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Abstract: In this paper, we try to classify moduli spaces of arrangements of 11 lines with quintuple points. We show

that moduli spaces of arrangements of 11 lines with quintuple points can consist of more than 2 connected components.

We also present defining equations of the arrangements whose moduli spaces are not irreducible after taking quotients

by the complex conjugation by Maple and supply some “potential Zariski pairs”.
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1. Introduction

Let A = {H1,H2, . . . , Hn} be a line arrangement in the complex projective plane CP2 , and denote by M(A)

the corresponding complement of the arrangement.

An essential topic in hyperplane arrangement theory is to study the intersection between topology of

complements and combinatorics of intersection lattices. It is important to study how closely topology and

combinatorics of a given arrangement are related. For line arrangements, Jiang and Yau [8] showed that

homeomorphism of the complement always implies lattice isomorphism. However, the converse is not true

in general for line arrangements. In [7] and [12], the authors found a large class of line arrangements whose

intersection lattices determine topology of the complements, called nice arrangements and simple arrangements

respectively. The notion of nice line arrangements has been generalized to arrangements of hyperplanes in

higher dimensional projective spaces (see [13, 14, 15]).

We call a pair of line arrangements a Zariski pair if they are lattice isomorphic, but the fundamental

groups of their complements are different. The first Zariski pair of line arrangements was constructed by

Rybnikov [11]. On the other hand, combining the results of Fan [4], Garber et al. [5] proved that there is no

Zariski pair of arrangements of up to 8 real lines. This result was recently generalized to arrangements of 8

complex lines by Nazir and Yoshinaga [9]. In the same paper, Nazir and Yoshinaga also claimed that there is no

Zariski pair of arrangements of 9 complex lines. A complete proof of their claim was presented in [16]. Recently,

Amram et al. classified arrangements of 10 complex lines in [2, 1] and found some “potential Zariski pairs”.

Let A be a complex line arrangement. We define the moduli space of line arrangements with the fixed

lattice L(A) (or simply, the moduli space of A) as
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MA = {B ∈ ((CP2)∗)n|B ∼ A)}/PGLC(2),

where B ∼ A means B and A are lattice isomorphic. We denote by Mc
A the quotient of MA under the

complex conjugation. By Randell’s lattice-isotopy theorem in [10] and Cohen and Suciu’s theorem [3, Theorem

3.9], we know that arrangements in the same connected component of the moduli space, or in two complex

conjugate components, can not form Zariski pairs. Therefore, to investigate the existence of Zariski pairs of

arrangements of 11 lines, it is very important to know the geometry of moduli spaces of arrangements. In this

paper, we try to classify the moduli spaces of arrangements of 11 lines with quintuple points, and in particular

we completely classify the arrangements of 11 lines with a quintuple point and at least one quadruple point.

On this basis, we give forty new “potential Zariski pairs” of arrangements of 11 lines.

The classification of moduli spaces consists of three steps. First, we will roughly classify intersection

lattices according the number of multiple intersection points. Second, we divide our classification into some

different cases according to different positions between quintuple point and the other multiple intersection

points. Third, we will write down defining equations involving parameters for a given intersection lattice.

This paper is structured as follows. Section 2 provides preliminaries and ideas on classifying moduli

spaces of arrangements of 11 lines. Section 3 shows that moduli spaces of arrangements with multiple points of

high multiplicity are most likely irreducible. In Section 4 and Section 5, we completely classify the arrangements

of 11 lines with a quintuple point and at least one quadruple point. In Section 6 we deal with the arrangements

of 11 lines with a quintuple point and no quadruple point. Sections 4, 5, and 6 are the main parts of this work

and in total forty “potential Zariski pairs” can be found there. In the Appendix (on the journal’s website), we

give an example to show how to compute the defining equations of the arrangements by Maple.

2. Preliminaries

Let A = {L1, L2, · · · , Ln} be a line arrangement in CP2 . We say a singularity of L1∪L2∪· · ·∪Ln is a multiple

point of A if it has multiplicity of at least 3. We call the set L(A) = {
∩
i∈S

Li|S ⊆ {1, 2, . . . , n}} partially ordered

by reverse inclusion in the intersection lattice of A .

Definition 2.1 Two line arrangements A1 and A2 are lattice isomorphic, denoted as A1 ∼ A2 , if their

intersection lattices L(A1) and L(A2) are isomorphic, i.e. there is a permutation ϕ of {1, 2, . . . , n} such that

dim
( ∩

i∈S
Li∈A1

Li

)
= dim

( ∩
j∈ϕ(S)
Hj∈A2

Hj

)

for any nonempty subset S ⊆ {1, 2, . . . , n} .

Definition 2.2 ([9, Definition 3.10]) Let k ∈ N . We say that a line arrangement A is of type Ck if k is the

minimum number of lines in A containing all points of multiplicity of at least three.

Definition 2.3 ([9, Definition 3.13]) Let A be an line arrangement of type C3 . Then A is a simple C3

arrangement if there are three lines L1, L2, L3 ∈ A such that all points of multiplicity of at least three are

contained in L1

∪
L2

∪
L3 and one of the following holds:

1. L1 ∩ L2 ∩ L3 ̸= ∅ , or
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2. L1 ∩ L2 ∩ L3 = ∅ and one of L1 , L2 , and L3 contains only one multiple point apart from the other two

lines.

Theorem 2.4 ([9, Theorem 3.15]) Let A be an arrangement of C3 of simple type. Then the moduli space MA

is irreducible.

Theorem 2.5 ([9, Lemma 3.2]) Let A = {L1, L2, · · · , Ln} be a line arrangement. Assume that Ln passes

through at most 2 multiple points. Set A′ = {L1, L2, · · · , Ln−1} , and then MA is irreducible if MA′ is

irreducible.

