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Abstract: For two finite monoids S and T , we prove that the second integral homology of the Schützenberger product

S3T is equal to

H2(S3T ) = H2(S)×H2(T )× (H1(S)⊗Z H1(T ))

as the second integral homology of the direct product of two monoids. Moreover, we show that S3T is inefficient if

there is no left or right invertible element in both S and T .
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1. Introduction

It was shown by SJ Pride (unpublished) that, for a finitely presented monoid M , defM (M) ≥ rank(H2(M))

where H2(M) is the second integral homology of the monoid and

defM (M) = min{| R | − | A | : ⟨ A | R ⟩ is a finite monoid presentation for M}.

In [1] this result was extended to a finitely presented semigroup S , that is defS(S) ≥ rank(H2(S)) where H2(S)

is the second integral homology of S1 , the monoid obtained from S by adjoining an identity if necessary, and

defS(S) = min{| R | − | A | : ⟨ A | R ⟩ is a finite semigroup presentation for S}.

Moreover, it was shown that the nth integral homology of a semigroup with a left or a right zero is trivial for

n ≥ 1 (see also [8, Lemma 1]), and the second integral homology of a finite rectangular band Rm,n of order

mn is Z(m−1)(n−1) . A finite semigroup S is called efficient as a semigroup if defS(S) = rank(H2(S)), and

inefficient otherwise. The efficiency and inefficiency of a finite monoid are defined similarly. The first examples

of efficient and inefficient semigroups were given in [1], which showed that finite zero semigroups and finite free

semilattices are inefficient, and finite rectangular bands are efficient. More examples of efficient semigroups can

be found in [2, 3, 4, 5, 6].

It was shown in [2] that the second integral homology of a finite Rees matrix semigroup M[G; I,Λ;P ]

(finite simple semigroup) is H2(G)× Z(|I|−1)(|Λ|−1) by using the Squier resolution (see [12]). In this paper, we

also use this resolution to compute the second integral homology of the Schützenberger product of two finite

monoids. We show that, for two finite monoids S and T ,

∗Correspondence: ltanguler@cu.edu.tr

2010 AMS Mathematics Subject Classification: 20M05, 20M50.

763
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H2(S3T ) = H2(S)×H2(T )× (H1(S)⊗Z H1(T )),

and it follows from [3, Equation (1)] that H2(S3T ) = H2(S×T ). Moreover, we consider the efficiency of S3T

and conclude that, if there is no left or right invertible element in both S and T , then S3T is inefficient.

2. Preliminaries

Since the Squier resolution given in [12] is defined by using a presentation in which the set of relations is a

uniquely terminating rewriting system, we give some elementary concepts about rewriting systems.

Let A be an alphabet. We denote the free semigroup on A consisting of all nonempty words over A by

A+ , and the free monoid A+ ∪ {ε} where ε denotes the empty word by A∗ . A rewriting system R on A is

a subset of A∗ × A∗ . For w1, w2 ∈ A∗ , if they are identical words then we write w1 ≡ w2 , and if there exist

u, v ∈ A∗ and (r, s) ∈ R such that w1 ≡ urv and w2 ≡ usv then we write w1 → w2 and we say that w1

rewrites to w2 . We denote by
∗→ the reflexive and transitive closure of → , and by ∼ the equivalence relation

generated by → . For a word w ∈ A∗ we say that w is reducible (R -reducible) if there is a word z ∈ A∗ such

that w → z ; otherwise we say that w is irreducible (R -irreducible). If w
∗→ y and y ∈ A∗ is irreducible, then

we say that y is an irreducible form of w . A rewriting system R is called terminating if there is no infinite

sequence (wn) such that wn → wn+1 for all n ≥ 1. Let |w| be the length of the word w ∈ A∗ . If |r| > |s| for
all (r, s) ∈ R then the system R is called length-reducing.

