Turk J Math
(2015) 39: 773-783
(C) TÜBİTAK
doi:10.3906/mat-1501-45

Super d-anti-magic labeling of subdivided $k C_{5}$

Muhammad HUSSAIN*, Ali TABRAIZ

Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan
Received: 20.01.2015 \quad Accepted/Published Online: 23.06.2015 \quad Printed: 30.09 .2015

Abstract

A graph $(G=(V, E, F))$ admits labeling of type $(1,1,1)$ if we assign labels from the set $\{1,2,3, \ldots,|V(G)|+$ $|E(G)|+|F(G)|\}$ to the vertices, edges, and faces of a planar graph G in such a way that each vertex, edge, and face receives exactly one label and each number is used exactly once as a label and the weight of each face under the mapping is the same. Super d-antimagic labeling of type $(1,1,1)$ on snake $k C_{5}$, subdivided $k C_{5}$ as well as ismorphic copies of $k C_{5}$ for string $(1,1, \ldots, 1)$ and string $(2,2, \ldots, 2)$ is discussed in this paper.

Key words: Super d-anti-magic labeling, snake graph

1. Introduction

We consider a finite, connected, and planar graph $(G=(V, E, F))$ without loops and multiple edges, where $V(G), E(G)$, and $F(G)$ are its vertex set, edge set, and face set, respectively.

Labeling of a graph is one-to-one mapping that carries a set of graph elements to a set of numbers (usually positive integers). Labeling of type (α, β, γ) (where $(\alpha, \beta, \gamma) \in\{0,1\}$) assigns labels from the set $\{1,2,3, \ldots,|V(G)|+|E(G)|+|F(G)|\}$ to the set of vertices, edges, and faces of a plane graph G in such a way that each vertex, edge, and face receives exactly one label and each number is used exactly once as a label. The weight of a face under labeling of type $(1,1,1)$ is the sum of the labels carried by that face and the edges and vertices surrounding it.

Labeling of type (α, β, γ) is said to be face-magic if for every number $s \geq 3$ all s-sided faces have the same weight. We allow different weights for different s. The labeling is called super face-magic if the vertex set is assigned first. The labeling is called face antimagic if face weights form an arithmetic sequence with initial value a and common difference d.

The notion of magic labeling of planer graphs was defined by Ko-Wei Lih in [17], where magic labelings of type $(1,1,0)$ for wheels, friendship graphs, and prisms are given. Bača gave magic labelings of type $(1,1,1)$ for fans in $[1,5,10]$. Ali [16] gave magic labeling of type $(1,1,1)$ for wheels and subdivision of wheels. Bača determined magic labeling on different graphs in [2, 3, 4, 6, 8, 9]. Siddiqui [15] determined the existence of super d-antimagic labeling for a Jahangir graph for certain different d. Bača [7, 11, 12, 13] gave magic labelings of type $(1,1,1)$ and type ($1,1,0$) for certain classes of convex polytopes. A general survey of graph labelings is given in [18].

The snake graph $\left(k C_{4}\right)$ was first introduced by Barrientos [14], while Rosa [19] gave the generalization

[^0]concept of the triangular snake. A $k C_{n}$-snake can be defined as a connected graph with k blocks; each of the blocks is isomorphic to the cycle C_{n}, such that the block-cut-vertex graph is a path.

In this paper we formulate super antimagic labeling of type $(1,1,1)$ for a $k C_{5}$ - snake graph, partition of a $k C_{5}$ - snake graph, and isomorphic copies of a $k C_{5}$ - snake graph; super antimagic labeling of type $(1,1,1)$ for $k C_{n}$ is also discussed in this paper.

2. Main results I

In this section we formulate super antimagic labeling of a $k C_{5}$ - snake graph as well as isomorphic copies of a $k C_{5}$-snake graph.

