The present work is another step in this direction, more precisely from the point of view of some subjects of [4].

The first section deals with the distributions \mathcal{V} , which are invariant with respect to the structure endomorphism φ , one trivial example being the canonical distribution \mathcal{D} provided by the annihilator of the paracontact 1-form η . As in the contact case, the characteristic vector field ξ must belong to \mathcal{V} or \mathcal{V}^{\perp} . Two important tools in this study are the second fundamental form and the integrability tensor field, both satisfying important (skew)-commutation formulas in the paracontact metric and para-Sasakian geometries. Let us remark that another important class of paracontact geometries, namely the para-Kenmotsu case, was studied recently in [2] from the same points of view.

The second subject of the present paper is the class of paracontact-holomorphic vector fields that form a Lie subalgebra on a normal almost paracontact manifold; recently this type of vector fields was studied as providing the potential vector field of Ricci solitons in (3-dimensional) almost paracontact geometries in [1]. These vector fields vanish a $\bar{\partial}$ -operator expressed in terms of Levi-Civita as well as the canonical paracontact connection from [14]. We also give a relationship between the paracontact-holomorphicity on the manifold M and the holomorphicity on the cone manifold $\mathcal{C}(M)$. The last result gives a characterization of paracontact-holomorphic vector fields X in terms of para-Cauchy–Riemann equations for the components of Xin a paracontact-holomorphic frame.

Two types of examples are examined: firstly in dimension 3 and secondly in arbitrary dimension following the Heisenberg-type example of contact metric geometry from [3, p. 60–61]. For the former case we compute the

^{*}Correspondence: plaurian@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 53C15; 53C25.

fundamental functions α, β occurring in the Levi-Civita differential of φ while for the latter we use an adapted frame of \mathcal{D} . Let us remark that our Heisenberg-type example 2.11 is different from the hyperbolic Heisenberg group of [8, p. 85]. For the 3-dimensional example we point out the vanishing of the mixed sectional curvature of the pair (\mathcal{D}, ξ) of invariant distributions in a short Appendix.

2. Invariant distributions on almost paracontact metric manifolds

Let M be a (2n + 1)-dimensional smooth manifold, φ a (1, 1)-tensor field called the *structure endomorphism*, ξ a vector field called the *characteristic vector field*, η a 1-form called the *paracontact form*, and g a pseudo-Riemannian metric on M of signature (n + 1, n). In this case, we say that (φ, ξ, η, g) defines an *almost paracontact metric structure* on M if [14]:

$$\varphi^2 = I - \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y). \tag{2.1}$$

From the definition it follows $\varphi(\xi) = 0$, $\eta \circ \varphi = 0$, $\eta(X) = g(X,\xi)$, $g(\xi,\xi) = 1$ and the fact that φ is g-skew-symmetric: $g(\varphi X, Y) = -g(\varphi Y, X)$. The associated 2-form $\omega(X,Y) := g(X,\varphi Y)$ is skew-symmetric and is called the fundamental form of the almost metric paracontact manifold $(M, \varphi, \xi, \eta, g)$.

The 2*n*-dimensional distribution $\mathcal{D} := \ker \eta$ is called the *canonical distribution* associated to the almost paracontact metric structure (φ, ξ, η, g) . The vector field ξ is *g*-orthogonal to \mathcal{D} and we have the orthogonal splitting of the tangent bundle $TM = \mathcal{D} \oplus span{\{\xi\}};$ let v_{ξ} and h_{ξ} be the corresponding projectors; thus $v_{\xi}(X) = X - \eta(X)\xi$.

We assume given a distribution \mathcal{V} on M. The main hypothesis for our framework is the existence of a g-orthogonal complementary distribution \mathcal{V}^{\perp} . Let $\Gamma(\mathcal{V})$ be the $C^{\infty}(M)$ -module of its sections. We denote with v and h the orthogonal projectors with respect to the decomposition $TM = \mathcal{V} \oplus \mathcal{V}^{\perp}$.

Inspired by [4] we introduce:

Definition 2.1 The distribution \mathcal{V} is called invariant if $\varphi(\mathcal{V}) \subseteq \mathcal{V}$, i.e. $h \circ \varphi \circ v = 0$.

The first result provides an example and a characterization:

Proposition 2.2 On $(M, \varphi, \xi, \eta, g)$ we have: i) \mathcal{D} is an invariant distribution; ii) \mathcal{V} is invariant if and only if \mathcal{V}^{\perp} is invariant. Hence the invariance means $\varphi \circ v = v \circ \varphi$ respectively $\varphi \circ h = h \circ \varphi$.

