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Abstract: In this paper we introduce approximate duality of g-frames in Hilbert C∗ -modules and we show that

approximate duals of g-frames in Hilbert C∗ -modules share many useful properties with those in Hilbert spaces.

Moreover, we obtain some new results for approximate duality of frames and g-frames in Hilbert spaces; in particular,

we consider approximate duals of ε -nearly Parseval and ε -close frames.
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [10] in 1952 to study some problems

in nonharmonic Fourier series, and they were reintroduced in 1986 by Daubechies et al. [9]. Frames have

important applications in signal and image processing, wireless communications, and many other fields. There

exist various generalizations of frames. A recent and general one is called g-frame [26].

As we know, duals play an important role in frame theory, especially they are used in the reconstruction

of signals. It is well known that every frame in a Hilbert space has at least one dual (see [7]), and if a dual

of a frame is found, then each signal can be reconstructed easily. However, it is usually difficult to calculate a

dual. Here, approximate duals can be useful. Approximate duals in frame theory have important applications

(see [4, 12, 27]). Approximate duality of frames in Hilbert spaces was recently investigated in [8]. Khosravi and

Mirzaee Azandaryani (the present author) also introduced approximate duality of g-frames in Hilbert spaces

and obtained some properties and applications of approximate duals (see [20]). In particular, it was shown that

approximate duals are stable under small perturbations and they are useful for erasures (see [20, Section 3]).

Hilbert C∗ -modules are generalizations of Hilbert spaces by allowing the inner product to take values in

a C∗ -algebra rather than in the field of complex numbers.

Frank and Larson presented a general approach to the frame theory in Hilbert C∗ -modules (see [11]).

They showed that every countably generated Hilbert C∗ -module over a unital C∗ -algebra admits a frame.

It was also shown in [25] that every Hilbert C∗ -module that is countably generated in the set of adjointable

operators admits a frame of multipliers. Furthermore, g-frames in Hilbert C∗ -modules were introduced in [16].

Frames in Hilbert C∗−modules are not trivial generalizations of Hilbert space frames due to the complex

structure of C∗−algebras. Since there are important differences between the theory of Hilbert C∗−modules
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and Hilbert spaces (see Chapter 1 in [21]), it is expected that problems about frames in Hilbert C∗−modules

are more complicated than those in Hilbert spaces.

In this paper we generalize the concept of approximate duality of g-frames to Hilbert C∗ -modules and

we get some results for approximate duals of frames and g-frames in Hilbert spaces. In particular, approximate

duals of ε-nearly Parseval and ε-close frames are studied.

First, in the following section, we have a brief review of the definitions and basic properties of frames and

g-frames in Hilbert C∗ -modules.

In this note, all index sets are finite or countable subsets of Z .

2. Frames and g-frames in Hilbert C∗ -modules

Suppose that A is a unital C∗ -algebra and E is a left A -module such that the linear structures of A and E are

compatible. E is a pre-Hilbert A -module if E is equipped with an A -valued inner product ⟨., .⟩ : E×E −→ A ,

such that

(i) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ , for each α, β ∈ C and x, y, z ∈ E ;

(ii) ⟨ax, y⟩ = a⟨x, y⟩ , for each a ∈ A and x, y ∈ E ;

(iii) ⟨x, y⟩ = ⟨y, x⟩∗ , for each x, y ∈ E ;

(iv) ⟨x, x⟩ ≥ 0, for each x ∈ E and if ⟨x, x⟩ = 0, then x = 0.

For each x ∈ E , we define ∥x∥ = ∥⟨x, x⟩∥ 1
2 and |x| = ⟨x, x⟩ 1

2 . If E is complete with ∥.∥ , it is called a Hilbert

A-module or a Hilbert C∗ -module over A . Let E and F be Hilbert A -modules. An operator T : E −→ F is

called adjointable if there exists an operator T ∗ : F −→ E such that ⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ , for each x ∈ E

and y ∈ F . Every adjointable operator T is bounded and A -linear (that is, T (ax) = aT (x) for each x ∈ E

and a ∈ A). We denote the set of all adjointable operators from E into F by L(E,F ). L(E,E) is a C∗ -algebra

and we denote it by L(E). Note that if {Ei : i ∈ I} is a sequence of Hilbert A -modules, then ⊕i∈IEi , which

is the set

⊕i∈IEi =
{
{xi}i∈I : xi ∈ Ei and

∑
i∈I

⟨xi, xi⟩ is norm convergent in A
}
,

is a Hilbert A -module with pointwise operations and A -valued inner product ⟨x, y⟩ =
∑

i∈I⟨xi, yi⟩ , where

x = {xi}i∈I and y = {yi}i∈I . For each x = {xi}i∈I ∈ ⊕i∈IEi , we define ∥.∥2 by ∥x∥2 = ∥
∑

i∈I⟨xi, xi⟩∥
1
2 . For

more details about Hilbert C∗ -modules, see [21].

In this paper we focus on finitely and countably generated Hilbert C∗ -modules over unital C∗ -algebras.

