

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Super d-anti-magic labeling of subdivided kC_5

Muhammad HUSSAIN*, Ali TABRAIZ

Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan

Received: 20.01.2015 •	Accepted/Published Online: 23.06.201	5 •	Printed: 30.09.2015
------------------------	--------------------------------------	-----	----------------------------

Abstract: A graph (G = (V, E, F)) admits labeling of type (1, 1, 1) if we assign labels from the set $\{1, 2, 3, ..., |V(G)| + |E(G)| + |F(G)|\}$ to the vertices, edges, and faces of a planar graph G in such a way that each vertex, edge, and face receives exactly one label and each number is used exactly once as a label and the weight of each face under the mapping is the same. Super d-antimagic labeling of type (1, 1, 1) on snake kC_5 , subdivided kC_5 as well as ismorphic copies of kC_5 for string (1, 1, ..., 1) and string (2, 2, ..., 2) is discussed in this paper.

Key words: Super d-anti-magic labeling, snake graph

1. Introduction

We consider a finite, connected, and planar graph (G = (V, E, F)) without loops and multiple edges, where V(G), E(G), and F(G) are its vertex set, edge set, and face set, respectively.

Labeling of a graph is one-to-one mapping that carries a set of graph elements to a set of numbers (usually positive integers). Labeling of type (α, β, γ) (where $(\alpha, \beta, \gamma) \in \{0, 1\}$) assigns labels from the set $\{1, 2, 3, \ldots, |V(G)| + |E(G)| + |F(G)|\}$ to the set of vertices, edges, and faces of a plane graph G in such a way that each vertex, edge, and face receives exactly one label and each number is used exactly once as a label. The weight of a face under labeling of type (1, 1, 1) is the sum of the labels carried by that face and the edges and vertices surrounding it.

Labeling of type (α, β, γ) is said to be face-magic if for every number $s \ge 3$ all s-sided faces have the same weight. We allow different weights for different s. The labeling is called super face-magic if the vertex set is assigned first. The labeling is called face antimagic if face weights form an arithmetic sequence with initial value a and common difference d.

The notion of magic labeling of planer graphs was defined by Ko-Wei Lih in [17], where magic labelings of type (1,1,0) for wheels, friendship graphs, and prisms are given. Bača gave magic labelings of type (1,1,1) for fans in [1, 5, 10]. Ali [16] gave magic labeling of type (1,1,1) for wheels and subdivision of wheels. Bača determined magic labeling on different graphs in [2, 3, 4, 6, 8, 9]. Siddiqui [15] determined the existence of super d-antimagic labeling for a Jahangir graph for certain different d. Bača [7, 11, 12, 13] gave magic labelings of type (1,1,1) and type (1,1,0) for certain classes of convex polytopes. A general survey of graph labelings is given in [18].

The snake graph (kC_4) was first introduced by Barrientos [14], while Rosa [19] gave the generalization

^{*}Correspondence: mhmaths@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 05C78; Secondary: 05C38.

concept of the triangular snake. A kC_n -snake can be defined as a connected graph with k blocks; each of the blocks is isomorphic to the cycle C_n , such that the block-cut-vertex graph is a path.

In this paper we formulate super antimagic labeling of type (1,1,1) for a kC_5 - snake graph, partition of a kC_5 - snake graph, and isomorphic copies of a kC_5 - snake graph; super antimagic labeling of type (1,1,1)for kC_n is also discussed in this paper.

2. Main results I

In this section we formulate super antimagic labeling of a kC_5 - snake graph as well as isomorphic copies of a kC_5 -snake graph.

Theorem 1 For all $k \ge 2$, $H \cong kC_5$ - snake graph with string (2, 2, ..., 2) admits super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then s = 4k + 1, e = 5k, and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as follows:

$$\lambda(u_i) = \{i, 1 \le i \le k+1\}$$

$$\lambda(v_i) = \{(k+1) + i, 1 \le i \le k\}$$

$$\lambda(w_i) = \{3k+2-i, 1 \le i \le k\}$$

$$\lambda(X_i) = \{4k+2-i, 1 \le i \le k\}$$

We symbolize the edges of H as follows:

$$\lambda(w_i x_i) = \{s + i, 1 \le i \le k\}$$

$$\lambda(x_i u_{i+1}) = \{s + 2k + 1 - i, 1 \le i \le k\}$$

$$\lambda(u_{i+1} v_i) = \{s + 3k + 1 - i, 1 \le i \le k\}$$

$$\lambda(u_i v_i) = \{s + 3k + i, 1 \le i \le k\}$$

$$\lambda(u_i w_i) = \{s + 4k + i, 1 \le i \le k\}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + k + 1 - i, 1 \le i \le k\}$$

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1).

