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Abstract:We define the notion of a metallic shaped hypersurface and give the full classification of metallic shaped hyper-

surfaces in real space forms. We deduce that every metallic shaped hypersurface in real space forms is a semisymmetric

hypersurface.
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1. Introduction

The generalized secondary Fibonacci sequence (see [5]) is given by the relation

G(n+ 1) = pG(n) + qG(n− 1), n ≥ 1,

where G(0) = a, G(1) = b , p and q are real numbers. If p = q = 1, then we obtain secondary Fibonacci

sequence. If the limit

x = lim
n→∞

G(n+ 1)

G(n)

exists then it is a root of the equation

x2 − px− q = 0; (1.1)

see [4]. Let p and q be two integers. The positive solution of equation (1.1) is called a member of the metallic

means family (briefly MMF) [4]. The positive solution of the above equation is

σp,q =
p+

√
p2 + 4q

2
.

These numbers are called (p, q)-metallic numbers [4]. For the special values of p and q, we have the following

(see [5]):

i) For p = q = 1 we obtain σG = 1+
√
5

2 , which is the golden mean;

ii) For p = 2 and q = 1 we obtain σAg = 1 +
√
2, which is the silver mean;

iii) For p = 3 and q = 1 we obtain σBr = 3+
√
13

2 , which is the bronze mean;
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iv) For p = 1 and q = 2 we obtain σCu = 2, which is the copper mean;

v) For p = 1 and q = 3 we obtain σNi =
1+

√
13

2 , which is the nickel mean.

Hence, de Spinadel [4] obtained a generalization of the golden mean as metallic means family or metallic

proportions. The MMF has been used in describing fractal geometry and quasiperiodic dynamics (for more

details see [11] and the references therein). Furthermore, El Naschie [9] obtained the relationships between the

Hausdorff dimension of higher order Cantor sets and the golden mean or silver mean.

It is well known that golden mean has been used in constructions of buildings, music, paintings, etc.

In [2] and [10], Crasmareanu and Hretcanu introduced the notion of the golden structure on a manifold

M . The golden structure on a manifold is a (1, 1)-tensor field J on M satisfying the same equation as the

golden ratio:

J2 = J + I,

where I is the Kronecker tensor field of M .

In [3], Crasmareanu et al. defined the notion of a golden shaped hypersurface. A hypersurface M is

called a golden shaped hypersurface if the shape operator A of M is a golden structure, i.e. A2 = A+ I , where

I is the identity on the tangent bundle of M [3]. The full classification of the golden shaped hypersurfaces in

real space forms was given in [3].

Similar to the golden structure on a manifold M , in [11], Hretcanu and Crasmareanu defined the metallic

structure on a manifold M . The metallic structure on a manifold M is a (1, 1)-tensor field J on M satisfying

the equation

J2 = pJ + qI,

where I is the Kronecker tensor field of M and p, q are positive integers [11].

In the present study, we define the notion of a metallic shaped hypersurface and our aim is to generalize

the results of [3] to metallic shaped hypersurfaces in real space forms. We obtain the full classification of metallic

shaped hypersurfaces in real space forms. We also deduce that every metallic shaped hypersurface in real space

forms is a semisymmetric hypersurface. Similar to the figures given in [3], using Mathematica [17], we draw

Figures 1, 2, and 3.

2. Metallic shaped hypersurfaces in real space forms

Let M be a hypersurface in the real space form Mn+1(c) oriented by the unit normal vector field N. Denote

the shape operator of M by A. Let λ1, λ2, ..., λn be the principal curvatures of M. If M has constant principal

curvatures then it is called an isoparametric hypersurface [1].

Now we define the notion of a metallic shaped hypersurface:

Definition 2.1 M is called a metallic shaped hypersurface if the shape operator A is a metallic structure.