A Hilbert A -module E is finitely generated if there exists a finite set {x1, . . . , xn} ⊆ E such that every element

x ∈ E can be expressed as an A -linear combination x =
∑n

i=1 aixi, ai ∈ A . A Hilbert A -module E is countably

generated if there exists a countable set {xi}i∈I ⊆ E such that E equals the norm-closure of the A -linear hull

of {xi}i∈I .

Let E be a Hilbert A-module. A family {fi}i∈I ⊆ E is a frame for E , if there exist real constants

0 < A ≤ B <∞ , such that for each x ∈ E ,

A⟨x, x⟩ ≤
∑
i∈I

⟨x, fi⟩⟨fi, x⟩ ≤ B⟨x, x⟩. (1)
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The numbers A and B are called the lower and upper bound of the frame, respectively. In this case we call it

an (A,B) frame. The optimal lower frame bound is the supremum over all lower frame bounds and the optimal

upper frame bound is the infimum over all upper frame bounds. If A = B , the frame is called tight (A-tight)

and if A = B = 1, the frame is Parseval. If only the second inequality is required, we call it a Bessel sequence.

If the sum in (1) converges in norm, the frame is called standard.

Let {Ei}i∈I be a sequence of Hilbert A -modules. A sequence Λ = {Λi ∈ L(E,Ei) : i ∈ I} is called a

g-frame for E with respect to {Ei : i ∈ I} if there exist real constants A,B > 0 such that for each x ∈ E ,

A⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ B⟨x, x⟩.

A and B are g-frame bounds of Λ. In this case we call it an (A,B) g-frame. The optimal bounds and tight

and Parseval g-frames are defined similarly to frames. The g-frame is standard if for each x ∈ E , the sum

converges in norm. If only the second-hand inequality is required, then Λ is called a g-Bessel sequence.

For a standard g-Bessel sequence Λ, the operator TΛ : ⊕i∈IEi −→ E defined by TΛ({xi}i∈I) =∑
i∈I Λ

∗
i (xi) is called the synthesis operator of Λ. TΛ is adjointable and T ∗

Λ(x) = {Λix}i∈I . Now we

define the operator SΛ on E by SΛx = TΛT
∗
Λ(x) =

∑
i∈I Λ

∗
iΛi(x). If Λ is a standard (A,B) g-frame,

then A.IdE ≤ SΛ ≤ B.IdE .

Note that F = {fi}i∈I is a standard Bessel sequence (resp. frame) if and only if ΛF = {Λfi}i∈I is a

standard g-Bessel sequence (resp. g-frame), where Λfi(x) = ⟨x, fi⟩ , for each x ∈ E (see [16, Example 3.2]). This

shows that each Bessel sequence (resp. frame) generates a g-Bessel sequence (resp. g-frame). For a standard

Bessel sequence F = {fi}i∈I , we denote SΛF by SF .

Let Λ = {Λi}i∈I be an (A,B) standard g-frame. We call Λ̃ = {ΛiS
−1
Λ }i∈I the canonical g-dual of

Λ, which is a ( 1
B ,

1
A ) standard g-frame. We denote the canonical dual of a standard frame F = {fi}i∈I by

F̃ = {f̃i}i∈I , where f̃i = S−1
F fi . Recall that if Λ = {Λi}i∈I and Γ = {Γi}i∈I are standard g−Bessel sequences

such that
∑

i∈I Γ
∗
iΛix = x or equivalently

∑
i∈I Λ

∗
iΓix = x , for each x ∈ E , then Γ (resp. Λ) is called a

g -dual of Λ (resp. Γ). Also, duals for two standard Bessel sequences F = {fi}i∈I and G = {gi}i∈I can be

defined by using the generated g-Bessel sequences, so G (resp. F ) is a dual of F (resp. G ) if x =
∑

i∈I⟨x, fi⟩gi
or equivalently x =

∑
i∈I⟨x, gi⟩fi , for each x ∈ E (see [11, 13]). For more details about frames and g-frames

in Hilbert C∗ -modules, see [11, 2, 16, 28].

3. Approximate duals of g-frames in Hilbert C∗ -modules

In this section all C∗ -algebras are unital and all Hilbert C∗ -modules are finitely or countably generated. All

frames, g-frames, Bessel sequences, and g-Bessel sequences are standard. Λ and Γ denote {Λi ∈ L(E,Ei) :

i ∈ I} and {Γi ∈ L(E,Ei) : i ∈ I} , respectively. Also, F = {fi}i∈I and G = {gi}i∈I are subsets of a Hilbert

C∗ -module E .

For two standard g-Bessel sequences Λ and Γ, the operator SΓΛ is defined on E by SΓΛ = TΓTΛ
∗ . Since

S∗
ΓΛ = SΛΓ , we have ∥IdE − SΓΛ∥ = ∥(IdE − SΓΛ)

∗∥ = ∥IdE − SΛΓ∥ .
Now we introduce approximate duals for g-Bessel sequences (and also for Bessel sequences by using the

generated g-Bessel sequences) in Hilbert C∗ -modules:
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Definition 3.1 (i) Two standard g-Bessel sequences Λ and Γ are approximately dual g -frames if ∥IdE −
SΓΛ∥ < 1 or equivalently ∥IdE − SΛΓ∥ < 1 . In this case, we say that Γ (resp. Λ) is an approximate

g-dual of Λ (resp. Γ).

