

http://journals.tubitak.gov.tr/math/

Turk J Math (2015) 39: 763 – 772 © TÜBİTAK doi:10.3906/mat-1503-79

Research Article

On the second homology of the Schützenberger product of monoids

Melek YAĞCI, Leyla BUGAY^{*}, Hayrullah AYIK

Department of Mathematics, Çukurova University, Adana, Turkey

Received: 26.03.2015 • Accepted/1	Published Online: 17.06.2015	Printed: 30.09.2015
--	------------------------------	----------------------------

Abstract: For two finite monoids S and T, we prove that the second integral homology of the Schützenberger product $S \diamond T$ is equal to

$$H_2(S \diamond T) = H_2(S) \times H_2(T) \times (H_1(S) \otimes_{\mathbb{Z}} H_1(T))$$

as the second integral homology of the direct product of two monoids. Moreover, we show that $S \diamond T$ is inefficient if there is no left or right invertible element in both S and T.

Key words: Monoid, Schützenberger product, second integral homology, efficiency

1. Introduction

It was shown by SJ Pride (unpublished) that, for a finitely presented monoid M, $def_M(M) \ge rank(H_2(M))$ where $H_2(M)$ is the second integral homology of the monoid and

 $def_M(M) = \min\{ |R| - |A| : \langle A | R \rangle \text{ is a finite monoid presentation for } M \}.$

In [1] this result was extended to a finitely presented semigroup S, that is $def_S(S) \ge rank(H_2(S))$ where $H_2(S)$ is the second integral homology of S^1 , the monoid obtained from S by adjoining an identity if necessary, and

 $def_S(S) = \min\{|R| - |A| : \langle A | R \rangle \text{ is a finite semigroup presentation for } S\}.$

Moreover, it was shown that the *n*th integral homology of a semigroup with a left or a right zero is trivial for $n \ge 1$ (see also [8, Lemma 1]), and the second integral homology of a finite rectangular band $R_{m,n}$ of order mn is $\mathbb{Z}^{(m-1)(n-1)}$. A finite semigroup S is called *efficient* as a semigroup if def_S(S) = rank(H₂(S)), and *inefficient* otherwise. The efficiency and inefficiency of a finite monoid are defined similarly. The first examples of efficient and inefficient semigroups were given in [1], which showed that finite zero semigroups and finite free semilattices are inefficient, and finite rectangular bands are efficient. More examples of efficient semigroups can be found in [2, 3, 4, 5, 6].

It was shown in [2] that the second integral homology of a finite Rees matrix semigroup $\mathcal{M}[G; I, \Lambda; P]$ (finite simple semigroup) is $H_2(G) \times \mathbb{Z}^{(|I|-1)(|\Lambda|-1)}$ by using the Squier resolution (see [12]). In this paper, we also use this resolution to compute the second integral homology of the Schützenberger product of two finite monoids. We show that, for two finite monoids S and T,

^{*}Correspondence: ltanguler@cu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 20M05, 20M50.

YAĞCI et al./Turk J Math

$$H_2(S \diamond T) = H_2(S) \times H_2(T) \times (H_1(S) \otimes_{\mathbb{Z}} H_1(T)),$$

and it follows from [3, Equation (1)] that $H_2(S \diamond T) = H_2(S \times T)$. Moreover, we consider the efficiency of $S \diamond T$ and conclude that, if there is no left or right invertible element in both S and T, then $S \diamond T$ is inefficient.

2. Preliminaries

Since the Squier resolution given in [12] is defined by using a presentation in which the set of relations is a uniquely terminating rewriting system, we give some elementary concepts about rewriting systems.

Let A be an alphabet. We denote the free semigroup on A consisting of all nonempty words over A by A^+ , and the free monoid $A^+ \cup \{\varepsilon\}$ where ε denotes the empty word by A^* . A rewriting system R on A is a subset of $A^* \times A^*$. For $w_1, w_2 \in A^*$, if they are identical words then we write $w_1 \equiv w_2$, and if there exist $u, v \in A^*$ and $(r, s) \in R$ such that $w_1 \equiv urv$ and $w_2 \equiv usv$ then we write $w_1 \to w_2$ and we say that w_1 rewrites to w_2 . We denote by $\stackrel{*}{\to}$ the reflexive and transitive closure of \rightarrow , and by \sim the equivalence relation generated by \rightarrow . For a word $w \in A^*$ we say that w is reducible (*R*-reducible) if there is a word $z \in A^*$ such that $w \to z$; otherwise we say that w is irreducible (*R*-irreducible). If $w \stackrel{*}{\to} y$ and $y \in A^*$ is irreducible, then we say that w_1 is an irreducible form of w. A rewriting system R is called terminating if there is no infinite sequence (w_n) such that $w_n \to w_{n+1}$ for all $n \ge 1$. Let |w| be the length of the word $w \in A^*$. If |r| > |s| for all $(r, s) \in R$ then the system R is called *length-reducing*.