Theorem 2 For all $k \ge 3$, $H \cong kC_5$ - snake graph with string (1, 1, ..., 1) admits super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)| and f = |F(H)|. Then s = 4k + 1, e = 5k and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as

$$\begin{split} \lambda(u_i) &= \{i, 1 \le i \le k+1\} \\ \lambda(v_i) &= \{(k+1) + i, 1 \le i \le k\} \\ \lambda(w_i) &= \{3k+2-i, 1 \le i \le k\} \\ \lambda(X_i) &= \{4k+2-i, 1 \le i \le k\} \end{split}$$

$$\lambda(u_i u_{i+1}) = \{s+k+1-i, 1 \le i \le k\}$$
$$\lambda(u_i w_i) = \{s+k+i, 1 \le i \le k\}$$
$$\lambda(w_i x_i) = \{s+2k+i, 1 \le i \le k\}$$
$$\lambda(x_i v_i) = \{s+4k+1-i, 1 \le i \le k\}$$
$$\lambda(v_i u_{i+1}) = \{s+5k+1-i, 1 \le i \le k\}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + i, 1 \le i \le k\}$$

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1).

Theorem 3 For all $k \ge 2$, $H \cong mkC_5$ – snake graph with string (2, 2, ..., 2) admits super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then we have s = n(4k+1), e = 5nk, and f = nk, $1 \le m \le n$.

For vertices

$$\begin{split} \lambda(u_i^m) &= \{i + (m-1)(k+1) \quad 1 \leq i \leq k+1\} \\ \lambda(v_i^m) &= \{n(k+1) + nk + 1 - (m-1)k - i \quad 1 \leq i \leq k\} \\ \lambda(x_i^m) &= \{3nk + n + 1 - i - (m-1)k \quad 1 \leq i \leq k\} \\ \lambda(w_i^m) &= \{4nk + n + 1 - i - (m-1)k \quad 1 \leq i \leq k\} \end{split}$$

For edges

$$\begin{split} \lambda(u_i^m w_i^m) &= \{s + (m-1)k + i \quad 1 \le i \le k\} \\ \lambda(v_i^m u_{i+1}^m) &= \{s + 2nk + 1 - i - (m-1)k \quad 1 \le i \le k\} \\ \lambda(u_i^m v_i^m) &= \{s + 3nk + 1 - (m-1)k - i \quad 1 \le i \le k\} \\ \lambda(w_i^m x_i^m) &= \{s + 3nk + (m-1)k + i \quad 1 \le i \le k\} \\ \lambda(x_i^m u_{i+1}^m) &= \{s + 4nk + (m-1)k + i \quad 1 \le i \le k\} \end{split}$$

For faces

$$\lambda(f_i^m) = \{ s + e + n - (m - 1) + (i - 1)n \quad 1 \le i \le k \}$$

In this way the $H \cong mkC_5$ – snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1).

Theorem 4 For all $k \ge 3$, $H \cong mkC_5$ – snake graph with string (1, 1, ..., 1) admits super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then we have s = n(4k+1), e = 5nk, and f = nk, $1 \le m \le n$. For vertices

$$\lambda(u_i^m) = \{i + (m-1)(k+1) \quad 1 \le i \le k+1\}$$

$$\lambda(v_i^m) = \{2nk + n + 1 - (m-1)k - i \quad 1 \le i \le k\}$$

$$\lambda(x_i^m) = \{3nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\}$$

$$\lambda(w_i^m) = \{4nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\}$$

For edges

$$\begin{split} \lambda(u_i^m w_i^m) &= \{s + (m-1)k + i \quad 1 \le i \le k\} \\ \lambda(u_{i+1}^m v_i^m) &= \{s + 2nk + 1 - i - (m-1)k \quad 1 \le i \le k\} \\ \lambda(u_i^m u_{i+1}^m) &= \{s + 3nk + 1 - (m-1)k - i \quad 1 \le i \le k\} \\ \lambda(w_i^m x_i^m) &= \{s + 3nk + (m-1)k + i \quad 1 \le i \le k\} \\ \lambda(x_i^m v_i^m) &= \{s + 4nk + (m-1)k + i \quad 1 \le i \le k\} \end{split}$$