(ii) Two standard Bessel sequences F and G are approximately dual frames if ΛF and ΛG are approximately

dual g-frames, i.e. ∥IdE − SΛGΛF ∥ < 1 or equivalently ∥IdE − SΛFΛG∥ < 1 . In this case, we say that

G (resp. F ) is an approximate dual of F (resp. G ). We denote SΛGΛF and SΛFΛG by SGF and SFG ,

respectively.

It is clear that SΓΛ(x) =
∑

i∈I Γi
∗Λi(x) and SGF (x) =

∑
i∈I⟨x, fi⟩gi , for each x ∈ E . If Λ and Γ are g-duals,

then they are approximately dual g-frames because SΛΓ = IdE . Using the Neumann algorithm, we can see that

SΛΓ is invertible with SΛΓ
−1 =

∑∞
n=0 (IdE − SΛΓ)

n
, so each x ∈ E can be reconstructed as

x =

∞∑
n=0

SΛΓ(IdE − SΛΓ)
n
x, x =

∞∑
n=0

(IdE − SΛΓ)
n
SΛΓx.

Recall from [17] that a standard g-frame Λ is a modular g-Riesz basis if it has the following property:

if
∑

i∈Ω Λ∗
i gi = 0, where gi ∈ Ei and Ω ⊆ I , then gi = 0, for each i ∈ Ω.

A standard frame {fi}i∈I for E is a modular Riesz basis if it has the following property: if an A -linear

combination
∑

i∈Ω aifi with coefficients {ai : i ∈ Ω} ⊆ A and Ω ⊆ I is equal to zero, then ai = 0, for each

i ∈ Ω.

The following result is a generalization of Proposition 2.3 in [20] to Hilbert C∗ -modules.

Theorem 3.2 Let Λ and Γ be approximately dual g -frames with upper bounds B and D , respectively. Then:

(i) Λ and Γ are (∥SΓΛ
−1∥−2

D , B) and (∥SΛΓ
−1∥−2

B , D) g -frames, respectively.

(ii) {Γi +
∑∞

n=1 Γi(IdE − SΛΓ)
n}i∈I is a g-dual of Λ .

(iii) For each N ∈ N , define ψi
N = Γi +

∑N
n=1 Γi(IdE − SΛΓ)

n . Then ΨN = {ψi
N}i∈I is an approximate

g-dual of Λ with ∥IdE − SΛΨN
∥ ≤ ∥IdE − SΛΓ∥N+1 < 1 .

(iv) If Λ is a modular g-Riesz basis, then Λ̃i = Γi +
∑∞

n=1 Γi(IdE − SΛΓ)
n = limN→∞ ψN

i , for each i ∈ I .

Proof (i) Since Λ and Γ are approximately dual g-frames, SΓΛ is invertible, so ∥S−1
ΓΛ∥

−1∥x∥ ≤ ∥SΓΛx∥ , for
each x ∈ E . Now by using the Cauchy–Schwarz inequality in Hilbert C∗ -modules, we have

∥S−1
ΓΛ∥

−1∥x∥ ≤ ∥SΓΛx∥ = sup
∥y∥=1

∥⟨SΓΛx, y⟩∥ = sup
∥y∥=1

∥∥∥∥∑
i∈I

⟨Λix,Γiy⟩
∥∥∥∥

≤ sup
∥y∥=1

∥∥∥∥∑
i∈I

⟨Λix,Λix⟩
∥∥∥∥ 1

2
∥∥∥∥∑

i∈I

⟨Γiy,Γiy⟩
∥∥∥∥ 1

2

≤
√
D

∥∥∥∥∑
i∈I

⟨Λix,Λix⟩
∥∥∥∥ 1

2

.
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Hence:

∥S−1
ΓΛ∥

−2∥x∥2

D
≤

∥∥∥∥∑
i∈I

⟨Λix,Λix⟩
∥∥∥∥,

and so by Theorem 3.1 in [28], Λ is a standard g-frame with the lower bound ∥SΓΛ
−1∥−2

D . Similarly, by considering

SΛΓ instead of SΓΛ in the above conclusions, we obtain that Γ is a (∥SΛΓ
−1∥−2

B , D) standard g -frame.

(ii) Since SΛΓ
−1 =

∑∞
n=0 (IdE − SΛΓ)

n
, we have ΓiS

−1
ΛΓ = Γi +

∑∞
n=1 Γi(IdE − SΛΓ)

n and it is easy to

see that {ΓiS
−1
ΛΓ}i∈I is a g-dual of Λ.

(iii) For each n = 0, . . . , N , we have∥∥∥∥∑
i∈I

⟨Γi(IdE − SΛΓ)
nx,Γi(IdE − SΛΓ)

nx⟩
∥∥∥∥ ≤ D∥(IdE − SΛΓ)

n∥2∥x∥2,

so {Γi(IdE − SΛΓ)
n}i∈I is a standard g-Bessel sequence by Theorem 3.1 in [28] and consequently ΨN is a

standard g-Bessel sequence. Now the result can be obtained similar to the proof of Proposition 2.3 in [20].