It is well known that if there exists an ordering < on a set S such that, for each distinct pair $s, s' \in S$, either s < s' or s' < s, then the ordering < is called *linear* (or *total*) ordering and the set S is called *linearly* (or *totally*) ordered. For $u, v \in A^*$, if |u| > |v| or if |u| = |v| and v precedes u in the lexicographic ordering induced by a linear ordering on A then we write $v \ll u$ and \ll is called *length-lexicographic ordering*. A rewriting system R is called a *length-lexicographic rewriting system* if $s \ll r$ for all $(r, s) \in R$. It is clear that length-reducing systems and length-lexicographic rewriting systems are terminating.

A semigroup (monoid) presentation is an ordered pair $\langle A | R \rangle$, where $R \subseteq A^+ \times A^+$ ($R \subseteq A^* \times A^*$). Let S be a semigroup (monoid). S is called a semigroup (monoid) defined by the semigroup (monoid) presentation $\langle A | R \rangle$ if S is isomorphic to A^+/ρ (A^*/ρ), where ρ is the congruence on A^+ (A^*) generated by R. For $w_1, w_2 \in A^*$, we also write $w_1 = w_2$ if $(w_1, w_2) \in \rho$; that is, w_2 is obtained from w_1 by applying relations from R, or, equivalently, there is a finite sequence

$$w_1 \equiv \alpha_1, \alpha_2, ..., \alpha_n \equiv w_2$$

of words from A^* in which every α_i is obtained from α_{i-1} by applying a relation from R (see [9, Proposition 1.5.9]).

A rewriting system R is called *confluent* if, for any $x, y, z \in A^*$ such that $x \xrightarrow{*} y, x \xrightarrow{*} z$, there exists $w \in A^*$ such that $y \xrightarrow{*} w, z \xrightarrow{*} w$. Also, a rewriting system R is called *complete* if it is both terminating and confluent. For a given rewriting system R, let the subset $R_1 \subseteq A^*$ be the set of all $r \in A^*$ such that there exists $(r,s) \in R$ for some $s \in A^*$. The system R is called *reduced* if for each $(r,s) \in R, R_1 \cap A^*rA^* = \{r\}$ and s is R-irreducible. Finally, a reduced complete rewriting system R is called a *uniquely terminating rewriting system*.

Lemma 2.1 ([7, Theorem 1.1] or [12, Theorem 2.1]) Let R be a terminating rewriting system on A. Then the following are equivalent:

(i) R is confluent (and hence complete);

(ii) for any pair $(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3}) \in R$, where r_2 is nonempty, there exists a word $w \in A^*$ such that $s_{1,2}r_3 \xrightarrow{*} w$ and $r_1s_{2,3} \xrightarrow{*} w$; for any pair $(r_1r_2r_3, s_{1,2,3}), (r_2, s_2) \in R$, where r_2 is nonempty, there exists a word $w \in A^*$ such that $s_{1,2,3} \xrightarrow{*} w$ and $r_1s_{2,73} \xrightarrow{*} w$;

(iii) any word $w \in A^*$ has exactly one irreducible form. Moreover, $w \sim w'$ if and only if w and w' have the same irreducible form.

If there exists a pair $(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3}) \in R$ or $(r_1r_2r_3, s_{1,2,3}), (r_2, s_2) \in R$ such that r_2 is a nonempty word, then we define the *overlaps* to be the ordered pairs $[(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3})]$ and $[(r_1r_2r_3, s_{1,2,3}), (r_2, s_2)]$, respectively. Note that the overlaps of the form $[(r_1r_2r_3, s_{1,2,3}), (r_2, s_2)]$ do not exist in a reduced rewriting system.

Let $\langle A \mid R \rangle$ be a presentation for a monoid S in which R is a uniquely terminating rewriting system on A. Also, let $\mathbb{Z}S$ denote the monoid ring of S with coefficients in \mathbb{Z} . In [12] Squier defined the free resolution of \mathbb{Z} as follows:

$$P_3 \xrightarrow{\partial_3} P_2 \xrightarrow{\partial_2} P_1 \xrightarrow{\partial_1} P_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0,$$

where P_0 is the free $\mathbb{Z}S$ -module on a single formal symbol [] and the augmentation map $\varepsilon : P_0 \longrightarrow \mathbb{Z}$ is defined by $\varepsilon([]) = 1$. P_1 is the free $\mathbb{Z}S$ -module on the set of formal symbols [a] for each $a \in A$ and the map $\partial_1 : P_1 \longrightarrow P_0$ is defined by

