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Abstract: In the present paper, the geometrical instantaneous invariants of the motion Hm/Hf in dual Lorentzian

3-space are determined. Depending on this, the dual Lorentzian instantaneous screw axis of the motion of Km with

respect to the dual pseudohyperbolic space Km is constructed. On the other hand, we show that, in each position of

Hm , the fixed and moving axodes have the instantaneous screw axis of this position in common. We also give relations

between the geodetic curvature and the curvature of the polodes.
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1. Introduction

This paper deals with the motion of a rigid body relative to a reference system in dual Lorentzian 3-space D3
1 .

It is well known that the aggregations of instantaneous screw axes (ISAs) of all instants form a pair of ruled

surfaces with the ISA as their straight line generatrix in the stationary reference space and in the moving body,

respectively. These surfaces are named the fixed and moving axodes [4, 5, 6].

There are various recent works in the literature dealing with ISA and the invariants of the axodes

[4, 5, 9, 12, 13, 14]. In particular, Chen [5] derived (by a special approach) the formulas for computing surface

normal and surface curvatures of axodes in Euclidean 3-space. A new geometric and kinematic approach to

one parameter spatial motion for the calculation of instantaneous invariants based on information specifying

the motion of axodes in dual 3-space D3 was provided by Abdel-Baky and Al-Solamy [1] .

The rolling space problem was extended to rolling pseudo-Riemannian manifolds by Jurdjevic and

Zimmerman [7] . In that work, they extended this problem to situations in which an oriented sphere Sn
ρ

of radius ρ rolls on stationary sphere Sn
σ of radius σ as well as to its hyperbolic analogue.

Korolko and Leite [8] obtained the equations of motion for the n -dimensional Lorentzian sphere rolling,

without slipping and twisting, over the affine tangent space at a point. Along the same lines, Marques and

Leite deduced the kinematic equations for rolling, without slipping or twisting, a pseudohyperbolic space over

its affine tangent space at a point in an earlier work [10] .

So far, there seems to be no discussion about the geometrical instantaneous invariants of the dual unit

pseudohyperbolic space motion. In this current work, we derive the geometrical instantaneous invariants of
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the dual unit pseudohyperbolic space motion in dual Lorentzian 3-space D3
1 by using a dual semiorthogonal

matrix. Moreover, we show that the moving Πm and the fixed Π
f

axodes maintain the contact with each

other along the ISA. It is also proved that the real part
−→
U and the dual part

−→
U

0
of a dual angular velocity

vector
−→
Û correspond to the rolling and sliding motions of the instantaneous helicoidal motion around the

ISA at the instant t respectively. Furthermore, we verify that the pair of axodes during the one parameter

pseudohyperbolic space contact each other along the ISA. Finally, we specify the relations between the geodetic

curvatures and the curvatures of the polodes.

2. Setting and notations

Let D3
1 be the dual Lorentzian space with the inner product

<
−→
X̂ ,

−→
Ŷ >=<

−→
X,

−→
Y > +ε(<

−→
X,

−→
Y 0 > + <

−→
X 0 ,

−→
Y >),

for which the inner product of the vectors
−→
X and

−→
Y is defined to be

<
−→
X,

−→
Y >= −x1y1 + x2y2 + x3y3 ,

together with the vector product

−→
X̂ ×

−→
Ŷ =

−→
X ×

−→
Y + ε(

−→
X ×

−→
Y 0 +

−→
X 0 ×

−→
Y ),

in which the vector product of the vectors
−→
X = (x1 , x2 , x3) and

−→
Y = (y1 , y2 , y3) is given by

−→
X ×

−→
Y =

(
−
∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ , ∣∣∣∣ x3 x1

y3 y1

∣∣∣∣ , ∣∣∣∣ x1 x2

y1 y2

∣∣∣∣) .

