Turk J Math
(2015) 39: $763-772$
(C) TÜBİTAK
doi:10.3906/mat-1503-79

On the second homology of the Schützenberger product of monoids

Melek YAĞCI, Leyla BUGAY*, Hayrullah AYIK

Department of Mathematics, Çukurova University, Adana, Turkey

| Received: 26.03 .2015 | Accepted/Published Online: 17.06 .2015 | Printed: 30.09 .2015 |
| :--- | :--- | :--- | :--- |

Abstract

For two finite monoids S and T, we prove that the second integral homology of the Schützenberger product $S \diamond T$ is equal to $$
H_{2}(S \diamond T)=H_{2}(S) \times H_{2}(T) \times\left(H_{1}(S) \otimes_{\mathbb{Z}} H_{1}(T)\right)
$$ as the second integral homology of the direct product of two monoids. Moreover, we show that $S \diamond T$ is inefficient if there is no left or right invertible element in both S and T.

Key words: Monoid, Schützenberger product, second integral homology, efficiency

1. Introduction

It was shown by SJ Pride (unpublished) that, for a finitely presented monoid $M, \operatorname{def}_{M}(M) \geq \operatorname{rank}\left(H_{2}(M)\right)$ where $H_{2}(M)$ is the second integral homology of the monoid and

$$
\operatorname{def}_{M}(M)=\min \{|R|-|A|:\langle A \mid R\rangle \text { is a finite monoid presentation for } M\}
$$

In [1] this result was extended to a finitely presented semigroup S, that is $\operatorname{def}_{S}(S) \geq \operatorname{rank}\left(H_{2}(S)\right)$ where $H_{2}(S)$ is the second integral homology of S^{1}, the monoid obtained from S by adjoining an identity if necessary, and

$$
\operatorname{def}_{S}(S)=\min \{|R|-|A|:\langle A \mid R\rangle \text { is a finite semigroup presentation for } S\}
$$

Moreover, it was shown that the nth integral homology of a semigroup with a left or a right zero is trivial for $n \geq 1$ (see also [8, Lemma 1]), and the second integral homology of a finite rectangular band $R_{m, n}$ of order $m n$ is $\mathbb{Z}^{(m-1)(n-1)}$. A finite semigroup S is called efficient as a semigroup if $\operatorname{def}_{S}(S)=\operatorname{rank}\left(H_{2}(S)\right)$, and inefficient otherwise. The efficiency and inefficiency of a finite monoid are defined similarly. The first examples of efficient and inefficient semigroups were given in [1], which showed that finite zero semigroups and finite free semilattices are inefficient, and finite rectangular bands are efficient. More examples of efficient semigroups can be found in $[2,3,4,5,6]$.

It was shown in [2] that the second integral homology of a finite Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$ (finite simple semigroup) is $H_{2}(G) \times \mathbb{Z}^{(|I|-1)(|\Lambda|-1)}$ by using the Squier resolution (see [12]). In this paper, we also use this resolution to compute the second integral homology of the Schützenberger product of two finite monoids. We show that, for two finite monoids S and T,

[^0]$$
H_{2}(S \diamond T)=H_{2}(S) \times H_{2}(T) \times\left(H_{1}(S) \otimes_{\mathbb{Z}} H_{1}(T)\right)
$$
and it follows from [3, Equation (1)] that $H_{2}(S \diamond T)=H_{2}(S \times T)$. Moreover, we consider the efficiency of $S \diamond T$ and conclude that, if there is no left or right invertible element in both S and T, then $S \diamond T$ is inefficient.

2. Preliminaries

Since the Squier resolution given in [12] is defined by using a presentation in which the set of relations is a uniquely terminating rewriting system, we give some elementary concepts about rewriting systems.

Let A be an alphabet. We denote the free semigroup on A consisting of all nonempty words over A by A^{+}, and the free monoid $A^{+} \cup\{\varepsilon\}$ where ε denotes the empty word by A^{*}. A rewriting system R on A is a subset of $A^{*} \times A^{*}$. For $w_{1}, w_{2} \in A^{*}$, if they are identical words then we write $w_{1} \equiv w_{2}$, and if there exist $u, v \in A^{*}$ and $(r, s) \in R$ such that $w_{1} \equiv u r v$ and $w_{2} \equiv u s v$ then we write $w_{1} \rightarrow w_{2}$ and we say that w_{1} rewrites to w_{2}. We denote by $\xrightarrow{*}$ the reflexive and transitive closure of \rightarrow, and by \sim the equivalence relation generated by \rightarrow. For a word $w \in A^{*}$ we say that w is reducible (R-reducible) if there is a word $z \in A^{*}$ such that $w \rightarrow z$; otherwise we say that w is irreducible (R-irreducible). If $w \xrightarrow{*} y$ and $y \in A^{*}$ is irreducible, then we say that y is an irreducible form of w. A rewriting system R is called terminating if there is no infinite sequence $\left(w_{n}\right)$ such that $w_{n} \rightarrow w_{n+1}$ for all $n \geq 1$. Let $|w|$ be the length of the word $w \in A^{*}$. If $|r|>|s|$ for all $(r, s) \in R$ then the system R is called length-reducing.