$$\partial_1([a]) = (a-1)[].$$

 P_2 is the free $\mathbb{Z}S$ -module on the set of formal symbols [r, s], for each $(r, s) \in \mathbb{R}$. For each $a \in A$, a function $\partial/\partial_a : A^* \longrightarrow \mathbb{Z}A^*$, which is called a *derivation*, is defined by induction as follows:

$$\partial/\partial_a(1) = 0,$$

and if $w \in A^*$ and $b \in A$, then

$$\partial/\partial_a(wb) = \begin{cases} \partial/\partial_a(w) & (\text{if } b \neq a), \\ \partial/\partial_a(w) + w & (\text{if } b = a). \end{cases}$$

Then the map $\partial_2: P_2 \longrightarrow P_1$ is defined by

$$\partial_2([r,s]) = \sum_{a \in A} \phi(\partial/\partial_a(r) - \partial/\partial_a(s))[a],$$

where $\phi : \mathbb{Z}A^* \longrightarrow \mathbb{Z}S$ is the map induced by the natural homomorphism from A^* to S. Finally, P_3 is the free $\mathbb{Z}S$ -module on the set of formal symbols $[(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3})]$, for each pair $(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3}) \in \mathbb{R}$ where r_2 is not an empty word. Let w be in A^* and let u be the irreducible form of w. Then we have a sequence

$$w \equiv u_1 r_1 v_1 \to u_1 s_1 v_1 \equiv u_2 r_2 v_2 \to \dots \to u_q s_q v_q \equiv u$$

where $u_i, v_i \in A^*$ and $(r_i, s_i) \in R$ for each $i = 1, \ldots, q$. Then the map $\Phi: A^* \longrightarrow P_2$ is defined by

$$\Phi(w) = \sum_{i=1}^{q} \phi(u_i)[r_i, s_i],$$

765

and the map $\partial_3: P_3 \longrightarrow P_2$ is defined by

$$\partial_3([(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3})]) = r_1[r_2r_3, s_{2,3}] - [r_1r_2, s_{1,2}] + \Phi(r_1s_{2,3}) - \Phi(s_{1,2}r_3) - \Phi(s$$

Squier showed that $P_3 \xrightarrow{\partial_3} P_2 \xrightarrow{\partial_2} P_1 \xrightarrow{\partial_1} P_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$ is an exact sequence if R is a uniquely terminating rewriting system and we assume that for each word $w \in A^*$, the chosen relation chain from w to the irreducible form of w consists of reductions only; that is, if $(r, s) \in R$, then $(s, r) \notin R$.

If we apply the tensor product $\mathbb{Z} \otimes_{\mathbb{Z}S} -$ to the resolution of \mathbb{Z} given above, we obtain the chain complex of abelian groups

$$\mathbb{Z}\otimes P_3 \stackrel{1\otimes \partial_3}{\longrightarrow} \mathbb{Z}\otimes P_2 \stackrel{1\otimes \partial_2}{\longrightarrow} \mathbb{Z}\otimes P_1 \stackrel{1\otimes \partial_1}{\longrightarrow} \mathbb{Z}\otimes P_0 \stackrel{1\otimes \varepsilon}{\longrightarrow} \mathbb{Z}\otimes \mathbb{Z} \longrightarrow 0,$$

or simply,

$$\bar{P}_3 \xrightarrow{\bar{\partial}_3} \bar{P}_2 \xrightarrow{\bar{\partial}_2} \bar{P}_1 \xrightarrow{\bar{\partial}_1} \mathbb{Z} \longrightarrow 0$$
 (1)

where \bar{P}_1 , \bar{P}_2 , and \bar{P}_3 are the free abelian groups on the set of formal symbols [a], [r,s], and $[(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3})]$ where $a \in A$; $(r, s), (r_1r_2, s_{1,2}), (r_2r_3, s_{2,3}) \in R$ with r_2 not an empty word, respectively. Clearly the map $\bar{\partial}_1 : \bar{P}_1 \to \mathbb{Z}$ is the zero map.

For $a \in A$ and $w \in A^*$, the number of occurrences of the letter a in the word w is called *a*-length of wand denoted by $||w||_a$. Moreover, if $w \equiv a_1 a_2 \cdots a_m$, then we denote the list $[a_1, a_2, \ldots, a_m]$ by C[w]. (Note that in any list some of the elements can be the same; for example, $C[ab^2a^2] = [a, b, b, a, a]$.)

