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Abstract: In this paper we establish stability results for Ricci solitons under the Ricci flow, i.e. small perturbations of

the Ricci soliton result in small variations in the solution under Ricci flow.
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1. Introduction and preliminaries

Differential equations are interesting mathematical topics employed throughout the sciences for modeling

dynamic processes. When differential equations are difficult to be solved, we try to obtain qualitative information

about the long-term or asymptotic behavior of solutions. Ricci flow is a partial differential equation that evolves

a Riemannian metric ḡ on a manifold M under the following equation:

∂

∂t
g(t) = −2Ric(g(t)), g(0) = ḡ. (1.1)

It was introduced by Hamilton in his seminal paper [14] in order to study the geometry and topology of

manifolds. Ricci flow has been developed in the past several decades. In addition to being applied as a

useful tool in geometry, it also has some applications in other fields such as computer science [28] and physics

[18]. Therefore, it is important to study the equation of Ricci flow. There are some interesting questions

about this equation, such as stability. The term “stable” means that a stated property is not destroyed when

certain perturbations are made. The stability of solutions of differential equations is a quite difficult property

to determine. Even though various kinds of stability may be discussed, the one we study here is dynamical

stability. g̃ is dynamically stable if for ḡ belonging to a neighborhood of g̃ and sufficiently close to g̃ , the

solution g(t) of Ricci flow with initial value ḡ stays near g̃ forever.

Stability under the Ricci flow was first discussed by Ye [29]. He replaced the Ricci flow equation with normalized

Ricci flow
∂

∂t
g(t) = −2Ric(g(t)) +

2

n
rg(t),

where r =
∫
Rdµ∫
dµ

, and investigated stability of constant nonzero sectional curvature metrics. After him, Guenther

et al. [11] using maximal regularity theory [8] and center manifold analysis [9] studied stability of flat and Ricci-

flat metrics. The behavior of Ricci flow close to Ricci-flat metrics was also investigated in [16, 17, 26]. Knopf
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[21] obtained stability of locally RN -invariant solutions of Ricci flow. Schnürer et al. showed the stability of

Euclidean space [23] and hyperbolic space [24].

The objective of this paper is to investigate dynamical stability of the Ricci soliton g̃ on compact manifolds

under the following modified Ricci flow:

∂

∂t
g(t) = −2Ric(g(t))− LXg − 2ρg, g(0) = ḡ. (1.2)

Definition 1.1 A Ricci soliton is a fixed complete Riemannian manifold (Mn, g̃) that satisfies the equation

−2Ric(g̃) = LX g̃ + 2ρg̃ (1.3)

for some constant ρ and some complete vector field X on Mn , where LX g̃ denotes the usual Lie derivative

in the direction of the field X. A Ricci soliton is said to be a gradient Ricci soliton if its vector field X can be

written as the gradient of some function f : Mn → R . The function f is called a potential function for g̃ .

Equation (1.3) then becomes

−Ric(g̃) = ∇∇f + ρg̃.

g̃ is called shrinking, steady, or expanding if ρ < 0 , ρ = 0 , or ρ > 0 , respectively.

When either the vector field X is trivial, or the potential functional f is constant, g̃ is an Einstein metric. Thus,

Ricci solitons are natural generalizations of Einstein metrics. They were introduced by Hamilton [15]. Indeed,

they are equivalent to the self-similar solution of the Ricci flow [14]. That is, these solutions evolve by rescalings

and diffeomorphisms of the initial metric, and so they can be regarded as fixed points of the Ricci flow on the

space of Riemannian metrics modulo diffeomorphisms and scalings. They are also of great importance owing to

their relationship with singularities of the Ricci flow (see [2, 15, 25]). Ricci solitons also are discussed in string

theory in physics (see [1, 7, 10]).

Theorem 1.2 (Perelman) Every compact Ricci soliton is a gradient Ricci soliton.