A dual vector
−→
X̂ of D3

1 is said to be spacelike if <
−→
X,

−→
X >> 0 or

−→
X = 0, timelike if <

−→
X,

−→
X >< 0, and

lightlike or null if <
−→
X,

−→
X >= 0 and

−→
X ̸= 0 [2, 3, 11, 15, 17]. The norm of a dual vector

−→
X̂ in D3

1 is defined

to be

∥∥∥∥−→X̂∥∥∥∥ =

√∣∣∣∣< −→
X̂ ,

−→
X̂ >

∣∣∣∣ . On the other hand, a 3× 3 matrix Â is called a dual semiorthogonal matrix if it

satisfies the equation Â
t

= ŜÂ
−1

Ŝ , where the matrix Ŝ is the signature matrix given as [11]:

 −1 0 0
0 1 0
0 0 1

 .

The space given by

Ĥ2
0
= {

−→
X̂ =

−→
X + ε

−→
X 0ϵD3

1

∣∣∣∣< −→
X̂ ,

−→
X̂ >= −1 and

−→
X,

−→
X 0ϵR3

1 }

is the dual unit pseudohyperbolic space. To ease the notation, we abbreviate it to K , and in a similar vein, the

Lorentzian 3-space R3
1 is shortly denoted by H .
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Throughout our work, the fixed and the moving Lorentzian 3-spaces are denoted by H
f

and Hm

respectively. We consider the Cartesian frames of references
{
O

f
;Ei

}
and {Om ;Ri} in H

f
and Hm having the

same orientation under the semiorthogonal matrix transformations. Moreover, if O is the common center, then

these frames of references correspond to the dual Cartesian frames of references Ê = {O
f
;
−→
Ê i =

−→
E i + ε

−→
E oi}

and R̂ = {Om ;
−→
R̂

i
=

−→
R i + ε

−→
R oi} , for which

−→
E 0i =

−−→
OO

f
×

−→
E i and

−→
R 0i =

−−→
OOm ×

−→
R i . Therefore, two

orthonormal dual frames are linked rigidly to the dual unit fixed and moving pseudohyperbolic spaces K
f
and

Km in D3
1 respectively. The coordinates of a point X̂ on Km with respect to the basis R̂ will be denoted by

−→
X̂ i =

−→
X i+ε

−→
X oi (i = 1, 2, 3). This point coincides with a point of K

f
having the coordinates

−→
f
X̂

i
=

−→
f
X

i
+ε

−→
f
X

oi

with respect to Ê . The matrix forms of the points
f
X̂ and X̂ and the base vectors Ê and R̂ can be given as

follows:

f
X̂ =


−→
f
X̂

1

−→
f
X̂

2

−→
f
X̂

3

 , X̂ =


−→
X̂ 1−→
X̂ 2−→
X̂ 3

 , Ê =


−→
Ê 1−→
Ê 2−→
Ê 3

 and R̂ =


−→
R̂ 1−→
R̂ 2−→
R̂ 3

 .

We can therefore write the position vector of a point X̂ on the dual unit pseudohyperbolic space Km in terms

of R̂ as
−→
X̂ = X̂tR̂,

which in turn implies

<
−→
X̂ ,

−→
X̂ >= −X̂2

1
+ X̂2

2
+ X̂2

3
= −1.

If the real and the dual parts of this equation are separated, we have the following equations:

−x2
1
+ x2

2
+ x2

3
= −1,

−x1x01 + x2x02 + x3x03 = 0.

Observe that in the last equations, there are six unknown terms, which are called the Pluckerian coordinates of

the oriented line
−→
X̂ in Hm .

If the dual unit pseudohyperbolic space Km moves with respect to the fixed dual unit pseudohyperbolic

space K
f
, we call such a motion the dual pseudohyperbolic space, denoted by Km/K

f
. It is obvious that if

the dual unit pseudohyperbolic spaces Km and K
f
correspond to the line spaces Hm and H

f
respectively, the

motion Km/K
f
corresponds to Hm/H

f
. In such a case, Hm is called the moving space with respect to the

fixed space H
f
. Therefore, we may describe the motion Km/K

f
by

f
X̂ = X̂tÂÊ, (2.1)

where

Â =

 α1 + εα01 α2 + εα02 α3 + εα03

β1 + εβ01 β2 + εβ02 β3 + εβ03

γ1 + εγ1 γ2 + εγ2 γ3 + εγ3

 = A+ εA0
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and the equality

R̂ = ÂÊ

holds. Note that the elements of dual semiorthogonal matrix Â are real functions of t , and these functions are

assumed to be differentiable of any order with respect to t . These all together yield the following:

Theorem 1 The Lorentzian motions in R3
1 are represented by the dual semiorthogonal matrix Â in the dual

Lorentzian space D3
1 , where ÂŜÂtŜ = Î and Ŝ is the 3× 3 signature matrix.