(iv) Since Λ is a modular g-Riesz basis, Corollary 4.1 in [17] yields that Λ̃ is the unique g-dual of Λ. Ac-

cording to part (ii) , {Γi+
∑∞

n=1 Γi(IdE−SΛΓ)
n}i∈I is also a g-dual of Λ, so Λ̃i = Γi+

∑∞
n=1 Γi(IdE−SΛΓ)

n =

limN→∞ ψN
i . 2

As a consequence of the above theorem and Example 3.2 in [16], we obtain the following result. Parts (ii) and

(iii) of the following corollary are generalizations of Proposition 3.2 in [8] to Hilbert C∗ -modules.

Corollary 3.3 Let F and G be approximately dual frames with upper bounds B and D , respectively. Then:

(i) F and G are (∥SGF
−1∥−2

D , B) and (∥SFG
−1∥−2

B , D) frames, respectively.

(ii) {gi +
∑∞

n=1(IdE − SGF )
ngi}i∈I is a dual of F .

(iii) For each N ∈ N , define hNi = gi +
∑N

n=1(IdE − SGF )
ngi . Then hN = {hNi }i∈I is an approximate dual

of F with ∥IdE − ShNF∥ ≤ ∥IdE − SGF∥N+1 < 1 .

(iv) If F is a modular Riesz basis, then f̃i = gi +
∑∞

n=1(IdE − SGF )
ngi = limN→∞ hNi , for each i ∈ I .

We can get from the above theorem and corollary that a standard g-Bessel sequence (resp. Bessel sequence) is

a standard g-frame (resp. frame) if and only if it has an approximate g-dual (resp. approximate dual).

Note that Theorem 2.5 in [20] shows that if Λ and Γ are two g-Bessel sequences in a Hilbert space H ,

then a necessary and sufficient condition for Λ and Γ to be approximately dual g-frames is that there exist two

Bessel sequences F and G in H that are approximately dual frames with SΛΓ = SFG . Now we have a similar

result for approximate duals in Hilbert C∗–modules.

Proposition 3.4 Let Λ and Γ be two g-Bessel sequences. Then Λ and Γ are approximately dual g-frames if

and only if there exist two Bessel sequences F and G in E such that F and G are approximately dual frames

with SΛΓ = SFG .
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Proof Let Λ and Γ be approximately dual g-frames. As a result of Kasparov’s stabilization theorem, every

finitely or countably generated Hilbert C∗ -module has a standard Parseval frame (see [11, 22]). Let {fij}j∈Ji

be a standard Parseval frame for Ei . It follows from Corollary 3.4 in [16] that F = {Λi
∗(fij)}i∈I,j∈Ji and

G = {Γi
∗(fij)}i∈I,j∈Ji are standard Bessel sequences. Then for each x ∈ E , we have

SFG(x) =
∑
i∈I

∑
j∈Ji

⟨x,Γi
∗(fij)⟩Λi

∗(fij) =
∑
i∈I

Λi
∗Γix = SΛΓx,

so ∥SFG − IdE∥ = ∥SΛΓ − IdE∥ < 1, and the result follows. The converse is clear. 2

Let A and A′ be two C∗ -algebras. Then A ⊗ A′ is a C∗ -algebra with the spatial norm and for each a ∈ A

and a′ ∈ A′ , we have ∥a ⊗ a′∥ = ∥a∥∥a′∥ . The multiplication and involution on simple tensors are defined by

(a⊗ a′)(b⊗ b′) = ab⊗ a′b′ and (a⊗ a′)∗ = a∗ ⊗ a′
∗
, respectively. As we know, if a, a′ ≥ 0, then a⊗ a′ ≥ 0.

Now let E be a Hilbert A -module and E′ be a Hilbert A′ -module. Then the (Hilbert C∗ -module)

tensor product E⊗E′ is a Hilbert A⊗A′ -module. The module action and inner product for simple tensors are

defined by (a⊗ a′)(x⊗x′) = (ax)⊗ (a′x′) and ⟨x⊗x′, y⊗ y′⟩ = ⟨x, y⟩⊗ ⟨x′, y′⟩, respectively. Let U and U ′ be

adjointable operators on E and E′ , respectively. Then the tensor product U ⊗ U ′ is an adjointable operator

on E ⊗E′ . Also, (U ⊗ U ′)∗ = U∗ ⊗ U ′∗ and ∥U ⊗ U ′∥ = ∥U∥∥U ′∥ . For more results about tensor products of

C∗ -algebras and Hilbert C∗ -modules, see [23, 21].

Tensor products of frames and g-frames have been studied by some authors recently; see [15, 6, 16, 18].

It was proved in Proposition 3.2 in [19] that the direct sum of a countable number of g-duals (in Hilbert

spaces) is a g-dual in the direct sum space but Example 2.9 in [20] shows that this is not necessarily true for

approximate g-duals.