It is well known that if there exists an ordering $<$ on a set S such that, for each distinct pair $s, s^{\prime} \in S$, either $s<s^{\prime}$ or $s^{\prime}<s$, then the ordering $<$ is called linear (or total) ordering and the set S is called linearly (or totally) ordered. For $u, v \in A^{*}$, if $|u|>|v|$ or if $|u|=|v|$ and v precedes u in the lexicographic ordering induced by a linear ordering on A then we write $v \ll u$ and \ll is called length-lexicographic ordering. A rewriting system R is called a length-lexicographic rewriting system if $s \ll r$ for all $(r, s) \in R$. It is clear that length-reducing systems and length-lexicographic rewriting systems are terminating.

A semigroup (monoid) presentation is an ordered pair $\langle A \mid R\rangle$, where $R \subseteq A^{+} \times A^{+}\left(R \subseteq A^{*} \times A^{*}\right)$. Let S be a semigroup (monoid). S is called a semigroup (monoid) defined by the semigroup (monoid) presentation $\langle A \mid R\rangle$ if S is isomorphic to $A^{+} / \rho\left(A^{*} / \rho\right)$, where ρ is the congruence on $A^{+}\left(A^{*}\right)$ generated by R. For $w_{1}, w_{2} \in A^{*}$, we also write $w_{1}=w_{2}$ if $\left(w_{1}, w_{2}\right) \in \rho$; that is, w_{2} is obtained from w_{1} by applying relations from R, or, equivalently, there is a finite sequence

$$
w_{1} \equiv \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \equiv w_{2}
$$

of words from A^{*} in which every α_{i} is obtained from α_{i-1} by applying a relation from R (see [9, Proposition 1.5.9]).

A rewriting system R is called confluent if, for any $x, y, z \in A^{*}$ such that $x \xrightarrow{*} y, x \xrightarrow{*} z$, there exists $w \in A^{*}$ such that $y \xrightarrow{*} w, z \xrightarrow{*} w$. Also, a rewriting system R is called complete if it is both terminating and confluent. For a given rewriting system R, let the subset $R_{1} \subseteq A^{*}$ be the set of all $r \in A^{*}$ such that there exists $(r, s) \in R$ for some $s \in A^{*}$. The system R is called reduced if for each $(r, s) \in R, R_{1} \cap A^{*} r A^{*}=\{r\}$ and s is R-irreducible. Finally, a reduced complete rewriting system R is called a uniquely terminating rewriting system.

Lemma 2.1 ([7, Theorem 1.1] or [12, Theorem 2.1]) Let R be a terminating rewriting system on A. Then the following are equivalent:
(i) R is confluent (and hence complete);
(ii) for any pair $\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right) \in R$, where r_{2} is nonempty, there exists a word $w \in A^{*}$ such that $s_{1,2} r_{3} \xrightarrow{*} w$ and $r_{1} s_{2,3} \xrightarrow{*} w$; for any pair $\left(r_{1} r_{2} r_{3}, s_{1,2,3}\right),\left(r_{2}, s_{2}\right) \in R$, where r_{2} is nonempty, there exists a word $w \in A^{*}$ such that $s_{1,2,3} \xrightarrow{*} w$ and $r_{1} s_{2} r_{3} \xrightarrow{*} w$;
(iii) any word $w \in A^{*}$ has exactly one irreducible form. Moreover, $w \sim w^{\prime}$ if and only if w and w^{\prime} have the same irreducible form.

If there exists a pair $\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right) \in R$ or $\left(r_{1} r_{2} r_{3}, s_{1,2,3}\right),\left(r_{2}, s_{2}\right) \in R$ such that r_{2} is a nonempty word, then we define the overlaps to be the ordered pairs $\left[\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right)\right]$ and $\left[\left(r_{1} r_{2} r_{3}, s_{1,2,3}\right)\right.$, $\left.\left(r_{2}, s_{2}\right)\right]$, respectively. Note that the overlaps of the form $\left[\left(r_{1} r_{2} r_{3}, s_{1,2,3}\right),\left(r_{2}, s_{2}\right)\right]$ do not exist in a reduced rewriting system.

Let $\langle A \mid R\rangle$ be a presentation for a monoid S in which R is a uniquely terminating rewriting system on A. Also, let $\mathbb{Z} S$ denote the monoid ring of S with coefficients in \mathbb{Z}. In [12] Squier defined the free resolution of \mathbb{Z} as follows:

$$
P_{3} \xrightarrow{\partial_{3}} P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where P_{0} is the free $\mathbb{Z} S$-module on a single formal symbol [] and the augmentation map $\varepsilon: P_{0} \longrightarrow \mathbb{Z}$ is defined by $\varepsilon([])=1$. P_{1} is the free $\mathbb{Z} S$-module on the set of formal symbols $[a]$ for each $a \in A$ and the map $\partial_{1}: P_{1} \longrightarrow P_{0}$ is defined by

$$
\partial_{1}([a])=(a-1)[] .
$$

P_{2} is the free $\mathbb{Z} S$-module on the set of formal symbols $[r, s]$, for each $(r, s) \in R$. For each $a \in A$, a function $\partial / \partial_{a}: A^{*} \longrightarrow \mathbb{Z} A^{*}$, which is called a derivation, is defined by induction as follows:

$$
\partial / \partial_{a}(1)=0
$$

and if $w \in A^{*}$ and $b \in A$, then

$$
\partial / \partial_{a}(w b)= \begin{cases}\partial / \partial_{a}(w) & (\text { if } b \neq a) \\ \partial / \partial_{a}(w)+w & (\text { if } b=a)\end{cases}
$$

