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Abstract: In the present paper we consider a new integral transform, denoted by Gν , which may be regarded as a

generalization of the well-known transform due to Glasser. Many identities involving this transform are given. By

making use of these identities, a number of new Parseval–Goldstein type identities are obtained for these and many

other well-known integral transforms. The identities proven in this paper are shown to give rise to useful corollaries for

evaluating infinite integrals of special functions. Some examples are also given as illustrations of the results presented

here.
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1. Introduction, definitions, and preliminaries

Glasser [4] considered the integral transform

G {f(x); y} =

∫ ∞

0

f(x)

(x2 + y2)
1/2

dx, (1.1)

gave the following Parseval–Goldstein type theorem [4, p. 171, Eq. (4)],∫ ∞

0

f(x)G {g(y);x} dx =

∫ ∞

0

g(x)G {f(y);x} dx, (1.2)

and evaluated a number of infinite integrals involving Bessel functions. Additional results about the Glasser

transform can be found in Srivastava and Yurekli [9] and Kahramaner et al. [6]. The Widder potential transform

is defined by

P {f(x); y} =

∫ ∞

0

x f(x)

x2 + y2
dx. (1.3)

The classical Laplace transform, the Fourier cosine transform, the Fourier sine transform, and the Kν -transform

are defined as follows, respectively:

L{f(x); y} =

∫ ∞

0

exp(−x y) f(x) dx, (1.4)
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FC {f(x); y} =

∫ ∞

0

cos(x y) f(x) dx, (1.5)

FS {f(x); y} =

∫ ∞

0

sin(x y) f(x) dx, (1.6)

and

Kν {f(x); y} =

∫ ∞

0

(x y)1/2 Kν (x y) f(x) dx. (1.7)

The Hankel transform Hν is defined as

Hν {f(x); y} =

∫ ∞

0

(x y)1/2 Jν (x y) f(x) dx. (1.8)

The Gν -transform is defined by

Gν {f(x); y} =

∫ ∞

0

f(x)

(x2 + y2)
ν+ 1

2

dx, (1.9)

which is related to the Glasser transform (1.1) and Widder potential transform (1.3) as follows:

G0 {f(x); y} = G {f(x); y}

and

G1/2 {f(x); y} = P
{
f(x)

x
; y

}
The object of this paper is first to establish a Parseval–Goldstein type theorem involving the Gν -transform (1.9),

the Fourier sine transform, the Fourier cosine transform, the Kν -transform, and the Hankel transform. The

theorem yields new identities for the integral transform introduced above. Using these identities, a number of

new Parseval–Goldstein type identities are obtained for these and many other well-known integral transforms.

As applications of the identities and theorems, some illustrative examples are also given.

2. Parseval–Goldstein type theorems

In the following lemma, we give identities involving the Gν -transform , Hν -transform, and classical L -Laplace

transform.

Lemma 2.1 The following identities hold true:

Gν

{
uν+ 1

2Hν {f(x);u} ; y
}
=

√
π

2νΓ(ν + 1
2 )

L
{
xν−1/2f(x); y

}
, (2.1)

Hν

{
uν+ 1

2Gν {f(x);u} ; y
}
=

√
π

2νΓ(ν + 1
2 )

yν−1/2L{f(x); y} , (2.2)

Gν

{
uν+ 1

2Hν

{
x−ν− 1

2 f(x);u
}
; y
}
=

√
π

2νΓ(ν + 1
2 )

L
{
f(x)

x
; y

}
, (2.3)

provided that the integrals involved converge absolutely.
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Proof We only give the proof of (2.1) because the proof of (2.2) is similar. Indeed, to prove (2.1), we start

by using the definitions (1.9) and (1.8) of the Gν -transform and Hν -transform.

Gν

{
uν+ 1

2Hν {f(x);u} ; y
}
=

∫ ∞

0

uν+ 1
2

(u2 + y2)
ν+ 1

2

(∫ ∞

0

(xu)1/2Jν (xu) f(x)dx

)
du.

Changing the order of integration, which is permissible by absolute convergence of the integrals involved, we

find that

Gν

{
uν+ 1

2Hν {f(x);u} ; y
}
=

∫ ∞

0

f(x)

(∫ ∞

0

x1/2Jν (ux)
uν+1

(u2 + y2)
ν+ 1

2

du

)
dx. (2.4)

Evaluating the inner integral on the right-hand side of (2.4), [3, p.24, Entry (18)] and definition (1.4) of the

Laplace transform, Re (ν) > − 1
2 , we obtain

Gν

{
uν+ 1

2Hν {f(x);u} ; y
}
=

√
π

2νΓ(ν + 1
2 )

L
{
xν−1/2f(x); y

}
To prove (2.3), we start by using the definitions (1.9) and (1.8) of the Gν -transform and Hν -transform.