It was also shown in [20, Proposition 2.10] and [18, Corollary 3.8] (by using resolutions of the identity)

that the tensor product of two g-duals (in Hilbert spaces) gives a g-dual in the tensor product space. In the

following example, we show that the result does not necessarily hold for approximate g-duals:

Example 3.5 Let H be a separable Hilbert space (as a special case of a Hilbert C∗–module) and Λ = {Λi}i∈I

be an A-tight g-frame with
√
2 < A < 2 . It is easy to see that Λ is an approximate g-dual of itself. Now the

proof of Corollary 2.2 in [18] yields that Λ ⊗ Λ = {Λi ⊗ Λj}i,j∈I is an A2 -tight g-frame, so S(Λ⊗Λ)(Λ⊗Λ) =

S(Λ⊗Λ) = A2.Id(H⊗H) . Thus, ∥S(Λ⊗Λ)(Λ⊗Λ) − Id(H⊗H)∥ = A2 − 1 > 1 . This means that Λ ⊗ Λ is not an

approximate g-dual of itself.

Now we consider tensor products of g-duals and approximate g-duals in Hilbert C∗ -modules. In the following

proposition Λ′ = {Λ′
j ∈ L(E′, E′

j) : j ∈ J} , Γ′ = {Γ′
j ∈ L(E′, E′

j) : j ∈ J} , F ′ = {f ′j}j∈J and G′ = {g′j}j∈J ⊆
E′ , where E′ and E′

j ’s are Hilbert A′ -modules.

Proposition 3.6 (i) Let Γ be an approximate g-dual (resp. a g-dual) of Λ . If Γ′ is a g-dual of Λ′ , then

Γ⊗ Γ′ = {Γi ⊗ Γ′
j}i∈I,j∈J is an approximate g-dual (resp. a g-dual) of Λ⊗ Λ′ = {Λi ⊗ Λ′

j}i∈I,j∈J .

(ii) Let G be an approximate dual (resp. a dual) of F . If G′ is a dual of F ′ , then G ⊗ G′ = {gi ⊗ g′j}i∈I,j∈J

is an approximate dual (resp. a dual) of F ⊗ F ′ = {fi ⊗ f ′j}i∈I,j∈J .
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Proof (i) First suppose that Γ and Γ′ are approximate g-dual and g-dual of Λ and Λ′ , respectively. It follows

from Theorem 2.2.5 in [23] that 0 ≤ SΛ⊗SΛ′ ≤ ∥SΛ⊗SΛ′∥.IdE⊗E′ ≤ BB′.IdE⊗E′ , where B and B′ are upper

bounds of Λ and Λ′ , respectively. Hence, Lemma 4.1 in [21] implies that 0 ≤ ⟨(SΛ ⊗ SΛ′)z, z⟩ ≤ BB′⟨z, z⟩ , for
each z ∈ E ⊗ E′ . Now it is easy to obtain that

∑
(i,j)∈I×J⟨(Λi ⊗ Λ′

j)z, (Λi ⊗ Λ′
j)z⟩ converges in norm and∥∥∥∥ ∑

(i,j)∈I×J

|(Λi ⊗ Λ′
j)z|2

∥∥∥∥ =
∥∥∥⟨(SΛ ⊗ SΛ′)z, z⟩

∥∥∥ ≤ BB′∥z∥2,

so Λ ⊗ Λ′ is a standard g-Bessel sequence by Theorem 3.1 in [28] (also, see [16, Section 5]). Similarly, we can

get that Γ⊗ Γ′ is a standard g-Bessel sequence. It is also easy to see that

S(Γ⊗Γ′)(Λ⊗Λ′)(x⊗ x′) = (SΓΛ ⊗ SΓ′Λ′)(x⊗ x′) = (SΓΛ ⊗ IdE′)(x⊗ x′),

for each x⊗x′ ∈ E⊗E′ , and since the operators are bounded, we have S(Γ⊗Γ′)(Λ⊗Λ′) = SΓΛ⊗ IdE′ . Therefore

∥S(Γ⊗Γ′)(Λ⊗Λ′) − Id(E⊗E′)∥ = ∥(SΓΛ − IdE)⊗ IdE′∥ = ∥SΓΛ − IdE∥ < 1.

This means that Γ⊗ Γ′ is an approximate g-dual of Λ⊗ Λ′ . It is clear that if Γ and Γ′ are g-duals of Λ and

Λ′ , respectively, then S(Γ⊗Γ′)(Λ⊗Λ′) = Id(E⊗E′) , so Γ⊗ Γ′ is a g-dual of Λ⊗ Λ′ .

(ii) We can get the result by using Example 3.2 in [16] and part (i) . 2

Note that Proposition 2.10, Corollary 2.11 in [20], and part (ii) of Corollary 3.8 in [18] are special cases of the

above proposition.

Now we show that approximate duals in Hilbert C∗ -modules are stable under small perturbations. The

following result is analogous to part (i) of Theorem 3.1 in [20] that we need in the next section.