Hence A satisfies

A2 = pA+ qI, (2.1)

where I is the identity on the tangent bundle of M. If p = q = 1 , then we obtain a golden shaped hypersurface

(see [3]) . If p = 2 and q = 1 , then the hypersurface is called silver shaped; if p = 3 and q = 1 , then it is called

bronze shaped; if p = 1 and q = 2 , then it is called copper shaped; and if p = 1 and q = 3, then it is called

nickel shaped.
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The principal curvatures of M are

ϕ =
p+

√
p2 + 4q

2
and Φ =

p−
√
p2 + 4q

2
.

For metallic shaped hypersurfaces in Rn+1 , we have the following theorem:

Theorem 2.1 The metallic shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(
2

p+
√
p2 + 4q

)
or

Sn(
1

|Φ|
) = Sn

(
2√

p2 + 4q − p

)
.

Proof We shall discuss the following three cases:

i) If λ1 = ... = λn = ϕ then M is totally umbilical and hence it is the hypersphere Sn( 1ϕ ) =

Sn

(
2

p+
√

p2+4q

)
⊂ Rn+1.

ii) If λ1 = ... = λn = Φ then M is again totally umbilical and hence it is the hypersphere Sn( 1
|Φ| ) =

Sn

(
2√

p2+4q−p

)
⊂ Rn+1.

iii) Assume that λ1 = ... = λk = ϕ and λk+1 = ... = λn = Φ. It is known from [1] that the isoparametric

hypersurfaces in Rn+1 are hyperspheres, hypercylinders, and hyperplanes. However, we have only hyperspheres

in Rn+1 since our principal curvatures are different from zero. This means that the hypersurface is totally

umbilical. Hence, this case cannot occur.

Thus we get the result as required. 2

The hyperbolical space in the upper half space model is defined by

Hn+1 =
{
x ∈ Rn+2 :

(
x1
)2

+ ...+
(
xn+1

)2 − (xn+2
)2

= −1, xn+2 > 0
}
.

The isoparametric hypersurfaces M of Hn+1 are given by Ryan in [14] as

I) M =
{
x ∈ Hn+1 : xk = 0

}
, for 1 ≤ k ≤ n+ 1 with A = [0].

II) M =
{
x ∈ Hn+1 : xk = r > 0

}
, for 1 ≤ k ≤ n+1 with A =

√
c+ 1I , where c = − 1

r2 ∈ (−1, 0); then

r ∈ (1,∞). In this case M is isometric to the hyperbola Hn(c).

III) M =
{
x ∈ Hn+1 : xn+2 = xn+1 + 1

}
, with A = I. In this case M is isometric to Rn .

IV) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= r2

}
= Hn+1∩Sn(r) with A =

√
c+ 1I , where c = 1

r2 > 0.

In this case M is isometric to Sn(r).

V) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xk+1

)2
= r2

}
= Hn+1∩Sk(r) for 1 ≤ k ≤ n with A = λIk ⊕ 1

λIn−k ,

where λ =
√
r2+1
r > 0.

For metallic shaped hypersurfaces in Hn+1 , we can state the following theorem:
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Theorem 2.2 The metallic shaped hypersurfaces of Hn+1 are as follows :

i) For 1 ≤ k ≤ n + 1 and q − 1 < p , M =
{
x ∈ Hn+1 : xk = r

}
, which is isometric to the hyperbola

Hn(c) , c = − 1
r2 =

p2+2q−2−p
√

p2+4q

2 ∈ (−1, 0).

ii) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= r2

}
= Hn+1 ∩ Sn(r) ;

in this case either

a) M is isometric to Sn(r) , where c = 1
r2 =

p2+2q−2+p
√

p2+4q

2 or

b) M is isometric to Sn(r) , where c = 1
r2 =

p2+2q−2−p
√

p2+4q

2 , q − 1 > p and q ̸= 1.

Proof Cases (I) and (III) in Ryan’s classification can not occur since p and q are positive integers. Hence,

we consider the following cases:

i) For 1 ≤ k ≤ n+ 1 with A =
√
c+ 1I , where c = − 1

r2 ∈ (−1, 0), from (2.1) we have

c2 + c(2− 2q − p2) + 1− 2q + q2 − p2 = 0,

which gives us

c =
p2 + 2q − 2∓ p

√
p2 + 4q

2
.