For faces

$$\lambda(f_i^m) = \{ s + e + n - (m - 1) + (i - 1)n \quad 1 \le i \le k \}$$

In this way the $H \cong mkC_5 - snake$ graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1).

3. Main results II

In this section we formulate super antimagic labeling of subdivision kC_5 - snake graph as well as isomorphic copies of subdivision kC_5 -snake graph.

Theorem 5 For all $k \ge 3$, $H \cong kC_5$ - snake graph of string (1, 1, ..., 1) with 1 subdivision admits super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then s = 9k + 1, e = 10k, and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as follows:

$$\lambda(u_i) = \{i, 1 \le i \le k+1\}$$

$$\lambda(v_i) = \{(k+1) + i, 1 \le i \le k\}$$

$$\lambda(w_i) = \{3k+2-i, 1 \le i \le k\}$$

$$\lambda(x_i) = \{4k+2-i, 1 \le i \le k\}$$

We symbolize the partitions of H as follows:

$$\begin{split} \lambda(a_i) &= \{5k+2-i, 1 \leq i \leq k\} \\ \lambda(e_i) &= \{6k+2-i, 1 \leq i \leq k\} \end{split}$$

$$\lambda(b_i) = \{7k + 2 - i, 1 \le i \le k\}$$

$$\lambda(c_i) = \{7k + 1 + i, 1 \le i \le k\}$$

$$\lambda(d_i) = \{9k + 2 - i, 1 \le i \le k\}$$

$$\begin{split} \lambda(u_i a_i) &= \{s + i, 1 \le i \le k\} \\ \lambda(a_i u_{i+1}) &= \{S + 2k + 1 - i, 1 \le i \le k\} \\ \lambda(v_i e_i) &= \{s + 3k + 1 - i, 1 \le i \le k\} \\ \lambda(e_i u_{i+1}) &= \{s + 3k + i, 1 \le i \le k\} \\ \lambda(a_i u_i) &= \{s + 5k + 1 - i, 1 \le i \le k\} \\ \lambda(d_i v_i) &= \{S + 5k + i, 1 \le i \le k\} \\ \lambda(w_i c_i) &= \{s + 7k + 1 - i, 1 \le i \le k\} \\ \lambda(c_i x_i) &= \{s + 7k + i, 1 \le i \le k\} \\ \lambda(w_i b_i) &= \{s + 9k + 1 - i, 1 \le i \le k\} \\ \lambda(b_i u_i) &= \{s + 9k + i, 1 \le i \le k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + i, 1 \le i \le k\}$$

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 1 subdivision.

Theorem 6 For all $k \ge 2$, $H \cong kC_5$ - snake graph of string (2, 2, ..., 2) with 1 subdivision admits super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then s = 9k + 1, e = 10k, and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as follows:

$$\begin{split} \lambda(u_i) &= \{i, 1 \leq i \leq k+1\} \\ \lambda(v_i) &= \{(k+1)+i, 1 \leq i \leq k\} \\ \lambda(w_i) &= \{3k+2-i, 1 \leq i \leq k\} \\ \lambda(x_i) &= \{4k+2-i, 1 \leq i \leq k\} \end{split}$$

We symbolize the partitions of H as follows:

$\lambda(a_i) = \{5k +$	$2-i, 1 \le i \le k$
$\lambda(e_i) = \{6k +$	$2-i, 1\leq i\leq k\}$
$\lambda(b_i) = \{7k +$	$2-i, 1\leq i\leq k\}$
$\lambda(c_i) = \{7k +$	$1+i, 1\leq i\leq k\}$
$\lambda(d_i) = \{9k +$	$2-i, 1 \leq i \leq k\}$