The maps $\bar{\partial}_2: \bar{P}_2 \to \bar{P}_1$ and $\bar{\partial}_3: \bar{P}_3 \to \bar{P}_2$ are defined by

$$\bar{\partial}_2([r,s]) = \sum_{a \in A} (\|r\|_a - \|s\|_a)[a]$$

and

$$\bar{\partial}_3([(r_1r_2, s_{1,2}), (r_2r_3, s_{2,3})]) = [r_2r_3, s_{2,3}] - [r_1r_2, s_{1,2}] + \bar{\Phi}(r_1s_{2,3}) - \bar{\Phi}(s_{1,2}r_3),$$

respectively, where $\bar{\Phi}: A^* \to \bar{P}_2$ is the map defined by

$$\bar{\Phi}(w) = \sum_{i=1}^{q} [r_i, s_i] \text{ if } \Phi(w) = \sum_{i=1}^{q} \phi(u_i)[r_i, s_i].$$

With this notation we have the following immediate result:

Lemma 2.2 ([3, Lemma 3.1]) If a monoid S has a presentation $\langle A | R \rangle$ such that R is a uniquely terminating rewriting system on A, then

$$H_1(S) = H_1(G) = G/G' = \langle A \mid \sum_{a \in A} (\|r\|_a - \|s\|_a)[a] = 0 \quad ((r, s) \in R) \rangle,$$

where G is the group defined by $\langle A \mid R \rangle$ as a group presentation and G' is the derived subgroup of G.

Lemma 2.3 ([11, Chapter 6]) Let $\langle A \mid R \rangle$ and $\langle B \mid Q \rangle$ (A and B are distinct) be presentations for the monoids S and T, respectively. Then the tensor product of their first homologies, namely $H_1(S) \otimes_{\mathbb{Z}} H_1(T)$,

can be given by the abelian group presentation

where $[A, B] = \{[ab, ba] \mid a \in A, b \in B\}$.

3. The second integral homology of the Schützenberger product of monoids

Let S and T be two finite monoids, and let $\mathcal{P}(S \times T)$ denote the set of all subsets of $S \times T$. Now we define the sets

$$sX = \{(sx, y) : (x, y) \in X\}$$
 and $Xt = \{(x, yt) : (x, y) \in X\},\$

where $X \in \mathcal{P}(S \times T)$, $s \in S$, and $t \in T$. Then the set $S \times \mathcal{P}(S \times T) \times T$ is a monoid, denoted by $S \diamond T$ and called the *Schützenberger product of* S and T, with identity $(1_S, \emptyset, 1_T)$ by the multiplication

$$(s_1, X_1, t_1)(s_2, X_2, t_2) = (s_1s_2, X_1t_2 \cup s_1X_2, t_1t_2).$$

If S is a finitely presented monoid then it is clear that S is linearly ordered by considering the lengthlexiographic ordering. In this section we consider that the monoids S and T are well ordered. Moreover, the direct product $S \times T$ is also linearly ordered, with the ordering $(s,t) \prec (s',t')$ if s < s' or if s = s' and t < t'.

If the monoid presentations $\langle A \mid R \rangle$ and $\langle B \mid Q \rangle$ (A and B are distinct) define the monoids S and T, respectively, then the presentation $\langle A \cup B \cup C \mid R \cup Q \cup Z \rangle$ where $C = \{c_{s,t} : s \in S, t \in T\}$ and

$$Z = \{ c_{s,t}^2 = c_{s,t} \ (s \in S, \ t \in T), \\ c_{s,t}c_{s',t'} = c_{s',t'}c_{s,t} \ ((s',t') \prec (s,t) \in S \times T) \\ ac_{s,t} = c_{as,t}a \ (a \in A, \ s \in S, \ t \in T), \\ c_{s,t}b = bc_{s,tb} \ (b \in B, \ s \in S, \ t \in T), \\ ab = ba \ (a \in A, \ b \in B) \}$$

defines $S \diamond T$ in terms of the generating set

$$\{(a, \emptyset, 1_T), (1_S, \emptyset, b), (1_S, \{(s, t)\}, 1_T) : a \in A, b \in B, (s, t) \in S \times T\}.$$

(For a proof, see [10, Theorem 3.2].)

Note that, for ease of notation, we write $c_{as,t}$ and $c_{s,tb}$ instead of $c_{\pi_S(a)s,t}$ and $c_{s,t\pi_T(b)}$ where $\pi_S : A^* \to S$ and $\pi_T : B^* \to T$ are the natural homomorphisms, respectively. Thus, for $r, p \in A^*S$ and $u, v \in TB^*$, the words $c_{r,u}$ and $c_{p,v}$ are identical if the relations r = p and u = v hold in S and T, respectively.

