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Abstract: In this article we establish the zero-free region of certain Dirichlet polynomials Lr x arising in approximate
functional equation for functions in the Selberg class and we prove an asymptotic formula for the number of zeros of

prx.
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1. Introduction

In view of plenty of examples of Dirichlet series in arithmetic it might be reasonable to ask for a classification and
to search for common patterns in their analytic properties. There were several notable attempts to define classes
of relevant Dirichlet series (e.g. [9, 10]); however, these classes were in some sense lacking algebraic structure.
In 1989, Selberg [14] defined a general class of Dirichlet series having an Euler product, analytic continuation,
and a functional equation of Riemann type (plus some side conditions), and formulated some fundamental
conjectures concerning them. Especially these conjectures give this class of Dirichlet series a certain structure
that applies to central problems in number theory.

The Selberg class of L-functions, denoted by S, consists of the Dirichlet series
“a
L :E — =1,a, €C, f =2,3,4,...
(s) 2. o (a1 A, € or m )

which satisfy the following axioms.
(1) (ordinary Dirichlet series) The Dirichet series converges absolutely for o > 1.
(2) (Analytic continuation) There exists an integer [ > 0 such that the function (s — 1)'L(s) is an entire

function of finite order.

(3) (Functional equation) L satisfies the following functional equation

6(s) = ed(1 - )

where

¢(s) = A* [ T(\js + pj) L(s) = A*G(s)L(s),

=1
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B(s) = ¢(5) and r > 0,4 > 0,\; >0, pu; € C with R(u;) >0, |e| = 1 are parameters depending on L.
(4) (Ramanujan hypothesis) For every e > 0 we have a,, < m¢.

(5) (Buler product) For o > 1 we have
oo
log L(s) = ﬂ
og mz:: e
where b, =0 unless m = p" with n > 1, and b,, < m? for some 6 < 1/2.

In order to classify the Dirichlet series L(s) in the Selberg class, it is convenient to introduce the degree dj of
LeS as

dy = 223&».
j=1

For more information on properties of the Selberg class see e.g. [1, 6, 11, 12].

Representation of the function L(s) € S in terms of the sum of two Dirichlet series valid for 0 < (s) <1
is given by the approximate functional equation in the next theorem.
Theorem 1.1 [3, Theorem 8.3.3] Let L(s) € S be entire and satisfy the axiom (3) of the Selberg class with
Aj =X for every j=1,2,...7r. Then there exists a smooth function F : (0,00) — C such that for every w € C
with 0 < R(w) < 1, we have

0% () v 5 B () o

=1 m=1
where Ay = A'"G(1 — w) /A G(w), Ry = A-[Tj_; (3 + [Mw + p;])*.

Furthermore, the function F and its partial derivatives F*), (k=1,2,...) satisfy, for any o > 0, the

following uniform growth estimates at 0 and oo

1+ 04(27)
F(z) = F®) () = O, (277). (1.2)
Oy (279)

The implied O, -constants depend only on o, k,T.

The approximate functional equation (1.1) motivates the study of the properties of the Dirichlet polynomials
L x(s) defined by
B Qm ™M
Lrx(s) = Z mSF<qg>’
m<X

where F' is a function satisfying properties stated in Theorem 1.1.
In this article we prove that there exists «, 8 € R, such that all complex zeros of Dirichlet polynomial
Lp x(s), where s € C and s = o + it lie inside the strip a < o < 8, and prove that the number of zeros of

polynomial Lg x with imaginary part in [—T,T] is

T
NRX(T):;logN—i—O(X), as T — oo,

and N is the largest integer less or the equal to X for which ay # 0.
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2. Approximate functional equation

The method of approximate functional equation is applied in a very general setting corresponding to the Selberg
class in [2]. Lavrik [7] obtained an explicit approximate functional equation for a very wide class of L-functions
(see [5] for a detailed exposition of more developments on these lines).