Proof i) From $\eta \circ \varphi = 0$. ii) From the skew-symmetry of φ .

With the same proof as that of Lemma 2.1. from [4, p. 194] we have:

Proposition 2.3 If \mathcal{V} is an invariant distribution then $\xi \in \Gamma(\mathcal{V})$ or $\xi \in \Gamma(\mathcal{V}^{\perp})$. Moreover, if $\xi \in \Gamma(\mathcal{V})$ then $\mathcal{V}^{\perp} \subseteq \mathcal{D}$.

We consider a particular class of almost paracontact metric geometry after [14, p. 39]:

Proposition 2.4 The almost paracontact metric manifold $(M, \varphi, \xi, \eta, g)$ is a paracontact metric manifold if $\omega = d\eta$ where d is given by:

$$2d\eta(X,Y) = X(\eta(Y)) - Y(\eta(X)) - \eta([X,Y])$$
(2.2)

for all vector fields X, Y.

CRASMAREANU and PIŞCORAN/Turk J Math

The same proof as that of Proposition 2.1 from [4, p. 195] yields:

Proposition 2.5 Suppose that \mathcal{V} is an invariant distribution in a paracontact metric manifold satisfying one of the following conditions:

(i) $\dim(\mathcal{V}) = 2k + 1$ with $k \le n$,

(ii) \mathcal{V} is integrable.

Then $\xi \in \Gamma(\mathcal{V})$. In particular, an integrable invariant distribution must be odd-dimensional.

Recall now two important tensor fields associated to a given distribution:

Definition 2.6 If \mathcal{V} is a distribution on the Riemannian manifold (M, g) then: i) its second fundamental form is $B^{\mathcal{V}} : \Gamma(\mathcal{V}) \times \Gamma(\mathcal{V}) \to \Gamma(\mathcal{V}^{\perp})$ given by:

$$B^{\mathcal{V}}(X,Y) = \frac{1}{2}h(\nabla_X Y + \nabla_Y X)$$
(2.3)

where ∇ is the Levi-Civita connection of g;

ii) its integrability tensor is $B^{\mathcal{V}}: \Gamma(\mathcal{V}) \times \Gamma(\mathcal{V}) \to \Gamma(\mathcal{V}^{\perp})$ given by:

$$I^{\mathcal{V}}(X,Y) = h([X,Y]).$$
(2.4)

For the class of paracontact metric structures we determine a relationship between the second fundamental form and the integrability tensor for invariant distributions transversally to the characteristic vector field:

Proposition 2.7 Let \mathcal{V} be an invariant distribution on the paracontact metric manifold $(M, \varphi, \xi, \eta, g)$ such that $\xi \in \Gamma(\mathcal{V}^{\perp})$. If $X, Y \in \Gamma(\mathcal{V})$ then

$$2\left[B^{\mathcal{V}}(\varphi X, Y) - B^{\mathcal{V}}(X, \varphi Y)\right] = \varphi \circ I^{\mathcal{V}}(\varphi X, \varphi Y) - \varphi \circ I^{\mathcal{V}}(X, Y).$$
(2.5)

In particular, for $\mathcal{V} = \mathcal{D}$ we have the symmetry

$$B^{\mathcal{D}}(\varphi X, Y) = B^{\mathcal{D}}(X, \varphi Y), \quad B^{\mathcal{D}}(\varphi X, \varphi Y) = B^{\mathcal{D}}(X, Y).$$
(2.6)

Proof From Lemma 2.7 of [14, p. 42] we have for all vector fields X, Y:

$$(\nabla_{\varphi X}\varphi)\varphi Y - (\nabla_X\varphi)Y = 2g(X,Y)\xi - (X - hX + \eta(X)\xi)\eta(Y)$$
(2.7)

where $h = \frac{1}{2}\mathcal{L}_{\xi}\varphi$. The Proposition 2.3 gives $\mathcal{V} \subseteq \mathcal{D}$ and then the second term in the right hand-side is zero. Hence

$$\nabla_{\varphi X}Y - \varphi(\nabla_{\varphi X}\varphi Y) - \nabla_X\varphi Y + \varphi(\nabla_X Y) = 2g(X,Y)\xi = \nabla_{\varphi Y}X - \varphi(\nabla_{\varphi Y}\varphi X) - \nabla_Y\varphi X + \varphi(\nabla_Y X)$$

gives

$$(\nabla_{\varphi X}Y + \nabla_Y \varphi X) - (\nabla_{\varphi Y}X + \nabla_X \varphi Y) = \varphi([\varphi X, \varphi Y] - [X, Y])$$

yielding

$$2\left(B^{\mathcal{V}}(\varphi X, Y) - B^{\mathcal{V}}(X, \varphi Y)\right) = h \circ \varphi([\varphi X, \varphi Y] - [X, Y])$$
(2.8)

which is (2.5). For $\mathcal{V} = \mathcal{D}$ we take the *g*-inner product of (2.8) with ξ and use the *g*-skew-symmetry of φ and $\varphi(\xi) = 0$ to obtain (2.6₁). With *Y* replaced by φY in (2.6₁) it results (2.6₂).