Then the map $\partial_{2}: P_{2} \longrightarrow P_{1}$ is defined by

$$
\partial_{2}([r, s])=\sum_{a \in A} \phi\left(\partial / \partial_{a}(r)-\partial / \partial_{a}(s)\right)[a]
$$

where $\phi: \mathbb{Z} A^{*} \longrightarrow \mathbb{Z} S$ is the map induced by the natural homomorphism from A^{*} to S. Finally, P_{3} is the free $\mathbb{Z} S$-module on the set of formal symbols $\left[\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right)\right]$, for each pair $\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right) \in R$ where r_{2} is not an empty word. Let w be in A^{*} and let u be the irreducible form of w. Then we have a sequence

$$
w \equiv u_{1} r_{1} v_{1} \rightarrow u_{1} s_{1} v_{1} \equiv u_{2} r_{2} v_{2} \rightarrow \cdots \rightarrow u_{q} s_{q} v_{q} \equiv u
$$

where $u_{i}, v_{i} \in A^{*}$ and $\left(r_{i}, s_{i}\right) \in R$ for each $i=1, \ldots, q$. Then the map $\Phi: A^{*} \longrightarrow P_{2}$ is defined by

$$
\Phi(w)=\sum_{i=1}^{q} \phi\left(u_{i}\right)\left[r_{i}, s_{i}\right]
$$

and the map $\partial_{3}: P_{3} \longrightarrow P_{2}$ is defined by

$$
\partial_{3}\left(\left[\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right)\right]\right)=r_{1}\left[r_{2} r_{3}, s_{2,3}\right]-\left[r_{1} r_{2}, s_{1,2}\right]+\Phi\left(r_{1} s_{2,3}\right)-\Phi\left(s_{1,2} r_{3}\right) .
$$

Squier showed that $P_{3} \xrightarrow{\partial_{3}} P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$ is an exact sequence if R is a uniquely terminating rewriting system and we assume that for each word $w \in A^{*}$, the chosen relation chain from w to the irreducible form of w consists of reductions only; that is, if $(r, s) \in R$, then $(s, r) \notin R$.

If we apply the tensor product $\mathbb{Z} \otimes_{\mathbb{Z} S}$ - to the resolution of \mathbb{Z} given above, we obtain the chain complex of abelian groups

$$
\mathbb{Z} \otimes P_{3} \xrightarrow{1 \otimes \partial_{3}} \mathbb{Z} \otimes P_{2} \xrightarrow{1 \otimes \partial_{2}} \mathbb{Z} \otimes P_{1} \xrightarrow{1 \otimes \partial_{1}} \mathbb{Z} \otimes P_{0} \xrightarrow{1 \otimes \varepsilon} \mathbb{Z} \otimes \mathbb{Z} \longrightarrow 0,
$$

or simply,

$$
\begin{equation*}
\bar{P}_{3} \xrightarrow{\bar{\partial}_{3}} \bar{P}_{2} \xrightarrow{\bar{\partial}_{2}} \bar{P}_{1} \xrightarrow{\bar{\partial}_{1}} \mathbb{Z} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where \bar{P}_{1}, \bar{P}_{2}, and \bar{P}_{3} are the free abelian groups on the set of formal symbols $[a],[r, s]$, and $\left[\left(r_{1} r_{2}, s_{1,2}\right)\right.$, $\left.\left(r_{2} r_{3}, s_{2,3}\right)\right]$ where $a \in A ;(r, s),\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right) \in R$ with r_{2} not an empty word, respectively. Clearly the map $\bar{\partial}_{1}: \bar{P}_{1} \rightarrow \mathbb{Z}$ is the zero map.

For $a \in A$ and $w \in A^{*}$, the number of occurrences of the letter a in the word w is called a-length of w and denoted by $\|w\|_{a}$. Moreover, if $w \equiv a_{1} a_{2} \cdots a_{m}$, then we denote the list $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ by $C[w]$. (Note that in any list some of the elements can be the same; for example, $C\left[a b^{2} a^{2}\right]=[a, b, b, a, a]$.)

The maps $\bar{\partial}_{2}: \bar{P}_{2} \rightarrow \bar{P}_{1}$ and $\bar{\partial}_{3}: \bar{P}_{3} \rightarrow \bar{P}_{2}$ are defined by

$$
\bar{\partial}_{2}([r, s])=\sum_{a \in A}\left(\|r\|_{a}-\|s\|_{a}\right)[a]
$$

and

$$
\bar{\partial}_{3}\left(\left[\left(r_{1} r_{2}, s_{1,2}\right),\left(r_{2} r_{3}, s_{2,3}\right)\right]\right)=\left[r_{2} r_{3}, s_{2,3}\right]-\left[r_{1} r_{2}, s_{1,2}\right]+\bar{\Phi}\left(r_{1} s_{2,3}\right)-\bar{\Phi}\left(s_{1,2} r_{3}\right),
$$

respectively, where $\bar{\Phi}: A^{*} \rightarrow \bar{P}_{2}$ is the map defined by

$$
\bar{\Phi}(w)=\sum_{i=1}^{q}\left[r_{i}, s_{i}\right] \text { if } \Phi(w)=\sum_{i=1}^{q} \phi\left(u_{i}\right)\left[r_{i}, s_{i}\right] .
$$