With careful analysis of the proof of Theorem 1.1 of approximate functional equation for the case when
Aj not all equal for j =1,2,...,r and L(s) € S entire function or possesses a pole at s = 1 we can prove the

following

Theorem 2.1 Let L(s) € S. Define
Qw:A'H(3+|)‘jw+Mj|)>\jv Pw:3+|w|' (2'1)
j=1

Then there exists a smooth function F : (0,00) — C such that for every w € C with 0 < R(w) < 1, we have

> A m > Ay, — m
L(w) = Z mwF<Pwa) i €>\wmz::1 ml_wF<P1wQ1w>’

m=1

where Ay = (—1)! A" G(1 — w) /A" G (w).
The function F and its partial derivatives F®) (k=1,2,...) satisfy condition (1.2).

Proof First, we suppose that L(s) has a pole at s =1 of order .
The proof of the theorem is very similar to the proof of Theorem 1.1 and so we will give only a sketch of

the proof. Let h(s) be a holomorphic function satisfying

h(s) = h(=s) = h(s), h(0) =1,

and which is bounded in vertical strip —2 < o < 2. For every w € C, and « > 0, we define

1 oo (s 4w — 1)!'G (s + w) _.ds
H,(z) = %/2 w=1G(w) h(s)x - (2.2)

—100

We first derive an approximate functional equation in terms of the function H,,. Proceeding analogously to [3,

Theorem 8.3.3], consider the integral

1 [ AU G(s +w)(s +w — 1) L(s + w) ds
Te(w) = %/1 Av(w — 1)IG(w) ()5

+e—i00

and shift the line of integration to the line Rs = —1 — € picking up a residue of the pole of the integrand at
s = 0. Applying the functional equation (axiom (3) of Selberg class), and then transforming s — —s, we get

L(w) = I(w) + eI (1 —w), (2.3)

where L(s) = 3.°°_, @2 denotes the dual L-function. Substituting the Dirichlet series for L(s) and L(s) and

m=1 ms

integrating term by term in (2.3), it follows that
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The Stirling formula for the Gamma function (see, e.g. [3, p. 243]) yields

CW < Qge%dmsl
and
l
SO <l +8)7 = P
Setting
P = u(Qupar) = gt [ O )

following proof of [3, Theorem 8.3.3], we obtain

(%)kF(x) = 0ok + 0071@(/0

o+1i00

CFUII(1 4 [s))[h(s) -x-”|ds|),

—100

where

5. — 1, o<0, k=0
k=1 0, otherwise.

To complete the proof it is enough to choose a test function h with sufficient decay properties in the same way
as in [3, p. 244].

If L(s) is an entire function where \; are not all equal for j = 1,2,...,r the proof is analogous to the
proof of [3, Theorem 8.3.3], where we take A = max{\;}, [ =0,Q, = Ry, and P, = 1. O

3. Zero-free regions
Let X >2, L €S and let

Lex(s)= > z;”FQn) (3.1)

m<X
where F' is an arbitrary but fixed function satisfying conditions (1.2) and ¢s = QsPs, where Qs and P; are

defined by (2.1).

In this section we derive a zero-free region for the function Lp x(s).

Theorem 3.1 Let Lp x(s) be given by (3.1). Then there exists o depending on X and B, such that
|ILrx(s)] > 0 for Rs > B and Rs < a. In other words, we can find a rectilinear strip of the complex
plane given by the inequality o < Rs < [ such that the zeros of L x(s) all lie in it.

Proof Let s = o + it. We show separately that |Lg x(s)] > 0 in the right-half plane ¢ > § and in the
left-half plane ¢ < «. Since

Lex(s)| = [Flg; M)l =] > ::ZF<ZZ)

2<m<X

)
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in order to show that |Lp x(s)| > 0 for o > g it is enough to find 8 such that

> (i)

2<m<X

<|FP(g:7 )] (3.2)

Toward this end, from conditions (1.2) there exists d such that for every = € (0,dr), one has |F(z)| > 1-Crx” .
Since ¢s tends to infinity as |s| — oo there exists A; such that |s| > A; implies
min g5 > max{X,d,'}. (3.3)
[s|=Aq
Let |s| > Ay, then
X

— < 1.
ds

Since F' has continuous derivatives F' is continuous and bounded in [0,1] by some constant CF; therefore

