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Abstract: The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second

Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph.

In this paper we present the lower bound on M1 and M2 among all unicyclic graphs of given order, maximum degree,

and cycle length, and characterize graphs for which the bound is attained. Moreover, we obtain some relations between

the Zagreb indices for unicyclic graphs.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V (G) and edge set E(G). dG(u) denotes the degree of the

vertex u of G . The maximum degree of G and the average of the degrees of the vertices adjacent to a vertex

u are denoted by ∆(G) and µG(u), respectively. The cycle of a graph G is denoted by C(G). Denote by

Un(k,∆) the set of all simple connected unicyclic graphs of order n with the maximum degree ∆ and cycle

length k . In Un(k,∆), we must have ∆ + k ≤ n + 2. A pendant vertex is a vertex of degree one. The path,

star, and cycle of order n are denoted by Pn K1,n−1 , and Cn respectively.

The first Zagreb index M1(G) and the second Zagreb index M2(G) are defined as:

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

The Zagreb indices were introduced in [9] and elaborated in [8]. These indices reflect the extent of

branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular structure descriptors [1]

and [15]. Their main properties were summarized in [4, 7, 13, 19]. Some recent results on the Zagreb indices

are reported in [4, 5, 9–12, 14–20]. [18] gave the unicyclic graphs with the first three smallest and largest M1 .

[17] characterized the graphs with smallest and largest M2 among all unicyclic graphs. [6] gave the unicyclic

graphs of given order and cycle length with minimum and maximum Zagreb indices.

Recently, it has been conjectured that for each simple graph with n vertices and m edges, it holds that

M1(G)/n ≤ M2(G)/m . This conjecture has been disproved in general graphs and has been proved for chemical

graphs and trees in [10, 16].
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The paper is organized in the following way. In Section 2, we present the lower bound on M1 in Un(k,∆)

and characterize extremal graphs. In Section 3, we obtain the lower bound on M2 in Un(k,∆) and characterize

extremal graphs. Finally, in Section 4, we find some relations between M1 and M2 for unicyclic graphs and

from these results it follows that M1(G)/n ≤ M2(G)/m for all unicyclic graphs.

2. Lower bound on M1 in Un(k,∆)

A starlike tree is a tree with exactly one vertex having degree greater than two. Denote by Sn,∆ the set of all

starlike trees of order n with maximum degree ∆.

(a) (b)

Figure 1. (a) One graph in An(k,∆), (b) one graph in Bn(k,∆).

An(k,∆) denotes the set of unicyclic graphs obtained by identifying a pendant vertex of a starlike tree

in Sn−k+1,∆ with one vertex of Ck (see Figure 1(a)). Denote by Bn(k,∆) the set of graphs of order n obtained

by attaching ∆ − 2 paths to one vertex of Ck (see Figure 1(b)). Let Ak
n be the unicyclic graph obtained by

identifying one pendant vertex of Pn−k+1 with a vertex of Ck .

Lemma 2.1 Let x be a pendant vertex of a connected graph G , which is adjacent to a vertex v . Also let y be

a pendant vertex, different from x . Consider the transformation G′ = G − vx + yx . Then M1(G) ≥ M1(G
′)

with equality if and only if vertex x is adjacent to a vertex of degree 2.

Proof dG(w) = dG′(w) for w ̸= v, y whereas dG′(v) = dG(v)− 1 and dG′(y) = 2. Thus

M1(G)−M1(G
′) = 2dG(v)− 4. (1)

Since dG(v) ≥ 2, M1(G) ≥ M1(G
′) with equality holding if and only if dG(v) = 2. 2

We have

M1(G) =

{
∆(∆− 3) + 4n+ 4 if G ∈ An(k,∆)

∆(∆− 3) + 4n+ 2 if G ∈ Bn(k,∆).
(2)

Now we are ready to give a lower bound on M1 and characterization of extremal graphs.

Theorem 2.2 Let G be a graph in Un(k,∆) , where 3 ≤ k ≤ n−∆+ 2 . Then

M1(G) ≥ ∆(∆− 3) + 4n+ 2

with equality if and only if G ∈ Bn(k,∆) .
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Proof If G ∈ Bn(k,∆) then M1(G) = ∆(∆− 3) + 4n+ 2, the equality holds. Now we have to show that

M1(G) > ∆(∆− 3) + 4n+ 2 (3)

for all G /∈ Bn(k,∆). If G ∈ An(k,∆) then from (2) the inequality holds in (3). Now we suppose that

G /∈ An(k,∆). Let u be the maximum degree vertex in G . We consider the following two cases.