For more details on Ricci solitons we refer the reader to [3]. Ricci solitons are stationary points of the modified

Ricci flow (1.2) and so remain unchanged throughout the flow. For analytic reasons, we study the following

flow, which is similar to Ricci–DeTurck flow:

∂

∂t
g(t) = −2Ric(g(t)) +∇iWj +∇jWi − LXg − 2ρg, g(0) = ḡ, (1.4)

where Wi = gik(Γ
k
rs − Γ̃k

rs)g
rs . We use Γ̃, ∇̃ to denote respectively the Christoffel symbol and the covariant

derivative with respect to g̃ . Here g̃ denotes the Ricci soliton.

Variational stability of gradient Ricci solitons was studied for the first time by Cao et al. [4]. Since Ricci

solitons are critical points of Perelman’s λ-entropy and ν -entropy, they displayed the second variation of λ and

ν functionals and, according to the second variation, explored the linear stability of some examples. For more

results on stability of Ricci solitons with respect to the second variation of Perelman’s ν -functional see [6, 5, 13].

Kröncke [22] considered a modified τ -flow with X(t) = −gradg(t)fg(t) where fg(t) is a smooth function produced

by minimizing Perelman’s entropy functional and examined the stability of compact shrinking Ricci solitons

under the flow. Guenther et al. [12] demonstrated linear stability of some nongradient homogeneous expanding
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Ricci solitons. Jablonski et al. studied the linear stability of algebric Ricci solitons on simply connected solvable

Lie groups [19] and expanding Ricci solitons with bounded curvature [20]. In the linear stability of Ricci solitons

after normalizing Ricci flow, one applies the DeTurck trick and linearizes the flow at a fixed point:

∂

∂t
h = Lh := ∆Lh+ 2λh+ LXh,

where ∆L is the Lichnerowicz Laplacian. A stationary solution of the previous equation is strictly (resp. weakly)

linearly stable if the operator L has a negative (resp. nonpositive) spectrum. Following Guenther et al. [11],

one applies Simonett’s stability theorem to deduce dynamical stability from linear stability.

2. Equivalency of flows

In this section we show that (1.1) and (1.2) are equivalent.

Lemma 2.1 Let (Mn, ḡ(t̄))t̄∈[0,T̄) be a solution to (1.2). Define (Mn, g(t))t∈[0,T ) by

g(t) = (1 + 2ρt)φ∗
t (ḡ (t̄)) ,

where φt denotes the diffeomorphisms generated by the family of vector fields Yt(x) = 1
1+2ρtX(x) on Mn ,

t̄(t) = ln(1+2ρt)
2ρ , and T = e2ρT̄−1

2ρ . Then g(t) is a solution of the Ricci flow.

Proof We prove it by calculating.

∂

∂t
g(t) = 2ρφ∗

t (ḡ(t̄)) + (1 + 2ρt)
∂

∂t
φ∗
t (ḡ(t̄))

= 2ρφ∗
t (ḡ(t̄)) + (1 + 2ρt)φ∗

t (LYt ḡ)

+(1 + 2ρt)φ∗
t

(dt̄
dt

(−2Ric(ḡ)− LX ḡ − 2ρḡ)
)

= 2ρφ∗
t (ḡ(t̄)) + φ∗

t (LX ḡ)− 2Ric(g)− φ∗
t (LX ḡ)− 2ρφ∗

t (ḡ(t̄))

= −2Ric(g(t)),

and hence g(t) is a solution of the Ricci flow. 2

Lemma 2.2 Let (Mn, ḡ(t̄))t̄∈[0,T̄) be a solution to (1.1). Define (Mn, g(t))t∈[0,T ) by

g(t) = e−2ρtφ∗
t (ḡ(t̄)),

where t̄(t) = e2ρt−1
2ρ , T = ln(1+2ρT̄ )

2ρ , and φt denotes the 1-parameter family of maps φt :M
n −→Mn satisfying

∂

∂t
φt(p) = (φt)∗Xp, φ0(p) = p

for all p ∈Mn . Then g(t) solves the modified Ricci flow.
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Proof By calculating we have

∂

∂t
g(t) = −2ρe−2ρtφ∗

t (ḡ(t̄)) + e−2ρt ∂

∂t
φ∗
t (ḡ(t̄))

= −2ρe−2ρtφ∗
t (ḡ(t̄)) + e−2ρtL[(φ−1

t )∗(φt)∗X](φ
∗
t ḡ(t̄)) + e−2ρtφ∗

t (e
2ρt(−2Ric(ḡ(t̄)))

= −2ρg(t) + LXg(t)− 2Ric(g(t)).