()] <o »
Furthermore, |s| > A; implies that
g5 € (0,0r),
yielding
|F(g51)] > 1= Dogs® > 1 — Dy6§ = dp > 0. (3.5)

Using the axiom (4) of Selberg class with some € € (0,1) and (3.4) we have

X (M X |am| m
> tmp(2)|< 3 bell(2)
—=,m® \gs =, me qs
X me = 1
ooy ooy L
m=2 m=2
Now, for ¢ > 1 > 2, we have
IR « U S T o L e
Z mo—¢ — Z mbBi—€ 91 Z m2—€mbr—2
m=2 m=2 m=2

IN
B
K —_
[~
N
3
NES
~
|
]
Pb—‘
2

where
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We get

m=2

S ( )‘QﬁlchE. (3.6)

From (3.2), (3.5), and (3.6) taking

C.E.C
B > max {2,A1,10g2 F},

do‘,F

we get |Lpx(s)| > 0 in the right-half plane o > .
Next, let N be the largest integer less than or equal to X such that ay # 0. We start with

N—1 N—1
an N lan| N am m
mp ) > 92 - Smp (2.
> amr() s ()| = e () - | S s
X X

m=1 m=1
Since Z- tends to 0 when |s| — oo there exists Ay > 0 such that [s| = Ay implies that Z- < dp; hence

;—’S’ € (0,6p) for all m =1,2,...,N. Therefore
N
(5[ e
qs

‘F<m>‘ <14Cyq,°m? forall m=1,2,....N—1.
qs

|Lrx(s)| =

and

Assume that |s| > Ap. Then

N-1
a Am -0, 0
Lex() > W, o3 ol 4 0 gome),

m=1
and hence applying axiom (4) of Selberg class it is sufficient to find «; such that

N-1 .

_ m
N > Ce o Z o5 UCE,G me ma', for o< aq,
m=1
where
C
Cov=——.
7 lan|do.r
This would follow from the inequality
N-1
o G "Ceo > m".
m=1
Since
N-1
Coq‘:(’ce,n Z m < CUQ;UCG,G(N - 1)6+1
m=1
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and
N—1 me N—1 1
Ce,o’ S Ce O'(N - 1)6 )
mozl ? mal
m=1 m=1
it suffices to show that
N—1
1 . 1
Nor > (N-1) e (3.7)
m=1

For oy < 0, we get

(N* 1)17041 117(11

=(N-1)™ -
( ) + 1—0{1 1-0{1
(N =1t . N-1
N-py gt —(N-1) (1
< e ( ) R

—(N—1)™ (Zf_(jll).

Putting this in inequality (3.7) we get

N\ " (N-a
(N—l) >(N_1)<1—a1>'

Letting N — oo the left-hand side tends to eNTT Taking the logarithm in both sides, for € < 1/2 we have

admissible choice of a7, which is given by
a3 = —2(N —1)log N.

Finally, taking o = min{—A5, a1} we get |Lp x(s)| > 0 in the half plane o < a. This completes the proof of
Theorem 3.1. O

In the special case when F' =1 we get the following proposition.

Proposition 3.2 Let

Lx(s)= ) ==

m<X
be the partial sum of L(s) € S, where X > 2. Then we can find o, € R, and « depending on X such that
|[ILx(s)| >0, for Rs > 5 and Rs < «.

Proof Let s = o +it. Analogously as in Theorem 3.1 we show that |Lx(s)| > 0 in the right-half plane o > 3
and in the left-half plane ¢ < «. Since

Lx(s)|=| >

m<X

>1-

)

m
D o

2<m<X

am
mS
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in order to show that |Lx(s)| > 0 for o > § it sufficient to find 8 so that

am
X o

2<m< X

Proceeding as in the proof of Theorem 3.1 we see that it suffices to take
B > max{2,log, C.E.}.