Theorem 1 For all $k \geq 2, H \cong k C_{5}$ - snake graph with string $(2,2, \ldots, 2)$ admits super 1-antimagic labeling of type $(1,1,1)$.
Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then $s=4 k+1, e=5 k$, and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as follows:

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(X_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(w_{i} x_{i}\right)=\{s+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} u_{i+1}\right)=\{s+2 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(u_{i+1} v i\right)=\{s+3 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(u_{i} v_{i}\right)=\{s+3 k+i, 1 \leq i \leq k\} \\
\lambda\left(u_{i} w_{i}\right)=\{s+4 k+i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+k+1-i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(2,2, \ldots, 2)$ can be labeled in the best way to show super 1-antimagic labeling of type $(1,1,1)$.

Theorem 2 For all $k \geq 3, H \cong k C_{5}$ - snake graph with string $(1,1, \ldots, 1)$ admits super 1-antimagic labeling of type $(1,1,1)$.
Proof Let $s=|V(H)|, e=|E(H)|$ and $f=|F(H)|$. Then $s=4 k+1, e=5 k$ and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(X_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i} u_{i+1}\right)=\{s+k+1-i, 1 \leq i \leq k\} \\
\lambda\left(u_{i} w_{i}\right)=\{s+k+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} x_{i}\right)=\{s+2 k+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} v_{i}\right)=\{s+4 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(v_{i} u_{i+1}\right)=\{s+5 k+1-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(1,1, \ldots, 1)$ can be labeled in the best way to show super 1-antimagic labeling of type $(1,1,1)$.

Theorem 3 For all $k \geq 2, H \cong m k C_{5}-$ snake graph with string $(2,2, \ldots, 2)$ admits super 1-antimagic labeling of type $(1,1,1)$.
Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then we have $s=n(4 k+1), e=5 n k$, and $f=n k$, $1 \leq m \leq n$.
For vertices

$$
\begin{gathered}
\lambda\left(u_{i}^{m}\right)=\{i+(m-1)(k+1) \quad 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}^{m}\right)=\{n(k+1)+n k+1-(m-1) k-i \quad 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m}\right)=\{3 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m}\right)=\{4 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\}
\end{gathered}
$$

For edges

$$
\begin{gathered}
\lambda\left(u_{i}^{m} w_{i}^{m}\right)=\{s+(m-1) k+i \quad 1 \leq i \leq k\} \\
\lambda\left(v_{i}^{m} u_{i+1}^{m}\right)=\{s+2 n k+1-i-(m-1) k \quad 1 \leq i \leq k\} \\
\lambda\left(u_{i}^{m} v_{i}^{m}\right)=\{s+3 n k+1-(m-1) k-i \quad 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} x_{i}^{m}\right)=\{s+3 n k+(m-1) k+i \quad 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m} u_{i+1}^{m}\right)=\{s+4 n k+(m-1) k+i \quad 1 \leq i \leq k\}
\end{gathered}
$$

For faces

$$
\lambda\left(f_{i}^{m}\right)=\{s+e+n-(m-1)+(i-1) n \quad 1 \leq i \leq k
$$

In this way the $H \cong m k C_{5}-$ snake graph of string $(2,2, \ldots, 2)$ can be labeled in the best way to show super 1 -antimagic labeling of type $(1,1,1)$.

Theorem 4 For all $k \geq 3, H \cong m k C_{5}$ - snake graph with string $(1,1, \ldots, 1)$ admits super 1-antimagic labeling of type $(1,1,1)$.

Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then we have $s=n(4 k+1), e=5 n k$, and $f=n k$, $1 \leq m \leq n$.
For vertices

$$
\begin{gathered}
\lambda\left(u_{i}^{m}\right)=\{i+(m-1)(k+1) \quad 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}^{m}\right)=\{2 n k+n+1-(m-1) k-i \\
\lambda\left(x_{i}^{m}\right)=\{3 n k+n+1-i-(m-1) k \\
\lambda\left(w_{i}^{m}\right)=\{4 n k+n+1-i-(m-1) k \\
\hline 4 \leq i \leq k\}
\end{gathered}
$$