We show how to go from a solution of (1.4) back to a solution of the modified Ricci flow. 2

Lemma 2.3 If g(t) is a solution of (1.4), we claim that ḡ(t) = φ∗
t g(t) is a solution to the modified Ricci flow,

where φt :M
n −→Mn defined by

∂

∂t
φt(p) = −W (φt(p)) +Xφt(p) − φt∗(Xp), φ0(p) = p

is a 1-parameter family of maps.

Proof We have

∂

∂t
ḡ =

∂

∂t
φ∗
t g(t)

= φ∗
t (−2Ric(g(t)) + LW (t)g(t)− LXg − 2ρg)

+L[(φ−1
t )∗(−W (t)+X−φt∗X)](φ

∗
t g(t))

= −2Ric(ḡ(t)) + φ∗
t (LW (t)g(t))− φ∗

t (LXg)− 2ρḡ − L(φ−1
t )∗W (t)(φ

∗
t g(t))

+L(φ−1
t )∗X

(φ∗
t g(t))− L(φ−1

t )∗(φt)∗X
(φ∗

t g(t))

= −2Ric(ḡ(t))− LX ḡ − 2ρḡ.

2

3. Stability and main results

In this section we shall focus on investigating the stability of Ricci solitons.

Lemma 3.1 Let g(t) be a solution to (1.4). The evolution equations for gij and gij in coordinate form satisfy

the following equation:

∂

∂t
gij = gαβ∇̃α∇̃βgij − gαβgipg̃

pqR̃jαqβ − gαβgjpg̃
pqR̃iαqβ

+
1

2
gαβgpq(∇̃igpα · ∇̃jgqβ + 2∇̃αgjp · ∇̃qgiβ − 2∇̃αgjp · ∇̃βgiq

−2∇̃jgpα · ∇̃βgiq − 2∇̃igpα · ∇̃βgjq)

−∇̃iXj − ∇̃jXi + gαβ(∇̃igjβ + ∇̃jgiβ − ∇̃βgij)Xα − 2ρgij . (3.1)
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By this equation we also have

∂

∂t
gij = gαβ∇̃α∇̃βg

ij + gαβgikgjlgkpg̃
pqR̃lαqβ

+gαβgikgjlgplg̃
pqR̃kαqβ + gαβgip∇̃αg

jq · ∇̃βgpq + gαβgjq∇̃αg
ip · ∇̃βgpq

+
1

2
gαβgpqgikgjl · (2∇̃αgpl · ∇̃βgqk + 2∇̃lgpα · ∇̃βgqk + 2∇̃kgpα · ∇̃βgql

−2∇̃αgpl · ∇̃qgβk − ∇̃kgpα · ∇̃lgqβ)

+gikgjl(∇̃kXl + ∇̃lXk) + gikgjlgαβ(∇̃βgkl − ∇̃kglβ − ∇̃lgkβ)Xα + ρgij .

Proof In Shi’s paper [27], the evolution equation was obtained for solutions to Ricci–DeTurck flow in coordinate

form as follows.

∂

∂t
gij = gαβ∇̃α∇̃βgij − gαβgipg̃

pqR̃jαqβ − gαβgjpg̃
pqR̃iαqβ

+
1

2
gαβgpq(∇̃igpα · ∇̃jgqβ + 2∇̃αgjp · ∇̃qgiβ − 2∇̃αgjp · ∇̃βgiq

−2∇̃jgpα · ∇̃βgiq − 2∇̃igpα · ∇̃βgjq)

Using Shi’s results, the lemma is clear. 2

Remark 3.2 One writes A < B for symmetric 2-tensor A and B if B−A is a nonnegative definite quadratic

form, that is, if (B −A)(V, V ) ≥ 0 for all vectors V .