We say that a line arrangement is nonreductive if each line of the arrangement passes through at least 3

multiple points. Otherwise, we say the arrangement is reductive.

Denote by nr the number of intersection points of multiplicity r . We recall the following useful results.

Lemma 2.6 (See for instance [6].) Let A be an arrangement of k lines in CP2 . Then

k(k − 1)

2
=

∑
r≥2

r(r − 1)nr

2
.

Theorem 2.7 (See [6].) Let A be an arrangement of k lines in CP2 . Assume that nk = nk−1 = nk−2 = 0 .

Then

n2 +
3

4
n3 ≥ k +

∑
r≥5

(2r − 9)nr.

The following lemma is well known and is used to facilitate the calculation in our paper.

Lemma 2.8 Let {L1, L2, L3, L4} and {L5, L6, L7} be two pencils of lines who intersect at one point and

intersect transversally in 12 points. Then there is an automorphism of the dual projective plane such that the

7 lines under the automorphism are defined by Y = Z, Y = t3Z, Y = t2Z, Y = 0, X = 0, X = t1Z, X = Z.

Remark 2.9 All the computations in Sections 4 and 5 are based on Lemma 2.8 above. First, we let L1, · · · , L7

be as in Lemma 2.8 and let L11 be the line at infinity. Second, by the intersection points we obtain the defining

equations of L8, L9, L10 , and by the conditions of slope, parallel, and intersection points, we get the equations

on the coefficients t1, t2, t3 . Third, using Maple, it is easy to get the solutions of t1, t2, t3 , and the defining

equations of the arrangements or the arrangements cannot be realized. In Section 6, similarly as in Lemma 2.8,

we can establish similar vertical nets and the methods of computing the defining equations of the arrangements

is the same as in the above three steps.

3. Arrangements of 11 lines with multiple points of multiplicity at least 6

Theorem 3.1 Let A be an arrangement of n (n ≥ 9) lines. If there is a multiple point of multiplicity ≥ n−4 ,

then the moduli space MA is irreducible.

Proof For n = 9, 10, it was proved in [16, Prop 3.3] and [2, Theorem 3.1]. Now we consider n ≥ 11. Assume

that L1 ∩ L2 ∩ · · · ∩ Ln−4 ̸= ∅ . It is easy to see that at least one of the n− 4 lines contains at most 2 multiple

points. By Theorem 2.5 and [2, Theorem 3.1], we see that MA is irreducible. 2

In particular, if n = 11 and n7 ≥ 1, then MA is irreducible.
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Theorem 3.2 Let A be an arrangement of 11 lines with a multiple point of multiplicity 6 and no multiple

points of higher multiplicities; then A is reductive.

Proof Assume that A is nonreductive, and then by Lemma 2.6 and Theorem 2.7 we have

44− 18n6 ≥ 9

4
(n3 + n4 + n5). (1)

On the other hand, it is easy to see that there must be at least 13 − n6 multiple points of multiplicity ≤ 5.

Thus, 13− n6 ≤ n3 + n4 + n5 . Together with (1), we get n6 ≤ 59
63 < 1, a contradiction. 2

4. Arrangements of 11 lines with a quintuple point and 2 quadruple points

In this section, we investigate arrangements of 11 lines with a quintuple point and no multiple points of higher

multiplicities.

First, we show the possible values of the numerical invariants n4, n5 such that the arrangement is

nonreductive.

Lemma 4.1 Let A be a nonreductive arrangement of 11 lines in CP2 with a quintuple point and nr = 0 for

r ≥ 6 . Then n5 = 1 and n4 ≤ 2 .

Proof By Lemma 2.6 and Theorem 2.7, we have n3 + n4 ≥ 4
9 (44 − 11n5). On the other hand, it is easy to

see that there must be at least 11 − n5 multiple points of multiplicity ≤ 4. Thus, 11 − n5 ≤ 4
9 (44 − 11n5).

It follows that n5 ≤ 2. If n5 = 2 and these 2 quintuple points are not collinear, then it is easy to see

that there is a line with at most 2 multiple points. If n5 = 2 and these 2 quintuple points are collinear, let

L1∩L2∩L3∩L4∩L11 and L5∩L6∩L7∩L8∩L11 be 2 quintuple points, and let L11 be the line at infinity. Each

of L9 and L10 must pass through 4 points of Li∩Lj , i = 1, 2, 3, 4; j = 5, 6, 7, 8. Assume that L9 passes through

L1 ∩ L8, L2 ∩ L7, L3 ∩ L6, L4 ∩ L5 , and then to make the arrangement nonreductive, L10 should pass through

L1 ∩ L6, L2 ∩ L5, L3 ∩ L8, L4 ∩ L7 and L9 ∩ L10 is on L11 . After an easy computation, such an arrangement

can not be realized. Therefore, n5 = 1.

Also by Lemma 2.6 and Theorem 2.7, we obtain 9
4n3+6n4 ≤ 33. Since each line contains at least 3 multi-

ple points, then there must be at least 11−n5 = 10 multiple points. It follows that n4 ≤ 42
15 , and thus n4 ≤ 2. 2

Theorem 4.2 Let A be a nonreductive arrangement of 11 lines in CP2 with a qunituple point such that n4 = 2

and nr = 0 for r ≥ 6 . Then the moduli space MA is irreducible.

Proof First, we assume that the quintuple point and a quadruple point are not collinear in A . We show that

there is a line containing only 2 multiple points. Let L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 be the quintuple point and let

L6∩L7∩L8∩L9 be the quadruple point. Then the other quadruple point must be Li∩Lj ∩L10∩L11 for some

i ∈ 1, 2, 3, 4, 5, j ∈ 6, 7, 8, 9. Then Li passes through at most 2 multiple points. If there are two noncollinear

quadruple points, each one being collinear with the quintuple point, it is easy to see that the arrangement is

reductive.

