Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $477-489$
(c) TÜBITTAK
doi:10.3906/mat-1503-102

On zeros of certain Dirichlet polynomials

Kajtaz H. BLLACA*
Department of Mathematics, University of Prishtina, Prishtina, Kosovo
Received: 31.03.2015 \quad Accepted/Published Online: 29.04.2015 \quad Printed: 30.07 .2015

Abstract

In this article we establish the zero-free region of certain Dirichlet polynomials $L_{F, X}$ arising in approximate functional equation for functions in the Selberg class and we prove an asymptotic formula for the number of zeros of $L_{F, X}$.

Key words: Selberg class, Dirichlet polynomial, approximate functional equation, distribution of zeros

1. Introduction

In view of plenty of examples of Dirichlet series in arithmetic it might be reasonable to ask for a classification and to search for common patterns in their analytic properties. There were several notable attempts to define classes of relevant Dirichlet series (e.g. [9, 10]); however, these classes were in some sense lacking algebraic structure. In 1989, Selberg [14] defined a general class of Dirichlet series having an Euler product, analytic continuation, and a functional equation of Riemann type (plus some side conditions), and formulated some fundamental conjectures concerning them. Especially these conjectures give this class of Dirichlet series a certain structure that applies to central problems in number theory.

The Selberg class of L-functions, denoted by \mathcal{S}, consists of the Dirichlet series

$$
L(s)=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}, \quad\left(a_{1}=1, a_{m} \in \mathbb{C}, \text { for } m=2,3,4, \ldots\right)
$$

which satisfy the following axioms.
(1) (ordinary Dirichlet series) The Dirichet series converges absolutely for $\sigma>1$.
(2) (Analytic continuation) There exists an integer $l \geq 0$ such that the function $(s-1)^{l} L(s)$ is an entire function of finite order.
(3) (Functional equation) L satisfies the following functional equation

$$
\phi(s)=\epsilon \bar{\phi}(1-s)
$$

where

$$
\phi(s)=A^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) L(s)=A^{s} G(s) L(s)
$$

[^0]
BLLACA/Turk J Math

$\bar{\phi}(s)=\overline{\phi(\bar{s})}$ and $r \geq 0, A>0, \lambda_{j}>0, \mu_{j} \in \mathbb{C}$ with $\Re\left(\mu_{j}\right) \geq 0,|\epsilon|=1$ are parameters depending on L.
(4) (Ramanujan hypothesis) For every $\epsilon>0$ we have $a_{m} \ll m^{\epsilon}$.
(5) (Euler product) For $\sigma>1$ we have

$$
\log L(s)=\sum_{m=1}^{\infty} \frac{b_{m}}{m^{s}}
$$

where $b_{m}=0$ unless $m=p^{n}$ with $n \geq 1$, and $b_{m} \ll m^{\theta}$ for some $\theta<1 / 2$.
In order to classify the Dirichlet series $L(s)$ in the Selberg class, it is convenient to introduce the degree d_{L} of $L \in \mathcal{S}$ as

$$
d_{L}=2 \sum_{j=1}^{r} \lambda_{j}
$$

For more information on properties of the Selberg class see e.g. [1, 6, 11, 12].
Representation of the function $L(s) \in \mathcal{S}$ in terms of the sum of two Dirichlet series valid for $0 \leq \Re(s) \leq 1$ is given by the approximate functional equation in the next theorem.
Theorem 1.1 [3, Theorem 8.3.3] Let $L(s) \in \mathcal{S}$ be entire and satisfy the axiom (3) of the Selberg class with $\lambda_{j}=\lambda$ for every $j=1,2, \ldots r$. Then there exists a smooth function $F:(0, \infty) \rightarrow \mathbb{C}$ such that for every $w \in \mathbb{C}$ with $0 \leq \Re(w) \leq 1$, we have

$$
\begin{equation*}
L(w)=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{w}} F\left(\frac{m}{R_{w}}\right)+\epsilon \lambda_{w} \sum_{m=1}^{\infty} \frac{\overline{a_{m}}}{m^{1-w}} \bar{F}\left(\frac{m}{R_{1-w}}\right) \tag{1.1}
\end{equation*}
$$

where $\lambda_{w}=A^{1-w} G(1-w) / A^{w} G(w), R_{w}=A \cdot \prod_{j=1}^{r}\left(3+\left|\lambda w+\mu_{j}\right|\right)^{\lambda}$.
Furthermore, the function F and its partial derivatives $F^{(k)},(k=1,2, \ldots)$ satisfy, for any $\sigma>0$, the following uniform growth estimates at 0 and ∞ :

$$
F(x)=\left\{\begin{array}{l}
1+O_{\sigma}\left(x^{\sigma}\right) \tag{1.2}\\
O_{\sigma}\left(x^{-\sigma}\right)
\end{array} \quad F^{(k)}(x)=O_{\sigma}\left(x^{-\sigma}\right)\right.
$$

The implied O_{σ}-constants depend only on σ, k, r.
The approximate functional equation (1.1) motivates the study of the properties of the Dirichlet polynomials $L_{F, X}(s)$ defined by

$$
L_{F, X}(s)=\sum_{m \leq X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)
$$

where F is a function satisfying properties stated in Theorem 1.1.
In this article we prove that there exists $\alpha, \beta \in \mathbb{R}$, such that all complex zeros of Dirichlet polynomial $L_{F, X}(s)$, where $s \in \mathbb{C}$ and $s=\sigma+i t$ lie inside the strip $\alpha<\sigma<\beta$, and prove that the number of zeros of polynomial $L_{F, X}$ with imaginary part in $[-T, T]$ is

$$
N_{F, X}(T)=\frac{T}{\pi} \log N+O(X), \quad \text { as } \quad T \rightarrow \infty
$$

and N is the largest integer less or the equal to X for which $a_{N} \neq 0$.