Lemma 3.1 Let S and T be two finite monoids, and let $\langle A \mid R \rangle$ and $\langle B \mid Q \rangle$ be their finite monoid presentations such that R and Q are uniquely terminating rewriting systems on A and B, respectively. With the above notations, the rewriting system $R \cup Q \cup Z$ is uniquely terminating on $A \cup B \cup C$.

Proof For an arbitrary word w in $(A \cup B \cup C)^*$, it is clear that the reduced form of w has the form $w_1w_2w_3$ where w_1 , w_2 , and w_3 are reduced words in B, C, and A, respectively. It is also clear that $R \cup Q \cup Z$ is

terminating and reduced. The overlaps are:

- $V_1 = [(r_1r_2, p_{1,2}), (r_2r_3, p_{2,3})],$
- $V_2 = [(ra, p), (ac_{s,t}, c_{as,t}a)],$
- $V_3 = [(ra, p), (ab, ba)],$
- $V_4 = [(u_1u_2, v_{1,2}), (u_2u_3, v_{2,3})],$
- $V_5 = [(c_{s,t}c_{s,t}, c_{s,t}), (c_{s,t}c_{s,t}, c_{s,t})],$
- $V_6 = [(c_{s,t}c_{s,t}, c_{s,t}), (c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t})]((s',t') \prec (s,t)),$
- $V_7 = [(c_{s,t}c_{s,t}, c_{s,t}), (c_{s,t}b, bc_{s,tb})],$
- $V_8 = [(c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}), (c_{s',t'}c_{s',t'}, c_{s',t'})]((s',t') \prec (s,t)),$
- $V_9 = [(c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}), (c_{s',t'}c_{s'',t''}, c_{s'',t''}c_{s',t'})]((s'',t'') \prec (s',t') \prec (s,t)),$
- $V_{10} = [(c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}), (c_{s',t'}b, bc_{s',t'b})]((s',t') \prec (s,t)),$
- $V_{11} = [(ac_{s,t}, c_{as,t}a), (c_{s,t}c_{s,t}, c_{s,t})],$
- $V_{12} = [(ac_{s,t}, c_{as,t}a), (c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t})]((s',t') \prec (s,t)),$
- $V_{13} = [(ac_{s,t}, c_{as,t}a), (c_{s,t}b, bc_{s,tb})],$

 $V_{14} = [(c_{s,t}b, bc_{s,tb}), (bu, v)],$

$$V_{15} = [(ab, ba), (bu, v)],$$

where $a \in A$; $b \in B$; (ra = p), $(r_1r_2 = p_{1,2})$, $(r_2r_3 = p_{2,3}) \in R$; (bu = v), $(u_1u_2 = v_{1,2})$, $(u_2u_3 = v_{2,3}) \in Q$; (s,t), (s',t'), $(s'',t'') \in S \times T$. Now it follows from Lemma 2.1 that $R \cup Q \cup Z$ is confluent and so a uniquely terminating rewriting system.

Theorem 3.2 If S and T are two finite monoids, then

$$H_2(S \diamond T) = H_2(S) \times H_2(T) \times (H_1(S) \otimes_{\mathbb{Z}} H_1(T)).$$

Proof We consider the uniquely terminating rewriting system $R \cup Q \cup Z$ on $A \cup B \cup C$ given in Lemma 3.1 and the chain complex (1) arising from it.

Before we compute the second integral homology of $S \diamond T$, that is $H_2(S \diamond T) = \ker \bar{\partial}_2 / \operatorname{im} \bar{\partial}_3$, we assume that $H_2(S) = \ker \bar{\partial}_{2|S} / \operatorname{im} \bar{\partial}_{3|S}$ and $H_2(T) = \ker \bar{\partial}_{2|T} / \operatorname{im} \bar{\partial}_{3|T}$ where $\ker \bar{\partial}_{2|S}$, $\operatorname{im} \bar{\partial}_{3|S}$, $\ker \bar{\partial}_{2|T}$, and $\operatorname{im} \bar{\partial}_{3|T}$ are the free abelian groups on $\{X_i : i \in I\}$, $\{Y_j : j \in J\}$, $\{U_k : k \in K\}$, and $\{W_l : l \in L\}$ (which are found by using the Squier resolution), respectively.