Second, we consider that any 2 of the quintuple points and 2 quadruple points are collinear, but all of

them are not collinear. Let L1∩L2∩L3∩L4∩L11 , L5∩L6∩L7∩L11 and L2∩L6∩L9∩L10 be the quintuple

point and 2 quadruple points. There must be another triple point on L11 so that it contains 3 multiple points.

We may assume L8 ∩ L10 ∩ L11 is the triple point.
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Case 1. L8 ∩ L9 is not a triple point. It is easy to see that L9 ∪ L10 pass through at most 4 points

of ∆ := {Li ∩ Lj , i = 1, 2, 3, 4; j = 5, 6, 7} except L2 ∩ L6 . Thus, L8 passes through 3 points of ∆ and

L9 ∪ L10 pass through 5 points of ∆ to make the arrangement nonreductive. Up to a lattice isomorphism, we

may assume that L8 passes through {L2 ∩ L5, L3 ∩ L6, L4 ∩ L7} . Then L1 ∩ L5 and L3 ∩ L7 are on L9 or

L10 . Up to a permutation, we can assume they are on L9 , and then L1 ∩ L7 and L4 ∩ L5 are on L10 (see

Figure 1).
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Figure 3.

After an easy computation, we see that Figure 1 cannot be realized.

Case 2. L8 ∩ L9 is a triple point. We assume that L8 ∩ L9 is on L1 , and up to a lattice isomorphism,

we assume L1 ∩L7 is on L10 so that L1 contains 3 multiple points. Note that L2 ∩L5 or L2 ∩L7 is on L8 so

that L2 contains 3 multiple points and L3 ∩ L6 or L4 ∩ L6 is on L8 so that L6 contains 3 multiple points.

Subcase 1. L2 ∩ L5 and L3 ∩ L6 are on L8 .

(I). L4 ∩ L7 is on L8 , so then L4 ∩ L5 is on L9 or L10 so that L4 passes through 3 multiple points.

À. L4 ∩ L5 is on L9 , so then L3 ∩ L5 is on L10 (Figure 2) or L3 ∩ L7 is on L9 (Figure 3).

Á. L4 ∩ L5 is on L10 , so then L3 ∩ L5 (Figure 4) or L3 ∩ L7 is on L9 (Figure 5).

(II). L4 ∩L7 is on L9 , so then L4 ∩L5 is on L10 and L3 ∩L5 is on L9 so that L3, L4 pass through 3

multiple points (Figure 6).
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After an easy computation, we see that Figures 2, 3, 4, 5, and 6 cannot be realized.

Subcase 2. L2 ∩ L7 and L3 ∩ L6 are on L8 . If L4 ∩ L5 is on L9 , then L4 contains only 2 multiple

points, and thus L4 ∩ L5 is on L8 or L10 .

(I). L4 ∩L5 is on L8 , so then to make the arrangement nonreductive, L4 ∩L7 is on L9 and L3 ∩ L5 is

on L9 or L10 (Figure 7).

(II). L4 ∩L5 is on L10 , so then to make the arrangement nonreductive, L4 ∩L7 and L3 ∩L5 are on L9

(Figure 8).
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After an easy computation, we see that Figures 7 and 8 cannot be realized.

Assume that the quintuple point and 2 quadruple points are collinear in A . We assume that L1 ∩ L2 ∩
L3 ∩ L4 ∩ L11 , L5 ∩ L6 ∩ L7 ∩ L11 , and L8 ∩ L9 ∩ L10 ∩ L11 are the quintuple point and 2 quadruple points.

It is easy to see that L8, L9, L10 pass through 8 or 9 points of ∆ so that L1, L2, L3, L4 contain at least 3

multiple points each.

If L8, L9, L10 pass through 9 points of ∆, then each of L5, L6, L7, L8, L9, L10 contains 4 multiple

points. Then A′
= A\{Li}, i ∈ {1, 2, 3, 4} is a line arrangement of 10 lines with 3 quadruple points, which

are collinear in A′
. By the last paragraph in the proof [2, Theorem 4.2], MA′ is irreducible. Hence, MA is

irreducible.

If L8, L9, L10 pass through 8 points of ∆, then each of L1, L2, L3, L4 passes through 2 triple points.

We assume that 8 points of ∆ are L2 ∩ L5, L3 ∩ L5, L4 ∩ L5, L1 ∩ L6, L4 ∩ L6, L1 ∩ L7, L2 ∩ L7, L3 ∩ L7 .

Furthermore, we assume that L1 ∩ L6 is on L8 and L4 ∩ L6 is on L9 .

(I). L2 ∩ L5 is on L8 , so then we see that L3 ∩ L7 is on L8 , L3 ∩ L5 is on L9 , and L4 ∩ L5 is on L10 .

À L1 ∩ L7 is on L9 and L2 ∩ L7 is on L10 (Figure 9).

Á L1 ∩ L7 is on L10 and L2 ∩ L7 is on L9 (Figure 10).
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Figure 10.

After an easy computation, we conclude that Figures 9 and 10 cannot be realized.

(II). L3 ∩L5 is on L8 , so then we see that L2 ∩L7 is on L8 , L2 ∩L5 is on L9 , and L4 ∩L5 is on L10 .

Exchanging L2, L3 , we see it is lattice isomorphic to (1).

(III). L4 ∩ L5 is on L8 , and up to a lattice isomorphism, we assume that L3 ∩ L5 is on L9 , so then

L2 ∩ L5 is on L10 (Figures 11 and 12).

À L1 ∩ L7 is on L9 , so then L2 ∩ L7 is on L8 , L3 ∩ L7 is on L10 .

Á L2 ∩ L7 is on L9 , so then L3 ∩ L7 is on L8 , L1 ∩ L7 is on L10 .
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After an easy computation, we conclude that Figures 11 and 12 cannot be realized.
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Figure 12.

Thus, MA is irreducible.