It is well known that if there exists an ordering < on a set S such that, for each distinct pair s, s′ ∈ S ,

either s < s′ or s′ < s , then the ordering < is called linear (or total) ordering and the set S is called linearly

(or totally) ordered. For u, v ∈ A∗ , if |u| > |v| or if |u| = |v| and v precedes u in the lexicographic ordering

induced by a linear ordering on A then we write v ≪ u and ≪ is called length-lexicographic ordering. A

rewriting system R is called a length-lexicographic rewriting system if s ≪ r for all (r, s) ∈ R . It is clear that

length-reducing systems and length-lexicographic rewriting systems are terminating.

A semigroup (monoid) presentation is an ordered pair ⟨A | R⟩ , where R ⊆ A+×A+ (R ⊆ A∗×A∗ ). Let

S be a semigroup (monoid). S is called a semigroup (monoid) defined by the semigroup (monoid) presentation

⟨A | R⟩ if S is isomorphic to A+/ρ (A∗/ρ), where ρ is the congruence on A+ (A∗ ) generated by R . For

w1, w2 ∈ A∗ , we also write w1 = w2 if (w1, w2) ∈ ρ ; that is, w2 is obtained from w1 by applying relations

from R , or, equivalently, there is a finite sequence

w1 ≡ α1, α2, ..., αn ≡ w2

of words from A∗ in which every αi is obtained from αi−1 by applying a relation from R (see [9, Proposition

1.5.9]).

A rewriting system R is called confluent if, for any x, y, z ∈ A∗ such that x
∗→ y , x

∗→ z , there exists

w ∈ A∗ such that y
∗→ w , z

∗→ w . Also, a rewriting system R is called complete if it is both terminating and

confluent. For a given rewriting system R , let the subset R1 ⊆ A∗ be the set of all r ∈ A∗ such that there

exists (r, s) ∈ R for some s ∈ A∗ . The system R is called reduced if for each (r, s) ∈ R , R1∩A∗rA∗ = {r} and

s is R -irreducible. Finally, a reduced complete rewriting system R is called a uniquely terminating rewriting

system.

Lemma 2.1 ([7, Theorem 1.1] or [12, Theorem 2.1]) Let R be a terminating rewriting system on A . Then

the following are equivalent:
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(i) R is confluent (and hence complete);

(ii) for any pair (r1r2, s1,2), (r2r3, s2,3) ∈ R , where r2 is nonempty, there exists a word w ∈ A∗ such

that s1,2r3
∗→ w and r1s2,3

∗→ w; for any pair (r1r2r3, s1,2,3), (r2, s2) ∈ R , where r2 is nonempty, there exists

a word w ∈ A∗ such that s1,2,3
∗→ w and r1s2r3

∗→ w ;

(iii) any word w ∈ A∗ has exactly one irreducible form. Moreover, w ∼ w′ if and only if w and w′ have

the same irreducible form.

If there exists a pair (r1r2, s1,2), (r2r3, s2,3) ∈ R or (r1r2r3, s1,2,3), (r2, s2) ∈ R such that r2 is a

nonempty word, then we define the overlaps to be the ordered pairs [(r1r2, s1,2), (r2r3, s2,3)] and [(r1r2r3, s1,2,3),

(r2, s2)] , respectively. Note that the overlaps of the form [(r1r2r3, s1,2,3), (r2, s2)] do not exist in a reduced

rewriting system.

Let ⟨A | R⟩ be a presentation for a monoid S in which R is a uniquely terminating rewriting system on

A . Also, let ZS denote the monoid ring of S with coefficients in Z . In [12] Squier defined the free resolution

of Z as follows:

P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ Z −→ 0,

where P0 is the free ZS -module on a single formal symbol [ ] and the augmentation map ε : P0 −→ Z is

defined by ε([ ]) = 1. P1 is the free ZS -module on the set of formal symbols [a] for each a ∈ A and the map

∂1 : P1−→P0 is defined by

∂1([a]) = (a− 1)[ ].

P2 is the free ZS -module on the set of formal symbols [r, s] , for each (r, s) ∈ R . For each a ∈ A , a function

∂/∂a : A∗ −→ ZA∗ , which is called a derivation, is defined by induction as follows:

∂/∂a(1) = 0,

and if w ∈ A∗ and b ∈ A , then

∂/∂a(wb) =

{
∂/∂a(w) (if b ̸= a),
∂/∂a(w) + w (if b = a).