Proposition 3.7 Let Λ be a g-Bessel sequence and Ψ = {ψi}i∈I be an approximate g-dual (resp. a g-dual)

of Λ with upper bound C . If Γ is a sequence such that Γ− Λ is a g-Bessel sequence with upper bound K and

CK < (1− ∥IdE − SΨΛ∥)2 (resp. CK < 1), then Γ and Ψ are approximately dual g-frames.

Proof Let Ω be a finite subset of I and B be an upper bound for Λ. Then∥∥∥∥∑
i∈Ω

⟨Γix,Γix⟩
∥∥∥∥ 1

2

≤ ∥{Λix}i∈Ω∥2 + ∥{Γix− Λix}i∈Ω∥2 ≤ (
√
B +

√
K)∥x∥,

for each x ∈ E . Thus, by Theorem 3.1 in [28], Γ is a standard g-Bessel sequence. Now by using the Cauchy–

Schwarz inequality in Hilbert C∗ -modules, for each x ∈ E , we have

∥(IdE − SΨΓ)x∥ ≤ ∥(IdE − SΨΛ)x∥+ ∥(SΨΛ − SΨΓ)x∥

≤ ∥(IdE − SΨΛ)x∥+ sup
∥y∥=1

{∥∥∥∑
i∈I

|(Λi − Γi)x|2
∥∥∥ 1

2
∥∥∥∑

i∈I

|ψiy|2
∥∥∥ 1

2

}
≤ ∥(IdE − SΨΛ)x∥+

√
CK∥x∥ ≤ (∥IdE − SΨΛ∥+

√
CK)∥x∥.

Hence, ∥IdE −SΨΓ∥ ≤ ∥IdE −SΨΛ∥+
√
CK < 1. Also, if Λ and Ψ are g-duals, then SΨΛ = IdE and we have

∥IdE − SΨΓ∥ ≤
√
CK < 1. 2
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The following result is a generalization of Proposition 3.10 in [20] to Hilbert C∗ -modules.

Proposition 3.8 Let 0 ≤ λ1, λ2 < 1 , A,B, ε > 0 , and K = λ1 +
ε√
A
+ λ2[(1+λ1)

√
A+ε]√

A(1−λ2)
.

(i) If Λ is an (A,B) g-frame and Γ is a sequence satisfying

∥∥∥∥∑
i∈Ω

(Λ∗
i − Γ∗

i )fi

∥∥∥∥ ≤ λ1

∥∥∥∥∑
i∈Ω

Λ∗
i fi

∥∥∥∥+ λ2

∥∥∥∥∑
i∈Ω

Γ∗
i fi

∥∥∥∥+ ε

∥∥∥∥∑
i∈Ω

|fi|2
∥∥∥∥ 1

2

, (2)

for each finite subset Ω ⊆ I , fi ∈ Ei with K < 1 , then Λ̃ is an approximate g-dual of Γ and Γ is a

g-frame.

(ii) If F = {fi}i∈I is an (A,B) frame and G = {gi}i∈I is a sequence satisfying

∥∥∥∥∑
i∈Ω

aifi −
∑
i∈Ω

aigi

∥∥∥∥ ≤ λ1

∥∥∥∥∑
i∈Ω

aifi

∥∥∥∥+ λ2

∥∥∥∥∑
i∈Ω

aigi

∥∥∥∥+ ε

∥∥∥∥∑
i∈Ω

|ai|2
∥∥∥∥ 1

2

,

for each finite subset Ω ⊆ I , {ai}i∈Ω ⊆ A with K < 1 , then F̃ is an approximate dual of G and G is a

frame.

Proof (i) Suppose that {ei,k}k∈Ji is a Parseval frame for Ei and {ci,k}i∈Ω,k∈Ωi is a finite subset of A ,

where Ω and Ωi s are finite index sets. Since Λ is an (A,B) standard g-frame, Corollary 3.4 in [16] yields that

{ui,k = Λ∗
i (ei,k) : i ∈ I, k ∈ Ji} is an (A,B) standard frame. Now for vi,k = Γ∗

i (ei,k), we have∥∥∥∥∑
i∈Ω

∑
k∈Ωi

ci,k(ui,k − vi,k)

∥∥∥∥ =

∥∥∥∥∑
i∈Ω

(Λ∗
i − Γ∗

i )(
∑
k∈Ωi

ci,kei,k)

∥∥∥∥
≤ λ1

∥∥∥∥∑
i∈Ω

∑
k∈Ωi

ci,kui,k

∥∥∥∥+ λ2

∥∥∥∥∑
i∈Ω

∑
k∈Ωi

ci,kvi,k

∥∥∥∥
+ ε

∥∥∥∥∑
i∈Ω

∑
k∈Ωi

|ci,k|2
∥∥∥∥ 1

2

.