2

5. Arrangements of 11 lines with a quintuple point and exactly 1 quadruple point

In this section, we investigate an arrangement of 11 lines with a quintuple point and exactly 1 quadruple point.

Lemma 5.1 Let A be a nonreductive arrangement of 11 lines in CP2 with n5 = n4 = 1 and nr = 0 for

r ≥ 6 . If the quintuple point and the quadruple point are not collinear, then MA is empty.

Proof Assume that L1∩L2∩L3∩L4∩L5 is the quintuple point and L6∩L7∩L8∩L9 is the quadruple point.

Since L10 and L11 pass through at most 8 triple points of {L6∪L7∪L8∪L9} , then one of {L1, L2, L3, L4, L5}
contains at most 2 multiple points, and then A is reductive, contradiction. Then MA is empty. 2

In the following theorem, we assume that the quintuple point and the quadruple point are collinear.

Theorem 5.2 Let A be a nonreductive arrangement of 11 lines in CP2 with n5 = n4 = 1 and nr = 0 for

r ≥ 6 . If the quintuple point and the quadruple point are collinear, then MA or Mc
A is irreducible except in

the cases of Figures 14, 15, 17, 26, 27, 30, 31, 32, 33, 35, 37, 46, 55, 56, 57, 58, and 60 and the corresponding

arrangements of these figures are “potential Zariski pairs”.

Proof Assume that L1 ∩ L2 ∩ L3 ∩ L4 ∩ L11 is the quintuple point and L5 ∩ L6 ∩ L7 ∩ L11 is the quadruple

point. Then one of {L8 ∩ L9, L8 ∩ L10, L9 ∩ L10} is on L11 so that it contains at least 3 multiple points. We

may assume L8 ∩ L9 is on L11 .

Case 1. Neither of L8 ∩L10 and L9 ∩L10 is a triple point. Then L10 must pass through at 3 points of

∆. Then L8, L9 must pass through at least 5 points of ∆ so that L1, L2, L3, L4 contains at least 3 multiple

points.

Subcase 1. Both L8 and L9 pass through 3 points of ∆. Let L4 be the line such that L4 ∩L10 is not

a triple point and let A′
= A\{L4} . Then A′

is an arrangement of 10 lines with 2 quadruple points on the

same line and none of L10 ∩ (L8 ∪L9) is a triple point, it is just [2, Theorem 4.4, Case 1]. Then MA′ is either

empty or irreducible, and then MA is either empty or irreducible.

Subcase 2. One of L8, L9 passes through 2 points of ∆. We assume that L8 passes through 2 points

of ∆. Up to a lattice isomorphism, we assume that {L1 ∩ L7, L2 ∩ L6, L3 ∩ L5} are on L10 . To make L4 pass
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through at least 3 multiple points, L8, L9 must pass through 2 points of {L4 ∩ L5, L4 ∩ L6, L4 ∩ L7} . Up to a

permutation, let L8 contain L4 ∩ L6 and let L9 contain L4 ∩ L5 .

(I). L1 ∩L5 is on L8 . It is easy to see that L2 ∩L7 and L3 ∩L6 are on L9 so that L2, L3 pass through

3 multiple points (Figure 13).

(II). L2 ∩ L5 is on L8 . To make L1, L3 pass through 3 multiple points, L1 ∩ L6 and L3 ∩ L7 must be

on L9 (Figure 14).
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Figure 14.

(III). L2 ∩ L7 is on L8 . Obviously, L9 must pass through L1 ∩ L6 and L3 ∩ L7 so that L1, L3 pass

through 3 multiple points (see Figure 15).

(IV). L3 ∩ L7 is on L8 . Note that L1 ∩ L6 and L2 ∩ L7 should be on L9 , and then L1, L2 contains 3

multiple points (see Figure 16).
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Figure 16.

An easy computation shows that Figures 13, 14, 15, and 16 cannot be realized.

Case 2. One of (L8 ∪ L9) ∩ L10 is a triple point in A . We assume that L8 ∩ L10 is a triple point, and

then L10 passes through 2 or 3 points of ∆.

Subcase 1. L10 passes through 3 points of ∆. We assume that L1 ∩ L7, L2 ∩ L6, L3 ∩ L5 are on L10

and L8 ∩L10 is on L4 . Note that (L8 ∪L9) contain at least 4 points of ∆ so that L1, L2, L3, L4 pass through

at least 3 multiple points.

(I). Both L8 and L9 contain 2 points of ∆. Note that L9 must pass through one of {L4 ∩ L5, L4 ∩
L6, L4 ∩ L7} . Up to a lattice isomorphism, we assume L4 ∩ L5 is on L9 .

À L1 ∩L6 is on L9 , and then L2 ∩L5, L3 ∩L7 or L2 ∩L7, L3 ∩L6 is on L8 so that L1, L2, L3, L4 pass

through at least 3 multiple points (Figures 17 and 18).

Figure 17 can be defined by the following equation:
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XY Z(X −Z)(X + tZ)(Y −Z)(Y − tZ)(Y − t2Z)(Y − (t− t2)X − t2Z)(tY +X)(Y +(t− 1)X − tZ) = 0,

where t satisfies t3 − t2 − 1 = 0.

Figure 18 can be defined by the following equation:

XY Z(X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(t1Y −X)((1− t1)Y − (t3 − t2)(X − 1)− t3Z)(Y +

(t2 − 1)X − t2Z) = 0, where t1 = t, t2 = 2t2 + 5t− 3, t3 = t2 + 3t− 1 and t satisfies t3 + 2t2 − 3t+ 1 = 0.

Á L3 ∩ L6 is on L9 , and then L2 ∩ L7, L1 ∩ L5 or L2 ∩ L7, L1 ∩ L6 is on L8 so that L1, L2, L7 pass

through at least 3 multiple points (Figures 19 and 20).