Then the map ∂2 : P2−→P1 is defined by

∂2([r, s]) =
∑
a∈A

ϕ(∂/∂a(r)− ∂/∂a(s))[a],

where ϕ : ZA∗ −→ ZS is the map induced by the natural homomorphism from A∗ to S . Finally, P3 is the free

ZS -module on the set of formal symbols [(r1r2, s1,2), (r2r3, s2,3)] , for each pair (r1r2, s1,2), (r2r3, s2,3) ∈ R

where r2 is not an empty word. Let w be in A∗ and let u be the irreducible form of w . Then we have a
sequence

w ≡ u1r1v1 → u1s1v1 ≡ u2r2v2 → · · · → uqsqvq ≡ u

where ui, vi ∈ A∗ and (ri, si) ∈ R for each i = 1, . . . , q . Then the map Φ : A∗ −→ P2 is defined by

Φ(w) =

q∑
i=1

ϕ(ui)[ri, si],
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and the map ∂3 : P3 −→ P2 is defined by

∂3([(r1r2, s1,2), (r2r3, s2,3)]) = r1[r2r3, s2,3]− [r1r2, s1,2] + Φ(r1s2,3)− Φ(s1,2r3).

Squier showed that P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ Z −→ 0 is an exact sequence if R is a uniquely terminating

rewriting system and we assume that for each word w ∈ A∗ , the chosen relation chain from w to the irreducible

form of w consists of reductions only; that is, if (r, s) ∈ R , then (s, r) /∈ R .

If we apply the tensor product Z⊗ZS − to the resolution of Z given above, we obtain the chain complex

of abelian groups

Z⊗ P3
1⊗∂3−→ Z⊗ P2

1⊗∂2−→ Z⊗ P1
1⊗∂1−→ Z⊗ P0

1⊗ε−→ Z⊗ Z −→ 0,

or simply,

P̄3
∂̄3−→ P̄2

∂̄2−→ P̄1
∂̄1−→ Z −→ 0 (1)

where P̄1 , P̄2 , and P̄3 are the free abelian groups on the set of formal symbols [a] , [r, s] , and [(r1r2, s1,2),

(r2r3, s2,3)] where a ∈ A ; (r, s), (r1r2, s1,2), (r2r3, s2,3) ∈ R with r2 not an empty word, respectively. Clearly

the map ∂̄1 : P̄1 → Z is the zero map.

For a ∈ A and w ∈ A∗ , the number of occurrences of the letter a in the word w is called a -length of w

and denoted by ∥w∥a . Moreover, if w ≡ a1a2 · · · am , then we denote the list [a1, a2, . . . , am] by C[w] . (Note

that in any list some of the elements can be the same; for example, C[ab2a2] = [a, b, b, a, a] .)

The maps ∂̄2 : P̄2 → P̄1 and ∂̄3 : P̄3 → P̄2 are defined by

∂̄2([r, s]) =
∑
a∈A

(∥r∥a − ∥s∥a)[a]

and

∂̄3([(r1r2, s1,2), (r2r3, s2,3)]) = [r2r3, s2,3]− [r1r2, s1,2] + Φ̄(r1s2,3)− Φ̄(s1,2r3),

respectively, where Φ̄ : A∗ → P̄2 is the map defined by

Φ̄(w) =

q∑
i=1

[ri, si] if Φ(w) =

q∑
i=1

ϕ(ui)[ri, si].

With this notation we have the following immediate result:

Lemma 2.2 ([3, Lemma 3.1]) If a monoid S has a presentation ⟨A | R⟩ such that R is a uniquely terminating

rewriting system on A , then

H1(S) = H1(G) = G/G′ = ⟨A |
∑
a∈A

(∥r∥a − ∥s∥a)[a] = 0 ((r, s) ∈ R)⟩,

where G is the group defined by ⟨A | R⟩ as a group presentation and G′ is the derived subgroup of G .