Now we find a generating set for the free abelian group $\operatorname{im}\bar{\partial}_3$ by using the overlaps in the proof of Lemma 3.1. We compute the following.

$$\begin{split} \bar{\partial}_{3}(V_{1}) &= & \operatorname{im} \bar{\partial}_{3|S} \\ \bar{\partial}_{3}(V_{2}) &= & [ac_{s,t}, c_{as,t}a] - [ra, p] + \bar{\Phi}(rc_{as,t}a) - \bar{\Phi}(pc_{s,t}) \\ \bar{\partial}_{3}(V_{3}) &= & \sum_{a \in C[ra]} [ab, ba] - \sum_{a \in C[p]} [ab, ba] \end{split}$$

768

$$\begin{split} \bar{\partial}_{3}(V_{4}) &= \operatorname{im} \bar{\partial}_{3|T} \\ \bar{\partial}_{3}(V_{5}) &= 0 \\ \bar{\partial}_{3}(V_{6}) &= [c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] \\ \bar{\partial}_{3}(V_{7}) &= [c_{s,t}b, bc_{s,tb}] - [c_{s,t}^{2}, c_{s,t}] + [c_{s,tb}^{2}, c_{s,tb}] \\ \bar{\partial}_{3}(V_{7}) &= [c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] \\ \bar{\partial}_{3}(V_{8}) &= -[c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] \\ \bar{\partial}_{3}(V_{9}) &= 0 \\ \bar{\partial}_{3}(V_{10}) &= -[c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] + [c_{s,tb}c_{s',t'b}, c_{s',t'b}c_{s,tb}] \\ \bar{\partial}_{3}(V_{11}) &= [c_{s,t}^{2}, c_{s,t}] - [ac_{s,t}, c_{as,t}a] - [c_{as,t}^{2}, c_{as,t}] \\ \bar{\partial}_{3}(V_{12}) &= [c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] - [c_{as,t}c_{as',t'}, c_{as',t'}c_{as,t}] \\ \bar{\partial}_{3}(V_{13}) &= [c_{s,t}b, bc_{s,tb}] - [ac_{s,t}, c_{as,t}a] + [ac_{s,tb}, c_{as,tb}a] - [c_{as,t}b, bc_{as,tb}] \\ \bar{\partial}_{3}(V_{14}) &= -[c_{s,t}b, bc_{s,tb}] + \bar{\Phi}(c_{s,t}v) - \bar{\Phi}(c_{s,tb}u) \\ \bar{\partial}_{3}(V_{15}) &= \sum_{b \in C[v]} [ab, ba] - \sum_{b \in C[bu]} [ab, ba] \end{split}$$

Now let

$$\begin{split} W(ra,p) &= \sum_{a \in C[ra]} [ab, ba] - \sum_{a \in C[p]} [ab, ba], \\ W(bu,v) &= \sum_{b \in C[v]} [ab, ba] - \sum_{b \in C[bu]} [ab, ba], \\ W(a,s,t) &= [c_{s,t}^2, c_{s,t}] - [ac_{s,t}, c_{as,t}a] - [c_{as,t}^2, c_{as,t}], \\ W(b,s,t) &= [c_{s,t}b, bc_{s,tb}] - [c_{s,t}^2, c_{s,t}] + [c_{s,tb}^2, c_{s,tb}], \\ W(s',t',s,t) &= [c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] \quad ((s',t') \prec (s,t)) \end{split}$$

where $a \in A, b \in B, s, s' \in S, t, t' \in T, (ra, p) \in R$, and $(bu, v) \in Q$. Then we show that the set

$$\{Y_j, W_l, W(ra, p), W(bu, v), W(a, s, t), W(b, s, t), W(s', t', s, t) ((s', t') \prec (s, t)):$$

$$j \in J; l \in L; a \in A; b \in B; s, s' \in S; t, t' \in T; (ra, p) \in R; (bu, v) \in Q \}$$

is a generating set for the free abelian group $\operatorname{im} \bar\partial_3$ as follows.

If $r \equiv a_1 \cdots a_m$ and $p \equiv a_1' \cdots a_n'$ $(a_1, \ldots, a_m, a_1', \ldots, a_n' \in A)$ then we define

$$W_{0} = W(a_{m}, as, t),$$

$$W_{i} = W(a_{m-i}, a_{m+1-i} \cdots a_{m}as, t) \ (1 \le i \le m-1),$$

$$W'_{0} = W(a'_{n}, s, t),$$

$$W'_{j} = W(a'_{n-j}, a'_{n+1-j} \cdots a'_{n}s, t) \ (1 \le j \le n-1).$$

YAĞCI et al./Turk J Math

Thus, we have

$$\begin{split} \bar{\partial}_{3}(V_{2}) &= [ac_{s,t}, c_{as,t}a] + \bar{\Phi}(rc_{as,t}) - \bar{\Phi}(pc_{s,t}) = [ac_{s,t}, c_{as,t}a] \\ &+ [a_{m}c_{as,t}, c_{a_{m}as,t}a_{m}] + \sum_{i=1}^{m-1} [a_{m-i}c_{a_{m+1-i}\cdots a_{m}as,t}, c_{a_{m-i}\cdots a_{m}as,t}a_{m-i}] \\ &- [a'_{n}c_{s,t}, c_{a'_{n}s,t}a'_{n}] - \sum_{j=1}^{n-1} [a'_{n-j}c_{a'_{n+1-j}\cdots a'_{n}s,t}, c_{a'_{n-j}\cdots a'_{n}s,t}a'_{n-j}] \\ &= -W(a,s,t) + \sum_{j=0}^{n-1} W'_{j} - \sum_{i=0}^{m-1} W_{i}, \end{split}$$