Let us study now the complementary case when $\xi \in \Gamma(\mathcal{V})$. We recall that a *para-Sasakian manifold* is a normal paracontact metric manifold; the normality means the integrability of the almost paracomplex structure J on the cone $\mathcal{C}(M) = M \times \mathbb{R}$:

$$J\left(X, f\frac{d}{dt}\right) = \left(\varphi X + f\xi, \eta(X)\frac{d}{dt}\right).$$
(2.9)

A characterization of this case is given in [14, p. 42]

$$(\nabla_X \varphi)Y = -g(X, Y)\xi + \eta(Y)X \tag{2.10}$$

for all vector fields X, Y. In a para-Sasakian manifold we have

$$\nabla_X \xi = -\varphi X \tag{2.11}$$

which yields the commutation formula

$$\nabla_{\varphi X}\xi = \varphi(\nabla_X\xi) = -\varphi^2 X. \tag{2.12}$$

Proposition 2.8 Let \mathcal{V} be an invariant distribution with $\xi \in \Gamma(V)$ in a para-Sasakian manifold. Then for all $X, Y \in \Gamma(\mathcal{V})$ we have

$$2\left[B^{\mathcal{V}}(X,\varphi Y) - \varphi \circ B^{\mathcal{V}}(X,Y)\right] = -\varphi \circ I^{\mathcal{V}}(X,\varphi Y) - \varphi \circ I^{\mathcal{V}}(X,Y).$$
(2.13)

In particular,

$$2B^{\mathcal{V}}(X,\xi) = -I^{\mathcal{V}}(X,\xi)$$
(2.14)

and if \mathcal{V} is integrable then

$$B^{\mathcal{V}}(\varphi X, Y) = \varphi \circ B^{\mathcal{V}}(X, Y) = B^{\mathcal{V}}(X, \varphi Y).$$
(2.15)

Proof By using the relation (2.10) the left-hand side of (2.13) is

$$h(\nabla_X \varphi Y + \nabla_{\varphi Y} X - \varphi(\nabla_X Y) - \varphi(\nabla_Y X)) = h(\nabla_{\varphi Y} X - \varphi(\nabla_Y X)).$$

Now, using the metric character of ∇ , the last term is $h(\nabla_X \varphi Y - [X, \varphi Y] - \varphi(\nabla_X Y) - \varphi([X, Y]))$ and we get the conclusion (2.13). With $Y = \xi$ in (2.13) we obtain (2.14) while (2.15) is a direct consequence of (2.13).

Corollary 2.9 Let N be an invariant submanifold of the para-Sasakian manifold $(M, \varphi, \xi, \eta, g)$ containing ξ and B its second fundamental form. Then for all $X, Y \in \Gamma(N)$ we have:

$$B(X,\xi) = 0, \quad B(\varphi X,Y) = \varphi \circ B(X,Y) = B(X,\varphi Y).$$
(2.16)

We finish this section with some examples other than those of [8]:

Example 2.10 Suppose that n = 1. After [11, p. 379] we have

CRASMAREANU and PIŞCORAN/Turk J Math

$$(\nabla_X \varphi) Y = g(\varphi(\nabla X\xi), Y)\xi - \eta(Y)\varphi(\nabla_X \xi)$$
(2.17)

and $(M, \varphi, \xi, \eta, g)$ is normal if and only if there exist smooth functions α, β on M such that

$$(\nabla_X \varphi)Y = \beta \left(g(X, Y)\xi - \eta(Y)X\right) + \alpha \left(g(\varphi X, Y)\xi - \eta(Y)\varphi(X)\right), \nabla_X \xi = \alpha (X - \eta(X)\xi) + \beta \varphi(X).$$
(2.18)

Hence, the para-Sasakian case is provided by $\alpha = 0$ and $\beta = -1$. $(M, \varphi, \xi, \eta, g)$ admits locally a frame $\{\xi, E, \varphi E\}$ with $g(E, E) = 1 = -g(\varphi E, \varphi E)$, which means that ξ and E are space-like vector fields while φE is a time-like vector field. We have $I^{\mathcal{D}}(E, \varphi E) = \eta([E, \varphi E])\xi$.