Lemma 2.3 ([11, Chapter 6]) Let ⟨A | R⟩ and ⟨B | Q⟩ (A and B are distinct) be presentations for the

monoids S and T , respectively. Then the tensor product of their first homologies, namely H1(S) ⊗Z H1(T ) ,
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can be given by the abelian group presentation

⟨[A,B] |
∑

a∈A (∥r∥a − ∥s∥a)[ab, ba] = 0 (b ∈ B, (r, s) ∈ R)∑
b∈B (∥u∥b − ∥v∥b)[ab, ba] = 0 (a ∈ A, (u, v) ∈ Q)⟩,

where [A,B] = {[ab, ba] | a ∈ A, b ∈ B} .

3. The second integral homology of the Schützenberger product of monoids

Let S and T be two finite monoids, and let P(S × T ) denote the set of all subsets of S × T . Now we define

the sets
sX = {(sx, y) : (x, y) ∈ X} and Xt = {(x, yt) : (x, y) ∈ X},

where X ∈ P(S × T ), s ∈ S , and t ∈ T . Then the set S × P(S × T )× T is a monoid, denoted by S3T and

called the Schützenberger product of S and T , with identity (1S , ∅, 1T ) by the multiplication

(s1, X1, t1)(s2, X2, t2) = (s1s2, X1t2 ∪ s1X2, t1t2).

If S is a finitely presented monoid then it is clear that S is linearly ordered by considering the length-

lexiographic ordering. In this section we consider that the monoids S and T are well ordered. Moreover, the

direct product S × T is also linearly ordered, with the ordering (s, t) ≺ (s′, t′) if s < s′ or if s = s′ and t < t′ .

If the monoid presentations ⟨A | R⟩ and ⟨B | Q⟩ (A and B are distinct) define the monoids S and T ,

respectively, then the presentation ⟨A ∪B ∪ C | R ∪Q ∪ Z⟩ where C = {cs,t : s ∈ S, t ∈ T} and

Z = { c2s,t = cs,t (s ∈ S, t ∈ T ),

cs,tcs′,t′ = cs′,t′cs,t ((s′, t′) ≺ (s, t) ∈ S × T ),

acs,t = cas,ta (a ∈ A, s ∈ S, t ∈ T ),

cs,tb = bcs,tb (b ∈ B, s ∈ S, t ∈ T ),

ab = ba (a ∈ A, b ∈ B) }

defines S3T in terms of the generating set

{(a, ∅, 1T ), (1S , ∅, b), (1S , {(s, t)}, 1T ) : a ∈ A, b ∈ B, (s, t) ∈ S × T}.

(For a proof, see [10, Theorem 3.2].)

Note that, for ease of notation, we write cas,t and cs,tb instead of cπS(a)s,t and cs,tπT (b) where πS : A∗ →
S and πT : B∗ → T are the natural homomorphisms, respectively. Thus, for r, p ∈ A∗S and u, v ∈ TB∗ , the

words cr,u and cp,v are identical if the relations r = p and u = v hold in S and T , respectively.

Lemma 3.1 Let S and T be two finite monoids, and let ⟨A | R⟩ and ⟨B | Q⟩ be their finite monoid

presentations such that R and Q are uniquely terminating rewriting systems on A and B , respectively. With

the above notations, the rewriting system R ∪Q ∪ Z is uniquely terminating on A ∪B ∪ C .

Proof For an arbitrary word w in (A∪B ∪C)∗ , it is clear that the reduced form of w has the form w1w2w3

where w1 , w2 , and w3 are reduced words in B , C , and A , respectively. It is also clear that R ∪ Q ∪ Z is
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terminating and reduced. The overlaps are:

V1 = [(r1r2, p1,2), (r2r3, p2,3)],

V2 = [(ra, p), (acs,t, cas,ta)],

V3 = [(ra, p), (ab, ba)],

V4 = [(u1u2, v1,2), (u2u3, v2,3)],

V5 = [(cs,tcs,t, cs,t), (cs,tcs,t, cs,t)],

V6 = [(cs,tcs,t, cs,t), (cs,tcs′,t′ , cs′,t′cs,t)]((s
′, t′) ≺ (s, t)),

V7 = [(cs,tcs,t, cs,t), (cs,tb, bcs,tb)],

V8 = [(cs,tcs′,t′ , cs′,t′cs,t), (cs′,t′cs′,t′ , cs′,t′)]((s
′, t′) ≺ (s, t)),

V9 = [(cs,tcs′,t′ , cs′,t′cs,t), (cs′,t′cs′′,t′′ , cs′′,t′′cs′,t′)]((s
′′, t′′) ≺ (s′, t′) ≺ (s, t)),

