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doi:10.3906/mat-1408-61

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Groups with the given set of the lengths of conjugacy classes

Neda AHANJIDEH∗

Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran

Received: 27.08.2014 • Accepted/Published Online: 18.05.2015 • Printed: 30.07.2015
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1. Introduction

Let G be a finite group and Z(G) be its center. For x ∈ G , suppose that clG(x) denotes the conjugacy class

in G containing x and CG(x) denotes the centralizer of x in G . We will use cs(G) for the set {n : G has

a conjugacy class of size n} . It is known that some results on character degrees of finite groups and their

conjugacy class sizes are parallel. Thompson in 1970 (see [6]) proved that if the degree of every nonlinear

irreducible character of the finite group G is divisible by a prime p , then G has a normal p-complement.

Along with this question, Caminas posed the following question:

Question. [1, Question 8.] If the conjugacy class size of every noncentral element of a group G is divisible by

a prime p , what can be said about G?

It is known that cs(GL2(q
n)) = {1, q2n − 1, qn(qn + 1), qn(qn − 1)} . Thus, if q is an odd prime, then

cs(GL2(q
n)) = {1, 2.n1, 2

e2 .n2, 2
e3 .n3},

where 1 < e2 < e3 and n1 > n2 > n3 are odd natural numbers. This example shows the existence of the

finite groups where the conjugacy class size of their noncentral elements is divisible by a prime p but contains

no normal p -complements. Thus, Thompson’s result and the answer to the above question are not necessarily

parallel. This example motivates us to find the structure of the finite group G with

cs(G) = {1, pe1n1, p
e2n2, . . . , p

eknk},

where k ∈ N , n1, . . . , nk are positive integers coprime to p such that n1 > n2 > · · · > nk and e1 = 1 < e2 <

· · · < ek . Throughout this paper, we say that the nonabelian finite group G and the prime p satisfy (∗) when

cs(G) = {1, pe1n1, p
e2n2, . . . , p

eknk},

where k ∈ N , n1, . . . , nk are positive integers coprime to the prime p such that n1 > n2 > · · · > nk and

e1 = 1 < e2 < · · · < ek . In this paper, we find the structures of the nonabelian finite groups satisfying (∗).
More precisely, we prove the following theorem:
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Main Theorem Let the nonabelian finite group G and the prime p satisfy (∗) . Then G has one of the

following structures:

(i) |cs(G)| = 2 and G ∼= P ×A , where A is abelian and P ∈ Sylp(G) with |cs(P )| = 2 ;

(ii) |cs(G)| = 3 and G is a quasi-Frobenius group with a normal p-Sylow subgroup;

(iii) |cs(G)| = 4 , p = 2 , and G/Z(G) ∼= PGL2(q
n) , where G′ ∼= SL2(q

n) and q is an odd prime.

According to the main theorem, if the nonabelian finite group G and the prime p satisfy (∗), then either

p = 2 or G is a solvable group with a normal p -Sylow subgroup.

For proving the main theorem, we show that for the nonabelian finite group G and the prime p satisfying

(∗), either G is nilpotent or the p -part of |G/Z(G)| is pe2 or pe2+1 , and |cs(G)| ≤ 4. Thus, we have to consider

the cases when |cs(G)| = 2, |cs(G)| = 3, and |cs(G)| = 4 separately and rule out the extra possibilities in these
cases.

In this paper, all groups are finite. By gcd(c, b) and lcm(c, b) we denote the greatest common divisor

and the least common multiple of the natural numbers c and b , respectively. For a finite group H , we denote

by π(H) the set of prime divisors of order of H . For the prime r (a set of primes π ), the set of r -Sylow

subgroups of H is denoted by Sylr(H), Or(H) (Oπ(H)) is the largest normal r -subgroup (π -subgroup) of H ,

and Or′(H) is the largest normal subgroup of H , its order being coprime to r . If m is a natural number and

r is prime, then the r -part of m is denoted by |m|r and |m|r′ = m/|m|r . Throughout Sections 2 and 3, let G

be a nonabelian finite group and p be a prime that satisfies (∗).

2. Preliminary results

In the following lemma, we collect some known facts about finite groups. From [4, Theorem 5] and [3], we

obtain (i) and (ii), respectively. The proof of (iii)–(v) is straightforward.