Figure 19 cannot be realized. Figure 20 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(t1Y −t2Z)(Y −(t3−1)X−Z)(Y +(t2−1)X−t2Z) = 0,

where t1 = t2 + t+ 1, t2 = t, t3 = t2 + t , and t satisfies t3 + t2 − 1 = 0.

5 6 7

1

3

4

9

9
8

8

8

10

2

Figure 19.
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Â L2 ∩ L7 is on L9 ; it is lattice isomorphic to À.

Ã L3 ∩ L7 is on L9 ; it is lattice isomorphic to Á.

(II). L8 contains 2 points of ∆ and L9 contains 3 points of ∆. Then L9 passes through one of

{(L1 ∩ L6, L2 ∩ L7), (L1 ∩ L6, L3 ∩ L7)}, (L3 ∩ L6, L2 ∩ L7).

À L1 ∩ L6, L2 ∩ L7 is on L9 , and then L3 ∩ L6 or L3 ∩ L7 is on L8 ; up to a permutation, we assume

that L3 ∩ L6 is on L8 . Then L1 ∩ L5 L2 ∩ L5 is on L8 (Figures 21 and 22).

Figure 21 cannot be realized.

Figure 22 can be defined by the following equation:

XY Z(X + 2Z)(X − Z)(Y − Z)(2Y − Z)(2Y + Z)(X + 2Y )(X + 2Y + Z)(X − 2Y + Z) = 0.

Á L1 ∩ L6, L3 ∩ L7 is on L9 . Then L2 ∩ L5 or L2 ∩ L7 is on L8 so that L2 contains 3 multiple points.

If L2 ∩ L5 is on L8 , then L3 ∩ L6 is on L8 (Figure 23). If L2 ∩ L7 is on L8 , then L1 ∩ L5 or L3 ∩ L6 is on

L8 (Figures 24 and 25).
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Figures 23, 24, and 25 cannot be realized.

Â L3 ∩ L6, L2 ∩ L7 is on L9 . It is lattice isomorphic to Á (under permutation (6,7)(1,2)).

(III). L8 contains 3 points of ∆ and L9 contains 2 points of ∆. Since L4 ∩ L5 is on L9 , then one of

{L1 ∩ L6, L3 ∩ L6, L2 ∩ L7, L3 ∩ L7} is on L9 .

À L1 ∩ L6 is on L9 . To make L2, L3 contain at least 3 multiple points, {L1 ∩ L5, L2 ∩ L7, L3 ∩ L6} are

on L8 (Figure 26).

Á L3 ∩ L6 is on L9 . To make L1, L2 contain at least 3 multiple points, {L1 ∩ L6, L2 ∩ L5, L3 ∩ L7} are

on L8 (Figure 27).
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Figure 27.

Figures 26 and 27 cannot be realized.

Â L2 ∩ L7 is on L9 . After a permutation (6, 7)(1, 2), it is isomorphic to À.

Ã L3 ∩ L7 is on L9 . After a permutation (6, 7)(1, 2), it is isomorphic to Á.

(IV). L8 contains 3 points of ∆ and L9 contains 3 points of ∆. Since (III) cannot be realized, case

(IV) cannot be realized.

(V). L8 contains 1 point of ∆ and L9 contains 3 points of ∆. From (III), we need to remove one L8

intersecting with ∆, and it is easy to see that there are 3 cases (see Figures 28, 29, and 30).
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Figure 28 cannot be realized.

Figure 29 can be defined by the following equation:

XY Z(X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(t1Y −X)(t1Y −X− t1t3Z)(Y +(t2−1)X− t2Z) = 0,

where t1 = 2t2 − 2t+ 2, t2 = t, t3 = 2t2 − t+ 1, and t satisfies 2t3 − 2t2 + 2t− 1 = 0.

Figure 30 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(t1Y −X)(t1Y −X−(t1t3−1)Z)(Y +(t2−1)X−t2Z) = 0,

where t1 = t2 − t+ 2, t2 = t, t3 = t2 + 1, and t satisfies t3 − t2 + 2t− 1 = 0.

Subcase 2. L10 passes through 2 points of ∆. We assume that L1∩L7, L2∩L6 are on L10 and L8∩L10

is on L4 . Note that (L8 ∪ L9) contain at least 5 points of ∆ so that L1, L2, L3, L4 pass through at least 3

multiple points. To make L3, L4 contain at least 3 multiple points, L9 ∩ (L3 ∪ L4) is a triple point.

(I). L8 contains 3 points of ∆ and L9 contains 2 points of ∆.

À L4 ∩ L5 is on L9 .

(a) L3 ∩ L6 is on L9 . Then L1 ∩ L6 is on L8 , and (L2 ∩ L5, L3 ∩ L7) or (L2 ∩ L7, L3 ∩ L5) is on L8

(see Figures 28 and 29).

(b) L3 ∩ L7 is on L9 . By a permutation, it is lattice isomorphic to the previous case.
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Figure 31 can be defined by the following equation:

XY Z(X − Z)(3X + Z)(Y − Z)(2Y − Z)(Y + Z)(2Y + 3X − Z)(2Y + 3X)(2Y − 3X + Z) = 0.

Figure 32 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y−Z)(Y−t2Z)(Y−t3Z)(Y+(t3−t2)X−t3Z)(t1Y−t2Z)(Y− 1−t3
1−t1

X− t3−t1
1−t1

Z) = 0,

where t1 = 1
3 + 1

3 t, t2 = 1− t, t3 = t , and t satisfies t2 − t+ 1 = 0.

Á L4 ∩L6 is on L9 . Then L3 ∩L5 is on L9 and L1 ∩L5 or L2 ∩L5 is on L8 so that L5 passes through

3 multiple points.