V10 = [(cs,tcs′,t′ , cs′,t′cs,t), (cs′,t′b, bcs′,t′b)]((s
′, t′) ≺ (s, t)),

V11 = [(acs,t, cas,ta), (cs,tcs,t, cs,t)],

V12 = [(acs,t, cas,ta), (cs,tcs′,t′ , cs′,t′cs,t)]((s
′, t′) ≺ (s, t)),

V13 = [(acs,t, cas,ta), (cs,tb, bcs,tb)],

V14 = [(cs,tb, bcs,tb), (bu, v)],

V15 = [(ab, ba), (bu, v)],

where a ∈ A ; b ∈ B ; (ra = p), (r1r2 = p1,2), (r2r3 = p2,3) ∈ R ; (bu = v), (u1u2 = v1,2), (u2u3 = v2,3) ∈ Q ;

(s, t), (s′, t′), (s′′, t′′) ∈ S × T . Now it follows from Lemma 2.1 that R ∪Q ∪ Z is confluent and so a uniquely

terminating rewriting system. 2

Theorem 3.2 If S and T are two finite monoids, then

H2(S3T ) = H2(S)×H2(T )× (H1(S)⊗Z H1(T )).

Proof We consider the uniquely terminating rewriting system R ∪Q ∪ Z on A ∪B ∪ C given in Lemma 3.1

and the chain complex (1) arising from it.

Before we compute the second integral homology of S3T , that is H2(S3T ) = ker ∂̄2/im ∂̄3 , we assume

that H2(S) = ker ∂̄2|S/im ∂̄3|S and H2(T ) = ker ∂̄2|T /im ∂̄3|T where ker ∂̄2|S , im ∂̄3|S , ker ∂̄2|T , and im ∂̄3|T are

the free abelian groups on {Xi : i ∈ I} , {Yj : j ∈ J} , {Uk : k ∈ K} , and {Wl : l ∈ L} (which are found by

using the Squier resolution), respectively.

Now we find a generating set for the free abelian group im∂̄3 by using the overlaps in the proof of Lemma

3.1. We compute the following.

∂̄3(V1) = im ∂̄3|S

∂̄3(V2) = [acs,t, cas,ta]− [ra, p] + Φ̄(rcas,ta)− Φ̄(pcs,t)

∂̄3(V3) =
∑

a∈C[ra]

[ab, ba]−
∑

a∈C[p]

[ab, ba]
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∂̄3(V4) = im ∂̄3|T

∂̄3(V5) = 0

∂̄3(V6) = [cs,tcs′,t′ , cs′,t′cs,t]

∂̄3(V7) = [cs,tb, bcs,tb]− [c2s,t, cs,t] + [c2s,tb, cs,tb]

∂̄3(V8) = −[cs,tcs′,t′ , cs′,t′cs,t]

∂̄3(V9) = 0

∂̄3(V10) = −[cs,tcs′,t′ , cs′,t′cs,t] + [cs,tbcs′,t′b, cs′,t′bcs,tb]

∂̄3(V11) = [c2s,t, cs,t]− [acs,t, cas,ta]− [c2as,t, cas,t]

∂̄3(V12) = [cs,tcs′,t′ , cs′,t′cs,t]− [cas,tcas′,t′ , cas′,t′cas,t]

∂̄3(V13) = [cs,tb, bcs,tb]− [acs,t, cas,ta] + [acs,tb, cas,tba]− [cas,tb, bcas,tb]

∂̄3(V14) = −[cs,tb, bcs,tb] + Φ̄(cs,tv)− Φ̄(cs,tbu)

∂̄3(V15) =
∑

b∈C[v]

[ab, ba]−
∑

b∈C[bu]