Lemma 2.1 Let K be a normal subgroup of a finite group H and H̄ = H/K . Let x̄ be the image of an

element x of H in H̄ and s ∈ π(H) .

(i) s does not divide |clH(x)| for every s′ -element x ∈ H of a prime power order if and only if H is

s-decomposable, i.e. H = Os(H)×Os′(H) ;

(ii) if 1 and m > 1 are the lengths of conjugacy classes of H , then for some r ∈ π(H) , m is a power of r

and H = R×A , where R ∈ Sylr(H) and A is abelian;

(iii) assume that x, y ∈ H with xy = yx and gcd(O(x), O(y)) = 1 . Then CH(xy) = CH(x) ∩ CH(y) . In

particular, CH(xy) = CCH(x)(y) is a subgroup of CH(x) and |clH(x)| divides |clH(xy)| ;

(iv) if x = yz , where y ∈ H and z ∈ Z(H) , then CH(x) = CH(y) ;

(v) |clH̄(x̄)| divides |clH(x)| .

In the proof of the main theorem, we need to know about cs(G′Z(G)). The following lemma shows that

cs(G′Z(G)) = cs(G′):
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Lemma 2.2 If K is a subgroup of H , then cs(KZ(H)) = cs(K) .

Proof If x ∈ KZ(H), then there exist y ∈ K and z ∈ Z(H) such that x = yz . Thus, by Lemma

2.1(iv), CKZ(H)(x) = CKZ(H)(y). Also, Z(H) ≤ CKZ(H)(y). Thus, by Dedekind modular law, CKZ(H)(y) =

(CKZ(H)(y) ∩ K)Z(H) = CK(y)Z(H), and hence |clKZ(H)(x)| = |clKZ(H)(y)| = |KZ(H)|/|CK(y)Z(H)| =
|K|/|CK(y)| = |clK(y)| . Thus, cs(K) = cs(KZ(H)), as claimed. 2

Let N be a normal subgroup of G . If xN is a p -element of G/N , then in order to study CG/N (xN),

the following lemma allows us to assume that x is a p -element:

Lemma 2.3 Let s ∈ π(H) . If N is a normal subgroup of H and O(xN) = sa , then there exists an s-element

y ∈ G such that xN = yN .

Proof Since O(xN) divides O(x), O(x) = sb.m , where b ≥ a and gcd(s,m) = 1. Thus, there exist natural

numbers r and u such that r.m+ u.sb = 1 and hence x = xs.xs′ = xs′ .xs , where xs = xr.m and xs′ = xu.sb .

Obviously, O(xs) = sb , O(xs′) = m and sa = O(xN) = lcm(O(xsN), O(xs′N)). This forces O(xs′N) = 1 and

hence xs′ ∈ N . Thus, xN = xsN , as claimed. 2

For some x ∈ H , Lemma 2.4 shows the relation between |clH/Z(H)(xZ(H))| and |clH(x)| , which will be

used in the proof of the main theorem:

Lemma 2.4 Let s ∈ π(H) , H̄ = H/Z(H) and x̄ be the image of an element x of H in H̄ .

(i) If x, y ∈ H such that gcd(O(x), O(y)) = 1 , then ȳ ∈ CH̄(x̄) if and only if y ∈ CH(x) ;

(ii) if H is solvable and O(x̄) = sa , then |clH̄(x̄)|s′ = |clH(x)|s′ .

Proof If y ∈ CH(x), then it is obvious that ȳ ∈ CH̄(x̄). Now let ȳ ∈ CH̄(x̄). There exists z ∈ Z(H)

such that y−1xy = xz . Thus, O(x) = lcm(O(x), O(z)), and hence O(z) divides O(x). On the other hand,

x−1y−1x = y−1z . Thus, O(y) = lcm(O(y), O(z)) and hence O(z) divides O(y). Therefore, O(z) divides

gcd(O(x), O(y)) = 1. This forces z = 1 and hence y−1xy = x . Therefore, y ∈ CH(x), as claimed in (i). Now

we are going to prove (ii). Since O(x̄) = sa , Lemma 2.3 allows us to assume that x is an s -element, and since

H is solvable, we can assume that CH(x) contains a (π(H)− {s})-Hall subgroup, namely K . Thus, (i) shows

that KZ(H)/Z(H) is a (π(H)− {s})-Hall subgroup of CH̄(x̄) and hence (ii) follows. 2

A group H is called quasi-Frobenius if H/Z(H) is Frobenius.