2. Approximate functional equation

The method of approximate functional equation is applied in a very general setting corresponding to the Selberg class in [2]. Lavrik [7] obtained an explicit approximate functional equation for a very wide class of L-functions (see [5] for a detailed exposition of more developments on these lines).

With careful analysis of the proof of Theorem 1.1 of approximate functional equation for the case when λ_{j} not all equal for $j=1,2, \ldots, r$ and $L(s) \in \mathcal{S}$ entire function or possesses a pole at $s=1$ we can prove the following

Theorem 2.1 Let $L(s) \in \mathcal{S}$. Define

$$
\begin{equation*}
Q_{w}=A \cdot \prod_{j=1}^{r}\left(3+\left|\lambda_{j} w+\mu_{j}\right|\right)^{\lambda_{j}}, \quad P_{w}=3+|w| \tag{2.1}
\end{equation*}
$$

Then there exists a smooth function $F:(0, \infty) \rightarrow \mathbb{C}$ such that for every $w \in \mathbb{C}$ with $0 \leq \Re(w) \leq 1$, we have

$$
L(w)=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{w}} F\left(\frac{m}{P_{w} Q_{w}}\right)+\epsilon \lambda_{w} \sum_{m=1}^{\infty} \frac{\overline{a_{m}}}{m^{1-w}} \bar{F}\left(\frac{m}{P_{1-w} Q_{1-w}}\right)
$$

where $\lambda_{w}=(-1)^{l} A^{1-w} G(1-w) / A^{w} G(w)$.
The function F and its partial derivatives $F^{(k)},(k=1,2, \ldots)$ satisfy condition (1.2).
Proof First, we suppose that $L(s)$ has a pole at $s=1$ of order l.
The proof of the theorem is very similar to the proof of Theorem 1.1 and so we will give only a sketch of the proof. Let $h(s)$ be a holomorphic function satisfying

$$
h(s)=h(-s)=\overline{h(\bar{s})}, \quad h(0)=1
$$

and which is bounded in vertical strip $-2<\sigma<2$. For every $w \in \mathbb{C}$, and $x>0$, we define

$$
\begin{equation*}
H_{w}(x)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{(s+w-1)^{l} G(s+w)}{(w-1)^{l} G(w)} h(s) x^{-s} \frac{d s}{s} \tag{2.2}
\end{equation*}
$$

We first derive an approximate functional equation in terms of the function H_{w}. Proceeding analogously to [3, Theorem 8.3.3], consider the integral

$$
I_{L}(w)=\frac{1}{2 \pi i} \int_{1+\epsilon-i \infty}^{1+\epsilon+i \infty} \frac{A^{s+w} G(s+w)(s+w-1)^{l} L(s+w)}{A^{w}(w-1)^{l} G(w)} h(s) \frac{d s}{s}
$$

and shift the line of integration to the line $\Re s=-1-\epsilon$ picking up a residue of the pole of the integrand at $s=0$. Applying the functional equation (axiom (3) of Selberg class), and then transforming $s \rightarrow-s$, we get

$$
\begin{equation*}
L(w)=I_{L}(w)+\epsilon \lambda_{w} I_{\tilde{L}}(1-w) \tag{2.3}
\end{equation*}
$$

where $\tilde{L}(s)=\sum_{m=1}^{\infty} \frac{\overline{a_{m}}}{m^{s}}$ denotes the dual L-function. Substituting the Dirichlet series for $L(s)$ and $\tilde{L}(s)$ and integrating term by term in (2.3), it follows that

$$
L(w)=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{w}} H_{w}\left(\frac{m}{A}\right)+\epsilon \lambda_{w} \sum_{m=1}^{\infty} \frac{\overline{a_{m}}}{m^{1-w}} H_{1-w}\left(\frac{m}{A}\right)
$$

The Stirling formula for the Gamma function (see, e.g. [3, p. 243]) yields

$$
\left|\frac{G(s+w)}{G(w)}\right| \ll Q_{w}^{\sigma} e^{\frac{\pi}{4} d_{L}|s|}
$$

and

$$
\left|\frac{s+w-1}{w-1}\right|^{l} \ll(|w|+3)^{\sigma}=P_{w}^{\sigma} .
$$

Setting

$$
F(x)=H_{w}\left(Q_{w} P_{w} x\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{(s+w-1)^{l} G(s+w)}{(w-1)^{l} G(w)} h(s)\left(Q_{w} P_{w} x\right)^{-s} \frac{d s}{s}
$$

following proof of [3, Theorem 8.3.3], we obtain

$$
\left(\frac{d}{d x}\right)^{k} F(x)=\delta_{\sigma, k}+O_{\sigma, k}\left(\int_{\sigma-i \infty}^{\sigma+i \infty} e^{\frac{\pi}{4} d_{L}|s|}(1+|s|)^{k}|h(s)| \cdot x^{-\sigma}|d s|\right)
$$

where

$$
\delta_{\sigma, k}= \begin{cases}1, & \sigma<0, k=0 \\ 0, & \text { otherwise }\end{cases}
$$

To complete the proof it is enough to choose a test function h with sufficient decay properties in the same way as in [3, p. 244].

