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Abstract: A graph (G = (V,E, F )) admits labeling of type (1, 1, 1) if we assign labels from the set {1, 2, 3, ..., |V (G)|+
|E(G)| + |F (G)|} to the vertices, edges, and faces of a planar graph G in such a way that each vertex, edge, and face

receives exactly one label and each number is used exactly once as a label and the weight of each face under the mapping

is the same. Super d -antimagic labeling of type (1, 1, 1) on snake kC5 , subdivided kC5 as well as ismorphic copies of

kC5 for string (1, 1, ..., 1) and string (2, 2, ..., 2) is discussed in this paper.
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1. Introduction

We consider a finite, connected, and planar graph (G = (V,E, F )) without loops and multiple edges, where

V (G), E(G), and F (G) are its vertex set, edge set, and face set, respectively.

Labeling of a graph is one-to-one mapping that carries a set of graph elements to a set of numbers

(usually positive integers). Labeling of type (α, β, γ) (where (α, β, γ) ∈ {0, 1}) assigns labels from the set

{1, 2, 3, . . . , | V (G) | + | E(G) | + | F (G) |} to the set of vertices, edges, and faces of a plane graph G in such a

way that each vertex, edge, and face receives exactly one label and each number is used exactly once as a label.

The weight of a face under labeling of type (1, 1, 1) is the sum of the labels carried by that face and the edges

and vertices surrounding it.

Labeling of type (α, β, γ) is said to be face-magic if for every number s ≥ 3 all s -sided faces have the

same weight. We allow different weights for different s . The labeling is called super face-magic if the vertex set

is assigned first. The labeling is called face antimagic if face weights form an arithmetic sequence with initial

value a and common difference d.

The notion of magic labeling of planer graphs was defined by Ko-Wei Lih in [17], where magic labelings

of type (1,1,0) for wheels, friendship graphs, and prisms are given. Bača gave magic labelings of type (1,1,1)

for fans in [1, 5, 10]. Ali [16] gave magic labeling of type (1, 1, 1) for wheels and subdivision of wheels. Bača

determined magic labeling on different graphs in [2, 3, 4, 6, 8, 9]. Siddiqui [15] determined the existence of

super d-antimagic labeling for a Jahangir graph for certain different d. Bača [7, 11, 12, 13] gave magic labelings

of type (1,1,1) and type (1,1,0) for certain classes of convex polytopes. A general survey of graph labelings is

given in [18] .

The snake graph (kC4) was first introduced by Barrientos [14], while Rosa [19] gave the generalization
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concept of the triangular snake. A kCn -snake can be defined as a connected graph with k blocks; each of the

blocks is isomorphic to the cycle Cn , such that the block-cut-vertex graph is a path.

In this paper we formulate super antimagic labeling of type (1, 1, 1) for a kC5 - snake graph, partition of

a kC5 - snake graph, and isomorphic copies of a kC5 - snake graph; super antimagic labeling of type (1, 1, 1)

for kCn is also discussed in this paper.

2. Main results I

In this section we formulate super antimagic labeling of a kC5 - snake graph as well as isomorphic copies of a

kC5 -snake graph.

Theorem 1 For all k ≥ 2 , H ∼= kC5 - snake graph with string (2, 2, ..., 2) admits super 1-antimagic labeling

of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then s = 4k + 1, e = 5k , and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as follows:

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(Xi) = {4k + 2− i, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:

λ(wixi) = {s+ i, 1 ≤ i ≤ k}
λ(xiui+1) = {s+ 2k + 1− i, 1 ≤ i ≤ k}
λ(ui+1vi) = {s+ 3k + 1− i, 1 ≤ i ≤ k}

λ(uivi) = {s+ 3k + i, 1 ≤ i ≤ k}
λ(uiwi) = {s+ 4k + i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ k + 1− i, 1 ≤ i ≤ k}

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1). 2

Theorem 2 For all k ≥ 3 , H ∼= kC5 - snake graph with string (1, 1, ..., 1) admits super 1-antimagic labeling

of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| and f = |F (H)|. Then s = 4k + 1, e = 5k and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(Xi) = {4k + 2− i, 1 ≤ i ≤ k}
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We symbolize the edges of H as follows:

λ(uiui+1) = {s+ k + 1− i, 1 ≤ i ≤ k}
λ(uiwi) = {s+ k + i, 1 ≤ i ≤ k}
λ(wixi) = {s+ 2k + i, 1 ≤ i ≤ k}

λ(xivi) = {s+ 4k + 1− i, 1 ≤ i ≤ k}
λ(viui+1) = {s+ 5k + 1− i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ i, 1 ≤ i ≤ k}

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1). 2

Theorem 3 For all k ≥ 2 , H ∼= mkC5−snake graph with string (2, 2, ..., 2) admits super 1-antimagic labeling

of type (1, 1, 1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then we have s = n(4k + 1), e = 5nk , and f = nk,

1 ≤ m ≤ n.

For vertices

λ(um
i ) = {i+ (m− 1)(k + 1) 1 ≤ i ≤ k + 1}

λ(vmi ) = {n(k + 1) + nk + 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(xm

i ) = {3nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}
λ(wm

i ) = {4nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}

For edges

λ(um
i wm

i ) = {s+ (m− 1)k + i 1 ≤ i ≤ k}
λ(vmi um

i+1) = {s+ 2nk + 1− i− (m− 1)k 1 ≤ i ≤ k}
λ(um

i vmi ) = {s+ 3nk + 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(wm

i xm
i ) = {s+ 3nk + (m− 1)k + i 1 ≤ i ≤ k}

λ(xm
i um

i+1) = {s+ 4nk + (m− 1)k + i 1 ≤ i ≤ k}

For faces

λ(fm
i ) =

{
s+ e+ n− (m− 1) + (i− 1)n 1 ≤ i ≤ k

In this way the H ∼= mkC5 − snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super

1-antimagic labeling of type (1, 1, 1). 2

Theorem 4 For all k ≥ 3 , H ∼= mkC5−snake graph with string (1, 1, ..., 1) admits super 1-antimagic labeling

of type (1, 1, 1).
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Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then we have s = n(4k + 1), e = 5nk , and f = nk,

1 ≤ m ≤ n.

For vertices

λ(um
i ) = {i+ (m− 1)(k + 1) 1 ≤ i ≤ k + 1}

λ(vmi ) = {2nk + n+ 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(xm

i ) = {3nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}
λ(wm

i ) = {4nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}

For edges

λ(um
i wm

i ) = {s+ (m− 1)k + i 1 ≤ i ≤ k}
λ(um

i+1v
m
i ) = {s+ 2nk + 1− i− (m− 1)k 1 ≤ i ≤ k}

λ(um
i um

i+1) = {s+ 3nk + 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(wm

i xm
i ) = {s+ 3nk + (m− 1)k + i 1 ≤ i ≤ k}

λ(xm
i vmi ) = {s+ 4nk + (m− 1)k + i 1 ≤ i ≤ k}

For faces

λ(fm
i ) =

{
s+ e+ n− (m− 1) + (i− 1)n 1 ≤ i ≤ k}

In this way the H ∼= mkC5 − snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super

1-antimagic labeling of type (1, 1, 1). 2

3. Main results II

In this section we formulate super antimagic labeling of subdivision kC5 - snake graph as well as isomorphic

copies of subdivision kC5 -snake graph.

Theorem 5 For all k ≥ 3 , H ∼= kC5 - snake graph of string (1, 1, ..., 1) with 1 subdivision admits super

1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then s = 9k + 1, e = 10k, , and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as follows:

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(xi) = {4k + 2− i, 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ai) = {5k + 2− i, 1 ≤ i ≤ k}
λ(ei) = {6k + 2− i, 1 ≤ i ≤ k}
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λ(bi) = {7k + 2− i, 1 ≤ i ≤ k}
λ(ci) = {7k + 1 + i, 1 ≤ i ≤ k}
λ(di) = {9k + 2− i, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:

λ(uiai) = {s+ i, 1 ≤ i ≤ k}
λ(aiui+1) = {S + 2k + 1− i, 1 ≤ i ≤ k}
λ(viei) = {s+ 3k + 1− i, 1 ≤ i ≤ k}
λ(eiui+1) = {s+ 3k + i, 1 ≤ i ≤ k}
λ(xidi) = {s+ 5k + 1− i, 1 ≤ i ≤ k}
λ(divi) = {S + 5k + i, 1 ≤ i ≤ k}

λ(wici) = {s+ 7k + 1− i, 1 ≤ i ≤ k}
λ(cixi) = {s+ 7k + i, 1 ≤ i ≤ k}

λ(wibi) = {s+ 9k + 1− i, 1 ≤ i ≤ k}
λ(biui) = {s+ 9k + i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ i, 1 ≤ i ≤ k}

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1), with 1 subdivision. 2

Theorem 6 For all k ≥ 2 , H ∼= kC5 - snake graph of string (2, 2, ..., 2) with 1 subdivision admits super

1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then s = 9k + 1, e = 10k, , and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as follows:

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(xi) = {4k + 2− i, 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ai) = {5k + 2− i, 1 ≤ i ≤ k}
λ(ei) = {6k + 2− i, 1 ≤ i ≤ k}
λ(bi) = {7k + 2− i, 1 ≤ i ≤ k}
λ(ci) = {7k + 1 + i, 1 ≤ i ≤ k}
λ(di) = {9k + 2− i, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:
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λ(uiai) = {s+ i, 1 ≤ i ≤ k}
λ(aivi) = {S + 2k + 1− i, 1 ≤ i ≤ k}
λ(ui+1ei) = {s+ 3k + 1− i, 1 ≤ i ≤ k}

λ(eivi) = {s+ 3k + i, 1 ≤ i ≤ k}
λ(xidi) = {s+ 5k + 1− i, 1 ≤ i ≤ k}
λ(diui+1) = {S + 5k + i, 1 ≤ i ≤ k}
λ(wici) = {s+ 7k + 1− i, 1 ≤ i ≤ k}
λ(cixi) = {s+ 7k + i, 1 ≤ i ≤ k}

λ(wibi) = {s+ 9k + 1− i, 1 ≤ i ≤ k}
λ(biui) = {s+ 9k + i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ i, 1 ≤ i ≤ k}

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1), with 1 subdivision. 2

Theorem 7 For all k ≥ 3 , H ∼= kC5 - snake graph of string (1, 1, ..., 1) with 2 subdivisions admits super

1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then s = 14k + 1, e = 15k, , and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as follows:

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(xi) = {4k + 2− i, 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ai1) = {5k + 2− i, 1 ≤ i ≤ k}
λ(ai1) = {5k + 1 + i, 1 ≤ i ≤ k}
λ(bi1) = {7k + 2− i, 1 ≤ i ≤ k}
λ(bi2) = {7k + 1 + i, 1 ≤ i ≤ k}
λ(ci1) = {9k + 2− i, 1 ≤ i ≤ k}
λ(ci2) = {9k + 1 + i, 1 ≤ i ≤ k}
λ(di1) = {11k + 2− i, 1 ≤ i ≤ k}
λ(di2) = {11k + 1 + i, 1 ≤ i ≤ k}
λ(ei1) = {13k + 2− i, 1 ≤ i ≤ k}
λ(ei2) = {13k + 1 + i, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:
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λ(uiai1) = {s+ i, 1 ≤ i ≤ k}
λ(ai1ai2) = {s+ k + i, 1 ≤ i ≤ k}

λ(ai2ui+1) = {s+ 2k + i, 1 ≤ i ≤ k}
λ(viei1) = {s+ 4k + 1− i, 1 ≤ i ≤ k}
λ(ei1ei2) = {s+ 5k + 1− i, 1 ≤ i ≤ k}
λ(ei2ui+1) = {s+ 6k + 1− i, 1 ≤ i ≤ k}

λ(xidi1) = {s+ 6k + i, 1 ≤ i ≤ k}
λ(di1di2) = {s+ 7k + i, 1 ≤ i ≤ k}
λ(di2vi) = {s+ 8k + i, 1 ≤ i ≤ k}