The following lemma will be used in the case when |cs(G)| = 3.

Lemma 2.5 [2] For a finite group H , |cs(H)| = 3 if and only if, up to an abelian direct factor, either:

(1) H is an r -group for some prime r ;

(2) H = KL with K �G , gcd(|K|, |L|) = 1 , and one of the following occurs:

(a) both K and L are abelian, Z(H) < L , and H is a quasi-Frobenius group;

(b) K is abelian, L is a nonabelian r -group for some prime r , and Or(H) is an abelian subgroup of

index r in L and H/Or(H) is a Frobenius group;

(c) K is an r -group with |cs(K)| = 2 for some prime r , L is abelian, Z(K) = Z(H) ∩K , and H is

quasi-Frobenius.
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Remark 2.6 Since for every x ∈ G , Z(G) ≤ CG(x) , we deduce that |clG(x)| divides |G/Z(G)| . Also,

n1 > n2 > · · · > nk and 1 = e1 < e2 < · · · < ek . Thus, for every 1 ≤ i ≤ k , either ni ̸= |G/Z(G)|p′

or n1 = |G/Z(G)|p′ . Moreover, for every 1 ≤ i ≤ k , either pei ̸= |G/Z(G)|p or pek = |G/Z(G)|p .

Applying Lemma 2.7 leads us to find the structure of CG(x) for some p -element x ∈ G− Z(G) and the

centralizers of the p′ -elements of CG(x):

Lemma 2.7 For every noncentral p-element x ∈ G ,

(i) CG(x) = Op(CG(x))×Op′(CG(x)) and Op′(CG(x)) ≤ Z(CG(x)) ;

(ii) either |clG(x)| = pn1 and n1 = |G/Z(G)|p′ or for every noncentral element g ∈ CG(x) , CG(g) = CG(x) .

In particular, either |clG(x)| = pn1 and n1 = |G/Z(G)|p′ or CG(x) is abelian.

Proof Since x is a noncentral p -element, we deduce that p | |CG(x)| and p | |clG(x)| . Thus, |clG(x)| = peini ,

for some 1 ≤ i ≤ k . If y is a p′ -element of CG(x), then by Lemma 2.1(iii), |clG(x)| | |clG(xy)| . Thus,

assumption (∗) shows that |clG(xy)| = |clG(x)| and hence CG(x) = CG(xy) = CG(x) ∩ CG(y) = CG(x)(y),

by Lemma 2.1(iii). Thus, y ∈ Z(CG(x)), and hence Lemma 2.1(i) forces CG(x) = Op(CG(x)) × Op′(CG(x)),

so (i) follows. Now let |clG(x)| ̸= pn1 or n1 ̸= |G/Z(G)|p′ . Then, since Z(G) ≤ CG(x), Op′(CG(x)) ̸=
Op′(Z(G)), considering Remark 2.6. Also, “x ∈ CG(x)” guarantees that Op(CG(x)) ̸≤ Z(G). Thus, there exist

g ∈ Op(CG(x)) − Z(G) and h ∈ Op′(CG(x)) − Z(G). Replacing y with h in the above argument shows that

CG(h) = CG(xh) = CG(x), and now replacing x and y with h and g in the above argument shows that

CG(g) = CG(hg) = CG(h) = CG(x). (1)

Let t ∈ CG(x) − Z(G). As mentioned in the proof of Lemma 2.3, t = tp.tp′ = tp′ .tp , where tp is a p -element

and tp′ is a p′ -element of CG(x) such that tp ̸∈ Z(G) or tp′ ̸∈ Z(G). Thus, Lemma 2.1(iii) and (1) show that

CG(t) = CG(tp) ∩ CG(tp′) = CG(x), as claimed in (ii). 2

Corollary 2.8 gives us some information about the structures of the centralizers of the noncentral elements

of G :

Corollary 2.8 For every noncentral element x ∈ G , CG(x) = Op(CG(x))×Op′(CG(x)) and either |clG(x)| =
pn1 and n1 = |G/Z(G)|p′ or Op(CG(x)) is abelian.