We symbolize the edges of H as follows:

$$\begin{split} \lambda(u_i a_i) &= \{s+i, 1 \le i \le k\} \\ \lambda(a_i v_i) &= \{S+2k+1-i, 1 \le i \le k\} \\ \lambda(u_{i+1}e_i) &= \{s+3k+1-i, 1 \le i \le k\} \\ \lambda(e_i v_i) &= \{s+3k+i, 1 \le i \le k\} \\ \lambda(a_i d_i) &= \{s+5k+1-i, 1 \le i \le k\} \\ \lambda(d_i u_{i+1}) &= \{S+5k+i, 1 \le i \le k\} \\ \lambda(w_i c_i) &= \{s+7k+1-i, 1 \le i \le k\} \\ \lambda(c_i x_i) &= \{s+7k+i, 1 \le i \le k\} \\ \lambda(w_i b_i) &= \{s+9k+1-i, 1 \le i \le k\} \\ \lambda(b_i u_i) &= \{s+9k+i, 1 \le i \le k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + i, 1 \le i \le k\}$$

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 1 subdivision.

Theorem 7 For all $k \ge 3$, $H \cong kC_5$ - snake graph of string (1, 1, ..., 1) with 2 subdivisions admits super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then s = 14k + 1, e = 15k, and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as follows:

$$\lambda(u_i) = \{i, 1 \le i \le k+1\}$$

$$\lambda(v_i) = \{(k+1) + i, 1 \le i \le k\}$$

$$\lambda(w_i) = \{3k+2-i, 1 \le i \le k\}$$

$$\lambda(x_i) = \{4k+2-i, 1 \le i \le k\}$$

We symbolize the partitions of H as follows:

$$\begin{split} \lambda(a_{i1}) &= \{5k+2-i, 1 \leq i \leq k\} \\ \lambda(a_{i1}) &= \{5k+1+i, 1 \leq i \leq k\} \\ \lambda(b_{i1}) &= \{7k+2-i, 1 \leq i \leq k\} \\ \lambda(b_{i2}) &= \{7k+1+i, 1 \leq i \leq k\} \\ \lambda(c_{i1}) &= \{9k+2-i, 1 \leq i \leq k\} \\ \lambda(c_{i2}) &= \{9k+1+i, 1 \leq i \leq k\} \\ \lambda(d_{i1}) &= \{11k+2-i, 1 \leq i \leq k\} \\ \lambda(d_{i2}) &= \{11k+1+i, 1 \leq i \leq k\} \\ \lambda(e_{i1}) &= \{13k+2-i, 1 \leq i \leq k\} \\ \lambda(e_{i2}) &= \{13k+1+i, 1 \leq i \leq k\} \end{split}$$

We symbolize the edges of H as follows:

$$\begin{split} \lambda(u_i a_{i1}) &= \{s+i, 1 \leq i \leq k\} \\ \lambda(a_{i1} a_{i2}) &= \{s+k+i, 1 \leq i \leq k\} \\ \lambda(a_{i2} u_{i+1}) &= \{s+2k+i, 1 \leq i \leq k\} \\ \lambda(v_i e_{i1}) &= \{s+2k+1-i, 1 \leq i \leq k\} \\ \lambda(e_{i1} e_{i2}) &= \{s+5k+1-i, 1 \leq i \leq k\} \\ \lambda(e_{i2} u_{i+1}) &= \{s+6k+1-i, 1 \leq i \leq k\} \\ \lambda(a_{i1} d_{i2}) &= \{s+6k+i, 1 \leq i \leq k\} \\ \lambda(d_{i1} d_{i2}) &= \{s+7k+i, 1 \leq i \leq k\} \\ \lambda(d_{i2} v_i) &= \{s+8k+i, 1 \leq i \leq k\} \\ \lambda(a_{i2} v_i) &= \{s+10k+1-i, 1 \leq i \leq k\} \\ \lambda(c_{i2} w_i) &= \{s+12k+1-i, 1 \leq i \leq k\} \\ \lambda(c_{i2} w_i) &= \{s+13k+1-i, 1 \leq i \leq k\} \\ \lambda(b_{i1} b_{i2}) &= \{s+15k+1-i, 1 \leq i \leq k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + i, 1 \le i \le k\}$$

In this way the snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 2 subdivisions.

