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Abstract: For two finite monoids S and T', we prove that the second integral homology of the Schiitzenberger product
SOT is equal to

HQ(SOT) = HQ(S) X HQ(T) X (Hl(S) Rz H1(T))
as the second integral homology of the direct product of two monoids. Moreover, we show that SCT is inefficient if

there is no left or right invertible element in both S and T'.

Key words: Monoid, Schiitzenberger product, second integral homology, efficiency

1. Introduction
It was shown by SJ Pride (unpublished) that, for a finitely presented monoid M, defy (M) > rank(Ha(M))
where Hy(M) is the second integral homology of the monoid and

defpyr (M) =min{| R| —| A|: ( A| R) is a finite monoid presentation for M}.

In [1] this result was extended to a finitely presented semigroup S, that is defg(S) > rank(Hz(S)) where Ho(S)

is the second integral homology of S, the monoid obtained from S by adjoining an identity if necessary, and
defs(S) =min{|R|— | A|:( A| R) is a finite semigroup presentation for S}.

Moreover, it was shown that the nth integral homology of a semigroup with a left or a right zero is trivial for
n > 1 (see also [3, Lemma 1]), and the second integral homology of a finite rectangular band R, , of order
mn is Zm~D(=1 A finite semigroup S is called efficient as a semigroup if defs(S) = rank(H>(S)), and
inefficient otherwise. The efficiency and inefficiency of a finite monoid are defined similarly. The first examples
of efficient and inefficient semigroups were given in [1], which showed that finite zero semigroups and finite free
semilattices are inefficient, and finite rectangular bands are efficient. More examples of efficient semigroups can
be found in [2, 3, 4, 5, 6].

It was shown in [2] that the second integral homology of a finite Rees matrix semigroup M|[G; I, A; P]
(finite simple semigroup) is Hy(G) x ZITI=DUAI=D Ly using the Squier resolution (see [12]). In this paper, we
also use this resolution to compute the second integral homology of the Schiitzenberger product of two finite

monoids. We show that, for two finite monoids S and T,
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HQ(SOT) = HQ(S) X HQ(T) X (Hl(S) X7z Hl(T)),

and it follows from [3, Equation (1)] that Hy(SOT) = H2(S x T'). Moreover, we consider the efficiency of SOT
and conclude that, if there is no left or right invertible element in both S and T, then ST is inefficient.

2. Preliminaries
Since the Squier resolution given in [12] is defined by using a presentation in which the set of relations is a
uniquely terminating rewriting system, we give some elementary concepts about rewriting systems.

Let A be an alphabet. We denote the free semigroup on A consisting of all nonempty words over A by
AT and the free monoid A* U {e} where £ denotes the empty word by A*. A rewriting system R on A is
a subset of A* x A*. For wy,ws € A*, if they are identical words then we write w; = ws, and if there exist

u,v € A* and (r,s) € R such that w; = uwrv and wy = usv then we write w; — we and we say that w;

rewrites to wo. We denote by —» the reflexive and transitive closure of —, and by ~ the equivalence relation

generated by —. For a word w € A* we say that w is reducible ( R-reducible) if there is a word z € A* such

that w — z; otherwise we say that w is irreducible ( R-irreducible). If w 5y and y € A* is irreducible, then
we say that y is an irreducible form of w. A rewriting system R is called terminating if there is no infinite
sequence (wy) such that w, — wp41 for all n > 1. Let |w| be the length of the word w € A*. If |r| > |s| for
all (r,s) € R then the system R is called length-reducing.

It is well known that if there exists an ordering < on a set S such that, for each distinct pair s,s’ € S,
either s < s’ or s’ < s, then the ordering < is called linear (or total) ordering and the set S is called linearly
(or totally) ordered. For u,v € A* if |u| > |v| or if |u| = |v| and v precedes u in the lexicographic ordering
induced by a linear ordering on A then we write v < v and < is called length-lexicographic ordering. A
rewriting system R is called a length-lexicographic rewriting system if s < r for all (r,s) € R. It is clear that
length-reducing systems and length-lexicographic rewriting systems are terminating.