Gν

{
uν+ 1

2Hν

{
x−ν− 1

2 f(x);u
}
; y
}
=

∫ ∞

0

uν+ 1
2

(u2 + y2)
ν+ 1

2

(∫ ∞

0

(xu)1/2Jν (xu)x
−ν− 1

2 f(x)dx

)
du

Changing the order of integration, which is permissible by absolute convergence of the integrals involved, we

have

Gν

{
uν+ 1

2Hν

{
x−ν− 1

2 f(x);u
}
; y
}
=

∫ ∞

0

x−ν− 1
2 f(x)

(∫ ∞

0

(ux)1/2Jν (ux)
uν+ 1

2

(u2 + y2)
ν+ 1

2

du

)
dx (2.5)

Evaluating the inner integral on the right-hand side of (2.5), [3, p.24, Entry (18)] and the definition Laplace

transform of (1.4), Re (ν) > − 1
2 , we obtain

Gν

{
uν+ 1

2Hν

{
x−ν− 1

2 f(x);u
}
; y
}
=

√
π

2νΓ(ν + 1
2 )

L
{
f(x)

x
; y

}
.

2

Theorem 2.1 The following Parseval–Goldstein type identity holds true:∫ ∞

0

uν+ 1
2Gν {f(x);u}Hν {g(y);u} du =

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

f(x)L
{
yν−1/2g(y);x

}
dx, (2.6)

provided that the integrals involved converge absolutely.

Proof Using the definition (1.9) of the Gν -transform, we have

∫ ∞

0

uν+ 1
2Gν {f(x);u}Hν {g(y);u} du =

∫ ∞

0

uν+ 1
2

(∫ ∞

0

f(x)

(x2 + u2)
ν+ 1

2

dx

)
Hν {g(y);u} du.
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Changing the order of the integration, which is permissible by absolute convergence of the integrals involved,

we find from (2.1) that∫ ∞

0

uν+ 1
2Gν {f(x);u}Hν {g(y);u} du =

∫ ∞

0

f(x)

(∫ ∞

0

uν+ 1
2

(u2 + x2)
ν+ 1

2

Hν {g(y);u} du

)
dx

=

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

f(x)L
{
yν−1/2g(y);x

}
dx.

2

The identity (2.6) can be rewritten by using the simple property of the Laplace transform∫ ∞

0

f (x)

(∫ ∞

0

g (y) e−yxdy

)
dx =

∫ ∞

0

g (y)

(∫ ∞

0

f (x) e−xydx

)
dy

provided absolute convergence of the integrand, as follows:∫ ∞

0

uν+ 1
2Gν {f(x);u}Hν {g(y);u} du =

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

yν−1/2g(y)L{f(x); y} dy. (2.7)

Comparing (2.6) and (2.7) we see that∫ ∞

0

f(x)L
{
yν−1/2g(y);x

}
dx =

∫ ∞

0

yν−1/2g(y)L{f(x); y} dy

provided that the integrals involved converge absolutely.

As a consequence of our Theorem 2.1, we can give the following identity, which was obtained earlier in

[1, Lemma 1, (18)]:

Kν {Hν {g(y);u} ; a} = a−ν+1/2P
{
yν−1/2g(y); a

}
.

Lemma 2.2 The following identities hold true:

FS {uGν {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

yν−1/2K1−ν

{
x−ν+1/2f(x); y

}
, (2.8)

FC {Gν {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

yν−1/2Kν

{
x−ν−1/2f(x); y

}
, (2.9)

Gν {uFS {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

y−ν+1/2K1−ν

{
xν−1/2f(x); y

}
, (2.10)

Gν {FC {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

y−ν−1/2Kν

{
xν−1/2f(x); y

}
, (2.11)

provided that the integrals involved converge absolutely.