3. The dual instantaneous screw axis of the motion K
m
/K

f

In this section we construct the dual instantaneous screw axis of the motion Km/K
f
. Since the dual Lorentzian

matrix Â is semiorthogonal, the identity

ÂŜÂtŜ = Î

holds. We may therefore conclude by differentiating the above equation with respect to the motion parameter

t that
.

ÂÂ−1 + Ŝ(
.

ÂÂ−1)tŜ = 0.

Furthermore, if we define Ω̂ =
.

ÂÂ−1 , then the matrix Ω̂ is a skew-symmetric dual Lorentzian matrix (Ω̂t =

−ŜΩ̂Ŝ) so that the matrix Ω̂ can be written in the following form:

Ω̂ = W + εW0 =

 0 Ω̂3 −Ω̂2

Ω̂3 0 Ω̂1

−Ω̂2 −Ω̂1 0

 ,

where

W = ȦA−1, W0 = Ȧ0A
−1 + ȦA−1

0

and

Ω̂i = wi + εw0i , 1 ≤ i ≤ 3.

By differentiating equation (2.1) and considering the equalities Ê = ŜÂtŜR̂ and Ω̂ =
.

ÂÂ−1 , we obtain the

velocity of a point X̂ on Km during the motion Km/K
f
as

.

f
X̂ =

.

X̂tR̂+ X̂tΩ̂R̂. (3.2)

Here
.

X̂tR̂ is the relative velocity of a point X̂ on Km , and X̂tΩ̂R̂ is the velocity of the motion Km/K
f
.

Henceforth, we take X̂ as the fixed point on K
m

by which equation (3.2) can be written as

.

f
X̂ = X̂tΩ̂R̂. (3.3)

Now we look for points having zero velocity at any instant of the moving dual pseudohyperbolic space Km . For

this purpose, we define the following dual vector with respect to the basis R̂ :

−→
Û =

3∑
i=1

[wiri + ε(wir0i + w0iri)] =
−→
U + ε

−→
U 0 .

753



TURHAN et al./Turk J Math

Then equation (3.3) can be rewritten as

−→.
f
X̂ =

−→
Û ×

−→
X̂ , (3.4)

and hence the module of
−→
Û can be given by

∥∥∥∥−→Û ∥∥∥∥ = w + εw0 = Ŵ ,

where

w =
∥∥∥−→U ∥∥∥ and w0 = w−2(<

−→
U ,

−→
U 0 >).

Therefore, we obtain the dual unit vector of
−→
Û as

−→
Û

1
=

−→
Û∥∥∥∥−→Û ∥∥∥∥

= w−1
−→
Û + εw−2(w

−→
Û 0 − w0

−→
Û )

=
−→
U 1 + ε

−→
U 01 .

Now equation (3.4) can be brought to the following form:

−→.
f
X̂ = Ŵ (

−→
Û 1 ×

−→
X̂ ).

As a consequence of this equation, it is easily seen that

−→.
f
X̂ = 0 if and only if

−→
Û 1 =

−→
X̂ .

By reconsidering equation (3.3), we conclude that a point X̂ on Km has zero velocity at instant t if and

only if

X̂tΩ̂ = 0,

−X̂2
1
+ X̂2

2
+ X̂2

3
= −1

(3.5)

under the dual unit pseudohyperbolic space motion (2.1), since <
−→
X̂ ,

−→
X̂ >= −1. Note that the first equation in

(3.5) is equivalent to the partial differential equations
∂

∂xi
<

−→.
f
X̂,

−→.
f
X̂ >= 0 (i ∈ {1, 2, 3}). When we separate

equation (3.5) into the real and the dual parts, we can obtain the following system of equations in six unknown

terms with coefficients wi and w0i .

w3x2 − w2x3 = 0, w3x02 − w2x03 = w02x3 − w03x2 ,
w3x1 − w1x3 = 0, and w3x01 − w1x03 = w01x3 − w03x2 ,
−x2

1
+ x2

2
+ x2

3
= −1, −x1x01 + x2x02 + x3x03 = 0.

