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Abstract: A ring R is called GWCN if x2y2 = xy2x for all x ∈ N(R) and y ∈ R , which is a proper generalization

of reduced rings and CN rings. We study the sufficient conditions for GWCN rings to be reduced and CN . We

first discuss many properties of GWCN rings. Next, we give some interesting characterizations of left min-abel rings.

Finally, with the help of exchange GWCN rings, we obtain some characterizations of strongly regular rings.
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1. Introduction

Throughout this paper, all rings are associative with identity. Let R be a ring; we use P (R), N(R), J(R),

E(R), Z(R), U(R), and Zl(R) to denote the prime radical, the set of all nilpotent elements, the Jacobson

radical, the set of all idempotent elements, the center, the set of all invertible elements, and the left singular

ideal of R , respectively. For a ∈ R , r(a) and l(a) denote the right annihilator of a and the left annihilator of

a , respectively.

Since 1950, the commutativity works of associative rings have been discussed by many authors. In

[13], James introduced these works in detail. After nearly 70 years of development, the subject is gradually

innuendo to the local commutativity conditions of ring. In this paper, the main motive is to study certain local

commutativity conditions for rings.

In [22] it is proved that a semiprime ring R in which x2y2 − xy2x ∈ Z(R) for every x, y ∈ R is

commutative. Hence a semiprime ring R satisfying x2y2 = xy2x for every x, y ∈ R is commutative.

Recall that a ring R is central reduced (CN for short) [8] if N(R) ⊆ Z(R).

Clearly, for a CN ring R , R satisfies the following equation ⋆

⋆ x2y2 = xy2x for all x ∈ N(R) and y ∈ R .

However, the converse is not true by the following example.

Let F be a field and R =

(
F F
0 F

)
. Then R satisfies the above equation ⋆ , but R is not a CN ring.

Call a ring R a generalized weakly CN ring (short for GWCN ) if R satisfies the equation ⋆ . Hence
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the example mentioned above illustrates that GWCN rings are proper generalizations of CN rings.

An ideal I of a ring R is reduced if N(R) ∩ I = 0; especially, a ring R is called reduced if N(R) = 0.

In section 2, we mainly discuss the properties of GWCN rings. We also show that a GWCN ring

containing a reduced maximal left ideal is strongly regular. With the help of GWCN rings, we give some

characterizations of reduced rings.

An element k ∈ R is called left minimal if Rk is a minimal left ideal of R . An idempotent element

e ∈ R is called left minimal idempotent if e is a left minimal element. Write MEl(R) to denote the set of all

left minimal idempotents of R . A ring R is called left min-abel [24] if every left minimal idempotent element

of R is left semicentral. The study of left min-abel rings appeared in [23, 24, 25, 29].

In section 3, we mainly study the characterization of left min-abel rings.

In section 4, we discuss some properties of GWCN exchange rings and give some characterizations of

strongly regular rings.

2. Properties of GWCN rings

Now we begin with the following proposition.

Proposition 2.1 Let R be a ring and I an ideal of R . Then we have:

(1) If I ⊆ N(R) and R is a GWCN ring, then R/I is GWCN .

(2) If I is reduced and R/I is a GWCN ring, then R is GWCN .

Proof (1) Let R̄ = R/I . For any ā = a+ I ∈ N(R̄), b̄ = b+ I ∈ R̄ , we have ān = 0̄, where n is a positive

integer, that is an ∈ I . Since I ⊆ N(R), a ∈ N(R), then a2b2 = ab2a , which implies ā2b̄2 = āb̄2ā . Hence R̄

is a GWCN ring.

(2) Let 0 ̸= a ∈ N(R), b ∈ R , then ā ∈ N(R̄), ā2b̄2 = āb̄2ā . That is a2b2 − ab2a ∈ I . Set n ≥ 2 as

the minimal positive integer such that an = 0. If n ≥ 3, then an−3(a2b2 − ab2a) = an−1b2 − an−2b2a ∈ I ,

an−1b2a− an−2b2a2 ∈ I . Since (an−1b2a− an−2b2a2)3 = 0, an−1b2a = an−2b2a2 because I is reduced. There-

fore, an−1b2 = an−2b2a because (an−1b2 − an−2b2a)2 = 0, then an−3(a2b2 − ab2a) = 0. If n = 3, then

a2b2 = ab2a . If n > 3, then (an−4(a2b2 − ab2a)a)2 = 0; this gives an−4(a2b2 − ab2a)a = 0. Continuing the

above process, eventually one gets a2b2 = ab2a . If n = 2, then a2b2 = 0, ab2a = −(a2b2 − ab2a) ∈ I . Since

(ab2a)2 = 0, ab2a = 0, this implies a2b2 = ab2a . Thus R is a GWCN ring. 2

Let R be a ring. Write Maxl(R) to denote the set of all maximal left ideals of R . Then we give some

basic properties of GWCN rings.

Proposition 2.2 Let R be a GWCN ring and M ∈ Maxl(R) , e ∈ E(R) , and a ∈ R . Then we have:

(1) ea(1− e)Rea(1− e) = 0 .

(2) Either e ∈ M or (1− e)R ⊆ M .

(3) If ReR = R , then e = 1 .

(4) Ra+R(ae− 1) = R .

(5) 1− ae ∈ M always implies 1− ea ∈ M .

(6) 1− ea ∈ M always implies 1− ae ∈ M .

(7) Me ⊆ M .
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(8) For every xi ∈ R , ei ∈ E(R) , i = 1, 2 · · ·n ,
n∑

i=1

xiei = 1 always implies
n∑

i=1

Rxi = R .

Proof (1) Write h = ea(1 − e), then he = 0, eh = h , h2 = 0. Since R is a GWCN ring, hx2h =

h2x2 = 0 for any x ∈ R . Substituting x + e for x , one obtains hxh = 0, which implies hRh = 0. Hence

ea(1− e)Rea(1− e) = 0.