Case 1 : u /∈ V (C(G)). In this case we find the longest path from vertex u to any pendant vertex v such that

its each vertex ( ̸= u) is not contained in the path from vertex u to cycle C(G). Since G /∈ An(k,∆), there is a

pendant vertex x (x ̸= v ), which is adjacent to a vertex y (y ̸= u). We choose this pendant vertex x from G

and consider the transformation G′ = G− yx+ vx ; then G′ ∈ Un(k,∆) and M1(G) ≥ M1(G
′) by Lemma 2.1.

By the above described transformation we have nonincreased the value of M1 . If G′ ∈ An(k,∆) we are done.

If not, then we continue the construction as follows. Clearly (u, x) is the longest path of G′ in which its each

vertex ( ̸= u) is not contained in the path from vertex u to cycle C(G). Since G′ /∈ An(k,∆) we choose one

pendant vertex, which is adjacent to a vertex ( ̸= u) of degree greater than or equal to 2 in G′ . By applying

the same transformation a sufficient number of times (s-times), we arrive at a graph G(s) in An(k,∆). Thus

we have the following sequence:

M1(G) ≥ M1(G
′) ≥ M1(G

′′) ≥ · · · ≥ M1(G
(s−1)) ≥ M1(G

(s)).

Since G(s) ∈ An(k,∆), the inequality holds in (3), by (2).

Case 2 : u ∈ V (C(G)). In this case we find the longest path from vertex u to any pendant vertex v such that

its each vertex ( ̸= u) is not contained in C(G). Using the same procedure as in Case 1, we get

M1(G) ≥ M1(G
′) ≥ M1(G

′′) ≥ · · · ≥ M1(G
(s−1)) ≥ M1(G

(s))

where G(s) ∈ Bn(k,∆). Therefore there exists exactly one pendant vertex in G(s−1) , which is adjacent to a ver-

tex of degree three and nonadjacent to the maximum degree vertex u . We choose this pendant vertex in G(s−1)

and apply the same transformation, and we arrive at G(s) . Thus we have M1(G) ≥ M1(G
(s−1)) > M1(G

(s))

by Lemma 2.1. Hence the inequality holds in (3) and the theorem is proved. 2

The proof of Corollary 2.3 follows directly from Theorem 2.2.

Corollary 2.3 [6] Let G be a unicyclic graph of order n and cycle length k . Then

M1(G) ≥ 4n+ 4

with equality if and only G is isomorphic to Ak
n .

3. Lower bound on M2 in Un(k,∆)

Let Bk
n (k ≤ n) be the unicyclic graph with n − k pendant vertices and its each pendant vertex is adjacent

to one vertex of Ck . In particular, Bn
n = Cn , a cycle of order n . Denote by Ck

n,∆ (∆ ≥ 4) a unicyclic graph

obtained by identifying two pendant vertices of the path Pn−∆−k+2 with the center of star K1,∆−1 and one

vertex of cycle Ck , respectively. Denote by Dk
n,∆ (∆ ≥ 4) a unicyclic graph of order n obtained by identifying

a pendant vertex of Pn−∆−k+3 with a pendant vertex of Bk
∆+k−2 .
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Lemma 3.1 Let G be a connected graph possessing two adjacent vertices u and v both of degree greater than

or equal to 2. Also let x be a pendant vertex of G , which is adjacent to a vertex y ( ̸= u, v ). Consider the

transformation G′ = G− yx− uv+ ux+ xv . Then M2(G) ≥ M2(G
′) with equality if and only if dG(u) = 2 or

dG(v) = 2 , and vertex y is adjacent to a vertex of degree 2 and a vertex of degree 1, respectively, in G .

Proof Now we have dG(w) = dG′(w) for w ̸= x, y whereas dG′(y) = dG(y)− 1 and dG′(x) = dG(x) + 1 = 2.

Thus

M2(G)−M2(G
′) = dG(u)dG(v)− 2dG(u)− 2dG(v) + dG(y) +

∑
wy∈E(G′)

dG′(w)

= (dG(u)− 2)(dG(v)− 2) + dG(y) + dG(y)µG(y)− 5. (4)

Since G is connected, dG(y)µG(y) ≥ 3. Also we have (dG(u) − 2)(dG(v) − 2) ≥ 0 and dG(y) ≥ 2. Thus

M2(G) ≥ M2(G
′).

Suppose that M2(G) = M2(G
′). Then all inequalities in the above argument must be equalities. Thus

dG(u) = 2 or dG(v) = 2, and dG(y) = 2 dG(y)µG(y) = 3. Hence the result. 2

The following result is obtained in [6].