Definition 3.3 Let g be a metric on Mn . Let ε > 0 . Then we say that g is ε-close to ḡ if

(1 + ε)−1ḡ ≤ g ≤ (1 + ε)ḡ.

We prove the following theorem.

Theorem 3.4 Suppose gij(x, t) > 0 is a solution of (1.4). Then for any δ > 0 there exists a constant T such

that

(1− δ)ḡij(x) ≤ gij(x, t) ≤ (1 + δ)ḡij(x), x ∈M, 0 ≤ t ≤ T.

First, we prove the following lemmas. We may always choose a local coordinate around a fixed point p , so that

at p we have

ḡij(p) = δij , gij(p) = δijλi(p). (3.2)

Lemma 3.5 Suppose gij(x, t) is a solution of (1.4). Then for any δ > 0 there exists a constant T such that

gij(x, t) ≥ (1− δ)ḡij(x), x ∈M, 0 ≤ t ≤ T.
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Proof Define

φ(x, t) = gα1β1 ḡβ1α2g
α2β2 ḡβ2α3g

α3β3 ḡβ3α4 . . . g
αmβm ḡβmα1 .

In the selected local coordinate we have

φ(x, t) =
n∑

k=1

(
1

λk
)m,

and thus
∂φ

∂t
= m(

1

λi
)m−1 ∂

∂t
gii.

Using Lemma 3.1 and as in [27] Lemma 2.2, we see that

∂φ

∂t
≤ gαβ∇̃α∇̃βφ+

2m

λmi λq
g̃ipR̃iqpq +m(

1

λi
)m−1

(
(
1

λi
)2(LXg)ii +

1

λ i
ρ
)
.

Since M is compact, there is a constant c such that

|2m
λq

g̃ipR̃iqpq +m(
1

λi
)(LXg)ii +mρ| ≤ c.

It is easy to see that

∂φ

∂t
≤ gαβ∇̃α∇̃βφ+ cφ.

We define
φ(t) = max

x∈M
φ(x, t).

Using the maximal principle, we get

dφ

dt
≤ cφ, φ(0) = n.

Thus, we have

φ(x, t) ≤ nect ∀x ∈M.

If 0 ≤ t ≤ 1
c ln 2, then φ(x, t) ≤ 2n ; that is,

∑n
k=1(

1
λk

)m ≤ 2n . Then ( 1
λk

)m ≤ 2n ∀k and λk ≥ ( 1
2n )

1/m ∀k .
According to the selected coordinate it follows that

gij(x, t) ≥ (
1

2n
)1/mḡij(x).

Let m be an integer so that log 2n
log (1/(1−δ)) ≤ m ≤ log 2n

log (1/(1−δ)) + 1. Therefore, (1/2n)1/m ≥ 1− δ and

gij(x, t) ≥ (1− δ)ḡij(x), x ∈M, 0 ≤ t ≤ 1

c
ln 2.

2

Lemma 3.6 Suppose gij(x, t) is a solution of (1.4). Then for any δ > 0 there exists a constant T such that

gij(x, t) ≤ (1 + δ)ḡij(x), x ∈M, 0 ≤ t ≤ T.
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Proof Define

ψ(x, t) = ḡα1β1gβ1α2 ḡ
α2β2gβ2α3 ḡ

α3β3gβ3α4 . . . ḡ
αmβmgβmα1 .

By (3.2) we have ψ(x, t) =
∑n

k=1(λk)
m. Using Lemma 3.1,

∂ψ

∂t
= m(λi)

m−1 ∂

∂t
gii

= m(λi)
m−1

(
gαβ∇̃α∇̃βgii − 2

λi
λα
g̃pqR̃iαqα +

1

2λqλp
(∇̃igpq · ∇̃igpq + 2

∇̃qgip · ∇̃pgiq − 2∇̃qgip · ∇̃qgip − 4∇̃igpq · ∇̃qgip)− (λi)
2(LXg)

ii − 2ρλi

)

and then

∂ψ

∂t
= gαβ∇̃α∇̃βψ − m

λα
(∇̃αgij)

2
[
(λ)m−2

i + (λi)
m−3(λj) + · · ·+ (λj)

m−2
]

+(λi)
m
(
− 2

m

λα
g̃pqR̃iαqα +

m

2λiλqλp
(∇̃igpq · ∇̃igpq + 2∇̃qgip · ∇̃pgiq

−2∇̃qgip · ∇̃qgip − 4∇̃igpq · ∇̃qgip)− λi(LXg)
ii − 2ρ

)
.