Proof If x is a p -element, then Lemma 2.7 completes the proof. If O(x) = pa.m , where a ≥ 1 and

gcd(p,m) = 1, then as mentioned in the proof of Lemma 2.3, we can see that x = xp.xp′ = xp′ .xp , where

O(xp) = pa and O(xp′) = m . Thus, Lemma 2.7 shows that either CG(xp) = CG(x) or xp ∈ Z(G); in the

former case, Lemma 2.7 completes the proof. In the latter case, Lemma 2.1(iv) forces CG(x) = CG(xp′).

Thus, without loss of generality, we can assume that x is a p′ -element. If CG(x) contains a noncentral p -

element y , then by Lemma 2.1(iii), |clG(x)| and |clG(y)| divides |clG(xy)| . Thus, our assumption shows that

|clG(xy)| = |clG(x)| = |clG(y)| and hence CG(x) = CG(xy) = CG(x) ∩ CG(y) = CG(y). Therefore, Lemma 2.7

completes the proof. Otherwise, Op(CG(x)) ≤ Z(G) is a p -Sylow subgroup of CG(x) and hence Lemma 2.1(i)

shows that CG(x) = Op(CG(x))×Op′(CG(x)) and Op(CG(x)) is abelian. 2

If |cs(G)| ≥ 3, then applying Lemma 2.9 to the proof of the main theorem allows us to see that

|G/Z(G)|p ∈ {pe2 , pe2+1} , which will be used in proving |cs(G)| ≤ 4.

510



AHANJIDEH/Turk J Math

Lemma 2.9 If y is a noncentral element of G such that |clG(y)|p < |G/Z(G)|p and either |clG(y)| ̸= pn1 or

n1 ̸= |G/Z(G)|p′ , then for every noncentral element w ∈ G , either CG(y) = CG(w) or CG(y)∩CG(w) = Z(G) .

Proof Since |clG(y)|p < |G/Z(G)|p , we deduce that CG(y) contains a noncentral p -element t . Thus, by

Lemma 2.7(ii), CG(y) = CG(t). Now let w be a noncentral element of G with CG(y) ∩ CG(w) ̸= Z(G).

Then there exists a noncentral element u ∈ CG(y) ∩ CG(w) of primary order, so Lemma 2.7(ii) forces

CG(u) = CG(t) = CG(y) and hence w ∈ CG(u) = CG(t). Therefore, Lemma 2.7(ii) gives that CG(w) = CG(t),

so CG(w) = CG(y) and, hence the lemma follows. 2

Definition 2.10 A group H is an F -group if for given any pair x, y ∈ H with x, y ̸∈ Z(H) , we have

CH(x) ̸< GH(y) .

Corollary 2.11 G is an F -group.

Proof It follows immediately from our assumption on cs(G). 2

Note that the list of F -groups was obtained in [5].

Lemma 2.12 guarantees that |G/Z(G)|p = |P/Z(P )| , for some P ∈ Sylp(G).

Lemma 2.12 For P ∈ Sylp(G) , Z(P ) ≤ Z(G) . In particular, Z(G) ∩ P = Z(P ) .

Proof If x ∈ Z(P ), then |clG(x)|p = 1, so by our assumption x ∈ Z(G). Thus, Z(P ) ≤ Z(G), as claimed.

2

In the proof of the main theorem, we will need to know the set cs of the normal subgroups of G of index

2, which have been obtained in Lemma 2.13:

Lemma 2.13 If N �G with |G/N | = 2 , then:

(i) if p ̸= 2 , then

cs(N) ⊆ {1, pn1,1, . . . , pn1,t1 , p
e2n2,1, . . . , p

e2n2,t2 , . . . , p
eknk,1, . . . , p

eknk,tk},

where for i ∈ {1, . . . , k} , ti ∈ N ∪ {0} and for j ∈ {1, . . . , ti} , ni,j | ni ;

(ii) if p = 2 , then cs(N) ⊆ {1, pn1, n1, p
e2n2, p

e2−1n2, . . . , p
eknk, p

ek−1nk} .

