Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $507-514$
(c) TÜBİTAK
doi:10.3906/mat-1408-61

Groups with the given set of the lengths of conjugacy classes

Neda AHANJIDEH*
Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran

Received: 27.08.2014 • Accepted/Published Online: 18.05.2015 • Printed: 30.07.2015

Abstract

We study the structures of some finite groups such that the conjugacy class size of every noncentral element of them is divisible by a prime p.

Key words: Conjugacy class sizes, F-groups

1. Introduction

Let G be a finite group and $Z(G)$ be its center. For $x \in G$, suppose that $c l_{G}(x)$ denotes the conjugacy class in G containing x and $C_{G}(x)$ denotes the centralizer of x in G. We will use $c s(G)$ for the set $\{n: G$ has a conjugacy class of size $n\}$. It is known that some results on character degrees of finite groups and their conjugacy class sizes are parallel. Thompson in 1970 (see [6]) proved that if the degree of every nonlinear irreducible character of the finite group G is divisible by a prime p, then G has a normal p-complement. Along with this question, Caminas posed the following question:

Question. [1, Question 8.] If the conjugacy class size of every noncentral element of a group G is divisible by a prime p, what can be said about G ?

It is known that $c s\left(G L_{2}\left(q^{n}\right)\right)=\left\{1, q^{2 n}-1, q^{n}\left(q^{n}+1\right), q^{n}\left(q^{n}-1\right)\right\}$. Thus, if q is an odd prime, then

$$
c s\left(G L_{2}\left(q^{n}\right)\right)=\left\{1,2 . n_{1}, 2^{e_{2}} \cdot n_{2}, 2^{e_{3}} \cdot n_{3}\right\}
$$

where $1<e_{2}<e_{3}$ and $n_{1}>n_{2}>n_{3}$ are odd natural numbers. This example shows the existence of the finite groups where the conjugacy class size of their noncentral elements is divisible by a prime p but contains no normal p-complements. Thus, Thompson's result and the answer to the above question are not necessarily parallel. This example motivates us to find the structure of the finite group G with

$$
c s(G)=\left\{1, p^{e_{1}} n_{1}, p^{e_{2}} n_{2}, \ldots, p^{e_{k}} n_{k}\right\}
$$

where $k \in \mathbb{N}, n_{1}, \ldots, n_{k}$ are positive integers coprime to p such that $n_{1}>n_{2}>\cdots>n_{k}$ and $e_{1}=1<e_{2}<$ $\cdots<e_{k}$. Throughout this paper, we say that the nonabelian finite group G and the prime p satisfy ($*$) when

$$
c s(G)=\left\{1, p^{e_{1}} n_{1}, p^{e_{2}} n_{2}, \ldots, p^{e_{k}} n_{k}\right\}
$$

where $k \in \mathbb{N}, n_{1}, \ldots, n_{k}$ are positive integers coprime to the prime p such that $n_{1}>n_{2}>\cdots>n_{k}$ and $e_{1}=1<e_{2}<\cdots<e_{k}$. In this paper, we find the structures of the nonabelian finite groups satisfying $(*)$. More precisely, we prove the following theorem:

[^0]
AHANJIDEH/Turk J Math

Main Theorem Let the nonabelian finite group G and the prime p satisfy (*). Then G has one of the following structures:
(i) $|c s(G)|=2$ and $G \cong P \times A$, where A is abelian and $P \in \operatorname{Syl}_{p}(G)$ with $|c s(P)|=2$;
(ii) $|c s(G)|=3$ and G is a quasi-Frobenius group with a normal p-Sylow subgroup;
(iii) $|c s(G)|=4, p=2$, and $G / Z(G) \cong P G L_{2}\left(q^{n}\right)$, where $G^{\prime} \cong S L_{2}\left(q^{n}\right)$ and q is an odd prime.

According to the main theorem, if the nonabelian finite group G and the prime p satisfy $(*)$, then either $p=2$ or G is a solvable group with a normal p-Sylow subgroup.

For proving the main theorem, we show that for the nonabelian finite group G and the prime p satisfying $(*)$, either G is nilpotent or the p-part of $|G / Z(G)|$ is $p^{e_{2}}$ or $p^{e_{2}+1}$, and $|c s(G)| \leq 4$. Thus, we have to consider the cases when $|c s(G)|=2,|c s(G)|=3$, and $|c s(G)|=4$ separately and rule out the extra possibilities in these cases.

In this paper, all groups are finite. By $\operatorname{gcd}(c, b)$ and $\operatorname{lcm}(c, b)$ we denote the greatest common divisor and the least common multiple of the natural numbers c and b, respectively. For a finite group H, we denote by $\pi(H)$ the set of prime divisors of order of H. For the prime r (a set of primes π), the set of r-Sylow subgroups of H is denoted by $\operatorname{Syl}_{r}(H), O_{r}(H)\left(O_{\pi}(H)\right)$ is the largest normal r-subgroup (π-subgroup) of H, and $O_{r^{\prime}}(H)$ is the largest normal subgroup of H, its order being coprime to r. If m is a natural number and r is prime, then the r-part of m is denoted by $|m|_{r}$ and $|m|_{r^{\prime}}=m /|m|_{r}$. Throughout Sections 2 and 3, let G be a nonabelian finite group and p be a prime that satisfies $(*)$.