Lemma 3.2 [6] Let G be a unicyclic graph of order n and cycle length k . If G is different from Ak
n then

M2(G) > M2(A
k
n) .

We have

M2(G) =


∆(∆− 2) + 4n if G ∼= Bk

n

∆(∆− 2) + 4n+ 4 if G ∼= Ck
n,∆∆+ k = n

∆(∆− 3) + 4n+ 6 if G ∼= Ck
n,∆∆+ k < n

∆(∆− 1) + 4n− 2 if G ∼= Dk
n,∆∆+ k ≤ n+ 1.

(5)

Let G ∈ Un(k,∆), then obviously ∆ + k ≤ n + 2. If ∆ + k = n and the maximum degree vertex does

not lie on the cycle of G then G is isomorphic to Ck
n,∆ . If ∆ + k ≥ n and G is different from Ck

n,∆ then

the maximum degree vertex of G must lie on the cycle. In this case we can easily calculate and characterize

graphs with minimum M2 . Therefore we give the lower bound on M2(G) and obtain some characterization of

extremal graphs when ∆ + k < n .

Theorem 3.3 Let G be a graph in Un(k,∆) , where ∆+ k < n . Then

M2(G) ≥


∆(∆− 3) + 4n+ 6 if ∆ ≥ 5

4n+ 10 if ∆ = 4

4n+ 4 if ∆ = 3

(6)

where ∆ is maximum degree in G . Moreover, the equalities hold in (6) if and only if G ∼= Ck
n,∆ ; G ∼= Ck

n,4 or

G ∼= Dk
n,4 ; G ∼= Ak

n ; respectively.

Proof Let u be maximum degree vertex in G and also let C(G) be the unique cycle in G . Since ∆+ k < n ,

we have ∆ ≥ 3. First we assume that ∆ = 3 in G . By Lemma 3.2 we have M2(G) ≥ 4n+ 4 with equality if
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and only if G ∼= Ak
n . Next we assume that ∆ ≥ 4. Now we consider the following two cases:

Case 1 : u /∈ C(G). In this case, we show that if G is different from Ck
n,∆ then M2(G) > M2(C

k
n,∆). Let v

be a vertex adjacent to maximum degree vertex u , which lies on the path from u to the cycle C(G). Since G

is different from Ck
n,∆ , there is a pendant vertex x such that xy ∈ E (y ̸= u). Consider the transformation

G′ = G− yx− uv + ux+ xv . By Lemma 3.1, we have M2(G) ≥ M2(G
′). Applying the same transformation a

sufficient number of times (s-times), we arrive at G(s) such that G(s) ∼= Ck
n,∆ . Thus M2(G) ≥ M2(C

k
n,∆). There

is exactly one pendant vertex in G(s−1) , which is nonadjacent to the maximum degree vertex and adjacent to a

vertex of degree greater than or equal to 2. We choose this pendant vertex and apply the same transformation

on G(s−1) to arrive at G(s) ; then by Lemma 3.1 we have M2(G
(s−1)) > M2(G

(s)) that is M2(G) > M2(C
k
n,∆).

G1 G2 G3

Figure 2. |V (Gi)| = n and dGi(u) = ∆, i = 1, 2, 3.

Case 2 : u ∈ C(G). In this case, we show that if G is different from Dk
n,∆ then M2(G) > M2(C

k
n,∆). Let

v be a vertex adjacent to maximum degree vertex u , which lies on the cycle C(G). Also let x be a pendant

vertex such that xy ∈ E (y ̸= u). We choose this pendant vertex from G and consider the transformation

G′ = G− yx− uv + ux+ xv . Then by Lemma 3.1 we have M2(G) ≥ M2(G
′) where G′ ∈ Un(k+ 1,∆) i.e. the

cycle length is increasing. Repeating the same transformation, we can always arrive at a graph G∗ such that

G∗ = G1 or G∗ = G2 or G∗ = G3 (see Figure 2) and M2(G) ≥ M2(G
∗).

(i) If G∗ ∼= G1 , then

M2(G
∗) = ∆2 + 4n− 4. (7)

Hence M2(G
∗) > M2(C

k
n,∆) as ∆ > 3. Thus M2(G) > M2(C

k
n,∆).

(ii) If G∗ ∼= G2 , then

M2(G
∗) = ∆2 −∆+ 4n+ 1. (8)

Hence M2(G
∗) > M2(C

k
n,∆) by (5). Thus M2(G) > M2(C

k
n,∆).