Hence, Theorem 3.2 in [14] implies that {vi,k = Γ∗
i (ei,k) : i ∈ I, k ∈ Ji} is a standard Bessel sequence with

upper bound [(1+λ1)
√
B+ε]2

(1−λ2)2
, so (by [16, Theorem 3.3]) Γ is a standard g-Bessel sequence with upper bound

[(1+λ1)
√
B+ε]2

(1−λ2)2
. Thus, for each {fi}i∈I ∈ ⊕i∈IEi , the series

∑
i∈I Γ

∗
i fi converges in E and from (2), we can get

∥∥∥∥∑
i∈I

(Λ∗
i − Γ∗

i )fi

∥∥∥∥ ≤ λ1

∥∥∥∥∑
i∈I

Λ∗
i fi

∥∥∥∥+ λ2

∥∥∥∥∑
i∈I

Γ∗
i fi

∥∥∥∥+ ε

∥∥∥∥∑
i∈I

|fi|2
∥∥∥∥ 1

2

. (3)

Since for each x ∈ E , {fi = Λ̃ix}i∈I ∈ ⊕i∈IEi and 1
A is an upper bound for Λ̃, by using (3), we have

∥SΓΛ̃x∥ − ∥x∥ ≤ ∥SΓΛ̃x− x∥ ≤ (λ1 +
ε√
A
)∥x∥+ λ2∥SΓΛ̃x∥.

Now we can obtain a result similar to the proof of Proposition 3.10 in [20].
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(ii) Since Λ∗
fi
(a) = afi and Λ∗

gi(a) = agi , for each a ∈ A , the result follows from part (i) for Λi = Λfi

and Γi = Λgi . 2

4. Approximate duals and ε-nearly Parseval frames

In this section, we consider ε-nearly Parseval frames in Hilbert spaces, which are useful in applications (see [5]).

We obtain some results for approximate duals of ε-nearly Parseval and ε-close frames (since Hilbert spaces are

special cases of Hilbert C∗ -modules, we do not state the definitions of frames, g-frames, and approximate duals

in Hilbert spaces separately).

ε-nearly Parseval frames were defined in [5] and we have the following definition:

Definition 4.1 Suppose that H is a separable Hilbert space and {Hi}i∈I is a sequence of separable Hilbert
spaces.

(i) Let Λi be a bounded operator from H into Hi and ε < 1 . We say that Λ = {Λi}i∈I is an ε-nearly

Parseval g-frame if for each f ∈ H

(1− ε)∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ (1 + ε)∥f∥2.

(ii) Let {fi}i∈I be a sequence in H and ε < 1 . We say that {fi}i∈I is an ε-nearly Parseval frame if for each

f ∈ H

(1− ε)∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ (1 + ε)∥f∥2.

It is clear that if ε = 0, then an ε-nearly Parseval g-frame is a Parseval g-frame and so it is a g-dual of itself.

Now we have the following result for approximate duals:

Theorem 4.2 (i) If Λ is an ε-nearly Parseval g-frame, then it is an approximate g-dual of itself.

(ii) If {fi}i∈I is an ε-nearly Parseval frame, then it is an approximate dual of itself.

Proof (i) Since Λ is an ε-nearly Parseval g-frame, we have (1 − ε).IdH ≤ SΛ ≤ (1 + ε).IdH , so −ε.IdH ≤
(SΛ − IdH) ≤ ε.IdH . Because SΛΛ = SΛ , we obtain that ∥SΛΛ − IdH∥ ≤ ε < 1. This means that Λ is an

approximate g-dual of itself.

(ii) Since frames are special cases of g-frames, we get the result from part (i) . 2

Note that if {Λi}i∈I is a g-Bessel sequence and J ⊂ I , then we denote the optimal upper bound of {Λi}i∈Jc

by B(Jc).

It was shown in Theorem 3.1 in [20] that if {Λi}i∈I is a Parseval g-frame and B(Jc) < 1, then {Λi}i∈J

is an approximate g-dual of itself. Now we have the following result for ε-nearly Parseval g-frames:

Proposition 4.3 (i) Let Λ be an ε-nearly Parseval g-frame and J ⊂ I such that B(Jc) < 1 − ε . Then

{Λi}i∈J is an approximate g-dual of itself.
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(ii) Let {fi}i∈I be an ε-nearly Parseval frame and J ⊂ I such that B(Jc) < 1 − ε . Then {fi}i∈J is an

approximate dual of itself.

Proof (i) We have∑
i∈J

∥Λif∥2 =
∑
i∈I

∥Λif∥2 −
∑
i∈Jc

∥Λif∥2

≥
∑
i∈I

∥Λif∥2 −B(Jc)∥f∥2 ≥
(
(1− ε)−B(Jc)

)
∥f∥2.

Hence,
(
1− (ε+B(Jc))

)
is a lower bound for {Λi}i∈J . Therefore, {Λi}i∈J is an ε′–nearly Parseval g-frame,

where ε′ = (ε+B(Jc)). Now by Theorem 4.2, {Λi}i∈J is an approximate g-dual of itself.

(ii) The result follows from part (i) . 2

Recall that two sequences {fi}i∈I and {gi}i∈I in H are ε-close if
∑

i∈I ∥fi−gi∥2 ≤ ε2 (see [5, Definition 2.4]).