2. Preliminary results

In the following lemma, we collect some known facts about finite groups. From [4, Theorem 5] and [3], we obtain (i) and (ii), respectively. The proof of (iii)-(v) is straightforward.

Lemma 2.1 Let K be a normal subgroup of a finite group H and $\bar{H}=H / K$. Let \bar{x} be the image of an element x of H in \bar{H} and $s \in \pi(H)$.
(i) s does not divide $\left|c l_{H}(x)\right|$ for every s^{\prime}-element $x \in H$ of a prime power order if and only if H is s-decomposable, i.e. $H=O_{s}(H) \times O_{s^{\prime}}(H)$;
(ii) if 1 and $m>1$ are the lengths of conjugacy classes of H, then for some $r \in \pi(H)$, m is a power of r and $H=R \times A$, where $R \in \operatorname{Syl}_{r}(H)$ and A is abelian;
(iii) assume that $x, y \in H$ with $x y=y x$ and $\operatorname{gcd}(O(x), O(y))=1$. Then $C_{H}(x y)=C_{H}(x) \cap C_{H}(y)$. In particular, $C_{H}(x y)=C_{C_{H}(x)}(y)$ is a subgroup of $C_{H}(x)$ and $\left|c l_{H}(x)\right|$ divides $\left|c l_{H}(x y)\right|$;
(iv) if $x=y z$, where $y \in H$ and $z \in Z(H)$, then $C_{H}(x)=C_{H}(y)$;
(v) $\left|c l_{\bar{H}}(\bar{x})\right|$ divides $\left|c l_{H}(x)\right|$.

In the proof of the main theorem, we need to know about $c s\left(G^{\prime} Z(G)\right)$. The following lemma shows that $c s\left(G^{\prime} Z(G)\right)=c s\left(G^{\prime}\right):$

AHANJIDEH/Turk J Math

Lemma 2.2 If K is a subgroup of H, then $c s(K Z(H))=c s(K)$.
Proof If $x \in K Z(H)$, then there exist $y \in K$ and $z \in Z(H)$ such that $x=y z$. Thus, by Lemma 2.1(iv), $C_{K Z(H)}(x)=C_{K Z(H)}(y)$. Also, $Z(H) \leq C_{K Z(H)}(y)$. Thus, by Dedekind modular law, $C_{K Z(H)}(y)=$ $\left(C_{K Z(H)}(y) \cap K\right) Z(H)=C_{K}(y) Z(H)$, and hence $\left|c l_{K Z(H)}(x)\right|=\left|c l_{K Z(H)}(y)\right|=|K Z(H)| /\left|C_{K}(y) Z(H)\right|=$ $|K| /\left|C_{K}(y)\right|=\left|c l_{K}(y)\right|$. Thus, $c s(K)=c s(K Z(H))$, as claimed.

Let N be a normal subgroup of G. If $x N$ is a p-element of G / N, then in order to study $C_{G / N}(x N)$, the following lemma allows us to assume that x is a p-element:

Lemma 2.3 Let $s \in \pi(H)$. If N is a normal subgroup of H and $O(x N)=s^{a}$, then there exists an s-element $y \in G$ such that $x N=y N$.
Proof Since $O(x N)$ divides $O(x), O(x)=s^{b} . m$, where $b \geq a$ and $\operatorname{gcd}(s, m)=1$. Thus, there exist natural numbers r and u such that $r . m+u \cdot s^{b}=1$ and hence $x=x_{s} \cdot x_{s^{\prime}}=x_{s^{\prime}} \cdot x_{s}$, where $x_{s}=x^{r . m}$ and $x_{s^{\prime}}=x^{u . s^{b}}$. Obviously, $O\left(x_{s}\right)=s^{b}, O\left(x_{s^{\prime}}\right)=m$ and $s^{a}=O(x N)=\operatorname{lcm}\left(O\left(x_{s} N\right), O\left(x_{s^{\prime}} N\right)\right)$. This forces $O\left(x_{s^{\prime}} N\right)=1$ and hence $x_{s^{\prime}} \in N$. Thus, $x N=x_{s} N$, as claimed.

For some $x \in H$, Lemma 2.4 shows the relation between $\left|c l_{H / Z(H)}(x Z(H))\right|$ and $\left|c l_{H}(x)\right|$, which will be used in the proof of the main theorem:

Lemma 2.4 Let $s \in \pi(H), \bar{H}=H / Z(H)$ and \bar{x} be the image of an element x of H in \bar{H}.
(i) If $x, y \in H$ such that $\operatorname{gcd}(O(x), O(y))=1$, then $\bar{y} \in C_{\bar{H}}(\bar{x})$ if and only if $y \in C_{H}(x)$;
(ii) if H is solvable and $O(\bar{x})=s^{a}$, then $\left|c l_{\bar{H}}(\bar{x})\right|_{s^{\prime}}=\left|c l_{H}(x)\right|_{s^{\prime}}$.