If $L(s)$ is an entire function where λ_{j} are not all equal for $j=1,2, \ldots, r$ the proof is analogous to the proof of $\left[3\right.$, Theorem 8.3.3], where we take $\lambda=\max \left\{\lambda_{j}\right\}, l=0, Q_{w}=R_{w}$, and $P_{w}=1$.

3. Zero-free regions

Let $X \geq 2, L \in \mathcal{S}$ and let

$$
\begin{equation*}
L_{F, X}(s)=\sum_{m \leq X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right) \tag{3.1}
\end{equation*}
$$

where F is an arbitrary but fixed function satisfying conditions (1.2) and $q_{s}=Q_{s} P_{s}$, where Q_{s} and P_{s} are defined by (2.1).

In this section we derive a zero-free region for the function $L_{F, X}(s)$.
Theorem 3.1 Let $L_{F, X}(s)$ be given by (3.1). Then there exists α depending on X and β, such that $\left|L_{F, X}(s)\right|>0$ for $\Re s \geq \beta$ and $\Re s \leq \alpha$. In other words, we can find a rectilinear strip of the complex plane given by the inequality $\alpha<\Re s<\beta$ such that the zeros of $L_{F, X}(s)$ all lie in it.
Proof Let $s=\sigma+i t$. We show separately that $\left|L_{F, X}(s)\right|>0$ in the right-half plane $\sigma \geq \beta$ and in the left-half plane $\sigma \leq \alpha$. Since

$$
\left|L_{F, X}(s)\right| \geq\left|F\left(q_{s}^{-1}\right)\right|-\left|\sum_{2 \leq m \leq X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)\right|
$$

in order to show that $\left|L_{F, X}(s)\right|>0$ for $\sigma \geq \beta$ it is enough to find β such that

$$
\begin{equation*}
\left|\sum_{2 \leq m \leq X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)\right|<\left|F\left(q_{s}^{-1}\right)\right| \tag{3.2}
\end{equation*}
$$

Toward this end, from conditions (1.2) there exists δ_{F} such that for every $x \in\left(0, \delta_{F}\right)$, one has $|F(x)| \geq 1-C_{\sigma} x^{\sigma}$. Since q_{s} tends to infinity as $|s| \rightarrow \infty$ there exists A_{1} such that $|s| \geq A_{1}$ implies

$$
\begin{equation*}
\min _{|s| \geq A_{1}} q_{s} \geq \max \left\{X, \delta_{F}^{-1}\right\} \tag{3.3}
\end{equation*}
$$

Let $|s| \geq A_{1}$, then

$$
\frac{X}{q_{s}} \leq 1
$$

Since F has continuous derivatives F is continuous and bounded in $[0,1]$ by some constant C_{F}; therefore

$$
\begin{equation*}
\left|F\left(\frac{X}{q_{s}}\right)\right| \leq C_{F} \tag{3.4}
\end{equation*}
$$

Furthermore, $|s| \geq A_{1}$ implies that

$$
q_{s}^{-1} \in\left(0, \delta_{F}\right)
$$

yielding

$$
\begin{equation*}
\left|F\left(q_{s}^{-1}\right)\right| \geq 1-D_{\sigma} q_{s}^{-\sigma}>1-D_{\sigma} \delta_{F}^{\sigma}=d_{\sigma, F}>0 \tag{3.5}
\end{equation*}
$$

Using the axiom (4) of Selberg class with some $\epsilon \in(0,1)$ and (3.4) we have

$$
\begin{aligned}
\left|\sum_{m=2}^{X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)\right| & \leq \sum_{m=2}^{X} \frac{\left|a_{m}\right|}{m^{\sigma}}\left|F\left(\frac{m}{q_{s}}\right)\right| \\
& \leq C_{\epsilon} C_{F} \sum_{m=2}^{X} \frac{m^{\epsilon}}{m^{\sigma}} \leq C_{\epsilon} C_{F} \sum_{m=2}^{\infty} \frac{1}{m^{\sigma-\epsilon}}
\end{aligned}
$$

Now, for $\sigma \geq \beta_{1}>2$, we have

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{1}{m^{\sigma-\epsilon}} & \leq \sum_{m=2}^{\infty} \frac{1}{m^{\beta_{1}-\epsilon}}=\frac{1}{2^{\beta_{1}}} \sum_{m=2}^{\infty} \frac{4 \cdot 2^{\beta_{1}} \cdot 4^{-1}}{m^{2-\epsilon} m^{\beta_{1}-2}} \\
& =\frac{1}{2^{\beta_{1}}} \sum_{m=2}^{\infty}\left(\frac{4}{m^{2-\epsilon}}\left(\frac{2}{m}\right)^{\beta_{1}-2}\right) \\
& \leq \frac{1}{2^{\beta_{1}}} \sum_{m=2}^{\infty}\left(\frac{4}{m^{2-\epsilon}}\right)=\frac{1}{2^{\beta_{1}}} E_{\epsilon}
\end{aligned}
$$

where

$$
E_{\epsilon}=\sum_{m=2}^{\infty} \frac{4}{m^{2-\epsilon}}
$$

We get

$$
\begin{equation*}
\left|\sum_{m=2}^{X} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)\right| \leq \frac{1}{2^{\beta_{1}}} C_{\epsilon} C_{F} E_{\epsilon} . \tag{3.6}
\end{equation*}
$$