In order to handle a concrete example let N be an open connected subset of \mathbb{R}^2 , (a, b) an open interval in \mathbb{R} , and let us consider the manifold $M = N \times (a, b)$. Let (x, y) be the coordinates on N induced from the Cartesian coordinates on \mathbb{R}^2 and let z be the coordinate on (a, b) induced from the Cartesian coordinate on \mathbb{R} . Thus (x, y, z) are the coordinates on M. Now we choose the functions

$$\omega_1, \omega_2: N \to \mathbb{R}, \quad \sigma, f: M \to \mathbb{R}^*_+,$$

$$(2.19)$$

and following the idea from [10] we define

$$g = \frac{1}{4} \begin{pmatrix} \omega_1^2 + \sigma e^{2f} & \omega_1 \omega_2 & \omega_1 \\ \omega_1 \omega_2 & \omega_2^2 - \sigma e^{2f} & \omega_2 \\ \omega_1 & \omega_2 & 1 \end{pmatrix} = \frac{1}{4} \sigma e^{2f} \left(dx^2 - dy^2 \right) + \eta \otimes \eta, \eta = \frac{1}{2} (dz + \omega_1 dx + \omega_2 dy), \quad (2.20)$$

$$\xi = 2\frac{\partial}{\partial z}, \quad \varphi = \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ -\omega_2 & -\omega_1 & 0 \end{pmatrix}.$$
 (2.21)

It follows an almost paracontact metric manifold with

$$E = \frac{2e^{-f}}{\sqrt{\sigma}} \left(\frac{\partial}{\partial x} - \omega_1 \frac{\partial}{\partial z} \right), \quad \varphi E = \frac{2e^{-f}}{\sqrt{\sigma}} \left(\frac{\partial}{\partial y} - \omega_2 \frac{\partial}{\partial z} \right).$$
(2.22)

From

$$\begin{cases} [E,\xi] = \frac{2f_z\sigma + \sigma_z}{\sigma}E, \quad [\varphi E,\xi] = \frac{2f_z\sigma + \sigma_z}{\sigma}\varphi E\\ [E,\varphi E] = \frac{\sqrt{\sigma}}{e^{-f}} \left[E(\frac{e^{-f}}{\sqrt{\sigma}})\varphi E - \varphi E(\frac{e^{-f}}{\sqrt{\sigma}})E\right] + \frac{2e^{-2f}}{\sigma} \left(\frac{\partial\omega_1}{\partial y} - \frac{\partial\omega_2}{\partial x}\right)\xi \end{cases}$$
(2.23)

it follows that \mathcal{D} is integrable if and only if the 1-form $\omega_1 dx + \omega_2 dy$ is closed; hence η is closed. We have the Levi-Civita connection

$$\begin{cases} \nabla_E E = -\frac{\sqrt{\sigma}}{e^{-f}} E(\frac{e^{-f}}{\sqrt{\sigma}}) \varphi E + \frac{2f_z \sigma + \sigma_z}{\sigma} \xi \\ \nabla_E \varphi E = -\frac{4\sqrt{\sigma}}{e^{-f}} \varphi E(\frac{e^{-f}}{\sqrt{\sigma}}) E + \frac{e^{-2f}}{\sigma} \left(\frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x}\right) \xi \\ \nabla_E \xi = \frac{2f_z \sigma + \sigma_z}{\sigma} E + \frac{e^{-2f}}{\sigma} \left(\frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x}\right) \varphi E \end{cases}$$
(2.24)

$$\begin{cases} \nabla_{\varphi E} E = -\frac{4\sqrt{\sigma}}{e^{-f}} E(\frac{e^{-f}}{\sqrt{\sigma}}) \varphi E - \frac{e^{-2f}}{\sigma} \left(\frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x} \right) \xi \\ \nabla_{\varphi E} \varphi E = -\frac{4\sqrt{\sigma}}{e^{-f}} \varphi E(\frac{e^{-f}}{\sqrt{\sigma}}) E + \frac{2f_z \sigma + \sigma_z}{\sigma} \xi \\ \nabla_{\varphi E} \xi = \frac{e^{-2f}}{\sigma} \left(\frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x} \right) E + \frac{2f_z \sigma + \sigma_z}{\sigma} \varphi E \end{cases}$$
(2.25)

$$\nabla_{\xi}E = \frac{e^{-2f}}{\sigma} \left(\frac{\partial\omega_1}{\partial y} - \frac{\partial\omega_2}{\partial x}\right) \varphi E, \quad \nabla_{\xi}\varphi E = \frac{e^{-2f}}{\sigma} \left(\frac{\partial\omega_1}{\partial y} - \frac{\partial\omega_2}{\partial x}\right) E, \quad \nabla_{\xi}\xi = 0$$
(2.26)

and then

$$\alpha = 2f_z + \frac{\sigma_z}{\sigma}, \quad \beta = \frac{e^{-2f}}{\sigma} \left(\frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x} \right).$$
(2.27)