Proof If p ̸= 2, then Sylp(G) = Sylp(N), and hence for every noncentral element x ∈ N , |CN (x)|p = |CG(x)|p
and hence |clN (x)|p = |clG(x)|p ∈ {p, pe2 , . . . , pek} . Also, it is easy to check that |clN (x)| | |clG(x)| , so

cs(N) ⊆ {1, pn1,1, . . . , pn1,t1 , p
e2n2,1, . . . , p

e2n2,t2 , . . . , p
eknk,1, . . . , p

eknk,tk},

where for i ∈ {1, . . . , k} , ti ∈ N ∪ {0} and for j ∈ {1, . . . , ti} , ni,j | ni . Thus, (i) follows. If p = 2, then for

every noncentral element x ∈ N , NCG(x) ≤ G , so [CG(x) : CN (x)] divides [G : N ] . Thus, |CN (x)| = |CG(x)|
or |CG(x)|/2, so |clN (x)| = |clG(x)| or |clG(x)|/2. Therefore, cs(N) ⊆ {1, pn1, n1, p

e2n2, p
e2−1n2, . . . , p

eknk,

pek−1nk} , as claimed in (ii). 2
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3. Proof of the main theorem

If |cs(G)| = 2, then Lemma 2.1(ii) completes the proof, so let |cs(G)| ≥ 3. Since pn1, p
e2n2 ∈ cs(G), there exist

x, y′ ∈ G such that |clG(x)| = pn1 and |clG(y′)| = pe2n2 . It is known that there exist g ∈ G and P ∈ Sylp(G)

such that CP (x) = CG(x)∩P ∈ Sylp(CG(x)) and CP (y) = CG(y)∩P ∈ Sylp(CG(y)), where y = g−1y′g . Also,

|clG(x)| ̸= |clG(y)| and hence |CG(x)| ̸= |CG(y)| . Thus, applying Remark 2.6 and Lemma 2.9 shows that if

|clG(y)|p < |G/Z(G)|p , then

CG(x) ∩ CG(y) = Z(G).

Thus, if |clG(y)|p < |G/Z(G)|p , then Lemma 2.12 forces

CP (x) ∩ CP (y) = Z(P ). (2)

We are going to complete the proof in some steps:

Step 1. |P/Z(P )| = pe2 or |P/Z(P )| = p1+e2 .

Proof If Z(P ) = CP (y), then we can see at once that |P/Z(P )| = |P |/|CP (y)| = pe2 , as claimed. Thus, let

Z(P ) ̸= CP (y). Then since Z(P ) < CP (y), Lemma 2.12 leads us to see that |clG(y)|p < |G/Z(G)|p . Since

[P : CP (x)] = |clG(x)|p = p , we conclude that CP (x) is a maximal subgroup of P . Also, CP (y) ̸= Z(P ),

and hence (2) shows that CP (y) is not a subgroup of CP (x). Therefore, CP (x)CP (y) = P . Further-

more, (2) implies that CP (x) ∩ CP (y) = Z(P ). Thus, |Cp(y)|/|Z(P )| = |P |/|CP (x)| = p and hence

|P |/|Z(P )| = [P : CP (y)]|CP (y)|/|Z(P )| = p1+e2 , as claimed. 2

Step 2. For every m ∈ cs(G)− {1} , |m|p = p , |m|p = pe2 or |m|p = pe2+1 .

Proof Let t ∈ G − Z(G) such that |clG(t)|p ̸∈ {p, pe2} . Then, since Z(G) ≤ CG(t), we obtain from Step

1 and Lemma 2.12 that |clG(t)|p ≤ |G/Z(G)|p ≤ p1+e2 . However, |clG(t)|p = pei , for some i ≥ 3. Thus, by

assumption (∗), |clG(t)|p > pe2 , and hence |clG(t)|p = pe2+1 , as claimed. 2

Step 3. |cs(G)| ≤ 4.

Proof It follows immediately from Step 2 and our assumption on ei s. 2

Step 4. If |P/Z(P )| = pe2 , then G is a quasi-Frobenius group with a normal p -Sylow subgroup.

Proof Since for every t ∈ G , Z(G) ≤ CG(t), Lemma 2.12 forces |clG(t)|p | |G/Z(G)|p = |P/Z(P )| = pe2 and

hence assumption (∗) shows that for every w ∈ G−Z(G), |clG(w)|p = pe2 or |clG(w)|p = p . Thus, |cs(G)| = 3,

so considering Lemma 2.5 and our assumption shows that G = A × KL , with abelian subgroup A , K � G ,

gcd(|K|, |L|) = 1, and one of the following cases occurs:

(a) cs(G) = {1, |K|, |L|/|Z(L)|} . This forces nonidentity elements of cs(G) to be coprime, which is a

contradiction with our assumption on cs(G);