(2) If e /∈ M , then Re+M = R , (1− e)R ⊆ (1− e)Re+ (1− e)M . By (1), ex(1− e)Rex(1− e) = 0 for

any x ∈ R . Therefore, (Rex(1− e))2 = 0, then ex(1− e) ∈ Rex(1− e) ⊆ J(R) ⊆ M . Hence eR(1− e) ⊆ M ,

which implies (1− e)Re ⊆ M . Thus (1− e)R ⊆ M .

(3) By hypothesis, R(1− e) = ReR(1− e) ⊆ J(R). Therefore, 1− e ∈ J(R), which implies e = 1.

(4) Supposed that Ra+R(ae−1) ̸= R , then there exists M ∈ Maxl(R) such that Ra+R(ae−1) ⊆ M .

Since ae − 1 ∈ M , then e /∈ M . By (2), 1 − e ∈ M , then a − ae ∈ M . This leads to 1 ∈ M , which is a

contradiction. Hence Ra+R(ae− 1) = R .

(5) If 1− ae ∈ M , then e /∈ M . By (2), (1− e)R ⊆ M , it follows that 1− a = (1− ae)− a(1− e) ∈ M .

Hence 1− ea = (1− a) + (1− e)a ∈ M .

(6) Assume that 1 − ea ∈ M . If e ∈ M , then 1 − e /∈ M , it gives eR ⊆ M by (2). Thus

1 = (1 − ea) + ea ∈ M which is a contradiction. Thus e /∈ M , if follows that (1 − e)R ⊆ M , which

leads to 1− a = (1− ea)− (1− e)a ∈ M . Hence 1− ae = (1− a) + a(1− e) ∈ M .

(7) If Me ⫅̸ M , then R = Me +M . Write 1 = ne +m , where n,m ∈ M , then 1 − ne = m ∈ M . By

(5), 1− en ∈ M . This leads to 1 ∈ M , which is a contradiction. Hence Me ⊆ M .

(8) Suppose that
n∑

i=1

Rxi ̸= R , then there exists N ∈ Maxl(R) such that
n∑

i=1

Rxi ⊆ N . Thus

Rxi ⊆
n∑

i=1

Rxi ⊆ N , i = 1, 2 · · ·n . Therefore xi ∈ N and xiei ∈ N by (7). Then 1 =
n∑

i=1

xiei ∈ N ,

which is a contradiction. Hence
n∑

i=1

Rxi = R . 2

Call a left ideal I of a ring R Abelian if for any e ∈ E(R) ∩ I , we have ex = xe for all x ∈ I . Clearly,

A ring R is Abelian if R is an Abelian left ideal of R . It is well known that a ring R is Abelian if and only if

eR(1− e) = 0 for all e ∈ E(R). From the Proposition 2.2, we have the following corollary.

Corollary 2.3 Let R be a GWCN ring. Then we have:

(1) If idempotents can be lifted modulo J(R) , then R/J(R) is Abelian.

(2) If R has an Abelian maximal left ideal M , then R is Abelian.

Proof (1) Let R̄ = R/J(R) and x ∈ R satisfy x − x2 ∈ J(R). By hypothesis, there exists e ∈ E(R),

e − x ∈ J(R). Since R is a GWCN ring, ea(1 − e)Rea(1 − e) = 0 for any a ∈ R by Proposition 2.2(1),

this gives ēā(1̄ − ē)R̄ēā(1̄ − ē) = 0̄. Since R̄ is a semiprime ring, ēā(1̄ − ē) = 0̄ for all a ∈ R . Therefore

ēR̄(1̄− ē) = 0̄, that is x̄R̄(1̄− x̄) = 0̄. Hence R̄ is Abelian.

(2) Assume that e ∈ E(R). If e /∈ M , then by Proposition 2.2(2), 1 − e ∈ M . Therefore for any

x ∈ R , x(1 − e) ∈ M , it follows that (x(1 − e))(1 − e) = (1 − e)(x(1 − e)) because M is Abelian, that is,

x(1 − e) = (1 − e)x(1 − e). Hence eR(1 − e) = 0. If e ∈ M , then 1 − e /∈ M it follows that eR ⊆ M by

Proposition 2.2(2). Also by Proposition 2.2(7), M(1− e) ⊆ M . Thus eR(1− e) ⊆ eM(1− e) = Me(1− e) = 0.

In any case, we have eR(1− e) = 0; this implies R is Abelian. 2
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Recall that a ring R is nil-semicommutative [4] if ab = 0 implies aRb ⊆ N(R) for any a, b ∈ R , and

R is said to be NCI if N(R) = 0 or there exists a nonzero ideal of R contained in N(R). Clearly NI rings

(that is, N(R) is an ideal of R) are NCI , but the converse is not true by [12]. In preparation for the proof of

our next theorem, we first state the following proposition.

Proposition 2.4 Let R be a GWCN ring and a ∈ R . Then

(1) a2 = 0 always implies aRaRa = 0 .

(2) R is reduced if and only if R is semiprime.

(3) R is a NCI ring.

(4) R is a nonzero divisor ring if and only if R is a prime ring.

(5) R is nil-semicommutative.

Proof (1) By hypothesis, ax2a = a2x2 = 0 for any x ∈ R . Substituting x+ ya for x , one has ayaxa = 0 for

all x, y ∈ R . Hence aRaRa = 0.

(2) One direction is clear.

For the other direction. Let a2 = 0, where a ∈ R . By (1), aRaRa = 0, that is (RaR)3 = 0. Since R is

semiprime, RaR = 0, which implies a = 0. Hence R is reduced.