A semigroup (monoid) presentation is an ordered pair (A | R), where R C AT x AT (R C A* x A*). Let
S be a semigroup (monoid). S is called a semigroup (monoid) defined by the semigroup (monoid) presentation
(A| R) if S is isomorphic to A*/p (A*/p), where p is the congruence on A* (A*) generated by R. For
wy,ws € A*, we also write wy; = wy if (w1, ws) € p; that is, ws is obtained from w; by applying relations
from R, or, equivalently, there is a finite sequence

w1 = 01,02, ..., 0p = W2

of words from A* in which every «; is obtained from «a;_; by applying a relation from R (see [9, Proposition
1.5.9]).

A rewriting system R is called confluent if, for any z,y,z € A* such that = = y, # - z, there exists

w € A* such that y = w, z — w. Also, a rewriting system R is called complete if it is both terminating and
confluent. For a given rewriting system R, let the subset R; C A* be the set of all r € A* such that there
exists (r,s) € R for some s € A*. The system R is called reduced if for each (r,s) € R, RyNA*rA* = {r} and
s is R-irreducible. Finally, a reduced complete rewriting system R is called a uniquely terminating rewriting
system.

Lemma 2.1 ([7, Theorem 1.1] or [12, Theorem 2.1]) Let R be a terminating rewriting system on A. Then

the following are equivalent:
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(i) R is confluent (and hence complete);

(ii) for any pair (rire,s12), (rers, s2,3) € R, where ro is nonempty, there exists a word w € A* such
that s1.973 5w and r1523 5 w; for any pair (r1rars, s1,2,3), (12, s2) € R, where ro is nonempty, there exists
a word w € A* such that s193 — w and r15373 —> W ;

(iii) any word w € A* has exactly one irreducible form. Moreover, w ~ w' if and only if w and w' have

the same irreducible form.

If there exists a pair (rire,s12),(rers,s23) € R or (rirars,si23), (rz,s2) € R such that 7o is a
nonempty word, then we define the overlaps to be the ordered pairs [(r172, 51,2), (rars, s2.3)] and [(r17273, 51,2,3),
(ro, s2)], respectively. Note that the overlaps of the form [(ri7ars3,s1.2.3), (re, s2)] do not exist in a reduced
rewriting system.

Let (A | R) be a presentation for a monoid S in which R is a uniquely terminating rewriting system on
A. Also, let ZS denote the monoid ring of S with coefficients in Z. In [12] Squier defined the free resolution
of Z as follows:

PPy, 2 p O p S,

where Py is the free ZS-module on a single formal symbol [ | and the augmentation map ¢ : Py — Z is
defined by ¢([]) = 1. P; is the free ZS-module on the set of formal symbols [a] for each a € A and the map
01 : PL— Py is defined by

91 (lal) = (a = 1)[].

P, is the free ZS-module on the set of formal symbols [r, s], for each (r,s) € R. For each a € A, a function

0/04 : A* — ZA*, which is called a derivation, is defined by induction as follows:
0/04(1) =0,

and if w € A* and b € A, then

8/5a(wb){ 0/, (w) +w (if b=a).

Then the map 0o : P,—>P; is defined by

02([r,s]) = Y #(9/0a(r) — 8/0u(s))lal,

a€A

where ¢ : ZA* — ZS is the map induced by the natural homomorphism from A* to S. Finally, Ps is the free
ZS-module on the set of formal symbols [(rirs,s12), (r2rs,ss3)], for each pair (r17r2,s1,2), (rers,s23) € R

where 79 is not an empty word. Let w be in A* and let w be the irreducible form of w. Then we have a
sequence
W= UITIV] — ULS1V1 = U2T2V2 —2 ++* — UgSqUq = U

where u;,v; € A* and (r;,s;) € R for each ¢ =1,...,q. Then the map ® : A* — P, is defined by
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and the map 05 : P — P is defined by

03([(r1r2, 81,2), (1273, 82.3)]) = r1[rors, s2,3] — [r172, 51,2] + P(r182,3) — P(51,273).