With this notation we have the following immediate result:
Lemma 2.2 ([3, Lemma 3.1]) If a monoid S has a presentation $\langle A \mid R\rangle$ such that R is a uniquely terminating rewriting system on A, then

$$
H_{1}(S)=H_{1}(G)=G / G^{\prime}=\left\langle A \mid \sum_{a \in A}\left(\|r\|_{a}-\|s\|_{a}\right)[a]=0 \quad((r, s) \in R)\right\rangle,
$$

where G is the group defined by $\langle A \mid R\rangle$ as a group presentation and G^{\prime} is the derived subgroup of G.
Lemma 2.3 ([11, Chapter 6]) Let $\langle A \mid R\rangle$ and $\langle B \mid Q\rangle$ (A and B are distinct) be presentations for the monoids S and T, respectively. Then the tensor product of their first homologies, namely $H_{1}(S) \otimes_{\mathbb{Z}} H_{1}(T)$,

YAĞCI et al./Turk J Math
can be given by the abelian group presentation

$$
\begin{array}{rlll}
\langle[A, B]| & \sum_{a \in A} & \left(\|r\|_{a}-\|s\|_{a}\right)[a b, b a]=0 & (b \in B,(r, s) \in R) \\
& \sum_{b \in B} & \left(\|u\|_{b}-\|v\|_{b}\right)[a b, b a]=0 & (a \in A,(u, v) \in Q)\rangle
\end{array}
$$

where $[A, B]=\{[a b, b a] \mid a \in A, b \in B\}$.

3. The second integral homology of the Schützenberger product of monoids

Let S and T be two finite monoids, and let $\mathcal{P}(S \times T)$ denote the set of all subsets of $S \times T$. Now we define the sets

$$
s X=\{(s x, y):(x, y) \in X\} \text { and } X t=\{(x, y t):(x, y) \in X\}
$$

where $X \in \mathcal{P}(S \times T), s \in S$, and $t \in T$. Then the set $S \times \mathcal{P}(S \times T) \times T$ is a monoid, denoted by $S \diamond T$ and called the Schützenberger product of S and T, with identity $\left(1_{S}, \emptyset, 1_{T}\right)$ by the multiplication

$$
\left(s_{1}, X_{1}, t_{1}\right)\left(s_{2}, X_{2}, t_{2}\right)=\left(s_{1} s_{2}, X_{1} t_{2} \cup s_{1} X_{2}, t_{1} t_{2}\right)
$$

If S is a finitely presented monoid then it is clear that S is linearly ordered by considering the lengthlexiographic ordering. In this section we consider that the monoids S and T are well ordered. Moreover, the direct product $S \times T$ is also linearly ordered, with the ordering $(s, t) \prec\left(s^{\prime}, t^{\prime}\right)$ if $s<s^{\prime}$ or if $s=s^{\prime}$ and $t<t^{\prime}$.

If the monoid presentations $\langle A \mid R\rangle$ and $\langle B \mid Q\rangle(A$ and B are distinct) define the monoids S and T, respectively, then the presentation $\langle A \cup B \cup C \mid R \cup Q \cup Z\rangle$ where $C=\left\{c_{s, t}: s \in S, t \in T\right\}$ and

$$
\begin{aligned}
Z=\{ & c_{s, t}^{2}=c_{s, t} \quad(s \in S, t \in T) \\
& c_{s, t} c_{s^{\prime}, t^{\prime}}=c_{s^{\prime}, t^{\prime}} c_{s, t} \quad\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t) \in S \times T\right), \\
& a c_{s, t}=c_{a s, t} a \quad(a \in A, s \in S, t \in T), \\
& c_{s, t} b=b c_{s, t b} \quad(b \in B, s \in S, t \in T), \\
& a b=b a \quad(a \in A, b \in B)\}
\end{aligned}
$$

defines $S \diamond T$ in terms of the generating set

$$
\left\{\left(a, \emptyset, 1_{T}\right),\left(1_{S}, \emptyset, b\right),\left(1_{S},\{(s, t)\}, 1_{T}\right): a \in A, b \in B,(s, t) \in S \times T\right\}
$$

(For a proof, see [10, Theorem 3.2].)
Note that, for ease of notation, we write $c_{a s, t}$ and $c_{s, t b}$ instead of $c_{\pi_{S}(a) s, t}$ and $c_{s, t \pi_{T}(b)}$ where $\pi_{S}: A^{*} \rightarrow$ S and $\pi_{T}: B^{*} \rightarrow T$ are the natural homomorphisms, respectively. Thus, for $r, p \in A^{*} S$ and $u, v \in T B^{*}$, the words $c_{r, u}$ and $c_{p, v}$ are identical if the relations $r=p$ and $u=v$ hold in S and T, respectively.

Lemma 3.1 Let S and T be two finite monoids, and let $\langle A \mid R\rangle$ and $\langle B \mid Q\rangle$ be their finite monoid presentations such that R and Q are uniquely terminating rewriting systems on A and B, respectively. With the above notations, the rewriting system $R \cup Q \cup Z$ is uniquely terminating on $A \cup B \cup C$.
Proof For an arbitrary word w in $(A \cup B \cup C)^{*}$, it is clear that the reduced form of w has the form $w_{1} w_{2} w_{3}$ where w_{1}, w_{2}, and w_{3} are reduced words in B, C, and A, respectively. It is also clear that $R \cup Q \cup Z$ is
terminating and reduced. The overlaps are:

$$
\begin{aligned}
V_{1} & =\left[\left(r_{1} r_{2}, p_{1,2}\right),\left(r_{2} r_{3}, p_{2,3}\right)\right] \\
V_{2} & =\left[(r a, p),\left(a c_{s, t}, c_{a s, t} a\right)\right] \\
V_{3} & =[(r a, p),(a b, b a)] \\
V_{4} & =\left[\left(u_{1} u_{2}, v_{1,2}\right),\left(u_{2} u_{3}, v_{2,3}\right)\right] \\
V_{5} & =\left[\left(c_{s, t} c_{s, t}, c_{s, t}\right),\left(c_{s, t} c_{s, t}, c_{s, t}\right)\right] \\
V_{6} & =\left[\left(c_{s, t} c_{s, t}, c_{s, t}\right),\left(c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right)\right]\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right), \\
V_{7} & =\left[\left(c_{s, t} c_{s, t}, c_{s, t}\right),\left(c_{s, t} b, b c_{s, t b}\right)\right] \\
V_{8} & =\left[\left(c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right),\left(c_{s^{\prime}, t^{\prime}} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}}\right)\right]\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right), \\
V_{9} & =\left[\left(c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right),\left(c_{s^{\prime}, t^{\prime}} c_{s^{\prime \prime}, t^{\prime \prime}}, c_{s^{\prime \prime}, t^{\prime \prime}} c_{s^{\prime}, t^{\prime}}\right)\right]\left(\left(s^{\prime \prime}, t^{\prime \prime}\right) \prec\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right), \\
V_{10} & =\left[\left(c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right),\left(c_{s^{\prime}, t^{\prime}} b, b c_{s^{\prime}, t^{\prime} b}\right)\right]\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right) \\
V_{11} & =\left[\left(a c_{s, t}, c_{a s, t} a\right),\left(c_{s, t} c_{s, t}, c_{s, t}\right)\right] \\
V_{12} & =\left[\left(a c_{s, t}, c_{a s, t} a\right),\left(c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right)\right]\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right), \\
V_{13} & =\left[\left(a c_{s, t}, c_{a s, t} a\right),\left(c_{s, t} b, b c_{s, t b}\right)\right] \\
V_{14} & =\left[\left(c_{s, t} b, b c_{s, t b}\right),(b u, v)\right] \\
V_{15} & =[(a b, b a),(b u, v)]
\end{aligned}
$$

where $a \in A ; b \in B ;(r a=p),\left(r_{1} r_{2}=p_{1,2}\right),\left(r_{2} r_{3}=p_{2,3}\right) \in R ;(b u=v),\left(u_{1} u_{2}=v_{1,2}\right),\left(u_{2} u_{3}=v_{2,3}\right) \in Q$; $(s, t),\left(s^{\prime}, t^{\prime}\right),\left(s^{\prime \prime}, t^{\prime \prime}\right) \in S \times T$. Now it follows from Lemma 2.1 that $R \cup Q \cup Z$ is confluent and so a uniquely terminating rewriting system.

Theorem 3.2 If S and T are two finite monoids, then

$$
H_{2}(S \diamond T)=H_{2}(S) \times H_{2}(T) \times\left(H_{1}(S) \otimes_{\mathbb{Z}} H_{1}(T)\right)
$$

Proof We consider the uniquely terminating rewriting system $R \cup Q \cup Z$ on $A \cup B \cup C$ given in Lemma 3.1 and the chain complex (1) arising from it.

Before we compute the second integral homology of $S \diamond T$, that is $H_{2}(S \diamond T)=\operatorname{ker} \bar{\partial}_{2} / \operatorname{im} \bar{\partial}_{3}$, we assume that $H_{2}(S)=\operatorname{ker} \bar{\partial}_{2_{\mid S}} / \operatorname{im} \bar{\partial}_{3_{\mid S}}$ and $H_{2}(T)=\operatorname{ker} \bar{\partial}_{2_{\mid T}} / \operatorname{im} \bar{\partial}_{3_{\mid T}}$ where $\operatorname{ker} \bar{\partial}_{2_{\mid S}}, \operatorname{im} \bar{\partial}_{3_{\mid S}}, \operatorname{ker} \bar{\partial}_{2_{\mid T}}$, and im $\bar{\partial}_{3_{\mid T}}$ are the free abelian groups on $\left\{X_{i}: i \in I\right\},\left\{Y_{j}: j \in J\right\},\left\{U_{k}: k \in K\right\}$, and $\left\{W_{l}: l \in L\right\}$ (which are found by using the Squier resolution), respectively.

Now we find a generating set for the free abelian group im $\bar{\partial}_{3}$ by using the overlaps in the proof of Lemma 3.1. We compute the following.

$$
\begin{aligned}
& \bar{\partial}_{3}\left(V_{1}\right)=\operatorname{im} \bar{\partial}_{3_{\mid S}} \\
& \bar{\partial}_{3}\left(V_{2}\right)=\left[a c_{s, t}, c_{a s, t} a\right]-[r a, p]+\bar{\Phi}\left(r c_{a s, t} a\right)-\bar{\Phi}\left(p c_{s, t}\right) \\
& \bar{\partial}_{3}\left(V_{3}\right)=\sum_{a \in C[r a]}[a b, b a]-\sum_{a \in C[p]}[a b, b a]
\end{aligned}
$$