and so $\bar{\partial}_3(V_2)$ is a linear combination of W(a, s, t)s. Similarly, it can be shown that $\bar{\partial}_3(V_{14})$ is a linear combination of W(b, s, t)s. Moreover, it is clear that all of $\bar{\partial}_3(V_6)$, $\bar{\partial}_3(V_8)$, $\bar{\partial}_3(V_{10})$, and $\bar{\partial}_3(V_{12})$ are linear combinations of W(s', t', s, t)s, and that

$$\bar{\partial}_3(V_{13}) = W(b, s, t) + W(a, s, t) - W(a, s, tb) - W(b, as, t).$$

Next we find a generating set for ker $\bar{\partial}_2$. Since any $\alpha \in \bar{P}_2$ has the form

$$\begin{split} \alpha &= \sum_{(r=s)\in R} \alpha_{(r,s)}[r,s] + \sum_{(u=v)\in Q} \alpha_{(u,v)}[u,v] + \sum_{a\in A, b\in B} \alpha_{(a,b)}[ab,ba] \\ &+ \sum_{s\in S, t\in T} \alpha_{(s,t)}[c_{s,t}^2,c_{s,t}] + \sum_{(s',t')\prec(s,t)\in S\times T} \alpha_{(s',t',s,t)}[c_{s,t}c_{s',t'},c_{s',t'}c_{s,t}] \\ &+ \sum_{a\in A, s\in S, t\in T} \alpha_{(a,s,t)}[ac_{s,t},c_{as,t}a] + \sum_{b\in B, s\in S, t\in T} \alpha_{(b,s,t)}[c_{s,t}b,bc_{s,tb}] \end{split}$$

where all the coefficients are integers, then $\alpha \in \ker \overline{\partial}_2$ if and only if

$$\begin{split} \bar{\partial}_2(\sum_{(r=s)\in R} \alpha_{(r,s)}[r,s]) &= 0, \quad \bar{\partial}_2(\sum_{(u=v)\in Q} \alpha_{(u,v)}[u,v]) = 0 \text{ and} \\ \sum_{s\in S, t\in T} \alpha_{(s,t)}[c_{s,t}] + \sum_{a\in A} \alpha_{(a,s,t)}([c_{s,t}] - [c_{as,t}]) + \sum_{b\in B} \alpha_{(b,s,t)}([c_{s,t}] - [c_{s,tb}]) = 0 \end{split}$$

From the first two equations given above we obtain the generators $\{X_i : i \in I\}$ and $\{U_k : k \in K\}$ for $\ker \bar{\partial}_{2_{|S}}$ and $\ker \bar{\partial}_{2_{|T}}$, respectively. Now we concentrate on the last equation. By rearranging it, we have

$$\alpha_{(s,t)} = -\sum_{a \in A} \alpha_{(a,s,t)} - \sum_{b \in B} \alpha_{(b,s,t)} + \sum_{\substack{a' \in A, \, s' \in S \\ a's' = s}} \alpha_{(a',s',t)} + \sum_{\substack{b' \in B, \, t' \in T \\ t'b' = t}} \alpha_{(b',s,t')}$$
(2)

for each $(s,t) \in S \times T$. For fixed $\alpha_{(a,s,t)}$, we assume that $\alpha_{(a,s,t)} = 1$ and all the other variables on the right-hand side of Equation (2) are zero, and so we obtain $\alpha_{(s,t)} = -1$ and $\alpha_{(as,t)} = 1$. Thus, we have the following generators:

$$W_1(a, s, t) = [ac_{s,t}, c_{as,t}a] - [c_{s,t}^2, c_{s,t}] + [c_{as,t}^2, c_{as,t}].$$

770

Similarly, we have

$$W_2(b,s,t) = [c_{s,t}b, bc_{s,tb}] - [c_{s,t}^2, c_{s,t}] + [c_{s,tb}^2, c_{s,tb}].$$

Therefore,

$$\{X_i, U_k, [ba, ab], W_1(a, s, t), W_2(b, s, t), [c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}] : i \in I; k \in K; a \in A; b \in B; s, s' \in S; t, t' \in T((s', t')) \prec (s, t))\}$$

is a generating set for ker $\bar{\partial}_2$.