(3) If N(R) ̸= 0, then there exists 0 ̸= a ∈ N(R) such that a2 = 0. By (1), aRaRa = 0, which implies

R is a NCI ring.

(4) Assume that R is a prime ring and ab = 0, where a, b ∈ R . By (2), R is reduced and so aRb = 0;

it follows that a = 0 or b = 0 because R is a prime ring. Therefore R is a nonzero divisor ring.

(5) Let xy = 0, where x, y ∈ R . Since (yx)2 = 0, yxr2yx = 0 for any r ∈ R . Choose t ∈ R and

substituting r + tx for r , one obtains that yxtxryx = 0, this gives yxRxRyx = 0. For any a ∈ R , we have

(yxa)3 = 0. Therefore (xay)4 = xa(yxa)3y = 0. Thus xay ⊆ N(R), which implies R is nil-semicommutative.
2

The following example shows that there exists a nil-semicommutative ring that is not GWCN .

Example 2.5 Let Z2 be the field of integers modulo 2 and R = T3(Z2) =

 Z2 Z2 Z2

0 Z2 Z2

0 0 Z2

 . Let A =

 0 1 1
0 0 1
0 0 0

 ∈ N(R) and B =

 1 0 0
0 0 0
0 0 0

 ∈ R , then A2B2 ̸= AB2A . Hence R is not a GWCN ring.

However, R is nil-semicommutative.

It is well known that R is strongly regular if and only if R is a reduced regular ring or an Abelian regular

ring. The following corollary gives a new characterization of strongly regular rings in terms of GWCN rings.

Corollary 2.6 R is a strongly regular ring if and only if R is a regular GWCN ring.

Proof We only need to show the Sufficiency: Assume that R is a regular GWCN ring. Since regular rings

are semiprime, R is reduced by Proposition 2.4(2). Hence R is strongly regular. 2

Recall that a ring R is directly finite if ab = 1 implies ba = 1 for a, b ∈ R , and R is said to be n−regular

(see [26, 27]) if every nilpotent element is regular.
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Corollary 2.7 Let R be a GWCN ring and a ∈ R . Then we have

(1) If a ∈ aRa , then a ∈ a2R ∩Ra2 .

(2) R is directly finite.

(3) R is reduced if and only if R is n−regular.

(4) R is π−regular if and only if R is strongly π−regular.

(5)For any yi ∈ R , ei ∈ E(R) , i = 1, 2 · · ·n , u ∈ R , if
n∑

i=1

yiuei ∈ U(R) , then u ∈ U(R) .

Proof (1) Let a = aba for some b ∈ R . Set e = ab . Then e ∈ E(R) and a = ea . Clearly, (a(1− e))2 = 0, it

follows that a(1− e)Ra(1− e)Ra(1− e) = 0 by Proposition 2.4(1), so a(1− e)ba(1− e)ba(1− e) = 0, by simple

calculation, we have a = ae(1 + 2ba+ baebae− baeba− 2bae) ∈ a2R . Similarly, we can show that a ∈ Ra2 .

(2) Let ab = 1. Then b = bab , by (1), there exists c ∈ R such that b = b2c . So 1 = ab = ab2c = bc ,

a = a1 = a(bc) = (ab)c = c , this gives ba = bc = 1.

(3) Since reduced =⇒ n−regular =⇒ semiprime, (3) is an immediate result of Proposition 2.4(2).

(4) It follows from (1).

(5) Write
n∑

i=1

yiuei = v ∈ U(R). Then
n∑

i=1

(v−1yiu)ei = 1. By Proposition 2.2(8),
n∑

i=1

Rv−1yiu = R , this

gives R = Ru . By (1), u ∈ U(R). 2

By Corollary 2.7, we have the following corollary.

Corollary 2.8 Let R be a GWCN ring with e ∈ E(R) and a ∈ R . Then

(1) 1− ae ∈ U(R) if and only if 1− ea ∈ U(R) .

(2) If x+ z ∈ xzE(R) for x, z ∈ R , then xR = zR .

Proof (1) Assume that 1 − ae ∈ U(R). If R(1 − ea) ̸= R , then there exists M ∈ Maxl(R) such that

1− ea ∈ M . By Proposition 2.2(6), 1− ae ∈ M . Thus M = R , which is a contradiction. Thus R(1− ea) = R

and so 1− ea ∈ U(R) by Corollary 2.7(1). Similar to show in turn.

(2) Since x+ z ∈ xzE(R), x+ z = xze for some e ∈ E(R), that is z = xze− x = x(ze− 1). Since R is

a GWCN ring, R = Rz + R(ze − 1) = Rx(ze − 1) + R(ze − 1) ⊆ R(ze − 1) by Proposition 2.2(4); it follows

that R = R(ze− 1). Hence ze− 1 ∈ U(R) by Corollary 2.7(2); this leads to xR = zR . 2

According to Cohn [6], a ring R is called symmetric if abc = 0 implies acb = 0 for a, b, c ∈ R , R is said

to be ZC if ab = 0 implies ba = 0 for a, b ∈ R , and R is said to be ZI if ab = 0 implies aRb = 0. Clearly,

reduced =⇒ symmetric =⇒ ZC =⇒ ZI =⇒ Abelian. A left ideal I of R is called regular if a ∈ aIa for all

a ∈ I . Clearly, every left ideal of strongly regular rings is regular. In preparation for our next theorem, we first

state the following lemma.

Lemma 2.9 Let R be a GWCN ring. If there exists M ∈ Maxl(R) such that M is regular, then R is a

reduced ring.

Proof Assume that a ∈ R such that a2 = 0. Then by Proposition 2.4(1), one has aRaRa = 0; this gives a ∈
J(R) ⊆ M . Since M is a regular left ideal, then there exists b ∈ M such that a = aba = (aba)ba ∈ aRaRa = 0.