YAGCI et al./Turk J Math

$$
\begin{aligned}
\bar{\partial}_{3}\left(V_{4}\right) & =\operatorname{im} \bar{\partial}_{3 \mid T} \\
\bar{\partial}_{3}\left(V_{5}\right) & =0 \\
\bar{\partial}_{3}\left(V_{6}\right) & =\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right] \\
\bar{\partial}_{3}\left(V_{7}\right) & =\left[c_{s, t} b, b c_{s, t b}\right]-\left[c_{s, t}^{2}, c_{s, t}\right]+\left[c_{s, t b}^{2}, c_{s, t b}\right] \\
\bar{\partial}_{3}\left(V_{8}\right) & =-\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right] \\
\bar{\partial}_{3}\left(V_{9}\right) & =0 \\
\bar{\partial}_{3}\left(V_{10}\right) & =-\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right]+\left[c_{s, t b} c_{s^{\prime}, t^{\prime} b}, c_{s^{\prime}, t^{\prime} b} c_{s, t b}\right] \\
\bar{\partial}_{3}\left(V_{11}\right) & =\left[c_{s, t}^{2}, c_{s, t}\right]-\left[a c_{s, t}, c_{a s, t} a\right]-\left[c_{a s, t}^{2}, c_{a s, t}\right] \\
\bar{\partial}_{3}\left(V_{12}\right) & =\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right]-\left[c_{a s, t} c_{a s^{\prime}, t^{\prime}}, c_{a s^{\prime}, t^{\prime}} c_{a s, t}\right] \\
\bar{\partial}_{3}\left(V_{13}\right) & =\left[c_{s, t} b, b c_{s, t b}\right]-\left[a c_{s, t}, c_{a s, t} a\right]+\left[a c_{s, t b}, c_{a s, t b} a\right]-\left[c_{a s, t} b, b c_{a s, t b}\right] \\
\bar{\partial}_{3}\left(V_{14}\right) & =-\left[c_{s, t} b, b c_{s, t b}\right]+\bar{\Phi}\left(c_{s, t} v\right)-\bar{\Phi}\left(c_{s, t b} u\right) \\
\bar{\partial}_{3}\left(V_{15}\right) & =\sum_{b \in C[v]}[a b, b a]-\sum_{b \in C[b u]}[a b, b a]
\end{aligned}
$$

Now let

$$
\begin{aligned}
W(r a, p) & =\sum_{a \in C[r a]}[a b, b a]-\sum_{a \in C[p]}[a b, b a], \\
W(b u, v) & =\sum_{b \in C[v]}[a b, b a]-\sum_{b \in C[b u]}[a b, b a], \\
W(a, s, t) & =\left[c_{s, t}^{2}, c_{s, t}\right]-\left[a c_{s, t}, c_{a s, t} a\right]-\left[c_{a s, t}^{2}, c_{a s, t}\right], \\
W(b, s, t) & =\left[c_{s, t} b, b c_{s, t b}\right]-\left[c_{s, t}^{2}, c_{s, t}\right]+\left[c_{s, t b}^{2}, c_{s, t b}\right] \\
W\left(s^{\prime}, t^{\prime}, s, t\right) & =\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right] \quad\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right)
\end{aligned}
$$

where $a \in A, b \in B, s, s^{\prime} \in S, t, t^{\prime} \in T,(r a, p) \in R$, and $(b u, v) \in Q$. Then we show that the set

$$
\begin{aligned}
& \left\{Y_{j}, W_{l}, W(r a, p), W(b u, v), W(a, s, t), W(b, s, t), W\left(s^{\prime}, t^{\prime}, s, t\right)\left(\left(s^{\prime}, t^{\prime}\right) \prec(s, t)\right):\right. \\
& \left.\quad j \in J ; l \in L ; a \in A ; b \in B ; s, s^{\prime} \in S ; t, t^{\prime} \in T ;(r a, p) \in R ;(b u, v) \in Q\right\}
\end{aligned}
$$

is a generating set for the free abelian group $\operatorname{im} \bar{\partial}_{3}$ as follows.
If $r \equiv a_{1} \cdots a_{m}$ and $p \equiv a_{1}^{\prime} \cdots a_{n}^{\prime}\left(a_{1}, \ldots, a_{m}, a_{1}^{\prime}, \ldots, a_{n}^{\prime} \in A\right)$ then we define

$$
\begin{aligned}
W_{0} & =W\left(a_{m}, a s, t\right) \\
W_{i} & =W\left(a_{m-i}, a_{m+1-i} \cdots a_{m} a s, t\right)(1 \leq i \leq m-1) \\
W_{0}^{\prime} & =W\left(a_{n}^{\prime}, s, t\right) \\
W_{j}^{\prime} & =W\left(a_{n-j}^{\prime}, a_{n+1-j}^{\prime} \cdots a_{n}^{\prime} s, t\right) \quad(1 \leq j \leq n-1)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\bar{\partial}_{3}\left(V_{2}\right)= & {\left[a c_{s, t}, c_{a s, t} a\right]+\bar{\Phi}\left(r c_{a s, t}\right)-\bar{\Phi}\left(p c_{s, t}\right)=\left[a c_{s, t}, c_{a s, t} a\right] } \\
& +\left[a_{m} c_{a s, t}, c_{a_{m} a s, t} a_{m}\right]+\sum_{i=1}^{m-1}\left[a_{m-i} c_{a_{m+1-i} \cdots a_{m} a s, t}, c_{a_{m-i} \cdots a_{m} a s, t} a_{m-i}\right] \\
& -\left[a_{n}^{\prime} c_{s, t}, c_{a_{n}^{\prime} s, t} a_{n}^{\prime}\right]-\sum_{j=1}^{n-1}\left[a_{n-j}^{\prime} c_{a_{n+1-j}^{\prime} \cdots a_{n}^{\prime} s, t}, c_{a_{n-j}^{\prime} \cdots a_{n}^{\prime} s, t} a_{n-j}^{\prime}\right] \\
= & -W(a, s, t)+\sum_{j=0}^{n-1} W_{j}^{\prime}-\sum_{i=0}^{m-1} W_{i}
\end{aligned}
$$