Theorem 8 For all $k \ge 2$, $H \cong kC_5$ - snake graph of string (2, 2, ..., 2) with 2 subdivisions admits super 1-antimagic labeling of type (1,1,1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then s = 14k + 1, e = 15k, and f = k. Now we define labeling $\lambda : V(H) \cup E(H) \cup F(H) \rightarrow \{1, 2, ..., s + e + f\}$ as follows:

$$\lambda(u_i) = \{i, 1 \le i \le k+1\}$$

$$\lambda(v_i) = \{(k+1) + i, 1 \le i \le k\}$$

$$\lambda(w_i) = \{3k+2-i, 1 \le i \le k\}$$

$$\lambda(x_i) = \{4k+2-i, 1 \le i \le k\}$$

We symbolize the partitions of H as follows:

$$\begin{split} \lambda(a_{i1}) &= \{5k+2-i, 1 \leq i \leq k\} \\ \lambda(a_{i1}) &= \{5k+1+i, 1 \leq i \leq k\} \\ \lambda(b_{i1}) &= \{7k+2-i, 1 \leq i \leq k\} \\ \lambda(b_{i2}) &= \{7k+1+i, 1 \leq i \leq k\} \\ \lambda(c_{i1}) &= \{9k+2-i, 1 \leq i \leq k\} \\ \lambda(c_{i2}) &= \{9k+1+i, 1 \leq i \leq k\} \\ \lambda(d_{i1}) &= \{11k+2-i, 1 \leq i \leq k\} \end{split}$$

$$\begin{split} \lambda(d_{i2}) &= \{11k+1+i, 1 \leq i \leq k\} \\ \lambda(e_{i1}) &= \{13k+2-i, 1 \leq i \leq k\} \\ \lambda(e_{i2}) &= \{13k+1+i, 1 \leq i \leq k\} \end{split}$$

$$\begin{split} \lambda(u_i a_{i1}) &= \{s+i, 1 \leq i \leq k\} \\ \lambda(a_{i1} a_{i2}) &= \{s+k+i, 1 \leq i \leq k\} \\ \lambda(a_{i2} v_i) &= \{s+2k+i, 1 \leq i \leq k\} \\ \lambda(a_{i2} v_i) &= \{s+2k+i, 1 \leq i \leq k\} \\ \lambda(u_{i+1} e_{i1}) &= \{s+4k+1-i, 1 \leq i \leq k\} \\ \lambda(e_{i1} e_{i2}) &= \{s+5k+1-i, 1 \leq i \leq k\} \\ \lambda(e_{i2} v_i) &= \{s+6k+1-i, 1 \leq i \leq k\} \\ \lambda(a_i d_{i1}) &= \{s+6k+i, 1 \leq i \leq k\} \\ \lambda(d_{i1} d_{i2}) &= \{s+7k+i, 1 \leq i \leq k\} \\ \lambda(d_{i2} u_{i+1}) &= \{s+8k+i, 1 \leq i \leq k\} \\ \lambda(c_{i1} c_{i2}) &= \{s+10k+1-i, 1 \leq i \leq k\} \\ \lambda(c_{i1} c_{i2}) &= \{s+12k+1-i, 1 \leq i \leq k\} \\ \lambda(c_{i2} w_i) &= \{s+12k+1-i, 1 \leq i \leq k\} \\ \lambda(w_i b_{i1}) &= \{s+14k+1-i, 1 \leq i \leq k\} \\ \lambda(b_{i1} b_{i2}) &= \{s+15k+1-i, 1 \leq i \leq k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i) = \{s + e + i, 1 \le i \le k\}$$

In this way the snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 2 subdivisions.

Theorem 9 For all $k \ge 3$, $H \cong mkC_5$ - m copies of snake graph of string (1, 1, ..., 1) with 1 subdivision admit super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then we have s = n(9k + 1), e = 10nk, and f = nk, $1 \le m \le n$.