(b) K is abelian, L is a nonabelian q -group, for some prime q , and Oq(G) is an abelian subgroup of index q

in L and G/Oq(G) is a Frobenius group. Then Oq(G),K �G and gcd(|K|, q) = 1, so K ∩Oq(G) = {1} .
This implies that for every w ∈ K , K×Oq(G) ≤ CG(w). Thus, for every w ∈ K−Z(G), |clG(w)| = q , and

hence our assumption on cs(G) forces q = p and n1 = 1, which is a contradiction with our assumption;
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(c) K is a q -group with cs(K) = {1, qa} , for some prime q , L is abelian, Z(K) = Z(G) ∩ K , and G is a

quasi-Frobenius group. Then

cs(G) = {1, |K/Z(K)|, qa|LZ(G)/Z(G)|} = {1, qs, qa|LZ(G)/Z(G)|}.

This forces q = p , |K/Z(K)| = pe2 , and a = 1. Thus, K is a normal p -subgroup of G , which is the

p -Sylow subgroup of G .

2

Step 5. If |P/Z(P )| = pe2+1 , then p = 2 and G/Z(G) ∼= PGL2(q
n), where G′ ∼= SL2(q

n) and q is an odd

prime.

Proof If |cs(G)| = 3, then repeating the argument given in Step 4 shows that cs(G) = {1, |K/Z(K)|,
p|LZ(G)/Z(G)|} , where K ∈ Sylp(G), K ∩ Z(G) = Z(K) and |K/Z(K)| = pe2 . Thus, by Lemma 2.12,

|P/Z(P )| = |G/Z(G)|p = pe2 , which is a contradiction. Now let |cs(G)| = 4. By Step 2, cs(G) =

{1, pn1, p
e2n2, p

e2+1n3} , but by Corollary 2.11, G is an F -group. Thus, [5] shows that one of the following

holds:

(i) G has a normal abelian subgroup N of index q , and q is a prime, but G is not abelian. Thus, N ̸≤ Z(G),

so there exists z ∈ N − Z(G). Since N is abelian, we have N ≤ CG(z), and hence |clG(z)| divides

[G : N ] = q . Therefore, |clG(z)| = q and hence our assumption on cs(G) forces q = p and n1 = 1, which

is a contradiction with our assumption;

(ii) G/Z(G) is a Frobenius group with the Frobenius kernel KZ(G)/Z(G) and the Frobenius complement

LZ(G)/Z(G), and one of the following subcases holds:

(a) K and L are abelian. Then we can see that |cs(G)| = 3, which is a contradiction with our assumption;

(b) L is abelian, Z(K) = Z(G) ∩ K and K/Z(K) is a q -group, for some prime q . Then for every

x ∈ L , |clG(x)| = |K|/|Z(K)| . Thus, our assumption shows that q = p . Since G is not abelian

and n1 > n2 > n3 , Remark 2.6 and Lemma 2.7(ii) show that there exist the noncentral p′ -elements

x2, x3 ∈ G with |clG(x2)| = pe2n2 and |clG(x3)| = pe2+1n3 . Thus, we can assume that x2, x3 ∈ L , so

L ≤ CG(x2) ∩ CG(x3). Therefore, Lemma 2.9 forces L ≤ Z(G), which is a contradiction;

(iii) G/Z(G) ∼= S4 . Then G is solvable and since by Lemma 2.12 and our assumption 1 < pe2+1 = |P/Z(P )| =
|G/Z(G)|p , and |S4| = |G/Z(G)| = 23.3, we deduce that pe2+1 = 23 . Thus, p = 2 and e2 = 2.

Therefore, cs(G) = {1, 2n1, 4n2, 8n3} . Since for every w ∈ G−Z(G), wZ(G) ∈ G/Z(G) ∼= S4 , we obtain

O(wZ(G)) ∈ {2, 3, 4} and if O(wZ(G)) = 3, then |clG/Z(G)(wZ(G))| = 8. Since by Lemma 2.1(v),

|clG/Z(G)(wZ(G))| divides |clG(w)| , we deduce that O(xZ(G)), O(yZ(G)) ∈ {2, 4} , and hence Lemma 2.3

forces the existence of 2-elements x1, y1 ∈ G− Z(G) such that xZ(G) = x1Z(G) and yZ(G) = y1Z(G).