Since M is compact, there exists a constant c such that

∂ψ

∂t
≤ gαβ∇̃α∇̃βψ + cψ, ψ(x, 0) = n.

Using the maximal principle, it follows that

ψ(x, t) ≤ nect.

If we let 0 ≤ t ≤ 1
c ln 2, we have ψ(x, t) ≤ 2n ; that is,

∑n
k=1(λk)

m ≤ 2n . Thus, λk ≤ (2n)1/m ∀k . By (3.2) we

have

gij(x, t) ≤ (
1

2n
)1/mḡij(x).

Let m be an integer so that log 2n
log (1/(1+δ)) ≤ m ≤ log 2n

log (1/(1+δ)) + 1. Therefore, (1/2n)1/m ≤ 1 + δ and

gij(x, t) ≤ (1 + δ)ḡij(x), x ∈M, 0 ≤ t ≤ 1

c
ln 2.

A combination of Lemmas 3.5 and 3.6 easily gives Theorem 3.4. 2

Lemma 3.7 Let g ∈ M∞(Mn, [0, T )) , 0 < T < ∞ , be a solution to (1.4), which is ε-close to the g̃ . If ε is

sufficiently small, then

∂

∂t
|g − g̃|2 ≤ gαβ∇̃α∇̃β |g − g̃|2 + C|g − g̃|2.
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Proof We choose a local coordinate around a fixed point p , so that at p we have

g̃ij(p) = δij , gij(p) = δijλi(p). (3.3)

Then by (3.3) we find

|g − g̃|2 = (gij − g̃ij)(gkl − g̃kl)g̃
ikg̃jl = (gii − g̃ii)

2. (3.4)

Lemma 3.1 yields

∂

∂t
|g − g̃|2 = 2

∑
i

(gii − g̃ii)(
∂

∂t
gii)

= 2
∑
i

(gii − g̃ii)
(
gαβ∇̃α∇̃βgii − 2

λi
λq
R̃iqiq +

1

2λqλp
(∇̃igpq · ∇̃igpq

+2∇̃qgip · ∇̃pgiq − 2∇̃qgip · ∇̃qgip − 4∇̃igpq · ∇̃qgip)

−(LXg)ii − 2ρλi

)
. (3.5)

From (3.4) it follows that

∇̃α∇̃β |g − g̃|2 = 2(gii − g̃ii)∇̃α∇̃β(gii − g̃ii) + 2∇̃α(gii − g̃ii)∇̃β(gii − g̃ii). (3.6)

We use ∗ as in [14]. Substituting (3.6) and (3.3) into (3.5) gives

∂

∂t
|g − g̃|2 = gαβ∇̃α∇̃β |g − g̃|2 − 2

1

λα
∇̃α(gii − g̃ii)∇̃α(gii − g̃ii)

+λi(λi − 1)
(
− 4

1

λq
R̃iqiq − λi(LXg)

ii − 2ρ
)
+ (λi − 1)(∇̃g ∗ ∇̃g)ii

≤ gαβ∇̃α∇̃β |g − g̃|2 + (λi − 1)2
(
− 4

1

λq
R̃iqiq − λi(LXg)

ii − 2ρ
)

+(λi − 1)
(
− 4

1

λq
R̃iqiq − λi(LXg)

ii − 2ρ
)

≤ gαβ∇̃α∇̃β |g − g̃|2 + (λi − 1)2| − 4
1

λq
R̃iqiq − λi(LXg)

ii − 2ρ|

+c1(λi − 1)2| − 4
1

λq
R̃iqiq − λi(LXg)

ii − 2ρ|,

where c1 is a fixed enough big number. Then we have

∂

∂t
|g − g̃|2 ≤ gαβ∇̃α∇̃β |g − g̃|2 + C|g − g̃|2,

where C is a constant. 2
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Theorem 3.8 Let g ∈ M∞(Mn, [0, T )) , 0 < T < ∞ , be a solution to (1.4). Let δ > 0 . Then there exists

ε = ε(n, T, δ) such that supMn |ḡ − g̃| ≤ ε implies

sup
Mn×[0,T )

|g − g̃| ≤ δ.