The solutions of this system of equations are

xi = ±w−1wi (i ∈ {1, 2, 3})
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and

x01 = w−3[w01(w
2
2
+ w2

3
)− w1(w02w2 + w03w3)],

x02 = w−3[w02(−w2
1
+ w2

3
) + w2(w01w1 − w03w3)],

x03 = w−3[w03(−w2
1
+ w2

2
) + w3(w01w1 − w02w2)].

These results indicate that the unit timelike dual vector
−→
X̂ is nothing but

−→
Û 1 ; that is, they are consistent

with Veldkamp’s results [16] on ISAs, since the timelike dual unit vector
−→
Û 1 determines the oriented lines in

Lorentzian 3-spaces Hm and H
f
. Therefore, we call the timelike dual unit vector

Û1 = Û t
1
R̂ (3.6)

the ISA of the position, while the timelike dual unit vector

f
Û

1
= Û t

1
ÂÊ (3.7)

is called the ISA of the position on K
f
. On the other hand, the vector

−→
Û and its dual module Ŵ are called

the dual angular velocity and speed of the motion Hm/H
f
.

As a result of these, the following corollary can be stated.

Corollary 2 The real part
−→
U and the dual part

−→
U 0 of

−→
Û correspond to the rolling and sliding motions of the

instantaneous helicoidal motion around the ISA at the instant t . The instantaneous screw pitch of this motion

at instant t is given by

k =
ŵ0

ŵ
.

4. The polodes and dual angular velocity along ISA

We observe that
−→
Û 1 is the function of t during the pseudohyperbolic space motions. The timelike dual unit

vector
−→
Û 1 represents the locus of the ISA on Km , and this locus is a dual curve πm on Km known as the

moving polode. Note that this curve corresponds to a timelike ruled surface Πm in Lorentzian 3-space Hm ,

the moving axode. The locus of the ISA on K
f
is also a dual curve π

f
, the fixed polode. This polode likewise

corresponds to a ruled surface Π
f
in H

f
and it is called the fixed axode. By differentiating the equations (3.6)

and (3.7) with respect to t , we get that
.

Û1 =
.

Û t
1
R̂+ Û t

1
Ω̂R̂

and
.

f
Û1 =

.

Û t
1
R̂+ Û t

1
Ω̂R̂.

As a result of this fact, the equality
.

Û1=
.

f
Û1 holds; that is, the polodes roll without slipping on each other.

Thus, in analogy with the dual spherical motion, we can state the following theorem.

Theorem 3 The pair of axodes during the one-parameter pseudohyperbolic space Km/K
f
contact each other

along the ISA.
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At the instant t , the ISA is
−→
Û 1 , while when the instant is t+∆t , we can represent the timelike ISA by

−→
Û 1(t+∆t) =

−→
Û 1 +∆

−→
Û 1 .

Suppose now that Πm is a not a cylinder. Then we may take ∆t such that
−→
Û 1 and

−→
Û 1(t+∆t) are not parallel;

hence, ∆
−→
Û 1 is not a pure dual vector. As a consequence, the common normal of

−→
Û 1 and

−→
Û 1(t+∆t) is well

defined.

We next define the ISA dual angular velocity as the vector

−→
Ψ̂ =

−→
Û 1(t)×

−→.
Û 1(t),

which can be rewritten as
−→.
Û 1 =

−→
Ψ̂ ×

−→
Û 1 .

Once we assume that

P̂ =

∥∥∥∥∥
−→.
Û 1

∥∥∥∥∥ = p+ εp0 ,

we define the following spacelike dual unit vectors

−→
Û 2 =

−→.
Û 1

P̂
=

−→
U 2 + ε

−→
U 02 and

−→
Û 3 =

−→
Û 1 ×

−→
Û 2 =

−→
U 3 + ε

−→
U 03 ,

from which we conclude that
−→
Ψ̂ = P̂

−→
Û 3 = p

−→
U 3 + ε(p0

−→
U 3 + p

−→
U 03). (4.8)

We remark that the spacelike dual unit vector
−→
Û 3 is the axis of

−→
Ψ̂ . Moreover, the dual unit vectors

−→
Û 1 ,

−→
Û 2 ,

and
−→
Û 3 represent mutually orthogonal spears in Hm and H

f
. The intersection point of these spears is the

point of striction S(t) on the ruling
−→
Û 1(t) of Πm and Π

f
. On the other hand, the location of points of striction

S(t) are the curves of striction on Πm and Π
f
so that the position vector of S(t) can be given by

−→
S (t) =

−→
U 1 ×

−→
U 01+ <

−→
U 3 ,

−→
U 02 >

−→
U 1 .