and so $\bar{\partial}_{3}\left(V_{2}\right)$ is a linear combination of $W(a, s, t) \mathrm{s}$. Similarly, it can be shown that $\bar{\partial}_{3}\left(V_{14}\right)$ is a linear combination of $W(b, s, t)$ s. Moreover, it is clear that all of $\bar{\partial}_{3}\left(V_{6}\right), \bar{\partial}_{3}\left(V_{8}\right), \bar{\partial}_{3}\left(V_{10}\right)$, and $\bar{\partial}_{3}\left(V_{12}\right)$ are linear combinations of $W\left(s^{\prime}, t^{\prime}, s, t\right) \mathrm{s}$, and that

$$
\bar{\partial}_{3}\left(V_{13}\right)=W(b, s, t)+W(a, s, t)-W(a, s, t b)-W(b, a s, t)
$$

Next we find a generating set for $\operatorname{ker} \bar{\partial}_{2}$. Since any $\alpha \in \bar{P}_{2}$ has the form

$$
\begin{aligned}
\alpha= & \sum_{(r=s) \in R} \alpha_{(r, s)}[r, s]+\sum_{(u=v) \in Q} \alpha_{(u, v)}[u, v]+\sum_{a \in A, b \in B} \alpha_{(a, b)}[a b, b a] \\
& +\sum_{s \in S, t \in T} \alpha_{(s, t)}\left[c_{s, t}^{2}, c_{s, t}\right]+\sum_{\left(s^{\prime}, t^{\prime}\right) \prec(s, t) \in S \times T} \alpha_{\left(s^{\prime}, t^{\prime}, s, t\right)}\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right] \\
& +\sum_{a \in A, s \in S, t \in T} \alpha_{(a, s, t)}\left[a c_{s, t}, c_{a s, t} a\right]+\sum_{b \in B, s \in S, t \in T} \alpha_{(b, s, t)}\left[c_{s, t} b, b c_{s, t b}\right]
\end{aligned}
$$

where all the coefficients are integers, then $\alpha \in \operatorname{ker} \bar{\partial}_{2}$ if and only if

$$
\begin{gathered}
\bar{\partial}_{2}\left(\sum_{(r=s) \in R} \alpha_{(r, s)}[r, s]\right)=0, \quad \bar{\partial}_{2}\left(\sum_{(u=v) \in Q} \alpha_{(u, v)}[u, v]\right)=0 \text { and } \\
\sum_{s \in S, t \in T} \alpha_{(s, t)}\left[c_{s, t}\right]+\sum_{a \in A} \alpha_{(a, s, t)}\left(\left[c_{s, t}\right]-\left[c_{a s, t}\right]\right)+\sum_{b \in B} \alpha_{(b, s, t)}\left(\left[c_{s, t}\right]-\left[c_{s, t b}\right]\right)=0
\end{gathered}
$$

From the first two equations given above we obtain the generators $\left\{X_{i}: i \in I\right\}$ and $\left\{U_{k}: k \in K\right\}$ for $\operatorname{ker} \bar{\partial}_{2_{\mid S}}$ and ker $\bar{\partial}_{2_{\mid T}}$, respectively. Now we concentrate on the last equation. By rearranging it, we have

$$
\begin{equation*}
\alpha_{(s, t)}=-\sum_{a \in A} \alpha_{(a, s, t)}-\sum_{b \in B} \alpha_{(b, s, t)}+\sum_{\substack{a^{\prime} \in A, s^{\prime} \in S \\ a^{\prime} s^{\prime}=s}} \alpha_{\left(a^{\prime}, s^{\prime}, t\right)}+\sum_{\substack{b^{\prime} \in B, t^{\prime} \in T \\ t^{\prime} b^{\prime}=t}} \alpha_{\left(b^{\prime}, s, t^{\prime}\right)} \tag{2}
\end{equation*}
$$

for each $(s, t) \in S \times T$. For fixed $\alpha_{(a, s, t)}$, we assume that $\alpha_{(a, s, t)}=1$ and all the other variables on the right-hand side of Equation (2) are zero, and so we obtain $\alpha_{(s, t)}=-1$ and $\alpha_{(a s, t)}=1$. Thus, we have the following generators:

$$
W_{1}(a, s, t)=\left[a c_{s, t}, c_{a s, t} a\right]-\left[c_{s, t}^{2}, c_{s, t}\right]+\left[c_{a s, t}^{2}, c_{a s, t}\right]
$$

Similarly, we have

$$
W_{2}(b, s, t)=\left[c_{s, t} b, b c_{s, t b}\right]-\left[c_{s, t}^{2}, c_{s, t}\right]+\left[c_{s, t b}^{2}, c_{s, t b}\right] .
$$

