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doi:10.3906/mat-1402-75

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

A note on m-embedded subgroups of finite groups

Juping TANG1, Long MIAO2,∗

1Wuxi Institute of Technology, Wuxi, P. R. China
2School of Mathematical Sciences, Yangzhou University,

Yangzhou, P. R. China

Received: 27.02.2014 • Accepted/Published Online: 11.03.2015 • Printed: 30.07.2015

Abstract: Let A be a subgroup of G . A is m-embedded in G if G has a subnormal subgroup T and a {1 ≤ G} -
embedded subgroup C such that G = AT and T ∩A ≤ C ≤ A . In this paper, we study the structure of finite groups by

using m-embedded subgroups and obtain some new results about p -supersolvability and p -nilpotency of finite groups.
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1. Introduction

Throughout the paper, all groups are finite. Most of the notation is standard and can be found in [3, 6, 10, 11].

Let F be a class of groups. F is said to be a formation provided that (1) if G ∈ F and H ⊴ G , then

G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩N is in F . A formation F is said to be saturated

if G ∈ F whenever G/Φ(G) ∈ F . It is well known that the class of all p -supersolvable groups and the class

of all p -nilpotent groups are saturated formations. Let A be a subgroup of G , K ≤ H ≤ G and p a prime.

Then: (1) A covers the pair (K,H) if AH = AK ; (2) A avoids (K,H) if A ∩ H = A ∩ K . Recall that a

subgroup A of G is called a CAP-subgroup [3, A, Definition 10.8] if A either covers or avoids each pair (K,H),

where H/K is a chief factor of G . A subgroup A is called a partial CAP-subgroup [1] or a semicover-avoiding

subgroup [8] of G if A either covers or avoids each pair (K,H), where H/K is a factor of some fixed chief

series of G . By using the CAP-subgroups and the semicover-avoiding subgroups, group theorists have obtained

many interesting results (see, for example, [2, 4, 9]). Furthermore, if E is a quasinormal subgroup of G , then

for every maximal pair of G , that is, a pair (K,H), where K is a maximal subgroup of H , E either covers

or avoids (K,H). Based on the definitions and properties above, Guo and Skiba presented a new concept as

follows:

Definition 1.1 (7) Let A be a subgroup of G and Σ = G0 ≤ G1 ≤ . . . ≤ Gn some subgroup series of G . Then

A is Σ-embedded in G if A either covers or avoids every maximal pair (K,H) such that Gi−1 ≤ K < H ≤ Gi ,

for some i .

Here we improve Theorem 4.1 of [7], and present a result of p -nilpotency of group G with some “extra

hypothesis”, where p is an odd prime divisor of |G| . Meanwhile, we study the structure of G under the
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assumption of G is p-solvable, where p is a prime divisor of |G| .

Theorem 1.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . Suppose that every

maximal subgroup P1 of P is m-embedded in G . Then G is p-nilpotent if one of the following conditions holds:

(1) NG(P1) is p-nilpotent for every maximal subgroup P1 of P .

(2) NG(P ) is p-nilpotent.

Theorem 1.3 Let G be a p-solvable group and P a Sylow p-subgroup of G . If every maximal subgroup of P

is m-embedded in G , then G is p-supersolvable.

Theorem 1.4 Let G be a p-solvable group and p a prime divisor of |G| . If every maximal subgroup of Fp(G)

containing Op′ (G) is m-embedded in G , then G is p-supersolvable.

2. Preliminaries

For the sake of convenience, we first list here some known results that will be useful in the sequel.

Lemma 2.1 (7, Lemma 2.13) Let K and H be subgroups of G . Suppose that K is m-embedded in G and

H is normal in G . Then

(1) If H ≤ K , then K/H is m-embedded in G/H .

(2) If K ≤ E ≤ G , then K is m-embedded in E .

(3) If (|H|, |K|) = 1 , then HK/H is m-embedded in G/H .

(4) Suppose that K is a p-subgroup for some prime p , K is m-embedded in G , and K is not {1 ≤ G}-embedded

in G . Then G has a normal subgroup M such that |G : M | = p and G = KM .

Lemma 2.2 (7, Lemma 2.14) Let P be a normal nonidentity p-subgroup of G with |P | = pn and P∩Φ(G) =

1 . Suppose that there is an integer k such that 1 ≤ k < n and the subgroups of P of order pk are m-embedded

in G , then some maximal subgroup of P is normal in G .