For edges

$$
\begin{gathered}
\lambda\left(u_{i}^{m} w_{i}^{m}\right)=\{s+(m-1) k+i \quad 1 \leq i \leq k\} \\
\lambda\left(u_{i+1}^{m} v_{i}^{m}\right)=\{s+2 n k+1-i-(m-1) k \quad 1 \leq i \leq k\} \\
\lambda\left(u_{i}^{m} u_{i+1}^{m}\right)=\{s+3 n k+1-(m-1) k-i \quad 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} x_{i}^{m}\right)=\{s+3 n k+(m-1) k+i \quad 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m} v_{i}^{m}\right)=\{s+4 n k+(m-1) k+i \quad 1 \leq i \leq k\}
\end{gathered}
$$

For faces

$$
\lambda\left(f_{i}^{m}\right)=\{s+e+n-(m-1)+(i-1) n \quad 1 \leq i \leq k\}
$$

In this way the $H \cong m k C_{5}-$ snake graph of string $(1,1, \ldots, 1)$ can be labeled in the best way to show super 1 -antimagic labeling of type $(1,1,1)$.

3. Main results II

In this section we formulate super antimagic labeling of subdivision $k C_{5}$ - snake graph as well as isomorphic copies of subdivision $k C_{5}$-snake graph.

Theorem 5 For all $k \geq 3, H \cong k C_{5}$ - snake graph of string $(1,1, \ldots, 1)$ with 1 subdivision admits super 1-antimagic labeling of type (1,1,1).
Proof Let $s=|V(H)|$, $e=|E(H)|$, and $f=|F(H)|$. Then $s=9 k+1, e=10 k$, and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as follows:

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{aligned}
& \lambda\left(a_{i}\right)=\{5 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(e_{i}\right)=\{6 k+2-i, 1 \leq i \leq k\}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda\left(b_{i}\right)=\{7 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(c_{i}\right)=\{7 k+1+i, 1 \leq i \leq k\} \\
& \lambda\left(d_{i}\right)=\{9 k+2-i, 1 \leq i \leq k\}
\end{aligned}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i} a_{i}\right)=\{s+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i} u_{i+1}\right)=\{S+2 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(v_{i} e_{i}\right)=\{s+3 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i} u_{i+1}\right)=\{s+3 k+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} d_{i}\right)=\{s+5 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(d_{i} v_{i}\right)=\{S+5 k+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} c_{i}\right)=\{s+7 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i} x_{i}\right)=\{s+7 k+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} b_{i}\right)=\{s+9 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i} u_{i}\right)=\{s+9 k+i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(1,1, \ldots, 1)$ can be labeled in the best way to show super 1 -antimagic labeling of type $(1,1,1)$, with 1 subdivision.

Theorem 6 For all $k \geq 2, H \cong k C_{5}$ - snake graph of string $(2,2, \ldots, 2)$ with 1 subdivision admits super 1-antimagic labeling of type ($1,1,1$).
Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then $s=9 k+1, e=10 k$, and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as follows:

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{aligned}
& \lambda\left(a_{i}\right)=\{5 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(e_{i}\right)=\{6 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(b_{i}\right)=\{7 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(c_{i}\right)=\{7 k+1+i, 1 \leq i \leq k\} \\
& \lambda\left(d_{i}\right)=\{9 k+2-i, 1 \leq i \leq k\}
\end{aligned}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i} a_{i}\right)=\{s+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i} v_{i}\right)=\{S+2 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(u_{i+1} e_{i}\right)=\{s+3 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i} v_{i}\right)=\{s+3 k+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} d_{i}\right)=\{s+5 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(d_{i} u_{i+1}\right)=\{S+5 k+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} c_{i}\right)=\{s+7 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i} x_{i}\right)=\{s+7 k+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} b_{i}\right)=\{s+9 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i} u_{i}\right)=\{s+9 k+i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(2,2, \ldots, 2)$ can be labeled in the best way to show super 1-antimagic labeling of type $(1,1,1)$, with 1 subdivision.

Theorem 7 For all $k \geq 3, H \cong k C_{5}$ - snake graph of string $(1,1, \ldots, 1)$ with 2 subdivisions admits super 1-antimagic labeling of type (1,1,1).

Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then $s=14 k+1, e=15 k$, and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as follows:

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{aligned}
\lambda\left(a_{i 1}\right) & =\{5 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 1}\right) & =\{5 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 1}\right) & =\{7 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 2}\right) & =\{7 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 1}\right) & =\{9 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 2}\right) & =\{9 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 1}\right) & =\{11 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 2}\right) & =\{11 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 1}\right) & =\{13 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 2}\right) & =\{13 k+1+i, 1 \leq i \leq k\}
\end{aligned}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i} a_{i 1}\right)=\{s+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 1} a_{i 2}\right)=\{s+k+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 2} u_{i+1}\right)=\{s+2 k+i, 1 \leq i \leq k\} \\
\lambda\left(v_{i} e_{i 1}\right)=\{s+4 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 1} e_{i 2}\right)=\{s+5 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 2} u_{i+1}\right)=\{s+6 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} d_{i 1}\right)=\{s+6 k+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 1} d_{i 2}\right)=\{s+7 k+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 2} v_{i}\right)=\{s+8 k+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} c_{i 1}\right)=\{s+10 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 1} c_{i 2}\right)=\{s+11 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 2} w_{i}\right)=\{s+12 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} b_{i 1}\right)=\{s+13 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 1} b_{i 2}\right)=\{s+14 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 2} u_{i}\right)=\{s+15 k+1-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(1,1, \ldots, 1)$ can be labeled in the best way to show super 1-antimagic labeling of type ($1,1,1$), with 2 subdivisions.

Theorem 8 For all $k \geq 2, H \cong k C_{5}$ - snake graph of string $(2,2, \ldots, 2)$ with 2 subdivisions admits super 1-antimagic labeling of type (1,1,1).
Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then $s=14 k+1, e=15 k$, , and $f=k$.
Now we define labeling $\lambda: V(H) \cup E(H) \cup F(H) \rightarrow\{1,2, \ldots, s+e+f\}$ as follows:

$$
\begin{gathered}
\lambda\left(u_{i}\right)=\{i, 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}\right)=\{(k+1)+i, 1 \leq i \leq k\} \\
\lambda\left(w_{i}\right)=\{3 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i}\right)=\{4 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{gathered}
\lambda\left(a_{i 1}\right)=\{5 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 1}\right)=\{5 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 1}\right)=\{7 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 2}\right)=\{7 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 1}\right)=\{9 k+2-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 2}\right)=\{9 k+1+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 1}\right)=\{11 k+2-i, 1 \leq i \leq k\}
\end{gathered}
$$

$$
\begin{aligned}
& \lambda\left(d_{i 2}\right)=\{11 k+1+i, 1 \leq i \leq k\} \\
& \lambda\left(e_{i 1}\right)=\{13 k+2-i, 1 \leq i \leq k\} \\
& \lambda\left(e_{i 2}\right)=\{13 k+1+i, 1 \leq i \leq k\}
\end{aligned}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i} a_{i 1}\right)=\{s+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 1} a_{i 2}\right)=\{s+k+i, 1 \leq i \leq k\} \\
\lambda\left(a_{i 2} v_{i}\right)=\{s+2 k+i, 1 \leq i \leq k\} \\
\lambda\left(u_{i+1} e_{i 1}\right)=\{s+4 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 1} e_{i 2}\right)=\{s+5 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(e_{i 2} v_{i}\right)=\{s+6 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} d_{i 1}\right)=\{s+6 k+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 1} d_{i 2}\right)=\{s+7 k+i, 1 \leq i \leq k\} \\
\lambda\left(d_{i 2} u_{i+1}\right)=\{s+8 k+i, 1 \leq i \leq k\} \\
\lambda\left(x_{i} c_{i 1}\right)=\{s+10 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 1} c_{i 2}\right)=\{s+11 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(c_{i 2} w_{i}\right)=\{s+12 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(w_{i} b_{i 1}\right)=\{s+13 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 1} b_{i 2}\right)=\{s+14 k+1-i, 1 \leq i \leq k\} \\
\lambda\left(b_{i 2} u_{i}\right)=\{s+15 k+1-i, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}\right)=\{s+e+i, 1 \leq i \leq k\}
$$

In this way the snake graph of string $(2,2, \ldots, 2)$ can be labeled in the best way to show super 1-antimagic labeling of type ($1,1,1$), with 2 subdivisions.