From (3.2), (3.5), and (3.6) taking

$$
\beta>\max \left\{2, A_{1}, \log _{2} \frac{C_{\epsilon} E_{\epsilon} C_{F}}{d_{\sigma, F}}\right\}
$$

we get $\left|L_{F, X}(s)\right|>0$ in the right-half plane $\sigma \geq \beta$.
Next, let N be the largest integer less than or equal to X such that $a_{N} \neq 0$. We start with

$$
\left|L_{F, X}(s)\right|=\left|\sum_{m=1}^{N-1} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)+\frac{a_{N}}{N^{s}} F\left(\frac{N}{q_{s}}\right)\right| \geq \frac{\left|a_{N}\right|}{N^{\sigma}}\left|F\left(\frac{N}{q_{s}}\right)\right|-\left|\sum_{m=1}^{N-1} \frac{a_{m}}{m^{\sigma}} F\left(\frac{m}{q_{s}}\right)\right|
$$

Since $\frac{X}{q_{s}}$ tends to 0 when $|s| \rightarrow \infty$ there exists $A_{2}>0$ such that $|s| \geq A_{2}$ implies that $\frac{X}{q_{s}}<\delta_{F}$; hence $\frac{m}{q_{s}} \in\left(0, \delta_{F}\right)$ for all $m=1,2, \ldots, N$. Therefore

$$
\left|F\left(\frac{N}{q_{s}}\right)\right|>d_{\sigma, F}
$$

and

$$
\left|F\left(\frac{m}{q_{s}}\right)\right| \leq 1+C_{\sigma} q_{s}^{-\sigma} m^{\sigma} \quad \text { for all } \quad m=1,2, \ldots, N-1
$$

Assume that $|s| \geq A_{2}$. Then

$$
\left|L_{F, X}(s)\right|>\frac{\left|a_{N}\right|}{N^{\sigma}} d_{\sigma, F}-\sum_{m=1}^{N-1} \frac{\left|a_{m}\right|}{m^{\sigma}}\left(1+C_{\sigma} q_{s}^{-\sigma} m^{\sigma}\right)
$$

and hence applying axiom (4) of Selberg class it is sufficient to find α_{1} such that

$$
\frac{1}{N^{\sigma}}>C_{\epsilon, \sigma} \sum_{m=1}^{N-1} \frac{m^{\epsilon}}{m^{\sigma}}+C_{\sigma} q_{s}^{-\sigma} C_{\epsilon, \sigma} \sum_{m=1}^{N-1} \frac{m^{\epsilon}}{m^{\sigma}} m^{\sigma}, \quad \text { for } \quad \sigma \leq \alpha_{1}
$$

where

$$
C_{\epsilon, \sigma}=\frac{C_{\epsilon}}{\left|a_{N}\right| d_{\sigma, F}}
$$

This would follow from the inequality

$$
\frac{1}{N^{\alpha_{1}}}>C_{\epsilon, \sigma} \sum_{m=1}^{N-1} \frac{m^{\epsilon}}{m^{\alpha_{1}}}+C_{\sigma} q_{s}^{-\sigma} C_{\epsilon, \sigma} \sum_{m=1}^{N-1} m^{\epsilon}
$$

Since

$$
C_{\sigma} q_{s}^{-\sigma} C_{\epsilon, \sigma} \sum_{m=1}^{N-1} m^{\epsilon} \leq C_{\sigma} q_{s}^{-\sigma} C_{\epsilon, \sigma}(N-1)^{\epsilon+1}
$$

and

$$
C_{\epsilon, \sigma} \sum_{m=1}^{N-1} \frac{m^{\epsilon}}{m^{\alpha_{1}}} \leq C_{\epsilon, \sigma}(N-1)^{\epsilon} \sum_{m=1}^{N-1} \frac{1}{m^{\alpha_{1}}}
$$

it suffices to show that

$$
\begin{equation*}
\frac{1}{N^{\alpha_{1}}}>(N-1)^{\epsilon} \sum_{m=1}^{N-1} \frac{1}{m^{\alpha_{1}}} \tag{3.7}
\end{equation*}
$$

For $\alpha_{1}<0$, we get

$$
\begin{aligned}
\sum_{m=1}^{N-1} \frac{1}{m^{\alpha_{1}}} & \leq(N-1)^{-\alpha_{1}}+\int_{1}^{N-1} \frac{d y}{y^{\alpha_{1}}} \\
& =(N-1)^{-\alpha_{1}}+\frac{(N-1)^{1-\alpha_{1}}}{1-\alpha_{1}}-\frac{1^{1-\alpha_{1}}}{1-\alpha_{1}} \\
& <(N-1)^{-\alpha_{1}}+\frac{(N-1)^{1-\alpha_{1}}}{1-\alpha_{1}}=(N-1)^{-\alpha_{1}}\left(1+\frac{N-1}{1-\alpha_{1}}\right) \\
& =(N-1)^{-\alpha_{1}}\left(\frac{N-\alpha_{1}}{1-\alpha_{1}}\right)
\end{aligned}
$$