Since c = − 1
r2 ∈ (−1, 0), we assume that c =

p2+2q−2−p
√

p2+4q

2 < 0. This gives us q − 1 < p . Hence, from

Ryan’s classification (II), we obtain (i).

ii) Similar to the above case, for A =
√
c+ 1I , with c = 1

r2 > 0 we have

c =
p2 + 2q − 2∓ p

√
p2 + 4q

2
.

Since c =
p2+2q−2+p

√
p2+4q

2 > 0, we only check the positiveness of
p2+2q−2−p

√
p2+4q

2 . This gives us q − 1 > p .

Hence, we obtain ii) (a) and (b).

iii) For 1 ≤ k ≤ n with A = λIk ⊕ 1
λIn−k , where λ =

√
r2+1
r > 0 we get λ = 1−q

p < 0. Since λ > 0, this

case cannot occur.

This proves the theorem. 2

The isoparametric hypersurfaces M of Sn+1 := Sn+1(1) are given by Ryan in [13] and [14] as:

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
1− r2

}
for r ∈ (0, 1) with A =

√
1−r2

r I . In this case,

M is isometric to Sn(r).

ii) M is the generalized Clifford torus M = Sm(r1) × Sn−m(r2) with r21 + r22 = 1 and 1 ≤ m < n . In

this case, r1 = 1√
1+λ2

1

and r2 = 1√
1+λ2

2

with λ1λ2 = −1 (see [8] and [3]).

For metallic shaped hypersurfaces in Sn+1 , we can state the following theorem:

Theorem 2.3 The metallic shaped hypersurfaces of Sn+1 are as follows :
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i) M is umbilical and M =

{
x ∈ Sn+1 : xn+2 =

√
p2+p

√
p2+4q+2q

p2+p
√

p2+4q+2q+2

}
. In this case M is isometric to

Sn

(√
2

p2+p
√

p2+4q+2q+2

)
.

ii) M is umbilical and M =

{
x ∈ Sn+1 : xn+2 =

√
p2−p

√
p2+4q+2q

p2−p
√

p2+4q+2q+2

}
. In this case M is isometric to

Sn

(√
2

p2−p
√

p2+4q+2q+2

)
.

iii) M is the Clifford torus Sm

(√
2

p2+p
√

p2+4+4

)
× Sn−m

(√
2

p2−p
√

p2+4+4

)
and q = 1 .

Proof Using Ryan’s classification for isoparametric hypersurfaces Mn of Sn+1, when
√
1−r2

r = ϕ we have (i).

When
√
1−r2

r = |Φ| we obtain (ii) since p2 − p
√

p2 + 4q + 2q + 2 > 0. If r1 = 1√
1+ϕ2

and r2 = 1√
1+Φ2

with

ϕΦ = −1 then we get q = 1 and r21 = 2

p2+p
√

p2+4+4
and r22 = 2

p2−p
√

p2+4+4
. Hence, we obtain the Clifford

torus Sm

(√
2

p2+p
√

p2+4+4

)
× Sn−m

(√
2

p2−p
√

p2+4+4

)
. 2

3. Applications

For some values of p, q we get the following corollaries:

For p = q = 1 we can state:

Corollary 3.1 [3] The golden shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(√
5− 1

2

)

and

Sn(
1

Φ
) = Sn

(√
5 + 1

2

)
.

Corollary 3.2 [3] The golden shaped hypersurfaces of Hn+1 are as follows :

i) For 1 ≤ k ≤ n+1 , M =

{
x ∈ Hn+1 : xk =

√
1+

√
5

2

}
, which is isometric to the hyperbola Hn

(
1−

√
5

2

)
.

ii) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= r2

}
= Hn+1 ∩ Sn(r) ; in this case M is isometric to

Sn

(√√
5−1
2

)
.