Hence R is reduced. 2
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Theorem 2.10 Let R be a GWCN ring. If there exists M ∈ Maxl(R) such that M is regular, then R is a

strongly regular ring.

Proof By Lemma 2.9, R is reduced. Let a ∈ R . If a ∈ M , then a = aba for some b ∈ M . If a /∈ M , then

Ra + M = R . Write ca + m = 1 with c ∈ R,m ∈ M , then a = aca + am . Since am ∈ M , am = amdam

for some d ∈ M . Write e = amd , g = dam , then e2 = e, g2 = g . Since R is reduced, R is Abelian, this

gives eg = ge , amd2am = ge = gamd = agmd = adam2d , so a(md2am− dam2d) = 0. Since R is a ZI ring,

aR(md2am − dam2d) = 0, (md2am − dam2d)2 = 0. Therefore md2am = dam2d = gmd = mgd = mdamd ,

that is m(d2am − damd) = 0. Repeating the process mentioned above, we obtain d2am = damd , and

so dam = amd . Since a(m − mdam) = 0, (m − mdam)a = 0, that is ma = mdama = mamda ; this

gives ma(1 − mda) = 0. Since R is symmetric, m(1 − mda)a = 0; it follows that ma = m2da2 . Hence

a = (ca+m)a = ca2 +ma = (c+m2d)a2 ∈ Ra2 . Hence R is strongly regular. 2

Call a ring R QVNR if R contains a regular maximal left ideal. Since every left ideal of strongly regular

rings is regular, we have the following corollary.

Corollary 2.11 The following conditions are equivalent for a ring R .

(1) R is a strongly regular ring;

(2) R is a reduced QVNR ring;

(3) R is a CN QVNR ring;

(4) R is a GWCN QVNR ring.

Recall that a ring R is left SF if every simple left R -module is flat. Goodearl [10] proved that if R is a

left SF ring and M ∈ Maxl(R), then m ∈ mM for any m ∈ M . Inspired by [10], Li and Wei [15] introduced

the definition of left NSF rings, that is, for any M ∈ Maxl(R) and any m ∈ N(R) ∩M , one has m ∈ mM .

Clearly, reduced rings and left SF rings are left NSF . In preparation for our next proposition, we first state

the following lemma.

Lemma 2.12 If R is a CN ring, then V2(R) =

{(
a b
0 a

) ∣∣∣∣∣a, b ∈ R

}
is GWCN .

Proof Let A =

(
a b
0 a

)
∈ N(V2(R)). Then a ∈ N(R). Since R is a CN ring, a ∈ Z(R). For any

B =

(
x y
0 x

)
∈ V2(R), we have A2B2 =

(
a2x2 a2(xy+yx)+(ab+ba)x2

0 a2x2

)
, AB2A =

(
ax2a ax2b+a(xy+yx)a+bx2a

0 ax2a

)
.

Since a ∈ Z(R), a2x2 = ax2a , a2xy = axya , a2yx = ayxa . Since a ∈ N(R), there exists n ≥ 1 such

that an = 0. Therefore (ab)n = anbn = 0; then ab ∈ N(R) ⊆ Z(R). Hence abx2 = x2ab = ax2b . Thus

A2B2 = AB2A , which implies V2(R) is a GWCN ring. 2

Proposition 2.13 R is reduced if and only if V2(R) is a GWCN ring and R is a left NSF ring.

Proof By Lemma 2.12, the necessity is clear.

Now let a2 = 0, where a ∈ R . If a ̸= 0, then l(a) ̸= R , and so there exists M ∈ Maxl(R) such that

a ∈ l(a) ⊆ M . Since R is left NSF and a ∈ N(R) ∩M , a ∈ aM . Therefore there exists m ∈ M such that
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a = am . Let A =

(
a 1
0 a

)
, then A3 = 0, and so A ∈ N(V2(R)). Let B =

(
m m
0 m

)
∈ V2(R). Since V2(R)

is a GWCN ring, A2B2 = AB2A , which implies

(
0 2am2

0 0

)
=

(
am2a am2 + 2am2a+m2a
0 am2a

)
. Hence

2am2 = am2+2am2a+m2a ; noticing that a = am , one obtains that a = m2a . Therefore 1−m2 ∈ l(a) ⊆ M .

This leads to 1 ∈ M , which is a contradiction. Thus a = 0, which implies R is reduced. 2

In [10], Goodearl pointed out regular rings are always left SF . According to Rege [17], reduced left SF

rings are strongly regular. Hence by Proposition 2.13, we have the following corollary.

Corollary 2.14 R is a strongly regular ring if and only if V2(R) is a GWCN ring and R is left SF ring.

Let R be a ring and R[x] denote the polynomial ring with indeterminate x over R . Then, clearly,

V2(R) ∼= R[x]/(x2). For a ring R , let T (R;R) = {(a;x)|a, x ∈ R} with the addition componentwise and the

multiplication defined by (a1;x1)(a2;x2) = (a1a2; a1x2+x1a2). Then T (R;R) is a ring that is called the trivial

extension of R by R . Clearly T (R;R) ∼= V2(R). By Proposition 2.13, we have the following corollary that

characterizes reduced rings.

Corollary 2.15 The following conditions are equivalent for a ring R :

(1) R is a reduced ring;

(2) R is a left NSF ring and R[x]/(x2) is a GWCN ring;

(3) R is a left NSF ring and T (R;R) is a GWCN ring;

Theorem 2.16 R is a reduced ring if and only if T2(R) =

(
R R
0 R

)
is a GWCN ring.

Proof Assume that R is a reduced ring. Then N(T2(R)) =

(
0 R
0 0

)
, and so A2B2 = 0 = AB2A for all

A ∈ N(T2(R)) and B ∈ T2(R). Hence T2(R) is GWCN .