(iii) If G∗ ∼= G3 , then

M2(G
∗) = ∆2 − 2∆ + 4n+ 3. (9)

Thus M2(G
∗) > M2(C

k
n,∆) by (5), that is, M2(G) > M2(C

k
n,∆). Since ∆ + k < n , we have M2(C

k
n,∆) ≤

M2(D
k
n,∆) with equality if and only if ∆ = 4. From above, Case 1 and Case 2, we get the required result. 2

Denote C∆ = {Ck
n,∆ | 3 ≤ k ≤ n−∆− 1} . Note that if G ∈ C∆ then M2(G) = ∆(∆− 3) + 4n+ 6.
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Corollary 3.4 Let G be a unicyclic graph of order n and maximum vertex degree ∆ . Then

M2(G) ≥

{
∆(∆− 3) + 4n+ 6 if ∆ > 6

∆(∆− 2) + 4n if ∆ ≤ 6
(10)

with equality if and only if G ∈ C∆ , G ∼= Bk
n or G ∈ C6 , respectively.

Proof Let u be maximum degree vertex in G and k be the length of C(G). First, we suppose that

u /∈ V (C(G)). Then ∆+k ≤ n . If ∆+k = n then G ∼= Ck
n,∆ and from (5), we have M2(G) = ∆(∆−3)+4n+6.

Otherwise, if G is different from Ck
n,∆ then by Case 1 of Theorem 3.3 we have M2(G) > M2(C

k
n,∆), that is,

M2(G) > ∆(∆− 3) + 4n+ 6. (11)

Now suppose that u ∈ V (C(G)) and G is different from Bk
n . Then by Case 2 of Theorem 3.3 we have

M2(G) ≥ M2(G
∗). From (7), (8), and (9), M2(G

∗) > M2(B
k
n) by (5). Hence M2(G) > M2(B

k
n), that is,

M2(G) > ∆(∆− 2) + 4n. (12)

From (11) and (12), we get the required result. 2

4. Relations between Zagreb indices

S(m1,m2, . . . ,mk) is a unicyclic graph of order n with girth k and n − k pendant vertices, where mi is the

number of pendant vertices adjacent to i-th vertex of the cycle [2]. We consider that the vertices in the cycle

are numbered clockwise (see Figure 3). Clearly
∑k

i=1 mi = n− k and S(0, 0, . . . , 0) = Cn .

Figure 3. S(0, 2, 5, 4, 2, 1, 4, 3).

A cyclic graph is a graph containing at least one graph cycle. Denote h(G) = M2(G) − M1(G) for a

graph G .

Lemma 4.1 Let G be a cyclic graph possessing two adjacent vertices u and v both of degree greater than

or equal to 2. Also let x be pendant vertex of G , which is adjacent to a vertex y ( ̸= u, v ). Consider the

transformation G′ = G− yx− uv + ux+ xv .

(i) If y /∈ V (C(G)), then h(G) ≥ h(G′).

(ii) If y ∈ V (C(G)), then h(G) ≥ h(G′) + 1.
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Proof Now we have dG(w) = dG′(w) for w ̸= x, y whereas dG′(y) = dG(y)− 1 and dG′(x) = dG(x) + 1 = 2.

Thus

M1(G
′)−M1(G) = −2dG(y) + 4.

Combining the above equation and (4), we get

h(G)− h(G′) = M2(G)−M2(G
′) +M1(G

′)−M1(G)

= (dG(u)− 2)(dG(v)− 2)− dG(y) + dG(y)µG(y)− 1. (13)

If y /∈ V (C(G)), then dG(y)µG(y) ≥ dG(y) + 1. Otherwise dG(y)µG(y) ≥ dG(y) + 2. From the above

and (13), we get the required results. 2

Denote S = {S(m1,m2, . . . ,mk)| mi−1 = mi+1 = 0 for mi ̸= 0 2 ≤ i ≤ k, where mk+1 = m1} .

Theorem 4.2 Let G be a unicyclic graph with cycle length k . Then

M2(G)−M1(G) ≥
∑

u∈V (C(G))

dG(u)− 2k (14)

with equality if and only if G ∈ S .

Proof We distinguish the following two cases.

Case 1 : G ∼= S(m1,m2, . . . ,mk). If mi = 0 for all 1 ≤ i ≤ k , then G ∼= Cn and the equality in (14)

holds. Otherwise, there is a pendant vertex x adjacent to a vertex y , y ∈ V (C(G)). Let u and v be the

adjacent vertices on the cycle Ck . We choose pendant vertex x from G and consider the transformation

G′ = G−yx−uv+ux+xv . Then by Lemma 4.1(ii) we have h(G) ≥ h(G′)+1. Clearly, the number of pendant

vertices in G is n− k . Therefore, repeating the same transformation n− k times, we arrive at Cn . Then we

have

h(G) ≥ h(Cn) + n− k =
∑

u∈V (C(G))

dG(u)− 2k

since h(Cn) = 0 and n − k =
∑

u∈V (C(G)) dG(u) − 2k . The equality holds in Lemma 4.1(ii) if and only if

dG(y)µG(y) = dG(y) + 2 and dG(u) = 2 and/or dG(v) = 2. Thus, two adjacent vertices to y in the cycle have

degree 2. Hence G ∈ S .