(a) L1 ∩ L5 is on L8 . Then L2 ∩ L7 or L3 ∩ L6 is on L8 so that A is nonreductive (Figure 33).
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(b) L2 ∩ L5 is on L8 Then L1 ∩ L6 or L3 ∩ L7 is on L8 so that A is nonreductive (Figure 34).
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Figure 33 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −(t3−1)X−Z)(Y + t2
t1
X−t2Z)(Y − 1−t3

1−t1
X− t3−t1

1−t1
Z) =

0, where t1 = ±t, t2 = 1
2 , t3 = ±t− 1, and t satisfies 2t2 − 4t+ 1 = 0.

Figure 34 can be defined by the following equation:

XY Z(X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − (t2 − t3)X − t3Z)(Y + t2
t1
X − t2Z)(Y − 1−t3

1−t1
X −

t3−t1
1−t1

Z) = 0, where t1 = ±t− 1, t2 = ±t− 1, t3 = ±t , and t satisfies t2 − t− 1 = 0.

(II). L8 contains 2 points of ∆ and L9 contains 3 points of ∆.

À L4 ∩ L5 is on L9 . Then (L3 ∩ L6, L2 ∩ L7) or (L1 ∩ L6, L3 ∩ L7) are on L9 . Up to a permutation

(6, 7)(1, 2), we may assume that (L3 ∩ L6, L2 ∩ L7) are on L9 . Then (L1 ∩ L5, L3 ∩ L7) or (L1 ∩ L6, L3 ∩ L5)

are on L8 (Figures 35 and 36).
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Figure 35 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t3X)(Y − 1−t2
t1

X−t2Z)(Y − 1−t3
1−t1

X− t3−t1
1−t1

Z) = 0,

where t1 = 1
2 t+

1
2 , t2 = 1

2 , t3 = t , and t satisfies t2 − 2t− 1 = 0.

Figure 36 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t3X)(Y −(t2−1)X−Z)(Y − 1−t3
1−t1

X− t3−t1
1−t1

Z) = 0,

where t1 = 1
4 + 1

2 t, t2 = t, t3 = t− 1, and t satisfies 2t2 + t− 2 = 0.

Á L4 ∩ L6 is on L9 . Then L3 ∩ L5 or L3 ∩ L7 is on L9 .

If L3 ∩ L5 is on L9 , then (L1 ∩ L5, L3 ∩ L6) or (L1 ∩ L5, L3 ∩ L7) are on L8 so that A is nonreductive

(Figures 37 and 38).

Figure 37 can be defined by the following equation:
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Figure 38.

XY Z(X − Z)(3X − Z)(Y − Z)(2Y − Z)(Y + Z)(2Y + 3X − 2Z)(2Y + 3X − Z)(Y − 3X + 2Z) = 0.

Figure 38 can be defined by the following equation:

XY Z(X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − (t3 − t2)X − t2Z)(Y − (t2 − 1)X − Z)(Y −
1−t3
1−t1

X − t3−t1
1−t1

Z) = 0, where t1 = 2t+ 1, t2 = t, t3 = 2t− 1, and t satisfies 2t2 − 1 = 0.

If L3 ∩ L7 is on L9 , then L1 ∩ L5 or L2 ∩ L5 is on L9 so that L5 contains at least 3 multiple points.

(1). L1∩L5 is on L9 , so then (L2∩L5, L3∩L6) or (L2∩L7, L3∩L5) is on L8 so that A is nonreductive

(Figures 39 and 40).
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Figure 40.

Figure 39 can be defined by the following equation:

XY Z(X − Z)(3X − 2Z)(Y − Z)(2Y + Z)(Y − 2Z)(2Y + 3X − 2Z)(2Y + 3X − Z)(2Y − 3X − Z) = 0.

Figure 40 can be defined by the following equation:

XY Z(X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − (t3 − t2)X − t2Z)(Y − (t2 − 1)X − Z)(Y −
1−t3
1−t1

X − t3−t1
1−t1

Z) = 0, where t1 = t, t2 = 1
4 t+

1
4 , t3 = − 1

2 + 1
2 t , and t satisfies t2 − 3t+ 4 = 0.

(2). L2∩L5 is on L9 , so then (L1∩L5, L3∩L6) or (L1∩L6, L3∩L5) are on L8 so that A is nonreductive

(Figures 41 and 42).

Figure 41 cannot be realized.

Figure 42 can be defined by the following equation:

XY Z(X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − (t2− t3)X− t3Z)(Y − 1−t2
t1

X− t2Z)(Y − 1−t3
1−t1

X−
t3−t1
1−t1

Z) = 0, where t1 = −t, t2 = 1 + t, t3 = t , and t satisfies t2 + 2t− 1 = 0.

(3). L4 ∩ L7 is on L9 . Up to a permutation (6, 7)(1, 2), it is lattice isomorphic to (2).

(III). Both L8 and L9 contain 3 points of ∆. We only need to add 1 point of ∆ to L8 for (I) or to L9

for (II), so we obtain 5 cases (Figures 43, 44, 45, 46, and 47).
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Figures 43, 44, 45, 46, and 47 cannot be realized.

Case 3. (L8 ∪ L9) ∩ L10 are triple points in A . Then L10 passes through at least 1 point of ∆ so that

it contains at least 3 multiple points.

Subcase 1. L10 passes through 2 points of ∆. We assume that L10 passes through (L1 ∩L7, L2 ∩L6),

L8 ∩L10 is on L4 , and L9 ∩L10 is on L3 . Note that L8 ∪L9 pass through at least 4 points of ∆ so that A is

nonreductive.

(I). L8 contains 3 points of ∆ and L9 contains 1 point of ∆. To make L4, L5 contain at least 3 multiple

points, L4 ∩ L5 is on L9 .

À L3 ∩ L5 is on L8 . Then L1 ∩ L6, L2 ∩ L7 are on L8 (Figure 48).