Lemma 2.3 (7, Lemma 2.5) Every {1 ≤ G}-embedded subgroup of G is subnormal in G .

3. The proofs

Proof of Theorem 1.1 Assume that the assertion is false and choose G to be a counterexample of minimal

order. We will divide the proof into the following steps.

(1) Op′ (G) = 1.

In fact, if Op′ (G) ̸= 1, then we consider the quotient group G/Op′ (G). If NG(P1) is p -nilpotent, then

NG/O
p
′ (G)(P1Op′ (G)/Op′ (G)) = NG(P1)Op′ (G)/Op′ (G)

is p -nilpotent. By Lemma 2.1(3), G/Op′ (G) satisfies the conditions of the theorem, and the minimal choice

of G implies that G/Op′ (G) is p -nilpotent. Hence G is p -nilpotent, a contradiction. Similarly, if NG(P ) is

p -nilpotent, then we have G/Op′ (G) is p -nilpotent also, a contradiction.

(2) If S is a proper subgroup of G containing P , then S is p -nilpotent.
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If NG(P1) is p -nilpotent, clearly, NS(P1) ≤ NG(P1) and then NS(P1) is p -nilpotent. Applying Lemma

2.1(2), we find that S satisfies the hypothesis of our theorem. Now, the minimal choice of G implies that S is

p -nilpotent. If NG(P ) is p -nilpotent, then we still obtain that S is p -nilpotent since NS(P ) ≤ NG(P ).

(3) Op(G) ̸= 1 and G/N is p -nilpotent, where N = Op(G) is the unique minimal normal subgroup of

G .

Case I . NG(P1) is p-nilpotent.

Since G is not p-nilpotent, NG(Z(J(P ))) is not p -nilpotent by the Glauberman–Thompson Theorem,

where J(P ) is the Thompson subgroup of P . Then P ≤ NG(Z(J(P ))). By (2), we have NG(Z(J(P ))) = G

and hence Op(G) ̸= 1. Let N be a minimal normal subgroup of G contained in Op(G).

If N = P , then G/N is p-nilpotent. If |P : N | = p , then G = NG(N) is p -nilpotent, a contradiction.

Now we may assume that |P : N | > p . For every maximal subgroup P1/N of P/N ,

NG/N (P1/N) = NG(P1N)/N = NG(P1)/N

is p-nilpotent and P1/N is m-embedded in G/N by Lemma 2.1(1). Therefore G/N satisfies the hypothesis

of the theorem, and hence G/N is p-nilpotent. Obviously, N is the unique minimal normal subgroup of G

contained in Op(G) and Φ(G) = 1. Then we obtain that N = Op(G) is an elementary abelian p -group.

Case II . NG(P ) is p -nilpotent.

Since G is not p -nilpotent, by Corollary of [12], there exists a characteristic subgroup H of P such

that NG(H) is not p -nilpotent. Since NG(P ) is p -nilpotent, we may choose a characteristic subgroup H of P

such that NG(H) is not p-nilpotent, but NG(K) is p -nilpotent for any characteristic subgroup K of P with

H < K ≤ P . Since P ≤ NG(H) and NG(H) is not p -nilpotent, we have NG(H) = G by (2). This leads to

Op(G) ̸= 1 and NG(K) is p-nilpotent for any characteristic subgroup K of P such that Op(G) < K ≤ P .

Now by using Corollary of [12] again, we see that G/Op(G) is p -nilpotent and |P : Op(G)| > p . Let N be a

minimal normal subgroup of G contained in Op(G).

Since |P : N | > p , P/N is a Sylow p -subgroup of G/N , and

NG/N (P/N) = NG(PN)/N = NG(P )/N

is p-nilpotent and every maximal subgroup P1/N of P/N is m-embedded in G/N by Lemma 2.1(1). Therefore

G/N satisfies the hypothesis of the theorem, and hence G/N is p -nilpotent. Obviously, N is the unique minimal

normal subgroup of G contained in Op(G) and Φ(G) = 1. Then we obtain that N = Op(G) is an elementary

abelian p -group.