Therefore, Lemma 2.4(ii) guarantees the existence of α, β ∈ cs(G/Z(G)) = cs(S4) = {1, 3, 6, 8} such that

n1 = |α|p′ and n2 = |β|p′ . Thus, n1 = n2 = 3, which is a contradiction;

(iv) G = A×P , where A is abelian and P is a q -group, so cs(G) = cs(P ), which is a contradiction with our

assumption on ni s;
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(v) G/Z(G) ∼= PSL2(q
n) or PGL2(q

n) and G′ ∼= SL2(q
n), where qn > 3 and q is prime. If G/Z(G) ∼=

PSL2(q
n), then since G/Z(G) is a simple group, we deduce that G′Z(G)/Z(G) = G/Z(G), and hence

G′Z(G) = G . Thus, by Lemma 2.2, cs(G) = cs(G′Z(G)) = cs(G′), but

cs(G′) = cs(SL2(q
n)) =

{
{1, (q2n−1)

2 , qn(qn + 1), qn(qn − 1)} if q is odd
{1, q2n − 1, qn(qn + 1), qn(qn − 1)} if q is even

, (3)

which is a contradiction with our assumption on ei s. Now let G/Z(G) ∼= PGL2(q
n). Since if q = 2, then

PGL2(q
n) ∼= SL2(q

n) = PSL2(q
n), and we just need to consider the case when q is odd. Thus,

[G : G′Z(G)] = |G/Z(G)|/|G′Z(G)/Z(G)| = |PGL2(q
n)|/|PSL2(q

n)| = 2.

If p ̸= 2, then Lemmas 2.2 and 2.13(i) show that

cs(SL2(q
n)) = cs(G′) = cs(G′Z(G))

⊆ {1, pn1,1, . . . , pn1,t1 , p
e2n2,1, . . . , p

e2n2,t2 , p
e2+1n3,1, . . . , p

e2+1n3,t3}

where for i ∈ {1, . . . , 3} , ti ∈ N ∪ {0} and for j ∈ {1, . . . , ti} , ni,j | ni . Thus, p divides gcd({n : n ∈
cs(SL2(q))− {1}}), which is a contradiction considering (3) and assumption p ̸= 2. Thus, p = 2.

(vi) G/Z(G) ∼= PSL2(9) or PGL2(9) and G′ ∼= PSL2(9). Since G′ �G , there exists Q ∈ Sylp(G
′) such that

Q�P and hence Z(P )∩Q ̸= 1, but Lemma 2.12 implies that Z(P ) ≤ Z(G), so Z(P )∩Q ≤ Z(G)∩G′ ≤
Z(G′) = 1, which is a contradiction.

These steps complete the proof of the main theorem. 2

Corollary 3.1 If p ̸= 2 , then G is a nilpotent group or a quasi-Frobenius group with a normal p-Sylow

subgroup.

Acknowledgment

The author would like to thank Shahrekord University for financial support. The author was partially supported

by the Center of Excellent for Mathematics, Shahrekord University, Iran.

References

[1] Camina A, Camina R. The influence of conjugacy class sizes on the structure of finite groups: a survey. Asian Eur

J Math 2011; 4: 559–588.

[2] Dolfi S, Jabara E. The structure of finite groups of conjugate rank 2. B Lond Math Soc 2009; 41: 916-926.

[3] Itô N. On finite groups with given conjugate types. I. Nagoya Math J 1953; 6: 17-28.

[4] Liu X, Wang Y, Wei H. Notes on the length of conjugacy classes of finite groups. J Pure and Appl Algebra 2005;

196: 111-117.

[5] Rebmann J. F -Gruppen. Arch Math (Basel) 1971; 22: 225-230.

[6] Thompson J. Normal p -complements and irreducible characters. J Algebra 1970; 14: 129-134.

514

http://dx.doi.org/10.1142/S1793557111000459
http://dx.doi.org/10.1142/S1793557111000459
http://dx.doi.org/10.1112/blms/bdp072
http://dx.doi.org/10.1016/j.jpaa.2004.08.020
http://dx.doi.org/10.1016/j.jpaa.2004.08.020
http://dx.doi.org/10.1007/BF01222567
http://dx.doi.org/10.1016/0021-8693(70)90116-X

	Introduction
	Preliminary results
	Proof of the main theorem