λ(xici1) = {s+ 10k + 1− i, 1 ≤ i ≤ k}
λ(ci1ci2) = {s+ 11k + 1− i, 1 ≤ i ≤ k}
λ(ci2wi) = {s+ 12k + 1− i, 1 ≤ i ≤ k}
λ(wibi1) = {s+ 13k + 1− i, 1 ≤ i ≤ k}
λ(bi1bi2) = {s+ 14k + 1− i, 1 ≤ i ≤ k}
λ(bi2ui) = {s+ 15k + 1− i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ i, 1 ≤ i ≤ k}

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1), with 2 subdivisions. 2

Theorem 8 For all k ≥ 2 , H ∼= kC5 - snake graph of string (2, 2, ..., 2) with 2 subdivisions admits super

1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then s = 14k + 1, e = 15k, , and f = k.

Now we define labeling λ : V (H) ∪ E(H) ∪ F (H) → {1, 2, ..., s+ e+ f}
as follows:

λ(ui) = {i, 1 ≤ i ≤ k + 1}
λ(vi) = {(k + 1) + i, 1 ≤ i ≤ k}
λ(wi) = {3k + 2− i, 1 ≤ i ≤ k}
λ(xi) = {4k + 2− i, 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ai1) = {5k + 2− i, 1 ≤ i ≤ k}
λ(ai1) = {5k + 1 + i, 1 ≤ i ≤ k}
λ(bi1) = {7k + 2− i, 1 ≤ i ≤ k}
λ(bi2) = {7k + 1 + i, 1 ≤ i ≤ k}
λ(ci1) = {9k + 2− i, 1 ≤ i ≤ k}
λ(ci2) = {9k + 1 + i, 1 ≤ i ≤ k}
λ(di1) = {11k + 2− i, 1 ≤ i ≤ k}

779



HUSSAIN and TABRAIZ/Turk J Math

λ(di2) = {11k + 1 + i, 1 ≤ i ≤ k}
λ(ei1) = {13k + 2− i, 1 ≤ i ≤ k}
λ(ei2) = {13k + 1 + i, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:

λ(uiai1) = {s+ i, 1 ≤ i ≤ k}
λ(ai1ai2) = {s+ k + i, 1 ≤ i ≤ k}
λ(ai2vi) = {s+ 2k + i, 1 ≤ i ≤ k}

λ(ui+1ei1) = {s+ 4k + 1− i, 1 ≤ i ≤ k}
λ(ei1ei2) = {s+ 5k + 1− i, 1 ≤ i ≤ k}
λ(ei2vi) = {s+ 6k + 1− i, 1 ≤ i ≤ k}
λ(xidi1) = {s+ 6k + i, 1 ≤ i ≤ k}
λ(di1di2) = {s+ 7k + i, 1 ≤ i ≤ k}
λ(di2ui+1) = {s+ 8k + i, 1 ≤ i ≤ k}

λ(xici1) = {s+ 10k + 1− i, 1 ≤ i ≤ k}
λ(ci1ci2) = {s+ 11k + 1− i, 1 ≤ i ≤ k}
λ(ci2wi) = {s+ 12k + 1− i, 1 ≤ i ≤ k}
λ(wibi1) = {s+ 13k + 1− i, 1 ≤ i ≤ k}
λ(bi1bi2) = {s+ 14k + 1− i, 1 ≤ i ≤ k}
λ(bi2ui) = {s+ 15k + 1− i, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fi) = {s+ e+ i, 1 ≤ i ≤ k}

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic

labeling of type (1, 1, 1), with 2 subdivisions. 2

Theorem 9 For all k ≥ 3 , H ∼= mkC5 - m copies of snake graph of string (1, 1, ..., 1) with 1 subdivision

admit super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then we have s = n(9k + 1), e = 10nk , and f = nk,

1 ≤ m ≤ n.