[ab, ba]

Now let

W (ra, p) =
∑

a∈C[ra]

[ab, ba]−
∑

a∈C[p]

[ab, ba],

W (bu, v) =
∑

b∈C[v]

[ab, ba]−
∑

b∈C[bu]

[ab, ba],

W (a, s, t) = [c2s,t, cs,t]− [acs,t, cas,ta]− [c2as,t, cas,t],

W (b, s, t) = [cs,tb, bcs,tb]− [c2s,t, cs,t] + [c2s,tb, cs,tb],

W (s′, t′, s, t) = [cs,tcs′,t′ , cs′,t′cs,t] ( (s′, t′) ≺ (s, t) )

where a ∈ A , b ∈ B , s, s′ ∈ S , t, t′ ∈ T , (ra, p) ∈ R , and (bu, v) ∈ Q . Then we show that the set

{Yj , Wl, W (ra, p), W (bu, v), W (a, s, t), W (b, s, t), W (s′, t′, s, t) ((s′, t′) ≺ (s, t)) :

j ∈ J ; l ∈ L; a ∈ A; b ∈ B; s, s′ ∈ S; t, t′ ∈ T ; (ra, p) ∈ R; (bu, v) ∈ Q }

is a generating set for the free abelian group im ∂̄3 as follows.

If r ≡ a1 · · · am and p ≡ a′1 · · · a′n (a1, . . . , am, a′1, . . . , a
′
n ∈ A) then we define

W0 = W (am, as, t),

Wi = W (am−i, am+1−i · · · amas, t) (1 ≤ i ≤ m− 1),

W ′
0 = W (a′n, s, t),

W ′
j = W (a′n−j , a

′
n+1−j · · · a′ns, t) (1 ≤ j ≤ n− 1).
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Thus, we have

∂̄3(V2) = [acs,t, cas,ta] + Φ̄(rcas,t)− Φ̄(pcs,t) = [acs,t, cas,ta]

+[amcas,t, camas,tam] +
m−1∑
i=1

[am−icam+1−i···amas,t, cam−i···amas,tam−i]

−[a′ncs,t, ca′
ns,ta

′
n]−

n−1∑
j=1

[a′n−jca′
n+1−j ···a′

ns,t
, ca′

n−j ···a′
ns,t

a′n−j ]

= −W (a, s, t) +
n−1∑
j=0

W ′
j −

m−1∑
i=0

Wi,

and so ∂̄3(V2) is a linear combination of W (a, s, t)s. Similarly, it can be shown that ∂̄3(V14) is a linear

combination of W (b, s, t)s. Moreover, it is clear that all of ∂̄3(V6), ∂̄3(V8), ∂̄3(V10), and ∂̄3(V12) are linear

combinations of W (s′, t′, s, t)s, and that

∂̄3(V13) = W (b, s, t) +W (a, s, t)−W (a, s, tb)−W (b, as, t).

Next we find a generating set for ker ∂̄2 . Since any α ∈ P̄2 has the form

α =
∑

(r=s)∈R

α(r,s)[r, s] +
∑

(u=v)∈Q

α(u,v)[u, v] +
∑

a∈A, b∈B

α(a,b)[ab, ba]

+
∑

s∈S, t∈T

α(s,t)[c
2
s,t, cs,t] +

∑
(s′,t′)≺(s,t)∈S×T

α(s′,t′,s,t)[cs,tcs′,t′ , cs′,t′cs,t]

+
∑

a∈A, s∈S, t∈T

α(a,s,t)[acs,t, cas,ta] +
∑

b∈B, s∈S, t∈T

α(b,s,t)[cs,tb, bcs,tb]

where all the coefficients are integers, then α ∈ ker ∂̄2 if and only if

∂̄2(
∑

(r=s)∈R

α(r,s)[r, s]) = 0, ∂̄2(
∑

(u=v)∈Q

α(u,v)[u, v]) = 0 and

∑
s∈S, t∈T

α(s,t)[cs,t] +
∑
a∈A

α(a,s,t)([cs,t]− [cas,t]) +
∑
b∈B

α(b,s,t)([cs,t]− [cs,tb]) = 0.