This in turn implies that the spears
−→
Û

1
,
−→
Û

2
, and

−→
Û

3
are referred to as the ISA trihedron at the point of

striction. Note also that at the same time, this is a trihedron of polodes at the pole.

The dual number P̂ in equation (4.8) is the ISA angular speed from which the vector
−→
Ψ̂ may be expressed

with respect to basis Ê as

Ψ̂=P̂ Û t
3
ÂÊ.
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For the sake of simplicity, let us denote the coordinates of the ISA in the basis R̂ as (â1 , â2 , â3). Then the

coordinate representation of
−→
Û 2 is given by

−→
Û 2 =

−→.
Û 1∥∥∥∥∥
−→.
Û 1

∥∥∥∥∥
= (

.

â1

P̂
,

.

â2

P̂
,

.

â3

P̂
),

while that of the spacelike dual unit vector
−→
Û

3
is

−→
Û 3 =

−→
Û 1 ×

−→
Û 2 = (

∆̂1

P̂
,
∆̂2

P̂
,
∆̂3

P̂
),

where

∆̂1 = â2

.

â3 − â3

.

â2 , ∆̂2 = â1

.

â3 − â3

.

â1 and ∆̂3 = â2

.

â1 − â1

.

â2 .

We therefore conclude that 
−→
Û 1

−→
Û 2

−→
Û 3

 =


â1 â2 â3

.

â1

P̂

.

â2

P̂

.

â3

P̂

∆̂1

P̂

∆̂2

P̂

∆̂3

P̂




−→
R̂ 1

−→
R̂ 2

−→
R̂ 3


= M̂R̂,

in which M̂ denotes the dual semiorthogonal matrix.

Overall we are ready to state the following theorem.

Theorem 4 The displacements of the ISA trihedron along the moving and the fixed polodes are



−→.
Û 1

−→.
Û 2

−→.
Û 3

 =

 0 P̂ 0

P̂ 0 Q̂

0 −Q̂ 0




−→
Û 1

−→
Û 2

−→
Û 3

 (4.9)

and

d
f

dt


−→
Û 1

−→
Û 2

−→
Û 3

 =

 0 P̂ 0

P̂ 0 −Ŵ + Q̂

0 Ŵ − Q̂ 0




−→
Û 1

−→
Û 2

−→
Û 3

 , (4.10)

respectively, where P̂ = p + εp0 , Q̂ =
(

−→.
Û 1 ,

−→..
Û 1 ,

−→...
Û 1 )

P̂ 2 = q + ϵq0 and Q̂ − Ŵ are the invariants of the motion

Km/K
f
.

757



TURHAN et al./Turk J Math

As a result of Theorem (4.2), we obtain the arc element of moving dual curve
−→
Û 3(t) that can be written

as

Q̂ =
(

−→.
Û 1 ,

−→..
Û 1 ,

−→...
Û 1)

P̂ 2
= q + ϵq0 ,

and the arc element of the dual fixed curve
−→
Û 3(t) is Q̂ − Ŵ in which P̂ is the arc element of the polodes.

Thus, the integral
∫
P̂ dt = Ŝ1 is the dual arc length of the moving and the fixed polodes, whereas the

integrals
∫
Q̂dt = Ŝ3 and

∫
(Q̂ − Ŵ )dt = Ŝ3 −

∫
Ŵdt are dual arc lengths of the curves

−→
Û 3(t) on dual

unit pseudohyperbolic spaces K
f
and Km respectively.