For vertices

λ(um
i ) = {i+ (m− 1)(k + 1) 1 ≤ i ≤ k + 1}

λ(vmi ) = {n(k + 1) + nk + 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(xm

i ) = {3nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}
λ(wm

i ) = {4nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ami ) = {4nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}
λ(dmi ) = {6nk + n+ 1− i− (m− 1)k, 1 ≤ i ≤ k}
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λ(emi ) = {7nk + n+ 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(bmi ) = {7nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}
λ(cmi ) = {8nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:

λ(um
i emi ) = {s+ nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}

λ(emi um
i+1) = {s+ nk + i+ (m− 1)k, 1 ≤ i ≤ k}

λ(vmi dmi ) = {s+ 3nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(dmi um

i+1) = {s+ 4nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(wm

i ami ) = {s+ 4nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(ami um

i ) = {s+ 6nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(wm

i bmi ) = {s+ 7nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(bmi xm

i ) = {s+ 7nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(xm

i cmi ) = {s+ 8nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(cmi vmi ) = {s+ 9nk + i+ (m− 1)k, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fm
i ) = {s+ e+ nk − n(i− 1)− (m− 1), 1 ≤ i ≤ k}

In this way the m copies of snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super

1-antimagic labeling of type (1, 1, 1), with 1 subdivision. 2

Theorem 10 For all k ≥ 2 , H ∼= mkC5 - m copies of snake graph of string (2, 2, ..., 2) with 1 subdivision

admit super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V (H)|, e = |E(H)| , and f = |F (H)|. Then we have s = n(9k + 1), e = 10nk , and f = nk,

1 ≤ m ≤ n.

For vertices

λ(um
i ) = {i+ (m− 1)(k + 1) 1 ≤ i ≤ k + 1}

λ(vmi ) = {n(k + 1) + nk + 1− (m− 1)k − i 1 ≤ i ≤ k}
λ(xm

i ) = {3nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}
λ(wm

i ) = {4nk + n+ 1− i− (m− 1)k 1 ≤ i ≤ k}

We symbolize the partitions of H as follows:

λ(ami ) = {4nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}
λ(dmi ) = {6nk + n+ 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(emi ) = {7nk + n+ 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(bmi ) = {7nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}
λ(cmi ) = {8nk + n+ i+ (m− 1)k, 1 ≤ i ≤ k}

We symbolize the edges of H as follows:
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λ(um
i emi ) = {s+ nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}

λ(emi vmi ) = {s+ nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(um

i+1d
m
i ) = {s+ 3nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}

λ(dmi vmi ) = {s+ 4nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(wm

i ami ) = {s+ 4nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(ami um

i ) = {s+ 6nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(wm

i bmi ) = {s+ 7nk + 1− i− (m− 1)k, 1 ≤ i ≤ k}
λ(bmi xm

i ) = {s+ 7nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(xm

i cmi ) = {s+ 8nk + i+ (m− 1)k, 1 ≤ i ≤ k}
λ(cmi um

i+1) = {s+ 9nk + i+ (m− 1)k, 1 ≤ i ≤ k}

We symbolize the faces of H as follows:

λ(fm
i ) = {s+ e+ nk − n(i− 1)− (m− 1), 1 ≤ i ≤ k}

2

In this way the m copies of snake graph of string (2, 2, ..., 2) can be labeled in the best way to show

super 1-antimagic labeling of type (1, 1, 1), with 1 subdivision.

4. Open problems

Open Problem 1 For all k ≥ 2 , H ∼= kC5 − snake graph with string (2, 2, ..., 2) with p subdivisions admits

super 1-antimagic labeling of type (1, 1, 1).

Open Problem 2 For all k ≥ 3 , H ∼= kC5 − snake graph with string (1, 1, ..., 1) with p subdivisions admits

super 1-antimagic labeling of type (1, 1, 1).

Open Problem 3 For all k ≥ 2 , H ∼= mkC5−snake graph with string (2, 2, ..., 2) with p subdivisions admits

super 1-antimagic labeling of type (1, 1, 1).

Open Problem 4 For all k ≥ 3 , H ∼= mkC5−snake graph with string (1, 1, ..., 1) with p subdivisions admits

super 1-antimagic labeling of type (1, 1, 1).
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[11] Bača M. On magic labelings of convex polytopes. Ann Disc Math 1992; 51: 13–16.
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