Proof If $y \in C_{H}(x)$, then it is obvious that $\bar{y} \in C_{\bar{H}}(\bar{x})$. Now let $\bar{y} \in C_{\bar{H}}(\bar{x})$. There exists $z \in Z(H)$ such that $y^{-1} x y=x z$. Thus, $O(x)=\operatorname{lcm}(O(x), O(z))$, and hence $O(z)$ divides $O(x)$. On the other hand, $x^{-1} y^{-1} x=y^{-1} z$. Thus, $O(y)=\operatorname{lcm}(O(y), O(z))$ and hence $O(z)$ divides $O(y)$. Therefore, $O(z)$ divides $\operatorname{gcd}(O(x), O(y))=1$. This forces $z=1$ and hence $y^{-1} x y=x$. Therefore, $y \in C_{H}(x)$, as claimed in (i). Now we are going to prove (ii). Since $O(\bar{x})=s^{a}$, Lemma 2.3 allows us to assume that x is an s-element, and since H is solvable, we can assume that $C_{H}(x)$ contains a $(\pi(H)-\{s\})$-Hall subgroup, namely K. Thus, (i) shows that $K Z(H) / Z(H)$ is a $(\pi(H)-\{s\})$-Hall subgroup of $C_{\bar{H}}(\bar{x})$ and hence (ii) follows.

A group H is called quasi-Frobenius if $H / Z(H)$ is Frobenius.
The following lemma will be used in the case when $|c s(G)|=3$.
Lemma 2.5 [2] For a finite group $H,|c s(H)|=3$ if and only if, up to an abelian direct factor, either:
(1) H is an r-group for some prime r;
(2) $H=K L$ with $K \unlhd G, \operatorname{gcd}(|K|,|L|)=1$, and one of the following occurs:
(a) both K and L are abelian, $Z(H)<L$, and H is a quasi-Frobenius group;
(b) K is abelian, L is a nonabelian r-group for some prime r, and $O_{r}(H)$ is an abelian subgroup of index r in L and $H / O_{r}(H)$ is a Frobenius group;
(c) K is an r-group with $|c s(K)|=2$ for some prime r, L is abelian, $Z(K)=Z(H) \cap K$, and H is quasi-Frobenius.

AHANJIDEH/Turk J Math

Remark 2.6 Since for every $x \in G, Z(G) \leq C_{G}(x)$, we deduce that $\left|c l_{G}(x)\right|$ divides $|G / Z(G)|$. Also, $n_{1}>n_{2}>\cdots>n_{k}$ and $1=e_{1}<e_{2}<\cdots<e_{k}$. Thus, for every $1 \leq i \leq k$, either $n_{i} \neq|G / Z(G)|_{p^{\prime}}$ or $n_{1}=|G / Z(G)|_{p^{\prime}}$. Moreover, for every $1 \leq i \leq k$, either $p^{e_{i}} \neq|G / Z(G)|_{p}$ or $p^{e_{k}}=|G / Z(G)|_{p}$.

Applying Lemma 2.7 leads us to find the structure of $C_{G}(x)$ for some p-element $x \in G-Z(G)$ and the centralizers of the p^{\prime}-elements of $C_{G}(x)$:

Lemma 2.7 For every noncentral p-element $x \in G$,
(i) $C_{G}(x)=O_{p}\left(C_{G}(x)\right) \times O_{p^{\prime}}\left(C_{G}(x)\right)$ and $O_{p^{\prime}}\left(C_{G}(x)\right) \leq Z\left(C_{G}(x)\right)$;
(ii) either $\left|c l_{G}(x)\right|=p n_{1}$ and $n_{1}=|G / Z(G)|_{p^{\prime}}$ or for every noncentral element $g \in C_{G}(x), C_{G}(g)=C_{G}(x)$.

In particular, either $\left|c l_{G}(x)\right|=p n_{1}$ and $n_{1}=|G / Z(G)|_{p^{\prime}}$ or $C_{G}(x)$ is abelian.
Proof Since x is a noncentral p-element, we deduce that $p\left|\left|C_{G}(x)\right|\right.$ and $\left.p\right|\left|c l_{G}(x)\right|$. Thus, $\left|c l_{G}(x)\right|=p^{e_{i}} n_{i}$, for some $1 \leq i \leq k$. If y is a p^{\prime}-element of $C_{G}(x)$, then by Lemma 2.1(iii), $\left|c l_{G}(x)\right|\left|\left|c l_{G}(x y)\right|\right.$. Thus, assumption $(*)$ shows that $\left|c l_{G}(x y)\right|=\left|c l_{G}(x)\right|$ and hence $C_{G}(x)=C_{G}(x y)=C_{G}(x) \cap C_{G}(y)=C_{G(x)}(y)$, by Lemma 2.1(iii). Thus, $y \in Z\left(C_{G}(x)\right)$, and hence Lemma 2.1(i) forces $C_{G}(x)=O_{p}\left(C_{G}(x)\right) \times O_{p^{\prime}}\left(C_{G}(x)\right)$, so (i) follows. Now let $\left|c l_{G}(x)\right| \neq p n_{1}$ or $n_{1} \neq|G / Z(G)|_{p^{\prime}}$. Then, since $Z(G) \leq C_{G}(x), O_{p^{\prime}}\left(C_{G}(x)\right) \neq$ $O_{p^{\prime}}(Z(G))$, considering Remark 2.6. Also, " $x \in C_{G}(x)$ " guarantees that $O_{p}\left(C_{G}(x)\right) \not 又 Z(G)$. Thus, there exist $g \in O_{p}\left(C_{G}(x)\right)-Z(G)$ and $h \in O_{p^{\prime}}\left(C_{G}(x)\right)-Z(G)$. Replacing y with h in the above argument shows that $C_{G}(h)=C_{G}(x h)=C_{G}(x)$, and now replacing x and y with h and g in the above argument shows that