Conversely, assume that T2(R) is a GWCN ring and a ∈ R with a2 = 0. Choose A =

(
a x
0 0

)
∈

N(T2(R)) and B =

(
0 0
0 1

)
∈ T2(R). By hypothesis, A2B2 = AB2A ; this gives

(
0 a
0 0

)
=

(
0 0
0 0

)
and it follows that a = 0. Thus R is reduced. 2

3. Left min-abel rings

An element k ∈ R is called left minimal if Rk is a minimal left ideal of R . Write Ml(R) to denote the set

of all left minimal elements of R . An idempotent element e ∈ R is called left minimal idempotent if e is a

left minimal element. Write MEl(R) to denote the set of all left minimal idempotent of R . An idempotent

e ∈ R is called left (resp., right) semicentral if ae = eae (resp., ea = eae) for all a ∈ R . A ring R is called

left min-abel [24] if every left minimal idempotent element of R is left semicentral, R is said to be strongly left

min-abel if MEl(R) ⊆ Z(R), and R is said to be left MC2 ring if aRe = 0 implies eRa = 0 for all a ∈ R

and e ∈ MEl(R). A ring R is called strongly left DS if k2 ̸= 0 for each k ∈ Ml(R), and R is said to be left

universally mininjective if kRk ̸= 0 for each k ∈ Ml(R).
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Proposition 3.1 If R is a GWCN ring, then R is a left min-abel ring.

Proof Assume that e ∈ MEl(R). For any a ∈ R , write h = (1 − e)ae , where e ∈ MEl(R). If h ̸= 0,

then Rh = Re . Let e = ch for some c ∈ R . Then we have h = he = hch ; by Corollary 2.7(1), h = dh2

for some d ∈ R . Since h2 = 0, h = 0, which is a contradiction. Therefore h = 0 and R is a left min-abel ring. 2

The following corollary follows from [24, Theorem 1.2, 1.8, and 1.11] and Proposition 3.1.

Corollary 3.2 Let R be a GWCN ring; then

(1) R is a left quasi-duo ring if and only if R is a MELT ring.

(2) R is a strongly left min-abel ring if and only if R is a left MC2 ring.

(3) R is a strongly left DS ring if and only if R is a left universally mininjective ring.

Influenced by the definition of GWCN rings, we give some new characterizations of left min-abel rings

that generalize [24, Theorem 1.1]

Theorem 3.3 R is a left min-abel ring if and only if for any k ∈ Ml(R) ∩ N(R) , we have k2x2 = kx2k for

all x ∈ R .

Proof Assume that R is a left min-abel ring and k ∈ Ml(R)∩N(R). Then we claim that k2 = 0. Otherwise,

(Rk)2 ̸= 0; then there exists e ∈ MEl(R) such that Rk = Re . Set e = ck for some c ∈ R . Since R is left

min-abel, e is left semicentral. Then k = ke = eke = ck2e = c2k3e = · · · = cnkn+1e = · · · , it follows that

k = 0 because k ∈ N(R), which is a contradiction. Hence k2 = 0 and so k2x2 = 0 for any x ∈ R . In fact the

proof mentioned above also implies kRk = 0; hence kx2k = 0 = k2x2 for all x ∈ R .

Conversely, assume that e ∈ MEl(R). For any a ∈ R , write h = (1 − e)ae . If h ̸= 0, then Rh = Re ,

he = h , eh = 0, and h2 = 0. Hence h ∈ Ml(R) ∩ N(R). By hypothesis, hx2h = h2x2 = 0 for any x ∈ R .

Substituting x + e for x , one has hxh = 0, which implies hRh = 0. Hence Re = ReRe = RhRh = 0, a

contradiction. Thus h = 0, which implies R is a left min-abel ring. 2

Similar to the proof of Theorem 3.3, we easily obtain the following corollary.

Corollary 3.4 R is a left min-abel ring if and only if for any k ∈ Ml(R) ∩N(R) , we have x2k2 = kx2k for

all x ∈ R .

Theorem 3.5 R is a left min-abel ring if and only if for every k ∈ Ml(R) , M ∈ Maxl(R) , 1 − ak ∈ M

always implies 1− ka ∈ M for all a ∈ R .

Proof Suppose that R is a left min-abel ring and 1 − ak ∈ M . Clearly, k /∈ M ; this gives Rk ∩ M = 0

and R = M ⊕ Rk . Let M = R(1 − e) for some e ∈ MEl(R). Since R is a left min-abel ring, e is left

semi-central, that is 1 − e is right semicentral. Hence M is an ideal. Assume that 1 − ka /∈ M . Then

R(1 − ka) + M = R and so there exist c ∈ R and m ∈ M such that c(1 − ka) + m = 1. Therefore

k = (c(1− ka) +m)k = ck(1− ak) +mk ∈ M , which is a contradiction. Hence 1− ka ∈ M .

Conversely, let e ∈ MEl(R). For any a ∈ R , write h = (1 − e)ae . If h ̸= 0, then Rh = Re and

h ∈ Ml(R). Let e = ch for some c ∈ R . Since 1 − e ∈ R(1 − e) = l(e) ∈ Maxl(R), 1 − (ec)h ∈ l(e). By

hypothesis, 1 − h(ec) ∈ l(e), which implies (1 − hc)e = 0. Hence h = he = h2ce = 0, a contradiction. Thus

h = 0 and so R is left min-abel. 2
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Theorem 3.6 R is a left min-abel ring if and only if for every k ∈ Ml(R) , M ∈ Maxl(R) , 1 − ka ∈ M

always implies 1− ak ∈ M for all a ∈ R .