Therefore, Lx(s) # 0 in the half plane 0 > 5. Next, let N be the largest positive integer less than or equal to
X for which ay # 0. Since

N-1

am | an| _ lan| Q|
Lx@I =] 2 Sh+ 3|2 §e ~ e
m=1 m=1

it is sufficient to show that

jaxl N~ ]

NS . for o<a
Ne mo
m=1
Analogously as in Theorem 3.1 it suffices to prove
x| N-1 e
N
No >14+C,- Z p—e for o<a.
m=2
For a <0,
N-1 . N-1 N-1
N¢ 1 N —
o< <N€Z<N€(N—1)‘a< O‘),
me me me l-a
m=2 m=2 m=2
and hence taking
a=—-2(N—-1)logN,

we get Lx(s) # 0 in the half plane o < «, which completes the proof. O
4. Distribution of zeros
Gonek and Ledoan [1] and Ledoan et al. [8] studied the distribution of zeros of partial sums of the Riemann

zeta function

Cx(s) = Z n~°

n<X
and the Dedekind zeta function of a cyclotomic field K

Ck,x(s) = Z @

llall <X

and proved asymptotic formula for the number of zeros with an imaginary part in interval [0,7], as T — 0.
In this section we prove analogous result for the Dirichlet polynomial Lp x(s) defined by (3.1).

In the proof of our main theorem, we will need the following lemma.
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Lemma 1 [13, Part V, Ch.I, No. 77. Generalization of Descartes’ Rule of Signs] Let a1, as,...,an, A1, A2, ..., An

be real constants, \1 < Ay < ... < A,. Denote by Z the number of real zeros of the entire function
F(z) = a1eM® + ae?® + - + a, e "

and by C the number of changes of sign in the sequence of numbers ay,as,...,a,. Then C'—Z is a nonnegative

even integer.

Let us denote by pp x = Br x +iyr x the complex zero, and by Np x(T') the number of zeros of Lp x(s)
with ordinates =1 < yp x < T. If T is the ordinate of a zero, then the number of zeros is to be defined as

lim, ,o+ Np x (T + €), respectively as lim. g+ Nx (T +¢€).

Theorem 4.1 Let Ly x(s) be as in (3.1), and let X, T > 2. Let further N be the largest integer less than or
equal to X such that ay # 0. We have

T
Npx(T) = ;1ogN—|—O(X), as T — 0.

The implied constants depend on o,k, and r.

Proof Assuming that 7' does not coincide with the ordinate of any zero, we have

1 L;’X(s)
Nex(T) = — [ 22Xy
rx(T) 27Ti/12LF7X(S) >

where R is the rectangle with vertices at o« —iT, 8 — i1, 3+ 4T, and «+ ¢T". Thus by the argument principle

9 Np x (T) = /R S <§§XX8> ds = Aparg Ly x(s), (4.1)

where Ag denotes the change in arg Lg x(s) around R in the positive direction.
To estimate the change in argument along the top edge of R we decompose Lp x(s) into its real part

and its imaginary part. For a,, = o, + it,, and s = o + it, we get

N N
Lex(s) =Y 2 ( ) =3 (o Htm)p(;”)e(am logm
m=1 ds m=1 s
B i F( ) [Um cos(tlogm) + t,, sin(¢tlog m)]

m=1 me

Z ( > lam sin(tlogm) — t,, cos(t log m)]

m=1 me

and hence
ol om sin(T logm) — t,, cos(T logm)] ol
SLpx(o +iT) = ZF( ) m (I logm) — b cosTlog Zm*m
=1
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where we put

by, =F (m) [0 sin(T logm) — t,,, cos(T logm)].

ds

By Lemma 1, the number of zeros of SLp x(s) in the interval o < o < § is at most the number of changes of
sign in the sequence {b,,}_;; hence it is < X .
Since the change in argument of Lp x (o +4T") between two consecutive zeros of SLp x (o +iT) is at

most 7, it follows that
Ajq garg Ly x (0 +iT) = O(X).

Similarly, at the bottom edge of R we get
A[Q,B] arg LF,X(O' - ZT) = O(X)
As s describes the right edge of R, equation (3.2) yields

ILrx(s) — F(g7")| < |F(g )], for o> 8.
Since
R(Lrx(B+it) — Flg; ") < [Lpx (8 +it) — F(g; )| < |F(g; M),
we get
—IF(TY)] < R(Lpx (B +it) — F(qTY) < [F(gTY)],

or, equivalently
Fg:") = |F(q; M) < R(Lpx(B+1it) < F(gs )+ |F(g )]

Now, if F(g;') < 0 it follows that RLrpx(B +it) < 0 and F(g7Y) > 0 yields RLpx (8 +it) > 0, for
—T <t <Tj; hence
A_rgarg Ly x (8 +it) = O(1).