$$
\begin{equation*}
C_{G}(g)=C_{G}(h g)=C_{G}(h)=C_{G}(x) \tag{1}
\end{equation*}
$$

Let $t \in C_{G}(x)-Z(G)$. As mentioned in the proof of Lemma 2.3, $t=t_{p} \cdot t_{p^{\prime}}=t_{p^{\prime}} \cdot t_{p}$, where t_{p} is a p-element and $t_{p^{\prime}}$ is a p^{\prime}-element of $C_{G}(x)$ such that $t_{p} \notin Z(G)$ or $t_{p^{\prime}} \notin Z(G)$. Thus, Lemma 2.1(iii) and (1) show that $C_{G}(t)=C_{G}\left(t_{p}\right) \cap C_{G}\left(t_{p^{\prime}}\right)=C_{G}(x)$, as claimed in (ii).

Corollary 2.8 gives us some information about the structures of the centralizers of the noncentral elements of G :

Corollary 2.8 For every noncentral element $x \in G, C_{G}(x)=O_{p}\left(C_{G}(x)\right) \times O_{p^{\prime}}\left(C_{G}(x)\right)$ and either $\left|c l_{G}(x)\right|=$ $p n_{1}$ and $n_{1}=|G / Z(G)|_{p^{\prime}}$ or $O_{p}\left(C_{G}(x)\right)$ is abelian.
Proof If x is a p-element, then Lemma 2.7 completes the proof. If $O(x)=p^{a}$. m, where $a \geq 1$ and $\operatorname{gcd}(p, m)=1$, then as mentioned in the proof of Lemma 2.3, we can see that $x=x_{p} \cdot x_{p^{\prime}}=x_{p^{\prime}} \cdot x_{p}$, where $O\left(x_{p}\right)=p^{a}$ and $O\left(x_{p^{\prime}}\right)=m$. Thus, Lemma 2.7 shows that either $C_{G}\left(x_{p}\right)=C_{G}(x)$ or $x_{p} \in Z(G)$; in the former case, Lemma 2.7 completes the proof. In the latter case, Lemma 2.1(iv) forces $C_{G}(x)=C_{G}\left(x_{p^{\prime}}\right)$. Thus, without loss of generality, we can assume that x is a p^{\prime}-element. If $C_{G}(x)$ contains a noncentral p element y, then by Lemma 2.1(iii), $\left|c l_{G}(x)\right|$ and $\left|c l_{G}(y)\right|$ divides $\left|c l_{G}(x y)\right|$. Thus, our assumption shows that $\left|c l_{G}(x y)\right|=\left|c l_{G}(x)\right|=\left|c l_{G}(y)\right|$ and hence $C_{G}(x)=C_{G}(x y)=C_{G}(x) \cap C_{G}(y)=C_{G}(y)$. Therefore, Lemma 2.7 completes the proof. Otherwise, $O_{p}\left(C_{G}(x)\right) \leq Z(G)$ is a p-Sylow subgroup of $C_{G}(x)$ and hence Lemma 2.1(i) shows that $C_{G}(x)=O_{p}\left(C_{G}(x)\right) \times O_{p^{\prime}}\left(C_{G}(x)\right)$ and $O_{p}\left(C_{G}(x)\right)$ is abelian.

If $|c s(G)| \geq 3$, then applying Lemma 2.9 to the proof of the main theorem allows us to see that $|G / Z(G)|_{p} \in\left\{p^{e_{2}}, p^{e_{2}+1}\right\}$, which will be used in proving $|\operatorname{cs}(G)| \leq 4$.

Lemma 2.9 If y is a noncentral element of G such that $\left|c l_{G}(y)\right|_{p}<|G / Z(G)|_{p}$ and either $\left|c l_{G}(y)\right| \neq p n_{1}$ or $n_{1} \neq|G / Z(G)|_{p^{\prime}}$, then for every noncentral element $w \in G$, either $C_{G}(y)=C_{G}(w)$ or $C_{G}(y) \cap C_{G}(w)=Z(G)$.

Proof Since $\left|c l_{G}(y)\right|_{p}<|G / Z(G)|_{p}$, we deduce that $C_{G}(y)$ contains a noncentral p-element t. Thus, by Lemma 2.7(ii), $C_{G}(y)=C_{G}(t)$. Now let w be a noncentral element of G with $C_{G}(y) \cap C_{G}(w) \neq Z(G)$. Then there exists a noncentral element $u \in C_{G}(y) \cap C_{G}(w)$ of primary order, so Lemma 2.7(ii) forces $C_{G}(u)=C_{G}(t)=C_{G}(y)$ and hence $w \in C_{G}(u)=C_{G}(t)$. Therefore, Lemma 2.7(ii) gives that $C_{G}(w)=C_{G}(t)$, so $C_{G}(w)=C_{G}(y)$ and, hence the lemma follows.