5. Angular acceleration and geodetic curvature

This section is devoted to the investigation of the geodetic curvatures of the moving and the fixed polodes,

and the existence of the relation between the geodetic curvature and the curvature of these polodes. For these

purposes, we first construct the Frenet trihedrons of the moving and the fixed polodes at the pole.

By differentiating equation (4.8) with respect to t and considering equations (4.9) and (4.10), we obtain

the angular accelerations of the pole with respect to Km and K
f
as

−→.
Ψ̂ =

.

P̂
−→
Û 3 − P̂ Q̂

−→
Û 2

and
−→.
f
Ψ̂ =

.

P̂
−→
Û 3 + P̂ (Ŵ − Q̂)

−→
Û 2 .

If we denote by Θ̂m a dual angle between the spacelike vectors

−→.
Ψ̂ and

−→
Û 2 , we then have

Q̂ =

.

P̂

P̂
cot Θ̂m. (5.11)

In a similar vein, if Θ̂f is a dual angle between the spacelike vectors

−→.
f
Ψ̂ and

−→
Û 2 , we then obtain

Ŵ − Q̂ =

.

P̂

P̂
cot Θ̂f . (5.12)

From equations (5.11) and (5.12), we conclude the equality:

cot Θ̂f + cot Θ̂m =
P̂ Ŵ

.

P̂
.

As a next step, we now construct a trihedron on the moving polode at the pole in order to get the geodetic

curvature of the moving polode. The spacelike binormal unit vector of the moving polode at the pole is

−→
B̂m =

−→.
Û 1 ×

−→..
Û 1∥∥∥∥∥

−→.
Û 1 ×

−→..
Û 1

∥∥∥∥∥
=

P̂
−→
Û 3 + Q̂

−→
Û 1

(P̂ 2 + Q̂2)1/2
, (5.13)
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which is the axis of dual Darboux vector
−→
B̂ = Q̂

−→
Û 1 + P̂

−→
Û 3 .

Definition 5 The point Cm on the moving dual pseudohyperbolic space Km indicated by
−→
B̂m that coincides

with a point C
f

on the fixed dual pseudohyperbolic space K
f

at a given instant t is called the dual spherical

center of curvature πm so that we call the spacelike dual unit vector
−→
B̂m the axis of curvature of Πm .

Since
−→
Û 2 is the common tangent of the polodes, the timelike principle dual unit vector of the moving

polode can be described as

−→
N̂m =

−→
B̂m ×

−→
Û 2 = ± P̂

−→
Û 1 + Q̂

−→
Û 3

(P̂ 2 − Q̂2)1/2
. (5.14)

Similarly, we obtain the following spacelike binormal and timelike principle dual unit vectors for the fixed polode

at the pole:

−→
B̂

f
=

−→.
Û 1 ×

−→..
Û 1∥∥∥∥∥

−→.
Û 1 ×

−→..
Û 1

∥∥∥∥∥
=

P̂
−→
Û 3 + (Q̂− Ŵ )

−→
Û 1

(P̂ 2 − (Q̂− Ŵ )2)1/2

and

−→
N̂

f
=

−→
B̂

f
×
−→
Û 2 = ± P̂

−→
Û 1 + (Q̂− Ŵ )

−→
Û 3

(P̂ 2 − (Q̂− Ŵ )2)1/2
.

At the same time
−→
B̂

f
is the axis of curvature Π

f
.Therefore, the trihedrons {

−→
Û 2 ,

−→
N̂m ,

−→
B̂m} and {

−→
Û 2 ,

−→
N̂

f
,
−→
B̂

f
}

are the Frenet trihedrons of the polodes at the pole.

Let ρm be a dual Lorentzian timelike angle between the ISA and
−→
N̂m . If we let ρ

f
be another dual

Lorentzian timelike angle between the ISA and
−→
N̂

f
, we have that


−→
Û

2

−→
N̂m

−→
B̂m

 =

 0 1 0
cosh ρm 0 sinh ρm

sinh ρm 0 cosh ρm




−→
Û

1

−→
Û 2

−→
Û 3

 (5.15)

and 
−→
Û 2

−→
N̂

f

−→
B̂

f

 =

 0 1 0
cosh ρ

f
0 sinh ρ

f

sinh ρ
f

0 cosh ρ
f




−→
Û 1

−→
Û

2

−→
Û 3

 .