Hence, $(M, \varphi, \xi, \eta, g)$ is a para-Sasakian manifold if and only if

$$\sigma e^{2f} = \sigma e^{2f}(x, y), \quad \frac{\partial \omega_1}{\partial y} - \frac{\partial \omega_2}{\partial x} = -\sigma e^{2f}.$$
(2.28)

The first relation expresses the normality of the paracontact structure while the second condition means the metrical condition of the Definition 2.4 and yields the nonintegrability of \mathcal{D} since $I^{\mathcal{D}}(E,\varphi E) = -2\xi$. Some cases when both equations hold are: i) $\omega_1 = -y$, $\omega_2 = 0 = f$, $\sigma = 1$; ii) $\omega_1 = -y$, $\omega_2 = x$, $\sigma = 2$, f = 0.

Other examples of 3-dimensional (almost) paracontact manifolds appear in [6, 11, 12].

Example 2.11 On $M = \mathbb{R}^{2n+1}$ with the splitting $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ we consider a Heisenberg-type structure inspired by the contact metric example from [3, p. 60-61]:

$$g = \frac{1}{4} \begin{pmatrix} \delta_{ij} + y^i y^j & 0 & -y^i \\ 0 & -\delta_{ij} & 0 \\ -y^j & 0 & 1 \end{pmatrix}, \varphi = \begin{pmatrix} 0 & \delta_{ij} & 0 \\ \delta_{ij} & 0 & 0 \\ 0 & y^j & 0 \end{pmatrix}, \xi = 2\frac{\partial}{\partial z}, \eta = \frac{1}{2}(dz - \sum_{i=1}^n y^i dx^i).$$
(2.29)

It follows that $(\mathbb{R}^{2n+1}, \varphi, \xi, \eta, g)$ is a paracontact metric manifold with

$$\mathcal{D} = span\left\{A_i = \frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial z}, B_i = \frac{\partial}{\partial y^i}; 1 \le i \le n\right\}.$$
(2.30)

Two classes of invariant distributions are indexed by $k \in \{1, ..., n-1\}$:

$$\mathcal{V}_{k}^{even} = span\left\{A_{\alpha}, B_{\alpha}; 1 \le \alpha \le k\right\}, \mathcal{V}_{k}^{odd} = \mathcal{V}_{k}^{even} \cup \{\xi\}.$$

$$(2.31)$$

Let us remark that for n = 1 we recover the previous Example with: $\omega_1 = -y$, $\omega_2 = 0 = f$, $\sigma = 1$. It is a para-Sasakian manifold with nonintegrable \mathcal{D} : $[E,\xi] = [\varphi E,\xi] = 0$, $[E,\varphi E] = -2\xi$. The sectional curvature of the plane spanned by E and φE is

$$pK = K^M(E,\varphi E) = g(R(E,\varphi E)\varphi E, E) = g(\nabla_{\varphi E}\xi + 2\nabla_{\xi}\varphi E, E) = g(-E - 2E, E) = -3$$
(2.32)

similar to the metric contact case.

3. Infinitesimal paracontact-holomorphicity

Definition 3.1 The vector field $X \in \Gamma(TM)$ is called paracontact-holomorphic if

$$v_{\xi} \circ \mathcal{L}_X \varphi = 0. \tag{3.1}$$

Let $\mathfrak{phol}(M)$ be the set of all paracontact-holomorphic vector fields. The distribution \mathcal{V} is paracontact-holomorphic if its sections are elements of $\mathfrak{phol}(M)$.

The condition (3.1) says that for all vector fields Y we have that $(\mathcal{L}_X \varphi) Y$ is collinear with ξ ; let us denote $\alpha_X(Y)$ the collinearity factor. We have

$$\alpha_X(Y) = g([X, \varphi Y] - \varphi([X, Y]), \xi) = \eta([X, \varphi Y]).$$
(3.2)

The next result shows the invariance of the above defined holomorphicity and its proof is exactly as in [4]:

Proposition 3.2 Let X be a paracontact-holomorphic vector field on the normal almost paracontact metric manifold $(M, \varphi, \xi, \eta, g)$. Then φX is also a paracontact-holomorphic vector field.