Definition 2.10 A group H is an F-group if for given any pair $x, y \in H$ with $x, y \notin Z(H)$, we have $C_{H}(x) \nless G_{H}(y)$.

Corollary 2.11 G is an F-group.
Proof It follows immediately from our assumption on $c s(G)$.
Note that the list of F-groups was obtained in [5].
Lemma 2.12 guarantees that $|G / Z(G)|_{p}=|P / Z(P)|$, for some $P \in \operatorname{Syl}_{p}(G)$.

Lemma 2.12 For $P \in \operatorname{Syl}_{p}(G), Z(P) \leq Z(G)$. In particular, $Z(G) \cap P=Z(P)$.
Proof If $x \in Z(P)$, then $\left|c l_{G}(x)\right|_{p}=1$, so by our assumption $x \in Z(G)$. Thus, $Z(P) \leq Z(G)$, as claimed.

In the proof of the main theorem, we will need to know the set $c s$ of the normal subgroups of G of index 2, which have been obtained in Lemma 2.13:

Lemma 2.13 If $N \unlhd G$ with $|G / N|=2$, then:
(i) if $p \neq 2$, then

$$
c s(N) \subseteq\left\{1, p n_{1,1}, \ldots, p n_{1, t_{1}}, p^{e_{2}} n_{2,1}, \ldots, p^{e_{2}} n_{2, t_{2}}, \ldots, p^{e_{k}} n_{k, 1}, \ldots, p^{e_{k}} n_{k, t_{k}}\right\}
$$

where for $i \in\{1, \ldots, k\}, t_{i} \in \mathbb{N} \cup\{0\}$ and for $j \in\left\{1, \ldots, t_{i}\right\}, n_{i, j} \mid n_{i}$;
(ii) if $p=2$, then $c s(N) \subseteq\left\{1, p n_{1}, n_{1}, p^{e_{2}} n_{2}, p^{e_{2}-1} n_{2}, \ldots, p^{e_{k}} n_{k}, p^{e_{k}-1} n_{k}\right\}$.

Proof If $p \neq 2$, then $\operatorname{Syl}_{p}(G)=\operatorname{Syl}_{p}(N)$, and hence for every noncentral element $x \in N,\left|C_{N}(x)\right|_{p}=\left|C_{G}(x)\right|_{p}$ and hence $\left|c l_{N}(x)\right|_{p}=\left|c l_{G}(x)\right|_{p} \in\left\{p, p^{e_{2}}, \ldots, p^{e_{k}}\right\}$. Also, it is easy to check that $\left|c l_{N}(x)\right|\left|\left|c l_{G}(x)\right|\right.$, so

$$
c s(N) \subseteq\left\{1, p n_{1,1}, \ldots, p n_{1, t_{1}}, p^{e_{2}} n_{2,1}, \ldots, p^{e_{2}} n_{2, t_{2}}, \ldots, p^{e_{k}} n_{k, 1}, \ldots, p^{e_{k}} n_{k, t_{k}}\right\}
$$

where for $i \in\{1, \ldots, k\}, t_{i} \in \mathbb{N} \cup\{0\}$ and for $j \in\left\{1, \ldots, t_{i}\right\}, n_{i, j} \mid n_{i}$. Thus, (i) follows. If $p=2$, then for every noncentral element $x \in N, N C_{G}(x) \leq G$, so $\left[C_{G}(x): C_{N}(x)\right]$ divides $[G: N]$. Thus, $\left|C_{N}(x)\right|=\left|C_{G}(x)\right|$ or $\left|C_{G}(x)\right| / 2$, so $\left|c l_{N}(x)\right|=\left|c l_{G}(x)\right|$ or $\left|c l_{G}(x)\right| / 2$. Therefore, $c s(N) \subseteq\left\{1, p n_{1}, n_{1}, p^{e_{2}} n_{2}, p^{e_{2}-1} n_{2}, \ldots, p^{e_{k}} n_{k}\right.$, $\left.p^{e_{k}-1} n_{k}\right\}$, as claimed in (ii).

AHANJIDEH/Turk J Math

3. Proof of the main theorem

If $|c s(G)|=2$, then Lemma 2.1(ii) completes the proof, so let $|c s(G)| \geq 3$. Since $p n_{1}, p^{e_{2}} n_{2} \in c s(G)$, there exist $x, y^{\prime} \in G$ such that $\left|c l_{G}(x)\right|=p n_{1}$ and $\left|c l_{G}\left(y^{\prime}\right)\right|=p^{e_{2}} n_{2}$. It is known that there exist $g \in G$ and $P \in \operatorname{Syl}_{p}(G)$ such that $C_{P}(x)=C_{G}(x) \cap P \in \operatorname{Syl}_{p}\left(C_{G}(x)\right)$ and $C_{P}(y)=C_{G}(y) \cap P \in \operatorname{Syl}_{p}\left(C_{G}(y)\right)$, where $y=g^{-1} y^{\prime} g$. Also, $\left|c l_{G}(x)\right| \neq\left|c l_{G}(y)\right|$ and hence $\left|C_{G}(x)\right| \neq\left|C_{G}(y)\right|$. Thus, applying Remark 2.6 and Lemma 2.9 shows that if $\left|c l_{G}(y)\right|_{p}<|G / Z(G)|_{p}$, then