Squier showed that Pj &> Py % P i> P 537 —s 0 is an exact sequence if R is a uniquely terminating
rewriting system and we assume that for each word w € A* | the chosen relation chain from w to the irreducible
form of w consists of reductions only; that is, if (r,s) € R, then (s,7) ¢ R.

If we apply the tensor product Z ®zg — to the resolution of Z given above, we obtain the chain complex
of abelian groups

ZopP % 70P, %% 720 P, 28 20P 5202 — 0,

or simply,

J NN RN Aty (1)
where P;, P», and P3 are the free abelian groups on the set of formal symbols [a], [r,s], and [(r172,512),
(rors, s2.3)] where a € A; (r,s), (rire, $1,2), (r2rs, s2,3) € R with r9 not an empty word, respectively. Clearly
the map 0; : P, — Z is the zero map.

For a € A and w € A*, the number of occurrences of the letter a in the word w is called a-length of w
and denoted by ||w|,. Moreover, if w = ajas---a;,, then we denote the list [a1,as,...,an] by Clw]. (Note

that in any list some of the elements can be the same; for example, C[ab?a?] = [a,b,b,a,a] .)

The maps Oy : Py — P and 05 : P3 — P, are defined by

O2([rs1) = Y _(Irlla = Isla)la]

acA

and

53([(7’17"2, 81,2)» (1213, 82,3)]) = [7"27’3,32,3] - [7’17"2,81,2] + @(7152,3) - @(31721"3),
respectively, where ® : A* — P, is the map defined by
q q
O(w) =Y [rs, 1] if ®(w) =Y p(us)[rs, si]-
=1 =1

With this notation we have the following immediate result:

Lemma 2.2 ([3, Lemma 3.1]) If a monoid S has a presentation (A | R) such that R is a uniquely terminating

rewriting system on A, then

Hi(S) = Hi(G) = G/G" = {A[ Y (Irlla = lIslla)la] =0 ((r,5) € R)),

a€A

where G is the group defined by (A | R) as a group presentation and G’ is the derived subgroup of G.

Lemma 2.3 ([11, Chapter 6]) Let (A | R) and (B | Q) (A and B are distinct) be presentations for the
monoids S and T, respectively. Then the tensor product of their first homologies, namely H,(S) ®z H1(T),
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can be given by the abelian group presentation

(ABI Xaca (Irlla = llslla)lab,ba) =0 (b€ B, (r,s) € R)
e (lully = llvllp)lab ba] =0 (a € A, (u,v) € Q)),

where [A, B] = {[ab,ba] | a € A,b € B}.

3. The second integral homology of the Schiitzenberger product of monoids

Let S and T be two finite monoids, and let P(S x T') denote the set of all subsets of S x T'. Now we define

the sets
sX ={(sz,y) : (z,y) € X} and Xt = {(z,yt) : (z,y) € X},

where X € P(SxT), s€ S, and t € T. Then the set S x P(S xT) x T is a monoid, denoted by ST and
called the Schiitzenberger product of S and T, with identity (1g,0,17) by the multiplication

(s1, X1,t1)(s2, Xo,t2) = (5152, Xata U s1X9, t1t).

If S is a finitely presented monoid then it is clear that S is linearly ordered by considering the length-
lexiographic ordering. In this section we consider that the monoids S and T are well ordered. Moreover, the
direct product S x T is also linearly ordered, with the ordering (s,t) < (s',t') if s < s’ orif s=3s" and t < ¢.

If the monoid presentations (A | R) and (B | Q) (A and B are distinct) define the monoids S and T,
respectively, then the presentation (AUBUC | RUQU Z) where C = {cs;:s€ S, t € T} and

Z= { &y=cos (s€8,teT),
CsiCsip = Cspesy ((8',1) < (s,t) € S xT),
acst =cqsia (€A, s€8,teT),
cstb=bcsy (beB,se S, teT),
ab=ba (a€ A, beB) }

defines SOT in terms of the generating set
{(a,0,17),(15,0,b), (15, {(s,t)},17) :a € A, b€ B, (s,t) € S x T}.