Notice that $W_1(a, s, t)$, $W_2(b, s, t)$ and $[c_{s,t}c_{s',t'}, c_{s',t'}c_{s,t}]$ are also in the generating set for $\overline{\partial}_3$ given above, and so

$$\begin{array}{ll} H_2(S \diamond T) &= & \langle X_i, \, U_k, \, [ab, ba] \, (i \in I, \, k \in K, \, a \in A, \, b \in B) \mid \\ & Y_j = 0, \, W_l = 0, \, W(ra, p) = 0, \, W(bu, v) = 0 \\ & (j \in J, \, l \in L, \, (ra, p) \in R, \, (bu, v) \in Q) \rangle \\ &= & H_2(S) \times H_2(T) \times \langle [ab, ba] \, (a \in A, \, b \in B) \mid W(ra, p) = 0, \\ & W(bu, v) = 0 \, ((ra, p) \in R, \, (bu, v) \in Q) \rangle. \end{array}$$

Since $\langle [ab, ba] (a \in A, b \in B) | W(ra, p) = 0, W(bu, v) = 0, ((ra, p) \in R, (bu, v) \in Q) \rangle$ is equal to $H_1(S) \otimes_{\mathbb{Z}} H_1(T)$, from Lemma 2.3, the proof is complete. \Box

Notice that one may consider the Schützenberger product $S \diamond T$ as "a kind of direct product" of the monoids $S \times T$ and the free semilattice over $S \times T$ (the monoid considered as the set of all subsets of $S \times T$ with set-theoretical union as a multiplication). Therefore, from [1, Proposition 3.1] and [3, Equation (1), p. 282], the result in the last theorem is perhaps not surprising.

4. Remark

In [1, Theorem 3.3] it was shown that if A is a finite nonempty set of size n, then

$$def_S(SL_A) = n(n-1)/2,$$
 (3)

and for $n \ge 2$ SL_A is inefficient, where SL_A is the set of all nonempty subsets of A with set-theoretic union as multiplication.

For convenience, first we state a probably well-known lemma that can be proved easily.

Lemma 4.1 Let S be a monoid, $P = \langle A | R \rangle$ be a presentation of S, T be a subsemigroup of S, and S\T be an ideal of S. Then T has a presentation $\langle B | Q \rangle$ such that $B \subset A$ and $Q \subset R$.

Corollary 4.2 If S and T are two finite monoids without any left or right invertible element, then $S \diamond T$ is inefficient.

Proof Consider the sets

$$U = \{(1_S, X, 1_T) \mid X \subset S \times T\} \text{ and}$$

$$V = (S \diamond T) \setminus U = \{(s, X, t) \in S \diamond T \mid (s, t) \neq (1_S, 1_T)\}$$

It is clear that U is a subsemigroup of $S \diamond T$ and isomorphic to the free semilattice $SL_{S \times T}$. Moreover, V is an ideal of $S \diamond T$. It follows from Lemma 4.1, Equation (3), and Theorem 3.2 that $S \diamond T$ is inefficient. \Box

References

- Ayık H, Campbell CM, O'Connor JJ, Ruskuc N. Minimal presentations and efficiency of semigroups. Semigroup Forum 2000; 60: 231–242.
- [2] Ayık H, Campbell CM, O'Connor JJ, Ruskuc N. On the efficiency of finite simple semigroups. Turk J Math 2000; 24: 129–146.
- [3] Ayık H, Campbell CM, O'Connor JJ. On the efficiency of the direct products of Monogenic Monoids. Algebra Colloq 2007; 14: 279–284.
- [4] Campbell CM, Mitchell JD, Ruskuc N. On defining groups efficiently without using inverses. Math P Camb Phil Soc 2002; 133: 31–36.
- [5] Çevik AS. Minimal but inefficient presentations of the semi-direct products of some monoids. Semigroup Forum 2003; 66: 1–17.
- [6] Çevik AS. The p-Cockcroft property of the semi-direct products of monoids. Int J Algebra Comput 2003; 13: 1–16.
- [7] Guba VS, Pride SJ. Low dimensional (co)homology of free Burnside monoids. J Pure Appl Algebra 1996; 108: 61–79.
- [8] Guba VS, Pride SJ. On the left and right cohomological dimension of monoids. Bull London Math Soc 1998; 30: 391–396.
- [9] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [10] Howie JM, Ruskuc N. Constructions and presentations for monoids. Comm Algebra 1994; 49: 6209–6224.
- [11] Johnson DL. Presentations of Groups. Cambridge, UK: Cambridge University Press, 1990.
- [12] Squier C. Word problems and a homological finiteness condition for monoids. J Pure Appl Algebra 1987; 49: 201–217.