$$
C_{G}(x) \cap C_{G}(y)=Z(G)
$$

Thus, if $\left|c l_{G}(y)\right|_{p}<|G / Z(G)|_{p}$, then Lemma 2.12 forces

$$
\begin{equation*}
C_{P}(x) \cap C_{P}(y)=Z(P) \tag{2}
\end{equation*}
$$

We are going to complete the proof in some steps:
Step 1. $|P / Z(P)|=p^{e_{2}}$ or $|P / Z(P)|=p^{1+e_{2}}$.
Proof If $Z(P)=C_{P}(y)$, then we can see at once that $|P / Z(P)|=|P| /\left|C_{P}(y)\right|=p^{e_{2}}$, as claimed. Thus, let $Z(P) \neq C_{P}(y)$. Then since $Z(P)<C_{P}(y)$, Lemma 2.12 leads us to see that $\left|c l_{G}(y)\right|_{p}<|G / Z(G)|_{p}$. Since $\left[P: C_{P}(x)\right]=\left|c l_{G}(x)\right|_{p}=p$, we conclude that $C_{P}(x)$ is a maximal subgroup of P. Also, $C_{P}(y) \neq Z(P)$, and hence (2) shows that $C_{P}(y)$ is not a subgroup of $C_{P}(x)$. Therefore, $C_{P}(x) C_{P}(y)=P$. Furthermore, (2) implies that $C_{P}(x) \cap C_{P}(y)=Z(P)$. Thus, $\left|C_{p}(y)\right| /|Z(P)|=|P| /\left|C_{P}(x)\right|=p$ and hence $|P| /|Z(P)|=\left[P: C_{P}(y)\right]\left|C_{P}(y)\right| /|Z(P)|=p^{1+e_{2}}$, as claimed.

Step 2. For every $m \in c s(G)-\{1\},|m|_{p}=p,|m|_{p}=p^{e_{2}}$ or $|m|_{p}=p^{e_{2}+1}$.
Proof Let $t \in G-Z(G)$ such that $\left|c l_{G}(t)\right|_{p} \notin\left\{p, p^{e_{2}}\right\}$. Then, since $Z(G) \leq C_{G}(t)$, we obtain from Step 1 and Lemma 2.12 that $\left|c l_{G}(t)\right|_{p} \leq|G / Z(G)|_{p} \leq p^{1+e_{2}}$. However, $\left|c l_{G}(t)\right|_{p}=p^{e_{i}}$, for some $i \geq 3$. Thus, by assumption $(*),\left|c l_{G}(t)\right|_{p}>p^{e_{2}}$, and hence $\left|c l_{G}(t)\right|_{p}=p^{e_{2}+1}$, as claimed.

Step 3. $|c s(G)| \leq 4$.
Proof It follows immediately from Step 2 and our assumption on e_{i} s.
Step 4. If $|P / Z(P)|=p^{e_{2}}$, then G is a quasi-Frobenius group with a normal p-Sylow subgroup.
Proof Since for every $t \in G, Z(G) \leq C_{G}(t)$, Lemma 2.12 forces $\left|c l_{G}(t)\right|_{p}| | G /\left.Z(G)\right|_{p}=|P / Z(P)|=p^{e_{2}}$ and hence assumption $(*)$ shows that for every $w \in G-Z(G),\left|c l_{G}(w)\right|_{p}=p^{e_{2}}$ or $\left|c l_{G}(w)\right|_{p}=p$. Thus, $|c s(G)|=3$, so considering Lemma 2.5 and our assumption shows that $G=A \times K L$, with abelian subgroup $A, K \unlhd G$, $\operatorname{gcd}(|K|,|L|)=1$, and one of the following cases occurs:
(a) $c s(G)=\{1,|K|,|L| /|Z(L)|\}$. This forces nonidentity elements of $c s(G)$ to be coprime, which is a contradiction with our assumption on $\operatorname{cs}(G)$;
(b) K is abelian, L is a nonabelian q-group, for some prime q, and $O_{q}(G)$ is an abelian subgroup of index q in L and $G / O_{q}(G)$ is a Frobenius group. Then $O_{q}(G), K \unlhd G$ and $\operatorname{gcd}(|K|, q)=1$, so $K \cap O_{q}(G)=\{1\}$. This implies that for every $w \in K, K \times O_{q}(G) \leq C_{G}(w)$. Thus, for every $w \in K-Z(G),\left|c l_{G}(w)\right|=q$, and hence our assumption on $c s(G)$ forces $q=p$ and $n_{1}=1$, which is a contradiction with our assumption;
(c) K is a q-group with $c s(K)=\left\{1, q^{a}\right\}$, for some prime q, L is abelian, $Z(K)=Z(G) \cap K$, and G is a quasi-Frobenius group. Then

$$
c s(G)=\left\{1,|K / Z(K)|, q^{a}|L Z(G) / Z(G)|\right\}=\left\{1, q^{s}, q^{a}|L Z(G) / Z(G)|\right\}
$$

This forces $q=p,|K / Z(K)|=p^{e_{2}}$, and $a=1$. Thus, K is a normal p-subgroup of G, which is the p-Sylow subgroup of G.