Finally, along the left edge of R, since N is the largest integer less than or equal to X such that ay # 0,
we have

. am m
Lpx(a+it) = Z ma+itF<>

1<m<N ds
B am NOTHE () . anF ()
- 1<m<N aNmaHtF(q%) Nodi

and therefore

> am NP ))

1<m<N—1 aNmaJr”F( )

+ A7, arg (aNF(q]i))

= |13

A[fT,T] arg Lr x (a+it) = A[fT,T] arg (1 +
q

)

Na—l—it

486



BLLACA /Turk J Math

In the proof of Theorem 3.1 we noticed that

N L os
w7 e
Thus for any ¢, we get
a-+it m o m
tsmsN=1 aNmaJritF(%) 1<men—1 lay|m® F(qﬂ)‘

< X e <
e
qs

a |(1N| 1<m<N-1

and hence

qs

amNO‘”tF(ﬂ)

A[—T,T] arg (1 —+ Z

1<meN-1 aNmaHtF(ﬂ)

Furthermore

aNF(qﬂ) N )
L7 —anvF[l = e(—a—zt) log N
Na+1t N <qs)

N _ .
—aNF< e alogN+targNe z(tlogN-l—aargN)’

and hence for —T <t < T we have

N
A m — 9T 1looc N
[-T.T) 318 | ot = 08 LV.

This proves that
A_rarg Lp x (o +it) = —2T'log N + O(1).

Finally, since
Aparg Lrx(s) = A grarg Ly, x (0 —iT) + A_rryarg Ly, x (8 + it)
— A grarg L x (o +1T) — Aj_pryarg Lp x (o + it)
=0(X)+0(1)+0O(X)+2Tlog N + O(1),
=2Tlog N + O(X),

substituting in (4.1) we obtain the Theorem. O

We now have the following proposition as a special case when F = 1.
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Proposition 4.2 Let

Lx(s)= Y ==

m<X

be the partial sum of L(s) € S, where X,T > 2. Let further N be the largest integer less than or equal to X
such that any # 0.We have

Nx(T) = %logNJrO(X), as T — oo.
Proof Assuming that T does not coincide with the ordinate of any zero, by the argument principle
2nNx(T) = Agarg Lx(s), (4.2)
where R is the rectangle with vertices at o — 1, 8 —¢T, 8 + I and o + ¢TI, and
Agarg Lx(s) = A gjarg Lx (o —iT) + Ap ryarg Lx (8 + it)
— A, garg Lx (o +1T) — Ajg pp arg Lx (o + it).

Similarly as in Theorem 4.1 to estimate the change in argument along the top and the bottom edge of R we

decompose Lx(s) into its real part and its imaginary part, using Lemma 1 we get
A, g arg Lx (o +iT) = O(X), (4.3)

and
A[a”@:] arg Lx(O' — ’LT) = O(X), (44)

As s describes the right edge of R, (3.8) yields
|Lx(s)—1| < 1.
It follows that RLx (8 +it) > 0 for —T <t < T. Hence,
A_rryarg Lx(8 +it) = O(1). (4.5)

Finally, along the left edge of R, analogously as in Theorem 4.1 letting N be the largest integer less than or
equal to X such that ay # 0, we get

I " Gm, ayp NOTt ay
xla+it)= ) moatit ) aymotit  Natit’
1<m<N 1<m<N

and therefore

A L it) = A 1 am N
[—T,T) arg X(a + Zt) = [—T,T) arg + Z W
1<m<N-1

a
+ A7, arg (NTILt)
Proceeding as in the proof of Theorem 4.1 it follows that
A_rarg Lx (o +it) = —2T'log N + O(1). (4.6)

We may now substitute (4.3), (4.4), (4.5), and (4.6) into (4.2) to obtain our claim. O
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