Theorem 9 For all $k \geq 3, H \cong m k C_{5}-m$ copies of snake graph of string $(1,1, \ldots, 1)$ with 1 subdivision admit super 1-antimagic labeling of type (1,1,1).
Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then we have $s=n(9 k+1), e=10 n k$, and $f=n k$, $1 \leq m \leq n$.
For vertices

$$
\begin{gathered}
\lambda\left(u_{i}^{m}\right)=\{i+(m-1)(k+1) \quad 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}^{m}\right)=\{n(k+1)+n k+1-(m-1) k-i \quad 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m}\right)=\{3 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m}\right)=\{4 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{gathered}
\lambda\left(a_{i}^{m}\right)=\{4 n k+n+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(d_{i}^{m}\right)=\{6 n k+n+1-i-(m-1) k, 1 \leq i \leq k\}
\end{gathered}
$$

HUSSAIN and TABRAIZ/Turk J Math

$$
\begin{gathered}
\lambda\left(e_{i}^{m}\right)=\{7 n k+n+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(b_{i}^{m}\right)=\{7 n k+n+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(c_{i}^{m}\right)=\{8 n k+n+i+(m-1) k, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i}^{m} e_{i}^{m}\right)=\{s+n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(e_{i}^{m} u_{i+1}^{m}\right)=\{s+n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(v_{i}^{m} d_{i}^{m}\right)=\{s+3 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(d_{i}^{m} u_{i+1}^{m}\right)=\{s+4 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} a_{i}^{m}\right)=\{s+4 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(a_{i}^{m} u_{i}^{m}\right)=\{s+6 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} b_{i}^{m}\right)=\{s+7 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(b_{i}^{m} x_{i}^{m}\right)=\{s+7 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m} c_{i}^{m}\right)=\{s+8 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(c_{i}^{m} v_{i}^{m}\right)=\{s+9 n k+i+(m-1) k, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}^{m}\right)=\{s+e+n k-n(i-1)-(m-1), 1 \leq i \leq k\}
$$

In this way the m copies of snake graph of string $(1,1, \ldots, 1)$ can be labeled in the best way to show super 1 -antimagic labeling of type $(1,1,1)$, with 1 subdivision.

Theorem 10 For all $k \geq 2, H \cong m k C_{5}-m$ copies of snake graph of string $(2,2, \ldots, 2)$ with 1 subdivision admit super 1-antimagic labeling of type (1,1,1).

Proof Let $s=|V(H)|, e=|E(H)|$, and $f=|F(H)|$. Then we have $s=n(9 k+1), e=10 n k$, and $f=n k$, $1 \leq m \leq n$.
For vertices

$$
\begin{gathered}
\lambda\left(u_{i}^{m}\right)=\{i+(m-1)(k+1) \quad 1 \leq i \leq k+1\} \\
\lambda\left(v_{i}^{m}\right)=\{n(k+1)+n k+1-(m-1) k-i \quad 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m}\right)=\{3 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m}\right)=\{4 n k+n+1-i-(m-1) k \quad 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the partitions of H as follows:

$$
\begin{gathered}
\lambda\left(a_{i}^{m}\right)=\{4 n k+n+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(d_{i}^{m}\right)=\{6 n k+n+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(e_{i}^{m}\right)=\{7 n k+n+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(b_{i}^{m}\right)=\{7 n k+n+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(c_{i}^{m}\right)=\{8 n k+n+i+(m-1) k, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the edges of H as follows:

$$
\begin{gathered}
\lambda\left(u_{i}^{m} e_{i}^{m}\right)=\{s+n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(e_{i}^{m} v_{i}^{m}\right)=\{s+n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(u_{i+1}^{m} d_{i}^{m}\right)=\{s+3 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(d_{i}^{m} v_{i}^{m}\right)=\{s+4 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} a_{i}^{m}\right)=\{s+4 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(a_{i}^{m} u_{i}^{m}\right)=\{s+6 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(w_{i}^{m} b_{i}^{m}\right)=\{s+7 n k+1-i-(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(b_{i}^{m} x_{i}^{m}\right)=\{s+7 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(x_{i}^{m} c_{i}^{m}\right)=\{s+8 n k+i+(m-1) k, 1 \leq i \leq k\} \\
\lambda\left(c_{i}^{m} u_{i+1}^{m}\right)=\{s+9 n k+i+(m-1) k, 1 \leq i \leq k\}
\end{gathered}
$$