(For a proof, see [10, Theorem 3.2].)
Note that, for ease of notation, we write cqs,¢ and cs ¢ instead of crg(a)s,e and cg ¢rp(p) Where mg 1 A* —
S and mp : B* — T are the natural homomorphisms, respectively. Thus, for r,p € A*S and w,v € T B*, the

words ¢, and ¢, are identical if the relations 7 =p and v =v hold in S and T, respectively.

Lemma 3.1 Let S and T be two finite monoids, and let (A | R) and (B | Q) be their finite monoid
presentations such that R and @ are uniquely terminating rewriting systems on A and B, respectively. With

the above notations, the rewriting system RU QU Z is uniquely terminating on AU BUC'.

Proof For an arbitrary word w in (AU BUC)*, it is clear that the reduced form of w has the form wywows

where wy, wy, and wz are reduced words in B, C, and A, respectively. It is also clear that RUQ U Z is
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terminating and reduced. The overlaps are:
Vi =
Vo =
Vs =
Vi =
Vs =

T172,P1,2), (T273,P2,3)];
ra,p), (acs t, Cas 1a)l,
ra,p), (ab,ba)],
uuz,v1,2), (U2U3702,3)],
Cs,tCs,ty Cs, t) (Cs,tCs,t, Cs,t)]a
Ve =
Vi =

[(
[(ra
[(ra
[(
[(
[(Cs,tCo,ts Coit), (CspCsr vy Csr s )] ((87, 1) < (s,1)),
[(€s,6Cs.tCs 1), (Cs,tDy bCs 11)],
Vs = [(espcspscsrpcsi), (cspes s cs)]((s,1) < (s,1)),
Vo = [(CstCorirsCorprCst)s (CorprCom gy Compmea )]((8”,17) < (s',1') < (s,1)),
[(
[(
[(
[(
[(
[(

Vie =
Viin =

Cs,tCs/ 15 Csr 17 Cs 1)y (Csr 1D, beg 1) ((87,) < (s,1)),
aCs ts Cas,t@); (Cs,tCs,ts Cs,t)]s

Vig =
Vis =
Via =
Vis =

acsg s Cas ta) (Cs,tcs’,t’a Cs’,t’cs,t)]((sla t/) < (8, t))a

QCs t, Cas ta) (Cs,tba bcs,tb)]a

Cs, tb bcs tb) (bua ’U)L

ab, ba), (bu,v)],

where a € A; b€ B; (ra=p), (rira =p1,2), (rers = pa3) € R; (bu =v), (uquz = v12), (usuz = v23) € Q;

(s,t), (&',t), (s",t") € S xT. Now it follows from Lemma 2.1 that RUQ U Z is confluent and so a uniquely

terminating rewriting system. O

Theorem 3.2 If S and T are two finite monoids, then

H(SOT) = Ha(S) x Ha(T) x (H1(S) ®z H1(T)).
Proof We consider the uniquely terminating rewriting system RUQ U Z on AU B UC' given in Lemma 3.1
and the chain complex (1) arising from it.

Before we compute the second integral homology of SOT, that is Hy(SOT) = ker 0 /im 95, we assume
that Ho(S) = kerég‘s/ima_gls and Ho(T) = ker(';QlT/im(%‘T where ker 52‘5, im 53‘57 kerég‘T, and im 53‘T are
the free abelian groups on {X; : i € I}, {Y; : j € J}, {Up : k € K}, and {W; : I € L} (which are found by
using the Squier resolution), respectively.

Now we find a generating set for the free abelian group imds by using the overlaps in the proof of Lemma
3.1. We compute the following.