Proof Assume that R is a left min-abel ring and 1− ka ∈ M . Clearly ka /∈ M and so Rka⊕M = R . This

implies M is an ideal of R because R is left min-abel. If k ∈ M , then ka ∈ M , which is a contradiction.

Hence k /∈ M ; it follows that Rk ⊕ M = R . Let Rk = Re and M = R(1 − e) for some e ∈ MEl(R). If

1 − ak /∈ M , then R(1 − ak) + M = R . Write 1 = c(1 − ak) + m for some c ∈ R and m ∈ M . Since

e = (c(1 − ak) +m)e = c(1 − ak)e because me = 0. Since e is left semicentral, e = ce(1 − ak)e . Set e = dk

for some d ∈ R . Then e = cd(1 − ka)ke = cd(1 − ka)k ∈ M because 1 − ka ∈ M , a contradiction. Hence

1− ak ∈ M .

Conversely, let e ∈ MEl(R) and a ∈ R , write h = (1− e)ae . If h ̸= 0, then Rh = Re and h ∈ Ml(R).

Let e = ch for some c ∈ R . Write g = hc . Then g ∈ MEl(R) and 1 − h(cg) = 1 − g ∈ l(g) ∈ Maxl(R). By

hypothesis, 1− cgh ∈ l(g), that is, g = cghg = 0; this leads to h = gh = 0, a contradiction. Thus h = 0 and

so R is left min-abel. 2

Recall that a left R−module M is Y J−(nil−)injective if for any 0 ̸= a ∈ R (a ∈ N(R)) there exists a

positive integer n such that an ̸= 0 and any left R−homomorphism of Ran into M extends to one of R into

M . Evidently, Y J− injective modules are nil− injective, but the converse is not true, in general, by Wei and

Chen [26]. The following proposition is significant because it is a generalization of [24, Proposition 2.6].

Proposition 3.7 Let R be a GWCN ring. Then we have:

(1) If R is a left MC2 ring and every simple singular left R−module is nil− injective, then R is reduced.

(2) If every simple left R−module is nil− injective, then R is reduced.

Proof (1) Let a ∈ R satisfy aRa = 0. We claim that a = 0. If not, then l(a) ̸= R , and so there exists

a maximal left ideal M of R containing l(a). If M is not an essential left ideal of R , then M = l(e) for

some e ∈ MEl(R). Since aR ⊆ l(a) ⊆ M = l(e), aRe = 0. Since R is a left MC2 ring, eRa = 0,

it follows that e ∈ l(a) ⊆ l(e), a contradiction. Hence M is an essential left ideal of R ; this implies

R/M is a simple singular left R−module. By hypothesis, R/M is a nil− injective left R−module. Let

f : Ra −→ R/M be defined by f(ra) = r +M . Then f is a well defined left R−homomorphism and so there

exists a left R− homomorphism g : R −→ R/M such that g(a) = f(a). Hence there exists c ∈ R such that

1+M = f(a) = g(a) = ag(1) = ac+M , that is 1−ac ∈ M . Since R is a GWCN ring and a2 = 0, aRaRa = 0

by Proposition 2.4(1); this gives (ac)3 = 0. Hence 1 = 1 − (ac)3 = (1 + ac + (ac)2)(1 − ac) ∈ M , which is a

contradiction. Therefore a = 0 and so R is a reduced ring by 2.4(2).

(2) Similar to (1), we can show that R is reduced. 2

Now we consider whether the result holds if we omit the condition R is a left MC2 ring.

Example 3.8 Let F be a field and R = T2(F ) =

(
F F
0 F

)
. By Theorem 2.16, R is a GWCN ring. Now

let e =

(
1 0
0 0

)
∈ MEl(R) and A =

(
0 1
0 0

)
∈ R . Then ARe =

(
0 0
0 0

)
, but eRA =

(
0 F
0 0

)
, and

so R is not a left MC2 ring. By [20, Example 2.11], every simple singular left R−module is injective. Clearly,

N(R) =

(
0 F
0 0

)
, which implies R is not reduced. Therefore the result of Proposition 3.7(1)(1) is not true
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if we omit the condition R is a left MC2 ring.

Recall that a ring R is said to be left (resp., right) weakly regular if for every a ∈ R , a ∈ RaRa (resp,

a ∈ aRaR). R is said to be weakly regular if all left weakly regular rings are right weakly regular. Clearly, if R

is a ZC ring, then R is left weakly regular if and only if R is right weakly regular. Kim et al. [14, Theorem 4]

proved that if R is a ZI ring whose every simple singular left R−module is Y J− injective, then R is a reduced

weakly regular ring. The following corollary is a generalization of [14, Theorem 4].

Corollary 3.9 Let R be a left MC2 GWCN ring. If every simple singular left R−module is Y J− injective,

then R is a reduced weakly regular ring.

Proof It is an immediate result of Proposition 3.7(1) and [14, Theorem 4]. 2

It is well known that left quasi-duo left weakly regular rings are strongly regular. Hence we have the

following corollary.

Corollary 3.10 Let R be a left MC2 GWCN ring. If R is also a MELT ring whose every simple singular

left module is Y J− injective, then R is strongly regular.

Proof By corollary 3.9, R is a reduced weakly regular ring. Since R is MELT , R is left quasi-duo by

corollary 3.2(1). Hence R is strongly regular. 2

4. GWCN exchange rings

An element x ∈ R is said to be exchange if there exists e ∈ E(R) such that e ∈ xR and 1 − e ∈ (1 − x)R .

The ring R is said to be exchange if all of its elements are exchange. An element x ∈ R is said to be clean if

x = u + f for some u ∈ U(R) and f ∈ E(R). The ring R is said to be clean if all of its elements are clean.

Nicholson [16, Proposition 1.8] showed that clean rings are exchange, but the converse is not true by Handelman

[11, Example 1]. [16] showed that Abelian exchange rings are clean; [30] showed that left quasi-duo exchange

rings are clean; [28] showed that quasi-normal exchange rings are clean.