Putting this in inequality (3.7) we get

$$
\left(\frac{N}{N-1}\right)^{-\alpha_{1}}>(N-1)^{\epsilon}\left(\frac{N-\alpha_{1}}{1-\alpha_{1}}\right)
$$

Letting $N \rightarrow \infty$ the left-hand side tends to $e^{\frac{-\alpha_{1}}{N-1}}$. Taking the logarithm in both sides, for $\epsilon<1 / 2$ we have admissible choice of α_{1}, which is given by

$$
\alpha_{1}=-2(N-1) \log N
$$

Finally, taking $\alpha=\min \left\{-A_{2}, \alpha_{1}\right\}$ we get $\left|L_{F, X}(s)\right|>0$ in the half plane $\sigma \leq \alpha$. This completes the proof of Theorem 3.1.

In the special case when $F \equiv 1$ we get the following proposition.
Proposition 3.2 Let

$$
L_{X}(s)=\sum_{m \leq X} \frac{a_{m}}{m^{s}}
$$

be the partial sum of $L(s) \in S$, where $X \geq 2$. Then we can find $\alpha, \beta \in \mathbb{R}$, and α depending on X such that $\left|L_{X}(s)\right|>0$, for $\Re s \geq \beta$ and $\Re s \leq \alpha$.
Proof Let $s=\sigma+i t$. Analogously as in Theorem 3.1 we show that $\left|L_{X}(s)\right|>0$ in the right-half plane $\sigma \geq \beta$ and in the left-half plane $\sigma \leq \alpha$. Since

$$
\left|L_{X}(s)\right|=\left|\sum_{m \leq X} \frac{a_{m}}{m^{s}}\right| \geq 1-\left|\sum_{2 \leq m \leq X} \frac{a_{m}}{m^{s}}\right|
$$

in order to show that $\left|L_{X}(s)\right|>0$ for $\sigma \geq \beta$ it sufficient to find β so that

$$
\begin{equation*}
\left|\sum_{2 \leq m \leq X} \frac{a_{m}}{m^{s}}\right|<1 \tag{3.8}
\end{equation*}
$$

Proceeding as in the proof of Theorem 3.1 we see that it suffices to take

$$
\beta>\max \left\{2, \log _{2} C_{\epsilon} E_{\epsilon}\right\}
$$

Therefore, $L_{X}(s) \neq 0$ in the half plane $\sigma \geq \beta$. Next, let N be the largest positive integer less than or equal to X for which $a_{N} \neq 0$. Since

$$
\left|L_{X}(s)\right|=\left|\sum_{m=1}^{N-1} \frac{a_{m}}{m^{s}}+\frac{a_{N}}{N^{s}}\right| \geq \frac{\left|a_{N}\right|}{N^{\sigma}}-\sum_{m=1}^{N-1} \frac{\left|a_{m}\right|}{m^{\sigma}}
$$

it is sufficient to show that

$$
\frac{\left|a_{N}\right|}{N^{\sigma}}>\sum_{m=1}^{N-1} \frac{\left|a_{m}\right|}{m^{\sigma}}, \quad \text { for } \quad \sigma \leq \alpha
$$

Analogously as in Theorem 3.1 it suffices to prove

$$
\frac{\left|a_{N}\right|}{N^{\sigma}}>1+C_{\epsilon} \cdot \sum_{m=2}^{N-1} \frac{m^{\epsilon}}{m^{\sigma}} \quad \text { for } \quad \sigma \leq \alpha
$$

For $\alpha<0$,

$$
\sum_{m=2}^{N-1} \frac{m^{\epsilon}}{m^{\alpha}} \leq \sum_{m=2}^{N-1} \frac{N^{\epsilon}}{m^{\alpha}}<N^{\epsilon} \sum_{m=2}^{N-1} \frac{1}{m^{\alpha}}<N^{\epsilon}(N-1)^{-\alpha}\left(\frac{N-\alpha}{1-\alpha}\right)
$$

and hence taking

$$
\alpha=-2(N-1) \log N
$$

we get $L_{X}(s) \neq 0$ in the half plane $\sigma \leq \alpha$, which completes the proof.

4. Distribution of zeros

Gonek and Ledoan [4] and Ledoan et al. [8] studied the distribution of zeros of partial sums of the Riemann zeta function

$$
\zeta_{X}(s)=\sum_{n \leq X} n^{-s}
$$

and the Dedekind zeta function of a cyclotomic field K

$$
\zeta_{K, X}(s)=\sum_{\|a\| \leq X} \frac{1}{\|a\|^{s}}
$$

and proved asymptotic formula for the number of zeros with an imaginary part in interval $[0, T]$, as $T \rightarrow \infty$.
In this section we prove analogous result for the Dirichlet polynomial $L_{F, X}(s)$ defined by (3.1).
In the proof of our main theorem, we will need the following lemma.

Lemma 1 [13, Part V, Ch.I, No. 77. Generalization of Descartes'Rule of Signs] Let $a_{1}, a_{2}, \ldots, a_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be real constants, $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. Denote by Z the number of real zeros of the entire function

$$
F(x)=a_{1} e^{\lambda_{1} x}+a_{2} e^{\lambda_{2} x}+\cdots+a_{n} e^{\lambda_{n} x}
$$

and by C the number of changes of sign in the sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$. Then $C-Z$ is a nonnegative even integer.