53(‘/1) = im 53\3

aB(VZ) = [acs,ta Cas,ta] - [ra,p] + (i)(rcas,ta) - (I)(pcs,t)
05(Vs) = Y [ab,ba]— > [ab,ba]
a€C(ra) a€Cp]
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3 V4 = imag‘T
3(Vs) = 0
3 VG = [Cs,tcs/,t’ycs/,t’cs,t]

)
)
)
) = lesibbesw) — (¢34 e + (€2 s Cs 0]
) = - [CS,tCs’,t’v Cs',t'Cs,t]
Vo) = 0
) = —lesico iy e pCot] + [CotbCsr t7b5 Cs 176 Cs 1)
) = [citv Cs,t] - [acs,t, cas,ta] - [Czs,vcas,t]
) = [Cs,tCs',t',Cs',t'Cs,t] - [Cas,tcas’,t’a Cas',t'Cas,t]
) = [esib,besgp] — [acs i, Cas,pa] + [acs 1, Cas,tba] — [Cas,tb; bCas 1b)
)

= —[esab, besap] + (s 4v) — P(es pu)
0s(Vis) = Y labba] — Y [ab,ba]

beClv] beClbu]
Now let
W(ra,p) = Z [ab, ba] — Z [ab, ba],
a€Clral a€Clp)
W(bu,v) = Z [ab, ba] — Z [ab, bal,
beClv] beC'lbu]
Wi(a,s,t) = [Cg,tvCS,t} - [aCS,tv CaS,ta] - [Czs,ta CGS,t]»
W(b,s,t) = [cs.b,bes ] — [Cit, Cst] + [Cg,tba Cs,tb)
W(s',t',s,t) = [cs.tCor 7y Csr 1/Cs 1] ((s',t") < (s,t))

where a € A, be B, s, € S, t,t' €T, (ra,p) € R, and (bu,v) € Q. Then we show that the set
{Y;, Wi, W(ra,p), W(bu,v), W(a,s,t), W(b,s,t), W(s',t',s,t) ((s',t') < (s,t)) :

jed;lel;ac A;be B; s,s € S; t,t' €T (ra,p) € R; (bu,v) € Q}

is a generating set for the free abelian group imds as follows.

Ifr=a--amand p=a)---a), (a1,...,am,a},...,a, € A) then we define
Wo = Wiam,as,t),
Wi = W(am—i,myi—i---amas,t) (1<i<m—1),
W, = Wi(al,s,t),
Wi = Wilan_j apq_j-aps,t) (1<j<n—1).
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Thus, we have

83(‘/2) - [acs,ta Cas,ta] + i)(rcas,i&) - i)(pcs,t) - [acs,ta Cas,ta]

-1

3

+[amcas,t7 Camas,tam] + [amficam+1_i---amas,t; Cam_i--ﬂmas,tamfi]
1

%
n—1

/ ’ § : / 1
7[0’716571‘/3 Ca;ls,tan] - [an—jca;l+17j~~~a;ls,ta Cailij ~<~aéls,tan_j]

Jj=

=

n—1 m—1
= —W(a,s,t)+ ZWJ’ — Z Wi,
j=0 i=0

and so 03(V3) is a linear combination of W(a,s,t)s. Similarly, it can be shown that d3(Vi4) is a linear
combination of W (b, s,t)s. Moreover, it is clear that all of 95(Vg), 03(Vk), 93(Vio), and 05(Vi2) are linear

combinations of W(s',t,s,t)s, and that

03(Vi3) = W(b,s,t) + W(a,s,t) — W(a, s, tb) — W(b,as, t).