Á L3 ∩ L6 is on L8 . Then L1 ∩ L5, L2 ∩ L7 are on L8 (Figure 49).

Â L3 ∩ L7 is on L8 . Then L1 ∩ L6, L2 ∩ L5 are on L8 . After a permutation (6, 7)(1, 2), it is lattice

isomorphic to Á.

Figure 48 cannot be realized.

Figure 49 can be defined by the following equation:

XY Z(X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −(t3−1)X)(Y −(t3−1)X−Z)(Y − 1−t3
1−t1

X− t3−t1
1−t1

Z) =

0, where t1 = t, t2 = 1 + t2 − 2t, t3 = t− 1, and t satisfies t3 − 4t2 + 5t− 3 = 0.

(II). L8 contains 3 points of ∆ and L9 contains 2 points of ∆.

À L3∩L5 is on L8 . Then L1∩L6, L2∩L7 are on L8 . To make L4, L5 contain at least 3 multiple points,

up to a permutation (6, 7)(1, 2), L1 ∩ L5, L4 ∩ L6 , or L2 ∩ L5, L4 ∩ L6 must be on L9 (Figures 50 and 51).

Á L3∩L6 is on L8 . Then L1∩L5, L2∩L7 are on L8 . To make L4, L5 contain at least 3 multiple points,

L9 passes through one of {(L4 ∩ L5, L1 ∩ L6), (L4 ∩ L6, L2 ∩ L5), (L4 ∩ L7, L2 ∩ L5)} (Figures 52, 53, and 54).

Figures 50, 51, 52, 53, and 54 cannot be realized.

Â L3 ∩ L7 is on L8 . Up to a permutation (6, 7)(1, 2), it is lattice isomorphic to Á.
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(III). Both L8 and L9 contain 3 points of ∆.

À L3 ∩ L5 is on L8 , and it is easy to see L9 passes through at most 2 points of ∆.

Á L3 ∩L6 is on L8 , so then L1 ∩L5, L2 ∩L7 are on L8 and L9 passes through L1 ∩L6, L2 ∩L5, L4 ∩L7

(Figure 55).

Â L3 ∩ L7 is on L8 . Up to a permutation (6, 7)(1, 2), it is lattice isomorphic to Á.

Figure 55 cannot be realized.

(IV). L8 contains 1 or 2 points of ∆ and L9 contains 3 points of ∆. Up to a permutation (8, 9)(3, 4),

it is lattice isomorphic to (I) or (II).

(V). Both L8 and L9 contain 2 points of ∆.

If L4 ∩ L5 is on L9 , then L1 ∩ L6 or L2 ∩ L7 is on L9 .

À L1 ∩L6 is on L9 . Then (L2 ∩L5, L3 ∩L7) or (L2 ∩L7, L3 ∩L5) are on L8 so that A is nonreductive

(Figures 56 and 57).

Á L2 ∩ L7 is on L9 . Up to a permutation (6, 7)(1, 2), it is lattice isomorphic to À.

Figures 56 and 57 cannot be realized.

If L4 ∩ L6 is on L9 , then L1 ∩ L5 or L2 ∩ L5 is on L9 .
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À L1 ∩L5 is on L9 . Then (L2 ∩L5, L3 ∩L7) or (L2 ∩L7, L3 ∩L5) are on L8 so that A is nonreductive

(Figures 58 and 59).

Á L2 ∩ L5 is on L9 . Then (L1 ∩ L5, L3 ∩ L7) are on L8 so that A is nonreductive (Figure 60).
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Figure 58 can be defined by the following equation:

XY Z(X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − (t2 − t3)X)(Y − (t2 − t3)X − t3Z)(Y − 1−t3
1−t1

X −
t3−t1
1−t1

Z) = 0, where t1 = −1, t2 = 1± i, t3 = ±i .

Figure 59 can be defined by the following equation:

XY Z(X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − (t3 − t2)X − Z)(Y − (t3 − t2)X − t2Z)(Y −
1−t3
1−t1

X − t3−t1
1−t1

Z) = 0, where t1 = 2t− t2, t2 = 1 + t2, t3 = t , and t satisfies t3 − 2t2 + t− 1 = 0.

Figure 60 can be defined by the following equation:

XY Z(X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − (t2−1)X−Z)(Y − (t2−1)X− t3Z)(Y − 1−t3
1−t1

X−
t3−t1
1−t1

Z) = 0, where t1 = −1, t2 = ±
√
2, t3 =

√
2− 1.

Subcase 2. L10 passes through 1 point of ∆. Then L8 ∪L9 passes through at least 5 points of ∆. We

assume that L1 ∩ L7 is on L10 , L8 ∩ L10 is on L4 , and L9 ∩ L10 is on L3 .

(I). L8 ∪L9 passes through 5 points of ∆. We assume that L8 contains 2 points of ∆ and L9 contains

3 points of ∆.
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À L4 ∩ L5 is on L9 . Then L1 ∩ L6, L2 ∩ L7 are on L9 . To make L2, L3, L5, L6 pass through at least 3

multiple points, L8 passes through (L2 ∩ L5, L3 ∩ L6) or (L2 ∩ L6, L3 ∩ L5) (Figures 61 and 62).

Á L4 ∩ L6 is on L9 . Up to a permutation (5, 6), it is lattice isomorphic to À.

Â L4 ∩ L7 is on L9 . L9 passes through (L1 ∩ L5, L2 ∩ L6) or (L1 ∩ L6, L2 ∩ L5). Up to a permutation

(5, 6), we assume (L1 ∩ L5, L2 ∩ L6) are on L9 (Figure 63).
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Figure 63.

Figure 61 can be defined by the following equation:

XY Z(X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t3X)(Y − t3X− t3Z)(Y − 1−t3
1−t1

X− t3−t1
1−t1

Z) = 0,

where t1 = ±
√
2, t2 = 1±

√
2
2 , t3 = ±

√
2
2 .