For vertices

$$\begin{split} \lambda(u_i^m) &= \{i + (m-1)(k+1) \quad 1 \le i \le k+1\} \\ \lambda(v_i^m) &= \{n(k+1) + nk + 1 - (m-1)k - i \quad 1 \le i \le k\} \\ \lambda(x_i^m) &= \{3nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\} \\ \lambda(w_i^m) &= \{4nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\} \end{split}$$

We symbolize the partitions of H as follows:

$$\lambda(a_i^m) = \{4nk + n + i + (m-1)k, 1 \le i \le k\}$$

$$\lambda(d_i^m) = \{6nk + n + 1 - i - (m-1)k, 1 \le i \le k\}$$

$$\begin{split} \lambda(e_i^m) &= \{7nk + n + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(b_i^m) &= \{7nk + n + i + (m-1)k, 1 \le i \le k\} \\ \lambda(c_i^m) &= \{8nk + n + i + (m-1)k, 1 \le i \le k\} \end{split}$$

$$\begin{split} \lambda(u_i^m e_i^m) &= \{s + nk + 1 - i - (m-1)k, 1 \leq i \leq k\} \\ \lambda(e_i^m u_{i+1}^m) &= \{s + nk + i + (m-1)k, 1 \leq i \leq k\} \\ \lambda(v_i^m d_i^m) &= \{s + 3nk + 1 - i - (m-1)k, 1 \leq i \leq k\} \\ \lambda(d_i^m u_{i+1}^m) &= \{s + 4nk + 1 - i - (m-1)k, 1 \leq i \leq k\} \\ \lambda(w_i^m a_i^m) &= \{s + 4nk + i + (m-1)k, 1 \leq i \leq k\} \\ \lambda(u_i^m u_i^m) &= \{s + 6nk + 1 - i - (m-1)k, 1 \leq i \leq k\} \\ \lambda(w_i^m b_i^m) &= \{s + 7nk + 1 - i - (m-1)k, 1 \leq i \leq k\} \\ \lambda(b_i^m x_i^m) &= \{s + 7nk + i + (m-1)k, 1 \leq i \leq k\} \\ \lambda(x_i^m c_i^m) &= \{s + 8nk + i + (m-1)k, 1 \leq i \leq k\} \\ \lambda(c_i^m v_i^m) &= \{s + 9nk + i + (m-1)k, 1 \leq i \leq k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i^m) = \{s + e + nk - n(i-1) - (m-1), 1 \le i \le k\}$$

In this way the m copies of snake graph of string (1, 1, ..., 1) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 1 subdivision.

Theorem 10 For all $k \ge 2$, $H \cong mkC_5$ - m copies of snake graph of string (2, 2, ..., 2) with 1 subdivision admit super 1-antimagic labeling of type (1, 1, 1).

Proof Let s = |V(H)|, e = |E(H)|, and f = |F(H)|. Then we have s = n(9k + 1), e = 10nk, and f = nk, $1 \le m \le n$. For vertices

$$\lambda(u_i^m) = \{i + (m-1)(k+1) \quad 1 \le i \le k+1\}$$

$$\lambda(v_i^m) = \{n(k+1) + nk + 1 - (m-1)k - i \quad 1 \le i \le k\}$$

$$\lambda(x_i^m) = \{3nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\}$$

$$\lambda(w_i^m) = \{4nk + n + 1 - i - (m-1)k \quad 1 \le i \le k\}$$

We symbolize the partitions of H as follows:

$$\begin{split} \lambda(a_i^m) &= \{4nk + n + i + (m-1)k, 1 \leq i \leq k\}\\ \lambda(d_i^m) &= \{6nk + n + 1 - i - (m-1)k, 1 \leq i \leq k\}\\ \lambda(e_i^m) &= \{7nk + n + 1 - i - (m-1)k, 1 \leq i \leq k\}\\ \lambda(b_i^m) &= \{7nk + n + i + (m-1)k, 1 \leq i \leq k\}\\ \lambda(c_i^m) &= \{8nk + n + i + (m-1)k, 1 \leq i \leq k\} \end{split}$$