Let us denote by $\rho_{F, X}=\beta_{F, X}+i \gamma_{F, X}$ the complex zero, and by $N_{F, X}(T)$ the number of zeros of $L_{F, X}(s)$ with ordinates $-T \leq \gamma_{F, X} \leq T$. If T is the ordinate of a zero, then the number of zeros is to be defined as $\lim _{\epsilon \rightarrow 0^{+}} N_{F, X}(T+\epsilon)$, respectively as $\lim _{\epsilon \rightarrow 0^{+}} N_{X}(T+\epsilon)$.

Theorem 4.1 Let $L_{F, X}(s)$ be as in (3.1), and let $X, T \geq 2$. Let further N be the largest integer less than or equal to X such that $a_{N} \neq 0$. We have

$$
N_{F, X}(T)=\frac{T}{\pi} \log N+O(X), \text { as } T \rightarrow \infty
$$

The implied constants depend on σ, k, and r.
Proof Assuming that T does not coincide with the ordinate of any zero, we have

$$
N_{F, X}(T)=\frac{1}{2 \pi i} \int_{R} \frac{L_{F, X}^{\prime}(s)}{L_{F, X}(s)} d s
$$

where R is the rectangle with vertices at $\alpha-i T, \beta-i T, \beta+i T$, and $\alpha+i T$. Thus by the argument principle

$$
\begin{equation*}
2 \pi N_{F, X}(T)=\int_{R} \Im\left(\frac{L_{F, X}^{\prime}(s)}{L_{F, X}(s)}\right) d s=\Delta_{R} \arg L_{F, X}(s) \tag{4.1}
\end{equation*}
$$

where Δ_{R} denotes the change in $\arg L_{F, X}(s)$ around R in the positive direction.
To estimate the change in argument along the top edge of R we decompose $L_{F, X}(s)$ into its real part and its imaginary part. For $a_{m}=\sigma_{m}+i t_{m}$ and $s=\sigma+i t$, we get

$$
\begin{aligned}
L_{F, X}(s) & =\sum_{m=1}^{N} \frac{a_{m}}{m^{s}} F\left(\frac{m}{q_{s}}\right)=\sum_{m=1}^{N}\left(\sigma_{m}+i t_{m}\right) F\left(\frac{m}{q_{s}}\right) e^{-(\sigma+i t) \log m} \\
& =\sum_{m=1}^{N} F\left(\frac{m}{q_{s}}\right)\left[\frac{\sigma_{m} \cos (t \log m)+t_{m} \sin (t \log m)}{m^{\sigma}}\right] \\
& -i \sum_{m=1}^{N} F\left(\frac{m}{q_{s}}\right)\left[\frac{\sigma_{m} \sin (t \log m)-t_{m} \cos (t \log m)}{m^{\sigma}}\right]
\end{aligned}
$$

and hence

$$
\Im L_{F, X}(\sigma+i T)=-\sum_{m=1}^{N} F\left(\frac{m}{q_{s}}\right) \frac{\left.\sigma_{m} \sin (T \log m)-t_{m} \cos (T \log m)\right]}{m^{\sigma}}=-\sum_{m=1}^{N} \frac{b_{m}}{m^{\sigma}}
$$

BLLACA/Turk J Math

where we put

$$
b_{m}=F\left(\frac{m}{q_{s}}\right)\left[\sigma_{m} \sin (T \log m)-t_{m} \cos (T \log m)\right] .
$$

By Lemma 1, the number of zeros of $\Im L_{F, X}(s)$ in the interval $\alpha \leq \sigma \leq \beta$ is at most the number of changes of sign in the sequence $\left\{b_{m}\right\}_{m=1}^{N}$; hence it is $\ll X$.

Since the change in argument of $L_{F, X}(\sigma+i T)$ between two consecutive zeros of $\Im L_{F, X}(\sigma+i T)$ is at most π, it follows that

$$
\Delta_{[\alpha, \beta]} \arg L_{F, X}(\sigma+i T)=O(X)
$$

Similarly, at the bottom edge of R we get

$$
\Delta_{[\alpha, \beta]} \arg L_{F, X}(\sigma-i T)=O(X) .
$$

As s describes the right edge of R, equation (3.2) yields

$$
\left|L_{F, X}(s)-F\left(q_{s}^{-1}\right)\right|<\left|F\left(q_{s}^{-1}\right)\right|, \quad \text { for } \quad \sigma \geq \beta
$$

Since

$$
\Re\left(L_{F, X}(\beta+i t)-F\left(q_{s}^{-1}\right)\right) \leq\left|L_{F, X}(\beta+i t)-F\left(q_{s}^{-1}\right)\right|<\left|F\left(q_{s}^{-1}\right)\right|
$$

we get

$$
-\left|F\left(q_{s}^{-1}\right)\right| \leq \Re\left(L_{F, X}(\beta+i t)-F\left(q_{s}^{-1}\right)\right) \leq\left|F\left(q_{s}^{-1}\right)\right|,
$$

or, equivalently

$$
F\left(q_{s}^{-1}\right)-\left|F\left(q_{s}^{-1}\right)\right| \leq \Re\left(L_{F, X}(\beta+i t)\right) \leq F\left(q_{s}^{-1}\right)+\left|F\left(q_{s}^{-1}\right)\right|
$$