(4) G = PQ , where Q is a Sylow q -subgroup of G and q ̸= p is a prime divisor of |G| .
By (3), immediately we obtain that G is p -solvable, and then by (1) CG(N) = N since N ≤ CG(N) ≤

N . For any q ∈ π(G) with q ̸= p , Theorem 6.3.5 of [5] implies that there exists a Sylow q -subgroup Q

of G such that G1 = PQ is a subgroup of G . If G1 < G , then G1 is p -nilpotent by (2). This leads to

Q ≤ CG(N) ≤ N , a contradiction. Thus G = PQ .

(5) The final contradiction.

Since N ≰ Φ(G), there exists a maximal subgroup M of G such that G = NM and N ∩M = 1. Let

Mp be Sylow p -subgroup of M . Firstly, we may assume that Mp ̸= 1. Otherwise, Mp = 1 and then P = N .

If NG(P ) is p-nilpotent, then G is p -nilpotent, a contradiction. If NG(P1) is p -nilpotent, then there exists a
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maximal subgroup P1 of P such that P1 is normal in G by Lemma 2.2. Therefore G = NG(P1) is p -nilpotent,

a contradiction. Now we may obtain the final contradiction as follows.

Now we pick a maximal subgroup P1 of P such that Mp ≤ P1 . By hypothesis, P1 is m-embedded in

G , that is, G has a subnormal subgroup T and a {1 ≤ G}-embedded subgroup C such that G = P1T and

P1 ∩ T ≤ C ≤ P1 . Applying Lemma 2.3, we obtain that C ≤ Op(G) = N .

Assume that C ̸= 1. If C < N , then for N ∩M = 1, we obtain C neither covers nor avoids maximal

pair (M,G), a contradiction. Hence we may assume that C = N , i.e. N ≤ P1 and then P = NMp ≤ P1 < P ,

a contradiction.

Assume that C = 1. The Sylow p-subgroup of T is cyclic with order p . It follows from N ≤ Op(G) ≤ T

that |N | = p . Therefore M ∼= G/N = NG(N)/CG(N) is isomorphic to a subgroup of Aut(N), and then M is

cyclic with order qα by (4), that is, Mp = 1, a contradiction.

The final contradiction completes our proof.

Proof of Theorem 1.2 Assume that the assertion is false and choose G to be a counterexample of minimal

order. Furthermore, we have that

(1) Op′ (G) = 1.

If L = Op′ (G) ̸= 1, we consider G/L . Clearly, P1L/L is a maximal subgroup of Sylow p -subgroup of

G/L where P1 is a maximal subgroup of P . Since P1 is m-embedded in G , we have P1L/L is also m-embedded

in G/L by Lemma 2.1(3). Therefore G/L satisfies the condition of the theorem. The minimal choice of G

implies that G/L is p -supersolvable, and hence G is p -supersolvable, a contradiction.

(2) Op(G) ̸= 1.

Since G is p-solvable and Op′ (G) = 1, we have that a minimal normal subgroup of G is an abelian

p -group and hence Op(G) ̸= 1.

(3) Final contradiction.

By (2), we may pick a minimal normal subgroup N of G contained in Op(G). If N = P then G/N

is p -supersolvable. If N = P1 , where P1 is a maximal subgroup of P , then G/N is p-supersolvable. Now we

may assume that |P : N | > p . By Lemma 2.1(1), we know that G/N satisfies the condition of the theorem,

and hence the minimality of G implies that G/N is p -supersolvable; on the other hand, since the class of all

p -supersolvable groups is a saturated formation, we have N is the unique minimal normal subgroup of G and

Op(G) = N ≰ Φ(G). If Op(G) = P , then by Lemma 2.2, some maximal subgroup of P is normal in G , a

contradiction. Now we may assume that N < P .

Clearly, there exists a maximal subgroup M of G such that G = NM with N ∩M = 1 and P = NMp

with Mp ̸= 1. Now we choose a maximal subgroup P1 with Mp ≤ P1 . By hypothesis, P1 is m-embedded in

G . Therefore G has a subnormal subgroup T and a {1 ≤ G} -embedded subgroup C such that G = P1T and

P1 ∩ T ≤ C ≤ P1 . On the other hand, we know that C ≤ Op(G). Therefore C ≤ N . If 1 < C < N , then

for N ∩M = 1, we have C neither covers nor avoids maximal pair (M,G). Now we may assume that either

C = N or C = 1. By the choice of P1 , we immediately have P1 ∩ T = 1 and then the Sylow p -subgroup of

T is cyclic with order p . It follows from N ≤ Op(G) ≤ T that |N | = p . Therefore G is p -supersolvable since

G/N p -supersolvable, a contradiction.