Corollary 3.3 [3] The golden shaped hypersurfaces of Sn+1 are as follows :

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
3+

√
5

5+
√
5

}
. In this case M is isometric to Sn

(√
2

5+
√
5

)
.

ii) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
3−

√
5

5−
√
5

}
. In this case M is isometric to Sn

(√
2

5−
√
5

)
.
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Figure 1. Silver shaped spheres S2
(√

2− 1
)
, S2

(√
2 + 1

)
in R3 and the unit sphere in center.

iii) M is the Clifford torus Sm
(√

2
5+

√
5

)
× Sn−m

(√
2

5−
√
5

)
.

For p = 2 and q = 1 we have:

Corollary 3.4 The silver shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(√
2− 1

)
and

Sn(
1

|Φ|
) = Sn

(√
2 + 1

)
.

Corollary 3.5 The silver shaped hypersurfaces of Hn+1 are as follows :

i) For 1 ≤ k ≤ n+1 , M =

{
x ∈ Hn+1 : xk =

√√
2+1
2

}
, which is isometric to the hyperbola Hn(2−2

√
2).

ii) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= r2

}
= Hn+1 ∩ Sn(r); in this case M is isometric to

Sn

(√√
2−1
2

)
.

Corollary 3.6 The silver shaped hypersurfaces of Sn+1 are as follows :

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
3+2

√
2

4+2
√
2

}
. In this case M is isometric to Sn

(√
1

4+2
√
2

)
.

ii) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
3−2

√
2

4−2
√
2

}
. In this case M is isometric to Sn

(√
1

4−2
√
2

)
.
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Figure 2. Silver shaped circle S

(√√
2−1
2

)
and the hyperbolas H(2− 2

√
2) in H2.

iii) M is the Clifford torus Sm
(√

1
4+2

√
2

)
× Sn−m

(√
1

4−2
√
2

)
.

For p = 3 and q = 1 we have:

Corollary 3.7 The bronze shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(√
13− 3

2

)

and

Sn(
1

|Φ|
) = Sn

(√
13 + 3

2

)
.

Corollary 3.8 The bronze shaped hypersurfaces of Hn+1 are as follows :

i) For 1 ≤ k ≤ n + 1 , M =

{
x ∈ Hn+1 : xk =

√
3+

√
13

6

}
, which is isometric to the hyperbola

Hn( 3(3−
√
13)

2 ).

ii) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
=

√
13−3
6

}
= Hn+1 ∩ Sn

(√√
13−3
6

)
; in this case M is

isometric to Sn

(√√
13−3
6

)
.

Corollary 3.9 The bronze shaped hypersurfaces of Sn+1 are as follows :
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Figure 3. Silver shaped circles S
(√

1

4+2
√

2

)
(red) and S

(√
1

4−2
√

2

)
(black) in S2.

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
11+3

√
13

13+3
√
13

}
. In this case M is isometric to Sn

(√
2

13+3
√
13

)
.

ii) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
11−3

√
13

13−3
√
13

}
. In this case M is isometric to Sn

(√
2

13−3
√
13

)
.

iii) M is the Clifford torus Sm
(√

2
13+3

√
13

)
× Sn−m

(√
2

13−3
√
13

)
.

For p = 1 and q = 2 we can state:

Corollary 3.10 The copper shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(
1

2

)
and

Sn(
1

|Φ|
) = Sn (1) .

Corollary 3.11 The copper shaped hypersurface of Hn+1 is

M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= 1

3

}
= Hn+1∩Sn( 1√

3
); in this case M is isometric to Sn( 1√

3
) .

Corollary 3.12 The copper shaped hypersurfaces of Sn+1 are as follows :

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
2
5

}
. In this case M is isometric to Sn

(
1√
5

)
.

ii) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 = 1√

2

}
. In this case M is isometric to Sn

(
1√
2

)
.

For p = 1 and q = 3 we have:
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Corollary 3.13 The nickel shaped hypersurfaces of Rn+1 are the hyperspheres :

Sn(
1

ϕ
) = Sn

(√
13− 1

6

)

and

Sn(
1

|Φ|
) = Sn

(√
13 + 1

6

)
.