Now, if $F\left(q_{s}^{-1}\right)<0$ it follows that $\Re L_{F, X}(\beta+i t)<0$ and $F\left(q_{s}^{-1}\right) \geq 0$ yields $\Re L_{F, X}(\beta+i t)>0$, for $-T \leq t \leq T$; hence

$$
\Delta_{[-T, T]} \arg L_{F, X}(\beta+i t)=O(1) .
$$

Finally, along the left edge of R, since N is the largest integer less than or equal to X such that $a_{N} \neq 0$, we have

$$
\begin{aligned}
L_{F, X}(\alpha+i t) & =\sum_{1 \leq m \leq N} \frac{a_{m}}{m^{\alpha+i t}} F\left(\frac{m}{q_{s}}\right) \\
& =\sum_{1 \leq m \leq N} \frac{a_{m} N^{\alpha+i t} F\left(\frac{m}{q_{s}}\right)}{a_{N} m^{\alpha+i t} F\left(\frac{N}{q_{s}}\right)} \cdot \frac{a_{N} F\left(\frac{N}{q_{s}}\right)}{N^{\alpha+i t}},
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\Delta_{[-T, T]} \arg L_{F, X}(\alpha+i t) & =\Delta_{[-T, T]} \arg \left(1+\sum_{1 \leq m \leq N-1} \frac{a_{m} N^{\alpha+i t} F\left(\frac{m}{q_{s}}\right)}{a_{N} m^{\alpha+i t} F\left(\frac{N}{q_{s}}\right)}\right) \\
& +\Delta_{[-T, T]} \arg \left(\frac{a_{N} F\left(\frac{N}{q_{s}}\right)}{N^{\alpha+i t}}\right) .
\end{aligned}
$$

In the proof of Theorem 3.1 we noticed that

$$
\frac{\left|a_{N}\right|\left|F\left(\frac{N}{q_{s}}\right)\right|}{N^{\alpha}}>\sum_{1 \leq m \leq N-1} \frac{\left|a_{m}\right|}{m^{\alpha}}\left|F\left(\frac{m}{q_{s}}\right)\right| .
$$

Thus for any t, we get

$$
\begin{aligned}
\sum_{1 \leq m \leq N-1} \frac{a_{m} N^{\alpha+i t} F\left(\frac{m}{q_{s}}\right)}{\left.a_{N} m^{\alpha+i t} F\left(\frac{N}{q_{s}}\right) \right\rvert\,} & \leq \sum_{1 \leq m \leq N-1} \frac{\left|a_{m}\right| N^{\alpha}\left|F\left(\frac{m}{q_{s}}\right)\right|}{\left|a_{N}\right| m^{\alpha}\left|F\left(\frac{N}{q_{s}}\right)\right|} \\
& \leq \frac{N^{\alpha}}{\left|a_{N}\right|\left|F\left(\frac{N}{q_{s}}\right)\right|} \sum_{1 \leq m \leq N-1} \frac{\left|a_{m}\right|}{m^{\alpha}}\left|F\left(\frac{m}{q_{s}}\right)\right|<1
\end{aligned}
$$

and hence

$$
\Delta_{[-T, T]} \arg \left(1+\sum_{1 \leq m \leq N-1} \frac{a_{m} N^{\alpha+i t} F\left(\frac{m}{q_{s}}\right)}{a_{N} m^{\alpha+i t} F\left(\frac{N}{q_{s}}\right)}\right)=O(1)
$$

Furthermore

$$
\begin{aligned}
\frac{a_{N} F\left(\frac{N}{q_{s}}\right)}{N^{\alpha+i t}} & =a_{N} F\left(\frac{N}{q_{s}}\right) e^{(-\alpha-i t) \log N} \\
& =a_{N} F\left(\frac{N}{q_{s}}\right) e^{-\alpha \log N+t \arg N} e^{-i(t \log N+\alpha \arg N)}
\end{aligned}
$$

and hence for $-T \leq t \leq T$ we have

$$
\Delta_{[-T, T]} \arg \left(\frac{a_{N} F\left(\frac{N}{q_{s}}\right)}{N^{\alpha+i t}}\right)=-2 T \log N
$$

This proves that

$$
\Delta_{[-T, T]} \arg L_{F, X}(\alpha+i t)=-2 T \log N+O(1)
$$

Finally, since

$$
\begin{aligned}
\Delta_{R} \arg L_{F, X}(s) & =\Delta_{[\alpha, \beta]} \arg L_{F, X}(\sigma-i T)+\Delta_{[-T, T]} \arg L_{F, X}(\beta+i t) \\
& -\Delta_{[\alpha, \beta]} \arg L_{F, X}(\sigma+i T)-\Delta_{[-T, T]} \arg L_{F, X}(\alpha+i t) \\
& =O(X)+O(1)+O(X)+2 T \log N+O(1) \\
& =2 T \log N+O(X)
\end{aligned}
$$

substituting in (4.1) we obtain the Theorem.
We now have the following proposition as a special case when $F \equiv 1$.