The final contradiction completes our proof.
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Proof of Theorem 1.3. Assume that the assertion is false and choose G to be a counterexample of minimal

order. Furthermore, we have that

(1) Op′ (G) = 1.

If T = Op′ (G) ̸= 1, we consider G/T . Firstly, Fp(G/T ) = Fp(G)/T . Let M/T be a maximal subgroup

of Fp(G/T ). Then M is a maximal subgroup of Fp(G) containing Op′ (G). Since M is m-embedded in G ,

then M/T is m-embedded in G/T by Lemma 2.1(3). Thus G/T satisfies the hypothesis of the theorem. The

minimality of G implies that G/T is p -supersolvable and so is G , a contradiction.

(2) Φ(G) = 1 and Fp(G) = F (G) = Op(G).

If not, then L = Φ(G) ̸= 1. We consider G/L . Since Op′ (G) = 1, it is easy to show that Fp(G) =

F (G) = Op(G). This implies that Fp(G/L) = Op(G/L) = Op(G)/L = Fp(G)/L . If P1/L is a maximal

subgroup of Fp(G/L), then P1 is a maximal subgroup of Fp(G). Since P1 is m-embedded in G and hence

P1/L is m-embedded in G/L by Lemma 2.1(1). Thus G/L satisfies the hypothesis of the theorem. The minimal

choice of G implies that G/L is p -supersolvable and so is G , since the class of all p -supersolvable groups is a

saturated formation, a contradiction.

(3) Every minimal normal subgroup of G contained in F (G) is cyclic of order p .

By (2), P = F (G) = R1 × · · · × Rt , where Ri (i = 1, 2, · · · , t) is a minimal normal subgroup of G

contained in F (G). At the same time, Lemma 2.2 implies that t ≥ 2. Since G is p -solvable and Op′ (G) = 1,

we have CG(Op(G)) ≤ Op(G). Thus CG(F (G)) = F (G). Suppose that there exists Ri such that |Ri| > p .

Without loss of generality, let i = 1 and R = R2×· · ·×Rt . Obviously, we may assume that P/R∩Φ(G/R) = 1,

in fact, if P/R ∩ Φ(G/R) ̸= 1, then P/R ≤ Φ(G/R) since R1
∼= P/R is a chief factor of G . Therefore

P ≤ Φ(G)R and then P = P ∩ Φ(G)R = R(P ∩ Φ(G)) = R , a contradiction. Applying Lemma 2.1(1), G/R

satisfies the hypothesis of the theorem and we have that some maximal subgroup of P/R is normal in G/R by

Lemma 2.2, which contradicts the minimality of R1 . Therefore every Ri is of order p .

(4) The final contradiction.

By (3), P = F (G) = R1 × · · · ×Rt , where Ri is a minimal normal subgroup of G of order p . For each

i the quotient G/CG(Ri) is a subgroup of Aut(Ri) and hence is abelian. Since the class of all p -supersolvable

groups is a formation, we have G/
∩t

i=1(CG(Ri)) is p -supersolvable, and thus G/F (G) is p -supersolvable

because
∩t

i=1(CG(Ri)) = CG(F (G)) = F (G). Actually, all chief factors of G below F (G) are cyclic groups of

order p ; therefore G is p -supersolvable.

The final contradiction completes our proof.

4. Applications

Obviously, if H is {1 ≤ G} -embedded in G , then H is m-embedded in G . Therefore we have the following

corollaries.

Corollary 4.1 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . If every maximal

subgroup P1 of P is {1 ≤ G}-embedded in G and NG(P1) is p-nilpotent, then G is p-nilpotent.

Corollary 4.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . If every maximal

subgroup P1 of P is {1 ≤ G}-embedded in G and NG(P ) is p-nilpotent, then G is p-nilpotent.
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Corollary 4.3 Let G be a p-solvable group. If every maximal subgroup of a Sylow subgroup of G is {1 ≤ G}-
embedded in G , then G is p-supersolvable.

Corollary 4.4 Let G be a p-solvable group and p a prime divisor of |G| . If every maximal subgroup of Fp(G)

containing Op′ (G) is {1 ≤ G}-embedded in G , then G is p-supersolvable.
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