Next we find a generating set for ker d,. Since any o € P, has the form

a = Z Qrs)[r, 8] + Z Q) [, V] + Z Q(q,p) [ab, bal

(r=s)ER (u=v)eQ acA,beB
2
+ Z a(S»t) [Cs,t7 cs,t] + Z a(s’,t/,s,t) [Cs,tcs’,t’7 Cs’,t’cs,t]
seS, teT (s,t")<(s,t)ESXT

+ § (a,s,t) [acs7tvcas,ta] + E Q(b,s,t) [Cs7tb7 bcs,tb]
a€A, seS, teT beB, seS,teT

where all the coefficients are integers, then o € ker 9 if and only if

52( Z O‘(r,s)[r’ S]) =0, 52( Z O‘(u,v)[uav]) =0 and

(r=s)ER (u=v)€eQ

> applesd D s (Csd] = [Cast) + D sy ([ca] = [esm]) =0.

seS, teT acA beB

From the first two equations given above we obtain the generators {X; : i € I} and {U : k € K} for

ker 52| . and ker 52‘T , respectively. Now we concentrate on the last equation. By rearranging it, we have

Qsp) = — Z Qa,s,t) — Z Qps,t) T+ Z Qar,s,t) T Z Q5,47 (2)

a€A beB a'€A,s'es bv'eB,t'eT
a's'=s t'y =t
for each (s,t) € S x T. For fixed a(q,ss), We assume that o+ = 1 and all the other variables on the
right-hand side of Equation (2) are zero, and so we obtain a(s4) = —1 and o4, = 1. Thus, we have the
following generators:

Wi(a, s,t) = [acs 1, Cas,ral — [C?,t, Cs.t] + [Cgs,t,cas,t}~
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Similarly, we have
W (b, 5,) = [es,6b, bes ] = €3 45 o] + [€2 4oy € 0]-

Therefore,
{Xi, Ug, [ba,ab], Wi(a,s,t), Wa(b,s,t), [csiCsrvr,CsrprCsp] i €15 k€ K; a € A

be B; s, s €S;t,t' eT((s,t)) < (s,1))}
is a generating set for ker 0s.
Notice that Wi (a,s,t), Wa(b,s,t) and [cs¢Cs 17, Csrp7Cs4] are also in the generating set for im s given
above, and so
Hy(SOT) = (X;, U, [abba] (i€, ke K,a€ A, be B) |

Y; =0, Wi =0, W(ra,p) =0, W(bu,v) =0

(jed, leL, (ra,p) € R, (bu,v) € Q))
Hy(S) x Ho(T) x {[ab,ba] (a € A, b € B) | W(ra,p) =0,

W (bu,v) = 0((ra,p) € R, (bu,v) € Q)).

Since ([ab,ba](a € A, b € B) | W(ra,p) = 0,W(bu,v) = 0,((ra,p) € R, (bu,v) € Q)) is equal to
H,(S) ®z H1(T), from Lemma 2.3, the proof is complete. O

Notice that one may consider the Schiitzenberger product SOT as “a kind of direct product” of the
monoids S x T and the free semilattice over S x T' (the monoid considered as the set of all subsets of S x T
with set-theoretical union as a multiplication). Therefore, from [I, Proposition 3.1] and [3, Equation (1), p.

282], the result in the last theorem is perhaps not surprising.

4. Remark

In [1, Theorem 3.3] it was shown that if A is a finite nonempty set of size n, then
defs(SLa) =n(n—1)/2, (3)

and for n > 2 SL, is inefficient, where SL,4 is the set of all nonempty subsets of A with set-theoretic union
as multiplication.

For convenience, first we state a probably well-known lemma that can be proved easily.

Lemma 4.1 Let S be a monoid, P = (A | R) be a presentation of S, T be a subsemigroup of S, and S\T be
an ideal of S. Then T has a presentation (B | Q) such that B C A and Q C R.

Corollary 4.2 If S and T are two finite monoids without any left or right invertible element, then SOT is
inefficient.
Proof Consider the sets

U
Vv

{(1s,X,17) | X C S x T} and
(SOT\U = {(s,X,t) € SOT' | (s,t) # (1s,17)}.

It is clear that U is a subsemigroup of SOT and isomorphic to the free semilattice SLgxr. Moreover, V is
an ideal of SOT. Tt follows from Lemma 4.1, Equation (3), and Theorem 3.2 that SOT is inefficient. O
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