Step 5. If $|P / Z(P)|=p^{e_{2}+1}$, then $p=2$ and $G / Z(G) \cong P G L_{2}\left(q^{n}\right)$, where $G^{\prime} \cong S L_{2}\left(q^{n}\right)$ and q is an odd prime.

Proof If $|c s(G)|=3$, then repeating the argument given in Step 4 shows that $c s(G)=\{1,|K / Z(K)|$, $p|L Z(G) / Z(G)|\}$, where $K \in \operatorname{Syl}_{p}(G), K \cap Z(G)=Z(K)$ and $|K / Z(K)|=p^{e_{2}}$. Thus, by Lemma 2.12, $|P / Z(P)|=|G / Z(G)|_{p}=p^{e_{2}}$, which is a contradiction. Now let $|c s(G)|=4$. By Step $2, c s(G)=$ $\left\{1, p n_{1}, p^{e_{2}} n_{2}, p^{e_{2}+1} n_{3}\right\}$, but by Corollary 2.11, G is an F-group. Thus, [5] shows that one of the following holds:
(i) G has a normal abelian subgroup N of index q, and q is a prime, but G is not abelian. Thus, $N \not \leq Z(G)$, so there exists $z \in N-Z(G)$. Since N is abelian, we have $N \leq C_{G}(z)$, and hence $\left|c l_{G}(z)\right|$ divides $[G: N]=q$. Therefore, $\left|c l_{G}(z)\right|=q$ and hence our assumption on $c s(G)$ forces $q=p$ and $n_{1}=1$, which is a contradiction with our assumption;
(ii) $G / Z(G)$ is a Frobenius group with the Frobenius kernel $K Z(G) / Z(G)$ and the Frobenius complement $L Z(G) / Z(G)$, and one of the following subcases holds:
(a) K and L are abelian. Then we can see that $|c s(G)|=3$, which is a contradiction with our assumption; (b) L is abelian, $Z(K)=Z(G) \cap K$ and $K / Z(K)$ is a q-group, for some prime q. Then for every $x \in L,\left|c l_{G}(x)\right|=|K| /|Z(K)|$. Thus, our assumption shows that $q=p$. Since G is not abelian and $n_{1}>n_{2}>n_{3}$, Remark 2.6 and Lemma 2.7(ii) show that there exist the noncentral p^{\prime}-elements $x_{2}, x_{3} \in G$ with $\left|c l_{G}\left(x_{2}\right)\right|=p^{e_{2}} n_{2}$ and $\left|c l_{G}\left(x_{3}\right)\right|=p^{e_{2}+1} n_{3}$. Thus, we can assume that $x_{2}, x_{3} \in L$, so $L \leq C_{G}\left(x_{2}\right) \cap C_{G}\left(x_{3}\right)$. Therefore, Lemma 2.9 forces $L \leq Z(G)$, which is a contradiction;
(iii) $G / Z(G) \cong \mathbb{S}_{4}$. Then G is solvable and since by Lemma 2.12 and our assumption $1<p^{e_{2}+1}=|P / Z(P)|=$ $|G / Z(G)|_{p}$, and $\left|\mathbb{S}_{4}\right|=|G / Z(G)|=2^{3} .3$, we deduce that $p^{e_{2}+1}=2^{3}$. Thus, $p=2$ and $e_{2}=2$. Therefore, $\operatorname{cs}(G)=\left\{1,2 n_{1}, 4 n_{2}, 8 n_{3}\right\}$. Since for every $w \in G-Z(G), w Z(G) \in G / Z(G) \cong \mathbb{S}_{4}$, we obtain $O(w Z(G)) \in\{2,3,4\}$ and if $O(w Z(G))=3$, then $\left|c l_{G / Z(G)}(w Z(G))\right|=8$. Since by Lemma 2.1(v), $\left|c l_{G / Z(G)}(w Z(G))\right|$ divides $\left|c l_{G}(w)\right|$, we deduce that $O(x Z(G)), O(y Z(G)) \in\{2,4\}$, and hence Lemma 2.3 forces the existence of 2 -elements $x_{1}, y_{1} \in G-Z(G)$ such that $x Z(G)=x_{1} Z(G)$ and $y Z(G)=y_{1} Z(G)$. Therefore, Lemma 2.4(ii) guarantees the existence of $\alpha, \beta \in c s(G / Z(G))=c s\left(\mathbb{S}_{4}\right)=\{1,3,6,8\}$ such that $n_{1}=|\alpha|_{p^{\prime}}$ and $n_{2}=|\beta|_{p^{\prime}}$. Thus, $n_{1}=n_{2}=3$, which is a contradiction;
(iv) $G=A \times P$, where A is abelian and P is a q-group, so $c s(G)=c s(P)$, which is a contradiction with our assumption on $n_{i} \mathrm{~s}$;