Proof Let g ∈ M∞(Mn, [0, T )), T > 0, be a solution to (1.4). By Lemma 3.4 and the maximum principle

we have

sup|g(t)− g̃|2 ≤ |ḡ − g̃|eCt.

Fix ε = δe−CT where C is the constant in Lemma 3.7, and then

sup|g(t)− g̃|2eC(T−t) ≤ sup|ḡ − g̃|2eCT ≤ εeCT = δ.

2

Theorem 3.9 Let g ∈ M∞(Mn, [0, T )) , T > 0 , be a solution to (1.4). If sup |g − g̃| < 1
3 then for a =

8|R̃m|+ 8|R̃ic|+ divX we have ∫
|g − g̃|2dµg̃ ≤ eat

∫
|g(0)− g̃|2dµg̃.

Therefore, for a < 0 we have L2 -norm stability.

Proof

∂

∂t

∫
|g − g̃|2dµg̃ ≤

∫
gαβ∇̃α∇̃β |g − g̃|2 − (2− 1

3
)|∇̃(g − g̃)|2 − 4(gii − g̃ii)g

αβgipg̃
pqR̃iαqβ

−2(gii − g̃ii)((LXg)ii + 2ρgii)dµg̃

≤ −
∫

∇̃αg
αβ∇̃β |g − g̃|2 − (2− 1

3
)|∇̃(g − g̃)|2 − 4(gii − g̃ii)g

αβgipg̃
pqR̃iαqβ

−2(gii − g̃ii)((LX(g − g̃))ii + (LX g̃)ii + 2ρg̃ii + 2ρ(gii − g̃ii))dµg̃

≤
∫

−(2− 3(
1

3
))|∇̃(g − g̃)|2 − 4(gii − g̃ii)g

αβgipg̃
pqR̃iαqβ + 4(gii − g̃ii)R̃ii

−4ρ|g − g̃|2 − 2(gii − g̃ii)(LX(g − g̃))iidµg̃,

where we applied Kato’s inequality |∇̃|h||2 ≤ |∇̃h|2 , which is valid whenever |h| ̸= 0. Furthermore, we used

that |∇̃αg
αβ∇̃β |h|2| ≤ 2( 13 )|∇̃h|

2 and that g̃ satisfies equation (1.3). Let h = g− g̃ , for the last term in previous

inequality; we have ∫
(LXh)iihiidµg̃ =

∫
(−1

2
divX|h|2 − 2R̃k

i hkjh
ij − 2ρ|h|2)dµg̃

and then

∂

∂t

∫
|h|2dµg̃ ≤

∫
−4hiig

αβgipg̃
pqR̃iαqβ + 4hiiR̃ii − 4ρ|h|2 + divX|h|2 + 4R̃k

i hkjh
ij + 4ρ|h|2.
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In the local coordinate mentioned in Lemma 3.7 we get

−(gii − g̃ii)g
αβgipg̃

pqR̃iαqβ = − λi
λα

(λi − 1)R̃iαiα

= λi(λi − 1)(1− 1

λα
)R̃iαiα − λi(λi − 1)R̃iαiα

= λi(λi − 1)(1− 1

λα
)R̃iαiα − (λi − 1)2R̃iαiα − (λi − 1)R̃iαiα

=
λi
λα

(λi − 1)(λα − 1)R̃iαiα + |h|2|R̃ic| − hiiR̃ii

≤ 2|R̃m||h|2 + |h|2|R̃ic| − hiiR̃ii

and then
∂

∂t

∫
|h|2dµg̃ ≤

∫
(8|R̃m|+ 8|R̃ic|+ divX)|h|2,

and hence

∥g − g̃∥L2 ≤ eat∥g(0)− g̃∥L2 .

2
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