Therefore,

$$
\begin{gathered}
\left\{X_{i}, U_{k},[b a, a b], W_{1}(a, s, t), W_{2}(b, s, t),\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right]: i \in I ; k \in K ; a \in A\right. \\
\left.\left.b \in B ; s, s^{\prime} \in S ; t, t^{\prime} \in T\left(\left(s^{\prime}, t^{\prime}\right)\right) \prec(s, t)\right)\right\}
\end{gathered}
$$

is a generating set for $\operatorname{ker} \bar{\partial}_{2}$.
Notice that $W_{1}(a, s, t), W_{2}(b, s, t)$ and $\left[c_{s, t} c_{s^{\prime}, t^{\prime}}, c_{s^{\prime}, t^{\prime}} c_{s, t}\right]$ are also in the generating set for im $\bar{\partial}_{3}$ given above, and so

$$
\begin{gathered}
H_{2}(S \diamond T)=\left\langle X_{i}, U_{k},[a b, b a](i \in I, k \in K, a \in A, b \in B)\right| \\
Y_{j}=0, W_{l}=0, W(r a, p)=0, W(b u, v)=0 \\
(j \in J, l \in L,(r a, p) \in R,(b u, v) \in Q)\rangle \\
=\quad H_{2}(S) \times H_{2}(T) \times\langle[a b, b a](a \in A, b \in B)| W(r a, p)=0 \\
W(b u, v)=0((r a, p) \in R,(b u, v) \in Q)\rangle
\end{gathered}
$$

Since $\langle[a b, b a](a \in A, b \in B) \mid W(r a, p)=0, W(b u, v)=0,((r a, p) \in R,(b u, v) \in Q)\rangle$ is equal to $H_{1}(S) \otimes_{\mathbb{Z}} H_{1}(T)$, from Lemma 2.3, the proof is complete.

Notice that one may consider the Schützenberger product $S \diamond T$ as "a kind of direct product" of the monoids $S \times T$ and the free semilattice over $S \times T$ (the monoid considered as the set of all subsets of $S \times T$ with set-theoretical union as a multiplication). Therefore, from [1, Proposition 3.1] and [3, Equation (1), p. 282], the result in the last theorem is perhaps not surprising.

4. Remark

In [1, Theorem 3.3] it was shown that if A is a finite nonempty set of size n, then

$$
\begin{equation*}
d e f_{S}\left(S L_{A}\right)=n(n-1) / 2 \tag{3}
\end{equation*}
$$

and for $n \geq 2 S L_{A}$ is inefficient, where $S L_{A}$ is the set of all nonempty subsets of A with set-theoretic union as multiplication.

For convenience, first we state a probably well-known lemma that can be proved easily.
Lemma 4.1 Let S be a monoid, $P=\langle A \mid R\rangle$ be a presentation of S, T be a subsemigroup of S, and $S \backslash T$ be an ideal of S. Then T has a presentation $\langle B \mid Q\rangle$ such that $B \subset A$ and $Q \subset R$.

Corollary 4.2 If S and T are two finite monoids without any left or right invertible element, then $S \diamond T$ is inefficient.
Proof Consider the sets

$$
\begin{aligned}
U & =\left\{\left(1_{S}, X, 1_{T}\right) \mid X \subset S \times T\right\} \text { and } \\
V & =(S \diamond T) \backslash U=\left\{(s, X, t) \in S \diamond T \mid(s, t) \neq\left(1_{S}, 1_{T}\right)\right\}
\end{aligned}
$$

It is clear that U is a subsemigroup of $S \diamond T$ and isomorphic to the free semilattice $S L_{S \times T}$. Moreover, V is an ideal of $S \diamond T$. It follows from Lemma 4.1, Equation (3), and Theorem 3.2 that $S \diamond T$ is inefficient.

YAĞCI et al./Turk J Math

References

[1] Ayık H, Campbell CM, O'Connor JJ, Ruskuc N. Minimal presentations and efficiency of semigroups. Semigroup Forum 2000; 60: 231-242.
[2] Ayık H, Campbell CM, O'Connor JJ, Ruskuc N. On the efficiency of finite simple semigroups. Turk J Math 2000; 24: 129-146.
[3] Ayık H, Campbell CM, O'Connor JJ. On the efficiency of the direct products of Monogenic Monoids. Algebra Colloq 2007; 14: 279-284.
[4] Campbell CM, Mitchell JD, Ruskuc N. On defining groups efficiently without using inverses. Math P Camb Phil Soc 2002; 133: 31-36.
[5] Çevik AS. Minimal but inefficient presentations of the semi-direct products of some monoids. Semigroup Forum 2003; 66: 1-17.
[6] Çevik AS. The p-Cockcroft property of the semi-direct products of monoids. Int J Algebra Comput 2003; 13: 1-16.
[7] Guba VS, Pride SJ. Low dimensional (co)homology of free Burnside monoids. J Pure Appl Algebra 1996; 108: 61-79.
[8] Guba VS, Pride SJ. On the left and right cohomological dimension of monoids. Bull London Math Soc 1998; 30: 391-396.
[9] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[10] Howie JM, Ruskuc N. Constructions and presentations for monoids. Comm Algebra 1994; 49: 6209-6224.
[11] Johnson DL. Presentations of Groups. Cambridge, UK: Cambridge University Press, 1990.
[12] Squier C. Word problems and a homological finiteness condition for monoids. J Pure Appl Algebra 1987; 49: 201-217.

[^0]: *Correspondence: ltanguler@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 20M05, 20M50.