From the first two equations given above we obtain the generators {Xi : i ∈ I} and {Uk : k ∈ K} for

ker ∂̄2|S and ker ∂̄2|T , respectively. Now we concentrate on the last equation. By rearranging it, we have

α(s,t) = −
∑
a∈A

α(a,s,t) −
∑
b∈B

α(b,s,t) +
∑

a′∈A, s′∈S
a′s′=s

α(a′,s′,t) +
∑

b′∈B, t′∈T
t′b′=t

α(b′,s,t′) (2)

for each (s, t) ∈ S × T . For fixed α(a,s,t) , we assume that α(a,s,t) = 1 and all the other variables on the

right-hand side of Equation (2) are zero, and so we obtain α(s,t) = −1 and α(as,t) = 1. Thus, we have the

following generators:

W1(a, s, t) = [acs,t, cas,ta]− [c2s,t, cs,t] + [c2as,t, cas,t].
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Similarly, we have

W2(b, s, t) = [cs,tb, bcs,tb]− [c2s,t, cs,t] + [c2s,tb, cs,tb].

Therefore,

{Xi, Uk, [ba, ab], W1(a, s, t), W2(b, s, t), [cs,tcs′,t′ , cs′,t′cs,t] : i ∈ I; k ∈ K; a ∈ A;

b ∈ B; s, s′ ∈ S; t, t′ ∈ T ((s′, t′)) ≺ (s, t))}

is a generating set for ker ∂̄2 .

Notice that W1(a, s, t), W2(b, s, t) and [cs,tcs′,t′ , cs′,t′cs,t] are also in the generating set for im ∂̄3 given

above, and so

H2(S3T ) = ⟨Xi, Uk, [ab, ba] (i ∈ I, k ∈ K, a ∈ A, b ∈ B) |

Yj = 0, Wl = 0, W (ra, p) = 0, W (bu, v) = 0

(j ∈ J, l ∈ L, (ra, p) ∈ R, (bu, v) ∈ Q)⟩

= H2(S)×H2(T )× ⟨[ab, ba] (a ∈ A, b ∈ B) | W (ra, p) = 0,

W (bu, v) = 0 ((ra, p) ∈ R, (bu, v) ∈ Q)⟩.

Since ⟨[ab, ba] (a ∈ A, b ∈ B) | W (ra, p) = 0,W (bu, v) = 0, ((ra, p) ∈ R, (bu, v) ∈ Q)⟩ is equal to

H1(S)⊗Z H1(T ), from Lemma 2.3, the proof is complete. 2

Notice that one may consider the Schützenberger product S3T as “a kind of direct product” of the

monoids S × T and the free semilattice over S × T (the monoid considered as the set of all subsets of S × T

with set-theoretical union as a multiplication). Therefore, from [1, Proposition 3.1] and [3, Equation (1), p.

282], the result in the last theorem is perhaps not surprising.

4. Remark

In [1, Theorem 3.3] it was shown that if A is a finite nonempty set of size n , then

defS(SLA) = n(n− 1)/2, (3)

and for n ≥ 2 SLA is inefficient, where SLA is the set of all nonempty subsets of A with set-theoretic union

as multiplication.

For convenience, first we state a probably well-known lemma that can be proved easily.

Lemma 4.1 Let S be a monoid, P = ⟨A | R⟩ be a presentation of S , T be a subsemigroup of S , and S\T be

an ideal of S . Then T has a presentation ⟨B | Q⟩ such that B ⊂ A and Q ⊂ R .

Corollary 4.2 If S and T are two finite monoids without any left or right invertible element, then S3T is

inefficient.

Proof Consider the sets

U = {(1S , X, 1T ) | X ⊂ S × T} and

V = (S3T )\U = {(s,X, t) ∈ S3T | (s, t) ̸= (1S , 1T )}.

It is clear that U is a subsemigroup of S3T and isomorphic to the free semilattice SLS×T . Moreover, V is

an ideal of S3T . It follows from Lemma 4.1, Equation (3), and Theorem 3.2 that S3T is inefficient. 2
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