Remarks 3.3 i) Fix X a paracontact-holomorphic vector field. Then computing $\alpha_X(\xi)$ with (3.2) we get

$$\alpha_X(\xi) = 0 \tag{3.3}$$

which means that $[X,\xi]$ is collinear with ξ , i.e. $v_{\xi}([X,\xi]) = 0$.

ii) The vanishing of the tensor field $N^{(3)} = \mathcal{L}_{\xi} \varphi$ means that ξ is a paracontact-holomorphic vector field with $\alpha_{\xi} = 0$.

iii) The paracontact-holomorphicity of a fixed X implies for every vector field Y

$$\mathcal{L}_X Y = \eta(\mathcal{L}_X Y)\xi + \varphi(\mathcal{L}_X \varphi Y), \quad \mathcal{L}_X \varphi Y = \alpha_X(Y)\xi + \varphi([X, Y]).$$
(3.4)

In both relations, the first term in the right-hand side belongs to $span\xi$ while the second belongs to \mathcal{D} .

By using these remarks we get:

Proposition 3.4 If $(M, \varphi, \xi, \eta, g)$ is a normal almost paracontact manifold then phol(M) is a Lie subalgebra in the Lie algebra of vector fields of M.

Proof Let X and Y be paracontact-holomorphic vector fields and Z an arbitrary vector field. Then

$$(\mathcal{L}_{[X,Y]}\varphi)Z = [X, (\mathcal{L}_Y\varphi)Z] - (\mathcal{L}_Y)([X,Z]) - [Y, (\mathcal{L}_X\varphi)Z] + (\mathcal{L}_X\varphi)([Y,Z]).$$
(3.5)

From the property of X, Y we have that the second and fourth terms are collinear with ξ . Also

$$[X, (\mathcal{L}_Y \varphi) Z] = X(\alpha_Y(Z))\xi - \alpha_Y(Z)[X, \xi]$$

and the first relation (3.4) gives that this expression is collinear with ξ . The same fact holds for the third term of (3.5).

As in the contact case we can express the paracontact-holomorphicity by the vanishing of some $\bar{\partial}$ -operator. More precisely, we define the map $\bar{\partial}: \Gamma(TM) \to End(TM)$ given by

$$\bar{\partial}(X)(Y) = \varphi \left(\nabla_Y X - \varphi (\nabla_{\varphi Y} X) + \varphi (\nabla_X \varphi) Y \right).$$
(3.6)

Thus, X is a paracontact-holomorphic vector field if and only if $\bar{\partial}(X) = 0$. For a general vector field X, if $(M, \varphi, \xi, \eta, g)$ is a para-Sasakian manifold then

$$\bar{\partial}(X)(\xi) = \varphi([\xi, X]) \tag{3.7}$$

and for $Y \in \mathcal{D}$ we have

$$\bar{\partial}(X)(Y) = \varphi\left(\nabla_Y X - \varphi(\nabla_{\varphi Y} X)\right). \tag{3.8}$$

If n = 1 then the expression (3.6) reduces to

$$\bar{\partial}(X)(Y) = \varphi \left(\nabla_Y X - \varphi (\nabla_{\varphi Y} X) - \eta(Y) (\alpha X + \beta \varphi X) \right).$$
(3.9)

CRASMAREANU and PIŞCORAN/Turk J Math

For the general n and using the canonical paracontact connection $\tilde{\nabla}$ of [14, p. 49] we have

$$\bar{\partial}(X)(Y) = \varphi \left(\tilde{\nabla}_Y X - \varphi (\tilde{\nabla}_{\varphi Y} X) + \varphi (\tilde{\nabla}_X \varphi) Y + 2\eta (X) (\varphi N^{(3)} Y - \varphi^2 N^{(3)} \varphi Y) - \eta (Y) \varphi N^{(3)} X \right).$$
(3.6*can*)

Recall now that on the cone $\mathcal{C}(M)$ we have

$$[(X, f\frac{d}{dt}), (Y, g\frac{d}{dt})] = \left([X, Y], (X(g) - Y(f) + f\frac{dg}{dt} - g\frac{df}{dt})\frac{d}{dt}\right)$$
(3.10)

which yields:

Proposition 3.5 Fix $X \in \Gamma(TM)$ and $f \in C^{\infty}(M \times \mathbb{R})$. Then $(X, f\frac{d}{dt})$ is a paraholomorphic vector field on the cone $\mathcal{C}(M)$ if and only if the following three conditions hold:

- $i) \ (\mathcal{L}_X \varphi) Y = -Y(f)\xi,$
- *ii)* $(\mathcal{L}_X \eta)(Y) = \varphi Y(f) + \eta(Y) \frac{df}{dt}$,
- *iii*) $\mathcal{L}_X \xi = -\frac{df}{dt} \xi$,

where $Y \in \Gamma(TM)$ is arbitrary. Consequently, if $(X, f\frac{d}{dt})$ is a paraholomorphic vector field on $\mathcal{C}(M)$ then X is paracontact-holomorphic vector field on M and f is a first integral if ξ .