Case 2 : G ≇ S(m1,m2, . . . ,mk). Then there is a pendant vertex x adjacent to a vertex y , y /∈ V (C(G)).

Let u and v be the adjacent vertices on the cycle Ck . We choose pendant vertex x from G and consider

the transformation G′ = G − yx − uv + ux + xv . Then by Lemma 4.1(i) we have h(G) ≥ h(G′). Repeating

this transformation s (= n −
∑

u∈V (C(G)) dG(u) + k) times, we arrive at a graph G(s) , such that G(s) ∼=

S(l1, l2, . . . , lk+s). Thus h(G) ≥ h(G(s)) and the number of pendant vertices in G(s) is n − k − s . Hence,

similarly to Case 1, we have

h(G(s)) ≥ h(Cn) + n− k − s =
∑

u∈V (C(G))

dG(u)− 2k

since h(Cn) = 0 and s = n−
∑

u∈V (C(G)) dG(u) + k .
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Clearly, there is exactly one pendant vertex in G(s−1) , which is adjacent to a vertex w where dG(s−1)(w) =

2 and w /∈ V (C(G(s−1))). We choose this pendant vertex and apply the same transformation on G(s−1) to

arrive at G(s) ; then from (13) we have h(G(s−1)) > h(G(s)) because dG(s−1)(w)µG(s−1)(w) ≥ 4. Therefore

h(G) > h(G(s)) ≥
∑

u∈V (C(G)) dG(u)− 2k and in this case the inequality in (14) is strict. 2

Theorem 4.3 Let G be a unicyclic graph of order n with maximum degree ∆ . Then

M2(G)−M1(G) ≥


∆− 2 if d = 0

∆ if d = 1

2 if d > 1

(15)

where d is the length of the shortest path from the maximum degree vertex u to the cycle C(G) . The equalities

hold in (15) if and only if G ∼= Bk
n , G ∼= Ck

n,∆ , ∆+ k = n , and G ∈ C∆ , respectively.

Proof (i) The proof of the first inequality in (15) can be done from Theorem 4.2 as∑
u∈V (C(G))

dG(u) ≥ ∆+ 2(k − 1).

We can see easily that the first equality holds in (15) if and only if G ∼= Bk
n .

(ii) Now we give a proof of the second inequality. Let d = 1. Then ∆ + k ≤ n . If ∆ + k = n , then G ∼= Ck
n,∆

and we have M2(G) − M1(G) = ∆, by (2) and (5). Otherwise, ∆ + k < n and hence G ≇ Ck
n,∆ as d = 1.

Let u be the maximum degree vertex of G . Then there is a pendant vertex x , which is adjacent to a vertex y

and nonadjacent to u . Also, let v and w be adjacent vertices in the cycle C(G). We choose pendant vertex

x from G and consider the transformation G′ = G − yx − vw + vx + xw . Then by Lemma 4.1 ( i ) we have

h(G) ≥ h(G′). Repeating the above transformation a sufficient number of times (s-times), we arrive at a graph

G(s) such that G(s) ∼= Ck′

n,∆ , ∆ + k′ = n , where k′ = k + s . Therefore h(G) ≥ h(Ck′

n,∆), ∆ + k′ = n , that is,

M2(G)−M1(G) ≥ ∆.

If G ≇ Ck
n,∆ , ∆+k < n then from the above there exists exactly one pendant vertex in G(s−1) , which is

nonadjacent to the maximum degree vertex. We choose this pendant vertex and apply the same transformation

on G(s−1) to arrive at G(s) ; then from (13) one can easily see that h(G(s−1)) > h(Ck′

n,∆), ∆ + k′ = n . Hence

h(G) > h(Ck′

n,∆), ∆ + k′ = n , that is, M2(G)−M1(G) > ∆.

(iii) Using the same technique as in (ii), we get the third inequality in (15) and equality holds in (15) if and

only if G ∈ C∆ . 2

Corollary 4.4 [3, 11] Let G be a unicyclic graph of order n . Then M2(G) ≥ M1(G) with equality holding if

and only if G is isomorphic to Cn .
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