Proof Indeed, using the definitions (1.9) and (1.6) of the Gν -transform and FS -transform, we have

FS {uGν {f(x);u} ; y} =

∫ ∞

0

u sin(uy)Gν {f(x);u} du

=

∫ ∞

0

u sin(uy)

(∫ ∞

0

f(x)

(x2 + u2)
ν+ 1

2

dx

)
du.
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Changing the order of integration, which is permissible by absolute convergence of the integrals involved, we

find

FS {uGν {f(x);u} ; y} =

∫ ∞

0

f(x)

(∫ ∞

0

u
(
u2 + x2

)−ν− 1
2 sin(uy) du

)
dx. (2.12)

Evaluating the inner integral on the right-hand side of (2.12), [5, p. 442, 3.771, Entry (5)] and the definition

(1.7) of Kν -transform, Re (ν) > 0, we obtain

FS {uGν {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

yν−1/2K1−ν

{
x−ν+1/2f(x); y

}
.

Similarly, using the definitions (1.9) and (1.5) of the Gν -transform and FC -transform, we have

FC {Gν {f(x);u} ; y} =

∫ ∞

0

cos(uy)Gν {f(x);u} du

=

∫ ∞

0

cos(uy)

(∫ ∞

0

f(x)

(x2 + u2)
ν+ 1

2

dx

)
du,

and changing the order of the integration, which is permissible by absolute convergence of the integrals involved,

we find

FC {Gν {f(x);u} ; y} =

∫ ∞

0

f(x)

(∫ ∞

0

(
u2 + x2

)−ν− 1
2 cos(uy)du

)
dx. (2.13)

Evaluating the inner integral on the right-hand side of (2.13), [5, p. 442, 3.771, Entry (2)] and the definition

(1.7) of Kν -transform, Re (ν) > −1
2 , we obtain

FC {Gν {f(x);u} ; y} =

√
π

2νΓ(ν + 1
2 )

yν−1/2Kν

{
x−ν−1/2f(x); y

}
.

The proof of the identities (2.10) and (2.11) is similar. 2

Remark 1 Setting ν = 0 in (2.9) , we obtain the following identity:

FC

{
G
{
x1/2f(x); t

}
; y
}
= y−1/2K0 {f(x); y} . (2.14)

We would like to note that (2.14) was obtained earlier (see [6, p.8, Lemma 2.1, (2.1)])

Theorem 2.2 The following Parseval–Goldstein type identities hold true:∫ ∞

0

uGν {f(x);u}FS {g(y);u} du =

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

yν−1/2g(y)K1−ν

{
x−ν+1/2f(x); y

}
dy, (2.15)

∫ ∞

0

Gν {f(x);u}FC {g(y);u} du =

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

yν−1/2g(y)Kν

{
x−ν−1/2f(x); y

}
dy, (2.16)

provided that the integrals involved converge absolutely.
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Proof We only give the proof of the Parseval–Goldstein identity (2.15) because the proof of (2.16) is similar.

Indeed, ∫ ∞

0

uGν {f(x);u}FS {g(y);u} du =

∫ ∞

0

uGν {f(x);u}
{∫ ∞

0

sin(uy)g(y) dy

}
du,

and changing the order of the integration, which is permissible by absolute convergence of the integrals involved,

we find from (2.8) that∫ ∞

0

uGν {f(x);u}FS {g(y);u} du =

∫ ∞

0

g(y)

{∫ ∞

0

u sin(uy)Gν {f(x);u} du
}
dy

=

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

yν−1/2g(y)K1−ν

{
x−ν+1/2f(x); y

}
dy.

2

Corollary 2.1 We have

L{Gν {f(x);u} ; a} =
a

2ν−1
√
πΓ(ν +

1

2
)
P
{
yν−3/2Kν

{
x−ν−1/2f(x); y

}
; a
}
, (2.17)

provided that the integrals involved converge absolutely.

Proof We put

g(y) =
1

y2 + a2
(2.18)

in (2.16) of our Theorem 2.2. Utilizing the known formula [2, p.8, Entry (11)], we have

π

2a

∫ ∞

0

Gν {f(x);u} e−au du =

√
π

2νΓ(ν + 1
2 )

∫ ∞

0

yν−1/2

y2 + a2
Kν

{
x−ν−1/2f(x); y

}
dy. (2.19)

Using the definition of the Laplace transform (1.4) and Widder potential transform (1.3), we obtain

L{Gν {f(x);u} ; a} =
a

2ν−1
√
πΓ(ν +

1

2
)
P
{
yν−3/2Kν

{
x−ν−1/2f(x); y

}
; a
}
.