Example 4.4 Let H = C2 , {e1, e2} be the standard orthonormal basis for H and 2
3 < ε < 1 . For F =

{
√

ε
2e1, e2} and G = {0, e2} , it is easy to see that F is an ε-nearly Parseval frame that is ε-close to G , but F

and G are not approximately dual frames because G is not a frame.

Now we have the following result:

Proposition 4.5 (i) Let F = {fi}i∈I be an ε-nearly Parseval frame with upper bound A . If {gi}i∈I and

{fi}i∈I are ε-close with
√
Aε < 1− ∥IdH − SF∥ , then F is an approximate dual of {gi}i∈I .

(ii) If F in part (i) is also an A-tight frame with
√
Aε < 1 − |1 − A| , then F is an approximate dual of

{gi}i∈I .

Proof (i) Since F is an ε-nearly Parseval frame, it is an approximate dual of itself by Theorem 4.2. Also,

for each f ∈ H , we have ∑
i∈I

|⟨f, fi − gi⟩|2 ≤ ∥f∥2
∑
i∈I

∥fi − gi∥2 ≤ ε2∥f∥2.

By considering C = A and K = ε2 , we obtain that {fi − gi}i∈I is a Bessel sequence with upper bound K and
√
CK = ε

√
A < 1− ∥IdH − SF∥ . Now the result follows from Proposition 3.7 (or [20, Theorem 3.1]).

(ii) The result follows from part (i) by considering SF = A.IdH . 2

Remark 4.6 We can obtain from part (ii) of the above proposition that if F = {fi}i∈I is an A-tight frame with

A ≤ 1 , then each sequence {gi}i∈I that is ε-close to F with ε <
√
A is an approximate dual of F . Especially

if F is a Parseval frame that is ε-close to G = {gi}i∈I , then F and G are approximately dual frames.

Let F = {fi}ni=1 be an ε-nearly Parseval frame for a d-dimensional Hilbert space H . As we know (see [7,

Theorem 5.3.4] and [3]), {S
−1
2

F fi}ni=1 is the closest Parseval frame to F . It was proved in [5, Proposition 3.1 and
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Remark 3.2] that the relation
∑n

i=1 ∥S
−1
2

F fi−fi∥2 = d(2−ε−2
√
1− ε) ≤ dε2

4 holds if { 1√
1−ε

fi}ni=1 is a Parseval

frame (or equivalently S
−1
2

F = 1√
1−ε

.IdH , so we have
∑n

i=1 ∥
1√
1−ε

fi − fi∥2 = d(2− ε− 2
√
1− ε) ≤ dε2

4 ). It was

also shown in Example 2.4 in [24] that if F = {fi}ni=1 is an ε-nearly Parseval frame for a finite-dimensional

Hilbert space H , then {1
2 (fi + S−1

F fi)}ni=1 is a (1, 1 + ε
4 ) frame, which is much closer to F than {S

−1
2

F fi}ni=1

with better frame bounds compared with the bounds of F . Therefore, the frames of the forms { 1√
1−ε

fi}i∈I

and { 1
2 (fi + S−1

F fi)}i∈I are useful in applications (also, see [1, Section 3]). Now we have the following results:

Proposition 4.7 (i) Let Λ = {Λi}i∈I be an ε-nearly Parseval g-frame with ε < 1
3 . Then { 1√

1−ε
Λi}i∈I is

an approximate g-dual of itself.

(ii) Let {fi}i∈I be an ε-nearly Parseval frame with ε < 1
3 . Then { 1√

1−ε
fi}i∈I is an approximate dual of

itself.

Proof (i) We have (1 − ε).IdH ≤ SΛ ≤ (1 + ε).IdH , so 0 ≤ SΛ

1−ε − IdH ≤ 2ε
1−ε .IdH . Therefore,

∥ SΛ

1−ε − IdH∥ ≤ 2ε
1−ε < 1. This means that { 1√

1−ε
Λi}i∈I and { 1√

1−ε
Λi}i∈I are approximately dual g-frames.

(ii) The result follows from part (i) . 2

Proposition 4.8 Let F = {fi}i∈I be a frame and G = {gi}i∈I , where gi =
1
2 (fi + S−1

F fi) .

(i) If ∥SF − IdH∥ < 2 , then F and G are approximately dual frames.

(ii) If F is an ε-nearly Parseval frame, then F and G are approximately dual frames.

(iii) If F = {fi}i∈I is an A-tight frame with A < 3 , then F and G are approximately dual frames.

Proof (i) For each f ∈ H , we have

SFG(f) =
1

2

(
(
∑
i∈I

⟨f, fi⟩fi) + (
∑
i∈I

⟨f, S−1
F fi⟩fi)

)
=

1

2
(SFf + f).

Hence:

∥SFG − IdH∥ =
1

2
∥SF − IdH∥ < 1.

This means that F and G are approximately dual frames.

(ii) Since F is an ε-nearly Parseval frame, F is an approximate dual of itself by Theorem 4.2, and so

∥SF − IdH∥ < 1. Now we get the result from part (i) .

(iii) Since F is A-tight, we have SF = A.IdH , so ∥SF − IdH∥ = |A− 1| < 2, and the result follows from

part (i) . 2
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