The following two pairs of identities,

cosh ρm =
P̂

(P̂ 2 − Q̂2)1/2
and sinh ρm =

Q̂

(P̂ 2 − Q̂2)1/2
(5.16)
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and

cosh ρ
f
=

P̂

(P̂ 2 − (Q̂− Ŵ )2)1/2
and sinh ρ

f
=

Q̂− Ŵ

(P̂ 2 − (Q̂− Ŵ )2)1/2
,

are the consequences of equations (5.13) and (5.14), respectively. Note also that the dual Lorentzian timelike

angles ρm and ρ
f
are the dual Lorentzian spherical radii of πm and π

f
.These all together justify the following

result.

Theorem 6 The geodetic curvatures of the moving and the fixed polodes are

Km = coth ρm =
P̂

Q̂
and K

f
= coth ρ

f
=

P̂

Q̂− Ŵ
, (5.17)

respectively, where Q̂ and Q̂− Ŵ are the elements of the geodetic curvatures of the polodes.

One of the immediate results of Theorem (5.2) is the following:

K
f
+Km =

2P̂ Q̂− P̂ Ŵ

Q̂(Q̂− Ŵ )
and K

f
−Km =

P̂ Ŵ

Q̂(Q̂− Ŵ )
. (5.18)

As a result, in analogy with the dual spherical motion [1, 13], the invariants P̂ , Q̂ , and Ŵ can be considered

asinstantaneous geometrical invariants of the motion Hm/H
f
. In particular, the second one in equation (5.18)

is the dual Lorentzian counterpart of Euler–Savary formula for spherical kinematics.

If we differentiate equation (5.15) and consider equations (4.9), (5.15), and (5.16), we conclude that

dm

dt


−→
Û 2

−→
N̂m

−→
B̂m

 =

 0 (P̂ 2 − Q̂2)1/2 0

(P̂ − Q̂2)1/2 0
.
ρm

0
.
ρm 0




−→
Û 2

−→
N̂m

−→
B̂m

 (5.19)

and

d
f

dt


−→
Û 2

−→
N̂

f

−→
B̂

f

 =

 0 (P̂ 2 − (Q̂− Ŵ )2)1/2 0

(P̂ 2 − (Q̂− Ŵ )2)1/2 0
.
ρ

f

0
.
ρ

f
0




−→
Û 2

−→
N̂

f

−→
B̂m


for the variation of the trihedrons {

−→
Û 2 ,

−→
N̂m ,

−→
B̂m} and {

−→
Û 2 ,

−→
N̂

f
,
−→
B̂

f
} . Thus, we have the curvature and the

torsion of the moving and the fixed polodes

κm = − (P̂ − Q̂2)1/2

P̂
and τm = −

.
ρm

P
, (5.20)

κ
f
= − (P̂ 2 − (Q̂− Ŵ )2)1/2

P̂
and τ

f
= −

.
ρ

f

P
,
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respectively. We may therefore rewrite equations (5.18) and (5.19) as

dm

dŝ


−→
Û 2

−→
N̂m

−→
B̂m

 =

 0 κm 0
κm 0 τm

0 τm 0




−→
Û 2

−→
N̂m

−→
B̂m


and

d
f

dŝ


−→
Û 2

−→
N̂

f

−→
B̂

f

 =

 0 κ
f

0
κ

f
0 τ

f

0 τ
f

0




−→
Û 2

−→
N̂

f

−→
B̂

f

 .

On the other hand, by using the first equations in (5.20), (5.16), and (5.17), we reach the following corollary.

Corollary 7 The relations

K2
m
=

1

1− κ2
m

and K2
f
=

1

1− κ2
f

hold among the geodetic curvatures and the curvature of the polodes.

6. Conclusions

We derive the geometrical instantaneous invariants of the dual pseudohyperbolic space motion in dual Lorentzian

3-space. We also show that the moving and fixed axodes maintain contact with each other along the ISA. We

verify that the rolling and sliding motions of the instantaneous helicoidal motion around the ISA at the instant

t correspond to the real part
−→
U and the dual part

−→
U 0 of dual angular velocity vector

−→
Û , respectively.
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