Corollary 3.14 The nickel shaped hypersurfaces of Hn+1 are as follows :

i) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= 5−

√
13

6

}
= Hn+1 ∩ Sn

(√
5−

√
13

6

)
; in this case M is

isometric to Sn

(√
5−

√
13

6

)
.

ii) M =
{
x ∈ Hn+1 :

(
x1
)2

+ ...+
(
xn+1

)2
= 5+

√
13

6

}
= Hn+1 ∩ Sn

(√
5+

√
13

6

)
; in this case M is

isometric to Sn

(√
5+

√
13

6

)
.

Corollary 3.15 The nickel shaped hypersurfaces of Sn+1 are as follows :

i) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
7+

√
13

9+
√
13

}
. In this case M is isometric to Sn

(√
2

9+
√
13

)
.

ii) M is umbilical and M =
{
x ∈ Sn+1 : xn+2 =

√
7−

√
13

9−
√
13

}
. In this case M is isometric to Sn

(√
2

9−
√
13

)
.

4. Pseudosymmetric hypersurfaces

Let (M, g) be a Riemannian manifold and R denote the Riemann–Christoffel curvature tensor field of (M, g).

Then the tensor fields R ·R and Q(g,R) are defined by

(R(X,Y ) ·R) (X1, X2, X3, X4) = −R(R(X,Y )X1, X2, X3, X4)

−...−R(X1, X2, X3, R(X,Y )X4)

and

Q(g,R)(X1, X2, X3, X4;X,Y ) = −R((X ∧ Y )X1, X2, X3, X4)

−...−R(X1, X2, X3, (X ∧ Y )X4),

respectively, where X ∧ Y is defined by

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y ;

see [6]. A Riemannian manifold (M, g) is called pseudosymmetric if and only if the condition

R ·R = LRQ(g,R)
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holds on the set UR defined by

UR =

{
p ∈ M :

(
R− κ

n(n− 1)
G

)
̸= 0 at p

}
,

where LR is some function on UR and the (0, 4)-tensor field G is defined by

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4),

κ is the scalar curvature, and X,Y,X1, X2, X3, X4 are vector fields on M [6]. If LR is a constant then (M, g)

is called a pseudosymmetric manifold of constant type (see [6] and [12]). If R · R = 0 then (M, g) is called

semisymmetric [15]. For the geometrical interpretations of pseudosymmetric hypersurfaces in the Euclidean

space see [16].

In [7], Deszcz et al. proved the following lemma:

Lemma 4.1 [7] Let (M, g) be a hypersurface immersed isometrically in a Riemannian space of constant

curvature Nn+1(c) , n ≥ 3 . If at a point p ∈ UR ⊂ M, the shape operator A of M satisfies the condition

A2 = αA+ βId,

α, β ∈ R, then the relation

R ·R =

(
κ̃

n(n− 1)
− β

)
Q(g,R) (4.1)

holds at p , where κ̃ is the scalar curvature of the ambient space Nn+1(c) .

By the use of the above lemma and Definition 2.1 we can state the following corollary:

Corollary 4.1 Every metallic shaped hypersurface of a Riemannian space of constant curvature Nn+1(c) ,

n ≥ 3 , is a pseudosymmetric hypersurface of constant type.

However, from Theorem 2.1, Theorem 2.2, and Theorem 2.3, it can be easily seen that metallic shaped

hypersurfaces of a Riemannian space of constant curvature Nn+1(c), n ≥ 3, are semisymmetric. Semisymmetic

isoparametric hypersurfaces were studied by Ryan in [13] (see Remark on page 379). Hence, we obtain the

following result:

Corollary 4.2 Every metallic shaped hypersurface of a Riemannian space of constant curvature Nn+1(c) ,

n ≥ 3 , is a semisymmetric hypersurface.

Acknowledgment

The authors are very grateful to the referee for his/her critical comments.

References

[1] Cecil TE. Isoparametric and Dupin hypersurfaces. SIGMA 2008; 4: 062.

[2] Crasmareanu M, Hretcanu CE. Golden differential geometry. Chaos Solitons Fractals 2008; 38: 1229–1238.

793

http://dx.doi.org/10.1016/j.chaos.2008.04.007
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