We symbolize the edges of H as follows:

$$\begin{split} \lambda(u_i^m e_i^m) &= \{s + nk + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(e_i^m v_i^m) &= \{s + nk + i + (m-1)k, 1 \le i \le k\} \\ \lambda(u_{i+1}^m d_i^m) &= \{s + 3nk + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(d_i^m v_i^m) &= \{s + 4nk + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(w_i^m a_i^m) &= \{s + 4nk + i + (m-1)k, 1 \le i \le k\} \\ \lambda(u_i^m u_i^m) &= \{s + 6nk + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(w_i^m b_i^m) &= \{s + 7nk + 1 - i - (m-1)k, 1 \le i \le k\} \\ \lambda(b_i^m x_i^m) &= \{s + 7nk + i + (m-1)k, 1 \le i \le k\} \\ \lambda(x_i^m c_i^m) &= \{s + 8nk + i + (m-1)k, 1 \le i \le k\} \\ \lambda(c_i^m u_{i+1}^m) &= \{s + 9nk + i + (m-1)k, 1 \le i \le k\} \end{split}$$

We symbolize the faces of H as follows:

$$\lambda(f_i^m) = \{s + e + nk - n(i-1) - (m-1), 1 \le i \le k\}$$

In this way the m copies of snake graph of string (2, 2, ..., 2) can be labeled in the best way to show super 1-antimagic labeling of type (1, 1, 1), with 1 subdivision.

4. Open problems

Open Problem 1 For all $k \ge 2$, $H \cong kC_5$ – snake graph with string (2, 2, ..., 2) with p subdivisions admits super 1-antimagic labeling of type (1, 1, 1).

Open Problem 2 For all $k \ge 3$, $H \cong kC_5$ – snake graph with string (1, 1, ..., 1) with p subdivisions admits super 1-antimagic labeling of type (1, 1, 1).

Open Problem 3 For all $k \ge 2$, $H \cong mkC_5$ – snake graph with string (2, 2, ..., 2) with p subdivisions admits super 1-antimagic labeling of type (1, 1, 1).

Open Problem 4 For all $k \ge 3$, $H \cong mkC_5$ – snake graph with string (1, 1, ..., 1) with p subdivisions admits super 1-antimagic labeling of type (1, 1, 1).

References

- Bača M. On magic and consecutive labelings for the special classes of plane graphs. Utilitas Mathematica 1987; 32: 59–65.
- [2] Bača M. On magic labelings of grid graphs. Ars Combinatoria 1992; 33: 295–299.
- [3] Bača M. On magic labelings of honeycomb. Discrete Math 1992; 105: 305–311.
- [4] Bača M. On magic labelings of Möbius ladders. J Franklin Inst 1989; 326: 885–888.
- [5] Bača M. On magic labelings of type (1,1,1) for three classes of plane graphs. Math Slovaca 1989; 39: 233–239.
- [6] Bača M. Labelings of m-antiprisms. Ars Combinatoria 1989; 28: 242-245.
- [7] Bača M. Labelings of two classes of convex polytopes. Utilitas Mathematica 1988; 34: 24–31.
- [8] Bača M. On magic labelings of m-prisms. Math Slovaca 1990; 40: 11-14.

- [9] Bača M. Labelings of two classes of plane graphs. Acta Math Appl Sinica 1993; 9: 82–87.
- [10] Bača M. On magic labelings of type (1,1,1) for the special class of plane graphs. J Franklin Inst 1992; 329: 549–553.
- [11] Bača M. On magic labelings of convex polytopes. Ann Disc Math 1992; 51: 13–16.
- [12] Bača M, Hollánder I. Labelings of a certain class of convex polytopes. J. Franklin Inst 1992; 329: 539–547.
- [13] Bača M, Numan M, Kashif M. Super face anti labeling of union of antiprism. Mathematics in Computer Science 2013; 7: 245–252.
- [14] Barientos C. Difference vertex labelings, PhD Thesis, Universitat Po-litecnica De Catalunya. Spain 2004.
- [15] Siddiqui MK, Numan M, Umar MA. Face Antimagic Labeling of Jahangir Graph. Mathematics in Computer Science 2013: 1–7.
- [16] Ali K, Hussain M, Ahmed A, Miller M. Magic labelings of type (a,b,c) of families of wheels. Mathematics in Computer in Science 2013; 7: 315–319.
- [17] Lih KW. On magic and consecutive labelings of plane graphs. Utilitas Mathematica 1983; 24: 165–197.
- [18] Gallian JA. A dynamic survey of graph labeling. Electron J Comb 2014; 17: DS6.
- [19] Rosa A. Cyclic steiner triple systems and labelings of triangular cacti. Sci Ser A Math Sci (N. S.) 1998; 1: 87–95.