We symbolize the faces of H as follows:

$$
\lambda\left(f_{i}^{m}\right)=\{s+e+n k-n(i-1)-(m-1), 1 \leq i \leq k\}
$$

In this way the m copies of snake graph of string $(2,2, \ldots, 2)$ can be labeled in the best way to show super 1-antimagic labeling of type $(1,1,1)$, with 1 subdivision.

4. Open problems

Open Problem 1 For all $k \geq 2, H \cong k C_{5}$ - snake graph with string $(2,2, \ldots, 2)$ with p subdivisions admits super 1 -antimagic labeling of type $(1,1,1)$.

Open Problem 2 For all $k \geq 3, H \cong k C_{5}$ - snake graph with string $(1,1, \ldots, 1)$ with p subdivisions admits super 1-antimagic labeling of type $(1,1,1)$.

Open Problem 3 For all $k \geq 2, H \cong m k C_{5}$-snake graph with string $(2,2, \ldots, 2)$ with p subdivisions admits super 1 -antimagic labeling of type $(1,1,1)$.

Open Problem 4 For all $k \geq 3, H \cong m k C_{5}$ - snake graph with string $(1,1, \ldots, 1)$ with p subdivisions admits super 1-antimagic labeling of type $(1,1,1)$.

References

[1] Bača M. On magic and consecutive labelings for the special classes of plane graphs. Utilitas Mathematica 1987; 32: 59-65.
[2] Bača M. On magic labelings of grid graphs. Ars Combinatoria 1992; 33: 295-299.
[3] Bača M. On magic labelings of honeycomb. Discrete Math 1992; 105: 305-311.
[4] Bača M. On magic labelings of Möbius ladders. J Franklin Inst 1989; 326: 885-888.
[5] Bača M. On magic labelings of type (1,1,1) for three classes of plane graphs. Math Slovaca 1989; 39: 233-239.
[6] Bača M. Labelings of m-antiprisms. Ars Combinatoria 1989; 28: 242-245.
[7] Bača M. Labelings of two classes of convex polytopes. Utilitas Mathematica 1988; 34: 24-31.
[8] Bača M. On magic labelings of m-prisms. Math Slovaca 1990; 40: 11-14.
[9] Bača M. Labelings of two classes of plane graphs. Acta Math Appl Sinica 1993; 9: 82-87.
[10] Bača M. On magic labelings of type ($1,1,1$) for the special class of plane graphs. J Franklin Inst 1992; 329: 549-553.
[11] Bača M. On magic labelings of convex polytopes. Ann Disc Math 1992; 51: 13-16.
[12] Bača M, Hollánder I. Labelings of a certain class of convex polytopes. J. Franklin Inst 1992; 329: 539-547.
[13] Bača M, Numan M, Kashif M. Super face anti labeling of union of antiprism. Mathematics in Computer Science 2013; 7: 245-252.
[14] Barientos C. Difference vertex labelings, PhD Thesis, Universitat Po-litecnica De Catalunya. Spain 2004.
[15] Siddiqui MK, Numan M, Umar MA. Face Antimagic Labeling of Jahangir Graph. Mathematics in Computer Science 2013: 1-7.
[16] Ali K, Hussain M, Ahmed A, Miller M. Magic labelings of type (a,b,c) of families of wheels. Mathematics in Computer in Science 2013; 7: 315-319.
[17] Lih KW. On magic and consecutive labelings of plane graphs. Utilitas Mathematica 1983; 24: 165-197.
[18] Gallian JA. A dynamic survey of graph labeling. Electron J Comb 2014; 17: DS6.
[19] Rosa A. Cyclic steiner triple systems and labelings of triangular cacti. Sci Ser A Math Sci (N. S.) 1998; 1: 87-95.

[^0]: *Correspondence: mhmaths@gmail.com
 2010 AMS Mathematics Subject Classification: 05C78; Secondary: 05C38.