AHANJIDEH/Turk J Math

(v) $G / Z(G) \cong P S L_{2}\left(q^{n}\right)$ or $P G L_{2}\left(q^{n}\right)$ and $G^{\prime} \cong S L_{2}\left(q^{n}\right)$, where $q^{n}>3$ and q is prime. If $G / Z(G) \cong$ $P S L_{2}\left(q^{n}\right)$, then since $G / Z(G)$ is a simple group, we deduce that $G^{\prime} Z(G) / Z(G)=G / Z(G)$, and hence $G^{\prime} Z(G)=G$. Thus, by Lemma 2.2, cs $(G)=c s\left(G^{\prime} Z(G)\right)=c s\left(G^{\prime}\right)$, but

$$
\operatorname{cs}\left(G^{\prime}\right)=\operatorname{cs}\left(S L_{2}\left(q^{n}\right)\right)=\left\{\begin{array}{ll}
\left\{1, \frac{\left(q^{2 n}-1\right)}{{ }^{2}}, q^{n}\left(q^{n}+1\right), q^{n}\left(q^{n}-1\right)\right\} & \text { if } q \text { is odd } \tag{3}\\
\left\{1, q^{2 n}-1, q^{n}\left(q^{n}+1\right), q^{n}\left(q^{n}-1\right)\right\} & \text { if } q \text { is even }
\end{array},\right.
$$

which is a contradiction with our assumption on e_{i} s. Now let $G / Z(G) \cong P G L_{2}\left(q^{n}\right)$. Since if $q=2$, then $P G L_{2}\left(q^{n}\right) \cong S L_{2}\left(q^{n}\right)=P S L_{2}\left(q^{n}\right)$, and we just need to consider the case when q is odd. Thus,

$$
\left[G: G^{\prime} Z(G)\right]=|G / Z(G)| /\left|G^{\prime} Z(G) / Z(G)\right|=\left|P G L_{2}\left(q^{n}\right)\right| /\left|P S L_{2}\left(q^{n}\right)\right|=2
$$

If $p \neq 2$, then Lemmas 2.2 and 2.13(i) show that

$$
\begin{aligned}
c s\left(S L_{2}\left(q^{n}\right)\right) & =c s\left(G^{\prime}\right)=c s\left(G^{\prime} Z(G)\right) \\
& \subseteq\left\{1, p n_{1,1}, \ldots, p n_{1, t_{1}}, p^{e_{2}} n_{2,1}, \ldots, p^{e_{2}} n_{2, t_{2}}, p^{e_{2}+1} n_{3,1}, \ldots, p^{e_{2}+1} n_{3, t_{3}}\right\}
\end{aligned}
$$

where for $i \in\{1, \ldots, 3\}, t_{i} \in \mathbb{N} \cup\{0\}$ and for $j \in\left\{1, \ldots, t_{i}\right\}, n_{i, j} \mid n_{i}$. Thus, p divides $\operatorname{gcd}(\{n: n \in$ $\left.\left.c s\left(S L_{2}(q)\right)-\{1\}\right\}\right)$, which is a contradiction considering (3) and assumption $p \neq 2$. Thus, $p=2$.
(vi) $G / Z(G) \cong P S L_{2}(9)$ or $P G L_{2}(9)$ and $G^{\prime} \cong P S L_{2}(9)$. Since $G^{\prime} \unlhd G$, there exists $Q \in \operatorname{Syl}_{p}\left(G^{\prime}\right)$ such that $Q \unlhd P$ and hence $Z(P) \cap Q \neq 1$, but Lemma 2.12 implies that $Z(P) \leq Z(G)$, so $Z(P) \cap Q \leq Z(G) \cap G^{\prime} \leq$ $Z\left(G^{\prime}\right)=1$, which is a contradiction.

These steps complete the proof of the main theorem.

Corollary 3.1 If $p \neq 2$, then G is a nilpotent group or a quasi-Frobenius group with a normal p-Sylow subgroup.

Acknowledgment

The author would like to thank Shahrekord University for financial support. The author was partially supported by the Center of Excellent for Mathematics, Shahrekord University, Iran.

References

[1] Camina A, Camina R. The influence of conjugacy class sizes on the structure of finite groups: a survey. Asian Eur J Math 2011; 4: 559-588.
[2] Dolfi S, Jabara E. The structure of finite groups of conjugate rank 2. B Lond Math Soc 2009; 41: 916-926.
[3] Itô N. On finite groups with given conjugate types. I. Nagoya Math J 1953; 6: 17-28.
[4] Liu X, Wang Y, Wei H. Notes on the length of conjugacy classes of finite groups. J Pure and Appl Algebra 2005; 196: 111-117.
[5] Rebmann J. F-Gruppen. Arch Math (Basel) 1971; 22: 225-230.
[6] Thompson J. Normal p-complements and irreducible characters. J Algebra 1970; 14: 129-134.

[^0]: *Correspondence: ahanjideh.neda@sci.sku.ac.ir
 2010 AMS Mathematics Subject Classification: Primary: 20D20; Secondary: 20D10.