Proposition 4.2 Let

$$
L_{X}(s)=\sum_{m \leq X} \frac{a_{m}}{m^{s}}
$$

be the partial sum of $L(s) \in \mathcal{S}$, where $X, T \geq 2$. Let further N be the largest integer less than or equal to X such that $a_{N} \neq 0$. We have

$$
N_{X}(T)=\frac{T}{\pi} \log N+O(X), \text { as } T \rightarrow \infty
$$

Proof Assuming that T does not coincide with the ordinate of any zero, by the argument principle

$$
\begin{equation*}
2 \pi N_{X}(T)=\Delta_{R} \arg L_{X}(s) \tag{4.2}
\end{equation*}
$$

where R is the rectangle with vertices at $\alpha-i T, \beta-i T, \beta+i T$ and $\alpha+i T$, and

$$
\begin{aligned}
\Delta_{R} \arg L_{X}(s) & =\Delta_{[\alpha, \beta]} \arg L_{X}(\sigma-i T)+\Delta_{[0, T]} \arg L_{X}(\beta+i t) \\
& -\Delta_{[\alpha, \beta]} \arg L_{X}(\sigma+i T)-\Delta_{[0, T]} \arg L_{X}(\alpha+i t)
\end{aligned}
$$

Similarly as in Theorem 4.1 to estimate the change in argument along the top and the bottom edge of R we decompose $L_{X}(s)$ into its real part and its imaginary part, using Lemma 1 we get

$$
\begin{equation*}
\Delta_{[\alpha, \beta]} \arg L_{X}(\sigma+i T)=O(X) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{[\alpha, \beta]} \arg L_{X}(\sigma-i T)=O(X) \tag{4.4}
\end{equation*}
$$

As s describes the right edge of $R,(3.8)$ yields

$$
\left|L_{X}(s)-1\right|<1
$$

It follows that $\Re L_{X}(\beta+i t)>0$ for $-T \leq t \leq T$. Hence,

$$
\begin{equation*}
\Delta_{[-T, T]} \arg L_{X}(\beta+i t)=O(1) \tag{4.5}
\end{equation*}
$$

Finally, along the left edge of R, analogously as in Theorem 4.1 letting N be the largest integer less than or equal to X such that $a_{N} \neq 0$, we get

$$
L_{X}(\alpha+i t)=\sum_{1 \leq m \leq N} \frac{a_{m}}{m^{\alpha+i t}}=\sum_{1 \leq m \leq N} \frac{a_{m} N^{\alpha+i t}}{a_{N} m^{\alpha+i t}} \cdot \frac{a_{N}}{N^{\alpha+i t}}
$$

and therefore

$$
\begin{aligned}
\Delta_{[-T, T]} \arg L_{X}(\alpha+i t) & =\Delta_{[-T, T]} \arg \left(1+\sum_{1 \leq m \leq N-1} \frac{a_{m} N^{\alpha+i t}}{a_{N} m^{\alpha+i t}}\right) \\
& +\Delta_{[-T, T]} \arg \left(\frac{a_{N}}{N^{\alpha+i t}}\right)
\end{aligned}
$$

Proceeding as in the proof of Theorem 4.1 it follows that

$$
\begin{equation*}
\Delta_{[-T, T]} \arg L_{X}(\alpha+i t)=-2 T \log N+O(1) \tag{4.6}
\end{equation*}
$$

We may now substitute (4.3), (4.4), (4.5), and (4.6) into (4.2) to obtain our claim.

BLLACA/Turk J Math

Acknowledgment

I would like to thank L. Smajlovic for supervising my PhD thesis as well as for helpful discussions and improvements of this article.

References

[1] Carletti E, Bragadin GM, Perelli A. On general L-functions. Acta Arith 1994; 66; 147-179.
[2] Chandrasekharan K, Narasimhan R. The approximate functional equation for a class of zeta-functions. Math Ann 1963; 152; 30-64.
[3] Goldfeld D. Automorphic forms and L-Functions for the group GL(n,R). Cambridge, UK: Cambridge University Press, 2006.
[4] Gonek SM, Ledoan AH. Zeros of partial sums of the Riemann zeta-function. Int Math Res Not IMRN 2010; 17751791.
[5] Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publications, Vol 53; 2004.
[6] Kaczorowski J. Axiomatic Theory of L-Functions: the Selberg class. Lecture Notes in Mathematics, New York, NY, USA: Springer, 2006, pp. 133-200.
[7] Lavrik AF. Functional equations of Dirichlet L-functions. Soviet Math Dokl 1966; 7; 1471-1473.
[8] Ledoan A, Roy A, Zaharescu A. Zeros of partial sums of the Dedekind zeta-function of a cylotomic field. Journal of Number Theory 2014; 136; 118-133.
[9] Lekkerkerker CG. On the zeros of a class of Dirichlet series. Proefschrift, van Gorcum and Comp N V 1955.
[10] Perelli A. General L-functions. Ann Mat Pura Appl 1982; 130; 287-306.
[11] Perelli A. A survey of the Selberg class of L-functions, part I. Milan J Math 2004; 73; 1-28.
[12] Perelli A. A survey of the Selberg class of L-functions, part II. Riv Mat Univ Parma 2004; 7; 3*; 83-118.
[13] Pólya G, Szegö G. Problems and Theorems in Analysis. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, vol.II. Classics Math. Berlin, Germany: Springer-Verlag, 1998.
[14] Selberg A. Old and new conjectures and result about a class of Dirichlet series. Collected papers, Vol. II. Berlin, Germany: Springer-Verlag; 1991, pp. 47-63.

[^0]: *Correspondence: kajtaz.bllaca@uni-pr.edu
 2010 AMS Mathematics Subject Classification: 11M26, 11M41.