Proof By using (3.10) we get with respect to J of (2.9)

$$\left(\mathcal{L}_{(X,f\frac{d}{dt})}J\right)(Y,0) = \left(\left(\mathcal{L}_X\varphi\right)Y + Y(f)\xi, \left(X(\eta(Y)) - \varphi Y(g) - \eta(Y)\frac{df}{dt} - \eta([X,Y])\right)\frac{d}{dt}\right)$$
(3.11)

$$\left(\mathcal{L}_{\left(X,f\frac{d}{dt}\right)}J\right)\left(0,\frac{d}{dt}\right) = \left(\left[X,\xi\right] + \frac{df}{dt}, -\xi(f)\frac{d}{dt}\right).$$
(3.12)

The paraholomorphicity of $(X, f\frac{d}{dt})$ means the vanishing of the above left-hand sides and this is equivalent with f being first integral of ξ and the relations i)-iii). However, with $Y = \xi$ in i) and using iii) it follows that $\xi(f) = 0$. The equation i) means that X is a paracontact-holomorphic vector field.

Corollary 3.6 The paracontact-holomorphic vector fields on M, which come about by projection of the paraholomorphic fields on $\mathcal{C}(M)$, form a Lie subalgebra of $\mathfrak{phol}(M)$, denoted by $\mathfrak{phol}_{pr}(M)$. They are paracontactholomorphic fields X with two additional properties:

a) The 1-form α_X is exact: there exists a smooth function f on M such that $\alpha_X = d(-f)$,

b) $\eta([X,\xi])$ is a (locally) constant, i.e. constant on any connected component of M.

Proof a) it results by applying η to i); more precisely $Y(-f) = \eta([X, \varphi Y])$ for all vector fields Y. By applying η to iii) we get $\frac{df}{dt} = \eta([\xi, X])$ and then around a point $p_0 \in M$ we have the following expression of f:

$$f(p,t) = \eta([\xi, X])(p)t - F(p).$$
(3.13)

Plugging this expression in a) we get: $Y(F) + Y(\eta([X,\xi]))t = \eta([X,\varphi Y])$ and it results in b).

Corollary 3.7 On a normal almost paracontact metric manifold $(M, \varphi, \xi, \eta, g)$ we have: iv) $a\xi$ is a contact-holomorphic vector field, for any function $a \in M$; so $a\xi \in phol(M)$ but it is not necessarily the case that $a\xi \in phol_{pr}(M)$,

v) $(\xi, c\frac{d}{dt})$ is a holomorphic vector field on $\mathcal{C}(M)$ if and only if c is a constant.

Proof The first part is a direct consequence of

$$(\mathcal{L}_{a\xi}\varphi)Y = a(\mathcal{L}_{\xi}\varphi)Y - \varphi Y(a)\xi.$$
(3.14)

Let us remark that the normality implies that $\alpha_{a\xi}(Y) = -\varphi Y(a)$. For the second part, from iii) of Proposition 3.5 it results that $\frac{dc}{dt} = 0$ while i) gives that Y(c) = 0 for all vector fields Y.

Proposition 3.8 Let $(M, \varphi, \xi, \eta, g)$ be a paracontact metric manifold. Then any two of the following conditions imply the third one:

(i) $(\mathcal{L}_X g)(Y, Z) = 0$ for all $Y, Z \in \Gamma(\mathcal{D})$,

(ii) $i_X d\eta$ is a closed form,

(iii) X is a paracontact-holomorphic vector field.

Proof It is a direct consequence of the formula

$$(\mathcal{L}_X g)(Y, \varphi Z) = (\mathcal{L}_X d\eta)(Y, Z) - g(Y, (\mathcal{L}_X \varphi)Z)$$
(3.15)

for all vector fields Y, Z.