Theorem 4.1 Let R be a GWCN exchange ring. Then

(1) R/P is a local ring for every prime ideal of R .

(2) R/P is a division ring for every left primitive ideal of R .

(3) R/J(R) is reduced.

(4) R is left quasi-duo.

(5) R is clean.

Proof (1) According to Warfield [21, Theorem 1], an exchange ring with only two idempotents is a local ring.

Since R is an exchange ring, idempotents can be lifted modulo P . Let a ∈ R such that a− a2 ∈ P ; then there

exists e ∈ E(R) such that e− a ∈ P . Since R is a GWCN ring, ex(1− e)Rex(1− e)Rex(1− e) = 0 ⊆ P for

any x ∈ R by Proposition 2.4(1). Since P is a prime ideal of R , ex(1 − e) ∈ P for all x ∈ R , and so either

e ∈ P or 1 − e ∈ P ; this gives either a ∈ P or 1 − a ∈ P . Thus R/P contains only two idempotents. Since

R/P is an exchange ring, R/P is a local ring.

(2) Since P is a left primitive ideal, P is a prime ideal. By (1), R/P is a local ring. Since R/P is a left

primitive ring, R/P is a division ring.
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(3) Let R̄ = R/J(R). If ā2 = 0̄, then a2 ∈ J(R). Assume that ā ̸= 0̄. Therefore a /∈ J(R) and there

exists a left primitive ideal P of R such that a /∈ P . By (2), R̂ = R/P is a division ring. Since a /∈ P , â ̸= 0̂,

that is â ∈ U(R̂). Hence âb̂ = 1̂ = b̂â for some b ∈ R , that is 1 − ab ∈ P . Then a − a2b = a(1 − ab) ∈ P ,

which implies a ∈ P , a contradiction. Thus ā = 0̄; it follows that R̄ is reduced.

(4) Let M ∈ Maxl(R). Suppose that M is not an ideal of R ; then there exists m ∈ M and a ∈ R such

that ma /∈ M . Since R/M is a simple left R−module, P = {r ∈ R | r ·R/M = 0} is a left primitive ideal. By

(2), R̄ = R/P is a division ring. Since P ⊆ M , ma /∈ P . Therefore there exists b ∈ R such that(m̄ā)b̄ = 1̄;

this gives m̄ ∈ U(R̄) and one has (āb̄)m̄ = 1̄. Hence 1 − abm ∈ P ⊆ M . This leads to 1 ∈ M , which is a

contradiction. Thus M is an ideal of R , and so R is quasi-duo.

(5) By Corollary 2.3(1), R/J(R) is an Abelian exchange ring; by [16], R/J(R) is a clean ring. Hence,

by [3], R is clean. 2

Recall that a ring R is called a left tb−ring [7] if for every pair of distinct maximal left ideals of R there

is an idempotent in exactly one of them. Recall that a ring R is said to have stable range 1 (cf. [19]) if for any

a, b ∈ R satisfying aR + bR = R there exists y ∈ R such that a+ by is right invertible. It is well known that

an exchange ring has stable range 1 if and only if every (Von Neumann) regular element is unit-regular.

Corollary 4.2 Let R be a GWCN exchange ring. Then

(1) R is a left tb−ring.

(2) R has stable range 1.

Proof (1) Suppose that M and N are distinct maximal left ideals of R . Let a ∈ M\N . Then Ra+N = R

and 1 − xa ∈ N for some x ∈ R . Clearly, xa ∈ M\N . Since R is a GWCN exchange ring, R is clean by

Theorem 4.1(5), and so there exist an idempotent e ∈ E(R) and a unit u in R such that xa = e + u . If

e ∈ M , then u = xa− e ∈ M from which it follows that R = M , a contradiction. Thus e /∈ M . If e /∈ N , then

1 − e ∈ N by Proposition 2.2(2) and hence u = (1 − e) + (xa − 1) ∈ N . It follows that N = R , which is also

not possible. We thus have that e belongs to N only.

(2) It follows from Corollary 2.7(1). 2

For several years, whether the set N(R) of nilpotent elements of a π−regular ring R is an ideal has been

studied by many authors. For example, Badawi [1] proved that if R is an Abelian ring, then R is a π−regular

ring if and only if R is a NI ring and R/N(R) is a strongly regular ring, and Chen [5] proved that if R is a

semiabilian ring, then R is a π−regular if and only if R is a NI ring and R/N(R) is a strongly regular ring.

We generalize these results as follows.

Theorem 4.3 Let R be a GWCN ring. Then R is a π−regular ring if and only if R is a NI ring and

R/N(R) is regular.

Proof Assume that R is π−regular. Then J(R) ⊆ N(R). Since π−regular rings are exchange, by Theorem

4.1(4), R is left quasi-duo and so we have N(R) ⊆ J(R) by [30, Lemma 2.3]. Hence N(R) = J(R), which

implies R is a NI ring. Clearly, R̄ = R/N(R) is a reduced π−regular ring and so R/N(R) is regular.

Conversely, assume that R is a NI ring and R̄ = R/N(R) is regular. Then R̄ is strongly regular

because R/N(R) is reduced. Let x̄ ∈ R̄ , where x ∈ R ; then there exists ē ∈ E(R̄) and ū ∈ U(R̄) such that

x̄ = ēū = ūē . Since R is a NI ring, idempotents and invertible elements can be lifted modulo N(R). Therefore
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ē = e + N(R), ū = u + N(R) for some e ∈ E(R), u ∈ U(R). Set x − eu = a ∈ N(R), x − ue = b ∈ N(R),

then (1 − e)x = x − ex = a + eu − (ea + eu) = a − ea ∈ N(R). Hence there exists n ≥ 1 such that

(x − ex)n = 0. Let R̂ = R/P , where P is a prime ideal of R . If e ∈ P , then xn ∈ P , which implies

x̂n ∈ x̂n+1R̂ . If e /∈ P , then similar to the proof of Theorem 4.1(1), one has 1 − e ∈ P , which implies ê = 1̂.