2

3. Illustrative examples

Example 3.1 We show for Re (ν) > 1/2

∫ ∞

0

u

(u2 + y2)ν+1/2
γ(ν, u2/4a) du =

√
π

23(ν−1)/2aν−1/2

Γ (2ν − 1)

Γ(ν + 1
2 )

exp

(
y2

8a

)
D−2ν+1(

y√
2a

),

where γ(α, x) denotes the incomplete gamma function and Dα(x) denotes the parabolic-cylinder function .
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Proof We put

f(x) = xν−3/2e−ax2

(3.1)

in (2.1) of Lemma 2.1. Using the known result [3, p.30, Entry (11)], we find that

Hν {f(x);u} = 2ν−1u1/2−νγ(ν, u2/4a). (3.2)

Substituting the result (3.2) into identity (2.1) of our Lemma 2.1, we obtain

2ν−1

∫ ∞

0

u

(u2 + y2)ν+1/2
γ(ν, u2/4a) du =

√
π

2νΓ(ν + 1
2 )

L
{
x2ν−2e−ax2

; y
}
,

and using the known result [8, p.29, Entry (6)], we find that∫ ∞

0

u

(u2 + y2)ν+1/2
γ(ν, u2/4a) du =

√
π

23(ν−1)/2aν−1/2

Γ (2ν − 1)

Γ(ν + 1
2 )

exp

(
y2

8a

)
D−2ν+1(

y√
2a

).

2

Example 3.2 We show

FC

{
1

(u2 + y2)
ν+1/2

; a

}
=

√
π

Γ
(
ν + 1

2

) (2a

y

)ν
Γ (2ν)

(y + a)2ν
Kν(ay),

where a < x < ∞ and Re(ν) > −1/2.

Proof We put

f(x) = x−ν+1/2(x2 − a2)ν−1/2 (3.3)

in (2.1) of Lemma 2.1. Using the known result [3, p.25, Entry (28)], we find that

Hν {f(x);u} =
1√
π2ν

Γ
(
ν + 1

2

)
u−ν−1/2 cos(au), (3.4)

and

Gν

{
uν+1/2Hν {f(x);u} ; y

}
=

1√
π2ν

Γ
(
ν + 1

2

) ∫ ∞

0

1

(u2 + y2)
ν+1/2

cos(au)du. (3.5)

Substituting the results (3.4) and (3.5) into identity (2.1) of our Lemma 2.1, we obtain

1√
π2ν

Γ
(
ν + 1

2

) ∫ ∞

0

1

(u2 + y2)
ν+1/2

cos(au)du =

√
π

2νΓ(ν + 1
2 )

L
{
(x2 − a2)ν−1/2; y

}
,

and using the known result [8, p.22, Entry (13)] and the definition (1.5) of the FC -transform, we find that

FC

{
1

(u2 + y2)
ν+1/2

; a

}
=

√
π

Γ
(
ν + 1

2

) (2a

y

)ν
Γ (2ν)

(y + a)2ν
Kν(ay).

2

The following example is deduced from the identities given in Lemma 2.2.
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Example 3.3 We show

Gν

{
(a2 − u2)ν−1/2; y

}
=

√
π

2
Γ
(
ν + 1

2

)(a

y

)ν

(a2 + y2)−1/2P−ν
−1/2

(
y2 − a2

y2 + a2

)

where Pµ
ν (x) denotes the associated Legendre function of the first kind and Re (ν) > −1/2.

Proof We put

f(x) = x−νJν(ax) (3.6)

in (2.11) of Lemma 2.2. Using the known result [2, p.44, Entry (9)], we find that

FC {f(x);u} =

√
π

2νaνΓ(ν + 1
2 )

(a2 − u2)ν−1/2, (3.7)

and

Gν {FC {f(x);u} ; y} =

√
π

2νaνΓ(ν + 1
2 )

Gν

{
(a2 − u2)ν−1/2; y

}
, (3.8)

where 0 < u < a and Re (ν) > −1/2. Substituting the result (3.7) and (3.8) into identity (2.11) of our Lemma

2.2, we obtain

a−νGν

{
(a2 − u2)ν−1/2; y

}
=

√
π

2νΓ(ν + 1
2 )

y−ν−1/2Kν

{
x−1/2Jν(ax); y

}
,

and using the known result [7, p.365, 2.16.21, Entry (1)], we find that

Gν

{
(a2 − u2)ν−1/2; y

}
=

√
π

2
Γ
(
ν + 1

2

)(a

y

)ν

(a2 + y2)−1/2P−ν
−1/2

(
y2 − a2

y2 + a2

)
.

2

We conclude this investigation by remarking that many other infinite integrals can be evaluated in this

manner by applying the above lemmas, the above theorems, and their various corollaries and consequences

considered here.
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