Example 3.9 Returning to Example 2.11, let

$$X = \alpha^{i} A_{i} + \beta^{i} B_{i} + \gamma \xi = \alpha^{i} \frac{\partial}{\partial x^{i}} + \beta^{i} \frac{\partial}{\partial y^{i}} + (2\gamma + (\sum_{j=1}^{n} y^{j} \alpha^{j})) \frac{\partial}{\partial z}.$$
(3.16)

Then $X \in \mathfrak{phol}(M)$ if and only if the coefficients α and β satisfy the para-Cauchy-Riemann equations with respect to the variables (x, y) and are constant with respect to z:

$$\begin{cases} \frac{\partial \alpha^{i}}{\partial x^{j}} = \frac{\partial \beta^{i}}{\partial y^{j}}, & \frac{\partial \alpha^{i}}{\partial y^{j}} = \frac{\partial \beta^{i}}{\partial x^{j}} \\ \frac{\partial \alpha^{i}}{\partial z} = \frac{\partial \beta^{i}}{\partial z} = 0. \end{cases}$$
(3.17)

The following analogy with the contact case shows that these computations have a general nature:

Proposition 3.10 On a normal almost paracontact metric manifold there always exist (local) adapted frames $(E_i, \varphi E_i, \xi)$ consisting of contact-holomorphic vector fields. If the vector field X has the expression $X = \alpha^i E_i + \beta^i \varphi E_i + \gamma \xi$ then X is a paracontact-holomorphic vector field if and only if the coefficients α, β satisfy the generalized para-Cauchy–Riemann equations:

$$E_j(\alpha^i) = \varphi E_j(\beta^i), \quad \varphi E_j(\alpha^i) = E_j(\beta^i)$$
(3.18)

and are first integrals of ξ .

4. Appendix: The mixed sectional curvature

The main result of [4] is the Bochner-type Theorem 5.1 stated on page 206. The technical ingredient of this result is *the mixed sectional curvature*:

$$s_{mix}(\mathcal{V}, \mathcal{V}^{\perp}) = \sum K^M(e_i \wedge f_{\alpha})$$
(a.1)

where $\{e_i\}$ respectively $\{f_\alpha\}$ are local orthonormal frames for the given distribution. The cited Bochner-type result deals with an invariant distribution \mathcal{V} of dimension 2p + 1 in the Sasakian case and concerns the case $s_{mix} \geq 2(n-p)$.

The aim of this short Appendix is to compute this quantity for our example 2.10:

$$s_{mix}(\mathcal{D},\xi) = K^M(E \wedge \xi) + K^M(\varphi E \wedge \xi) = g(R(E,\xi)\xi,E) + g(R(\varphi E,\xi)\xi,\varphi E)$$
(a.2)

Since E is a space-like vector field while φE is a time-like one, a direct computation yields the vanishing: $s_{mix}(\mathcal{D},\xi) = 0.$

Acknowledgments

The authors are grateful to both referees for their several constructive remarks.

References

- Bejan CL, Crasmareanu M. Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann Global Anal Geom 2014; 46: 117–127.
- Blaga AM. Invariant and holomorphic distributions on para-Kenmotsu manifolds. Annali dell'Universita' di Ferrara (in press) DOI 10.1007/s11565-014-0220-5.
- Blair DE. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, Vol. 203. 2nd ed. Boston, MA, USA: Birkhäuser, 2010.
- [4] Brînzănescu V, Slobodeanu R. Holomorphicity and Walczak formula on Sasakian manifolds. J Geom Phys 2006; 57: 193–207.
- [5] Cappelletti Montano B. Bi-paracontact structures and Legendre foliations. Kodai Math J 2010; 33: 473–512.
- [6] Dacko P, Olszak Z. On weakly para-cosymplectic manifolds of dimension 3. J Geom Phys 2007; 57: 561–570.
- [7] Gündüzalp Y, Şahin B. Paracontact semi-Riemannian submersions. Turk J Math 2013; 37: 114–128.
- [8] Ivanov S, Vassilev D, Zamkovoy S. Conformal paracontact curvature and the local flatness theorem. Geom Dedicata 2010; 144: 79–100.
- Kaneyuki S, Williams FL. Almost paracontact and parahodge structures on manifolds. Nagoya Math J 1985; 99: 173–187.
- [10] Welyczko J. On Legendre curves in 3-dimensional normal almost contact metric manifolds. Soochow J Math 2007; 33: 929–937.
- [11] Welyczko J. On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results Math 2009; 54: 377–387.
- [12] Welyczko J. Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr J Math 2014; 11: 965–978.
- [13] Yüksel Perktas S, Tripathi MM, Kiliç K, Keles S. ξ[⊥]-submanifolds of para-Sasakian manifolds. Turk J Math 2014; 38: 905–919.
- [14] Zamkovoy S. Canonical connections on paracontact manifolds. Ann Global Anal Geom 2008; 36: 37–60.