Hence x̂ = êx̂ = êx = ̂e(a+ eu) = ̂e(a+ u) = ê ̂(a+ u) = â+ u = ̂(au−1 + 1)û , that is x̂ ∈ U(R̂); it follows

that R/P is strongly π−regular. By [18, Theorem 23.2], R is strongly π−regular. 2

Theorem 4.4 Let R be a GWCN exchange ring. Then the following conditions are equivalent:

(1) P (R) = 0 and every prime ideal of R is maximal.

(2) P (R) = 0 and every prime ideal of R is left primitive.

(3) R is strongly regular.

Proof (1)=⇒(2) Let P be a prime ideal of R . By (1), P is a maximal ideal and P ̸= R . Therefore,

there exists M ∈ Maxl(R) such that P ⊆ M . Since R is a GWCN exchange ring, R is left quasi-duo

by Theorem 4.1(4); it follows that M is an ideal. Hence P = M . Since R/M is a simple left R−module,

I = {r ∈ R | r ·R/M = 0} is a left primitive ideal. Clearly, P = I is a left primitive ideal.

(2)=⇒(3) Let P be a prime ideal of R . By (2), P is a left primitive ideal. By Theorem 4.1(2), R/P is

a division ring, which implies R/P is a strongly regular ring. By [18, Theorem 23.2], R is strongly π− regular.

Since P (R) = 0, R is a semiprime ring. By Proposition 2.4(2), R is reduced. Hence R is strongly regular.

(3)=⇒(1) Since R is strongly regular, P (R) = 0. Let Q be a prime ideal of R . If a ∈ R but a /∈ Q

then there exists b ∈ R such that a = aba . Set e = ba ; then a(1 − e) = 0, e2 = e . Since R is Abelian,

aR(1 − e) = 0 ⊆ Q , which implies 1 − e ∈ Q . Let R̄ = R/Q ; then 1̄ = ē = b̄ā . Similarly, āb̄ = 1̄; it follows

that R is a division ring. Hence Q is a maximal ideal. 2

A ring R is called a left V−ring if every simple left R−module is injective. One of the three problems

considered in [9] asked: For what rings R is it true that R is regular if and only if R is a left V−ring?

Corollary 4.5 For a GWCN exchange ring R , the following conditions are equivalent:

(1) R is a strongly regular ring;

(2) R is a left weakly regular ring;

(3) R is a left V−ring.

Proof (1) =⇒ (3) It follows from [2, Theorem 4.8].

(3) =⇒ (2) follows from [9, Corollary 7].

(2) =⇒ (1) By Theorem 4.1(4), R is a left quasi-duo ring. Since left quasi-duo left weakly regular rings

are strongly regular, we are done. 2

It is well known that an exchange ring R has stable range 1 if and only if for any a, x ∈ R and e ∈ E(R),

ax+ e = 1 implies a+ ey ∈ U(R) for some y ∈ R .

Proposition 4.6 An exchange ring R has stable range 1 if and only if for every von Neumann regular element

a of R , there exists u ∈ U(R) such that a− aua ∈ Zl(R) .

615



ZHOU and WEI/Turk J Math

Proof The necessity is clear.

Now assume ax+ e = 1, where a, x ∈ R and e ∈ E(R). Then a = axa+ ea . If ea = 0, then a = axa .

By hypothesis, there exists u ∈ U(R) such that a− aua ∈ Zl(R). Let a = aua+ z for some z ∈ Zl(R). Then

1 − e = ax = auax + zx = au(1 − e) + zx and (au − e)2 = auau − aue − eau + e = au − zu − aue + e =

au(1− e) + e− zu = 1− e− zx− zu+ e = 1− (zx+ zu). Clearly, zx+ zu ∈ Zl(R). Since R is an exchange

ring, there exists g ∈ E(R) such that g ∈ (zx + zu)R ⊆ Zl(R) and 1 − g ∈ (1 − zx − zu)R ; it follows that

g ∈ Zl(R) and so g = 0; this gives 1 ∈ (1 − zx − zu)R . Write 1 = (1 − zx − zu)t for some t ∈ R . Then

1− zx− zu = (1− zx− zu)t(1− zx− zu) and 1− (1− zx− zu)t ∈ l(1− zx− zu). Since zx+ zu ∈ Zl(R) and

l(zx+zu)∩l(1−zx−zu) = 0, l(1−zx−zu) = 0. Hence (1−zx−zu)t = 1; it follows that 1−zx−zu ∈ U(R), that

is, au−e ∈ U(R). Let au−e = v for some v ∈ U(R). Then a−eu−1 = vu−1 ∈ U(R). If ea ̸= 0, then a ̸= axa .

Let f = ax = 1 − e and r = fa − a . Then rx = (fa − a)x = (axa − a)x = (ax − 1)ax = −e(1 − e) = 0 and

fr = f2a−fa = 0. Let a/ = a+ r . Then a/x = ax+ rx = ax = f , a/xa/ = fa/ = fa+fr = fa = r+a = a/ ,

and a/x + e = f + e = ax + e = 1. Since ea/ = ea + er = efa = eaxa = e(1 − e)a = 0, by a similar proof of

above, there exists w ∈ U(R) such that a/ − ew = s ∈ U(R). Since fr = 0, r = (1 − f)r = er ; this leads to

s = a/ − ew = a+ r − ew = a+ e(r − w). Therefore R has stable range 1. 2
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