Figure 62 can be defined by the following equation:

XY Z(X − Z)(3X − 2Z)(Y − Z)(2Y − Z)(2Y − 3Z)(2Y − 3X)(2Y − 3X − Z)(2Y + 3X + 5Z) = 0.

Figure 63 can be defined by the following equation:

XY Z(X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y +X−Z)(Y +X− t3Z)(Y − 1−t3
1−t1

X− t3−t1
1−t1

Z) = 0,

where t1 = −1±
√
3

2 , t2 = 2±
√
3, t3 = 3±

√
3

2 .

(II). L8 ∪ L9 passes through 6 points of ∆. It is easy to see from (I) that this case is impossible. 2

6. Arrangements of 11 lines with a quintuple point and no quadruple point

Let A be a nonreductive arrangement of 11 with a quintuple point and no quadruple point. By Lemma 2.6 and

Theorem 2.7, we know that there are at most 14 triple points.

We say that 2 multiple points of A are disjoint if they are not on the same line of A . We say that 2

multiple points of A are adjoint if they are on the same line of A .

We claim that there is at most 1 disjoint triple point apart from the quintuple point. Assume that

L1∩L2∩L3∩L4∩L5 is the quintuple point and L6∩L7∩L8 is the triple point apart from the quintuple point.

Suppose there is another triple point apart from the quintuple point. It is easy to see that L1∪L2∪L3∪L4∪L5

pass through at most 9 triple points, but L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 pass through at least 10 triple points, a

contradiction.

6.1. One disjoint triple point apart from the pencil of the quintuple point

First, we show that there are at most 13 triple points in A .

Lemma 6.1 Let L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 be the quintuple point and let L6 ∩ L7 ∩ L8 be the triple point apart

from the quintuple point. Then there are at most 13 triple points in A .
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Proof By Bézout’s theorem, the intersection number of (L1 ∪ L2 ∪ · · · ∪ L8) and (L9 ∪ L10 ∪ L11) is

24. Since the intersection multiplicity of a triple point is 2, there will be at most 12 triple points in

(L1 ∪ L2 ∪ · · · ∪ L8) ∩ (L9 ∪ L10 ∪ L11). In addition with L6 ∩ L7 ∩ L8 , we will have at most 13 triple

points. 2

Theorem 6.2 Let A be a nonreductive line arrangement of 11 lines in CP2 with a quintuple point L1 ∩ L2 ∩
L3∩L4∩L5 . Assume that L6∩L7∩L8 is the triple point apart from the quintuple point; then there are exactly

11 triple points in A . Then there are 28 cases that can be realized, 7 of whose moduli spaces are irreducible

and 21 of them are “potential Zariski pairs”.

Proof Note that we have at least 11 triple points in A , because it is nonreductive.

Case 1. There are 13 triple points in A . Then (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) are triple points, and

each of L9, L10, L11 passes through 3 triple points on (L6 ∪ L7 ∩ L8). Up to a lattice isomorphism, we assume

that (L1 ∩ L8, L2 ∩ L7, L3 ∩ L6) are on L11 , and L9 ∩ L10, L9 ∩ L11, L10 ∩ L11 are on L1, L4, L5 , respectively.

Note that L9 must pass through one of L5 ∩ L6, L5 ∩ L7, L5 ∩ L8 so that L5 contains at least 3 multiple

points. Up to lattice isomorphism, we assume that L5 ∩ L6 is on L9 . Then L3 ∩ L7, L2 ∩ L8 are on L9 and

(L2 ∩ L6, L3 ∩ L8, L4 ∩ L7) are on L10 so that A is nonreductive (Figure 64). Figure 64 cannot be realized.

1
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6 7 8
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Figure 64.

Case 2. There are 12 triple points in A . Then at least 2 points of (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) are

triple points.

Subcase 1. All of (L9 ∩L10, L9 ∩L11, L10 ∩L11) are triple points. Note that L9, L10, L11 pass through

8 triple points on (L6∪L7∩L8), and we assume L10 passes through 2 triple points on (L6∪L7∩L8). Similarly

as in Case 1, we assume that (L1 ∩ L8, L2 ∩ L7, L3 ∩ L6) are on L11 , (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) are on

L1, L4, L5 , respectively, and L5 ∩ L6 is on L9 . Then L3 ∩ L7, L2 ∩ L8 are on L9 . Hence, L10 contains one of

{(L4 ∩ L6, L3 ∩ L8), (L4 ∩ L7, L2 ∩ L6), (L4 ∩ L7, L3 ∩ L8), (L4 ∩ L8, L2 ∩ L6)}.
Subcase 1 cannot be realized.

Subcase 2. Two of (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) are triple points. Let L9 ∩ L11, L10 ∩ L11 be

the triple points. Then L9, L10 , and L11 pass through 3 triple points on (L6 ∪ L7 ∩ L8). We assume that

(L1 ∩L8, L2 ∩L7, L3 ∩L6) are on L11 , (L9 ∩L10, L10 ∩L11) are on L4, L5 respectively, and L5 ∩L6 is on L9 .

Then L9 must pass through one of {(L1 ∩ L7, L2 ∩ L8), (L3 ∩ L7, L2 ∩ L8), (L1 ∩ L7, L3 ∩ L8)} .
(1). L9 passes through (L1∩L7, L2∩L8). Up to a permutation (7, 8)(1, 2), L10 contains (L1∩L6, L3∩

L8, L4 ∩ L7) or (L2 ∩ L6, L3 ∩ L8, L4 ∩ L7).
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(2). L9 passes through (L3∩L7, L2∩L8). To make A nonreductive, L10 contains one of {(L4∩L6, L3∩
L8, L1 ∩ L7), (L4 ∩ L7, L3 ∩ L8, L1 ∩ L6), (L4 ∩ L8, L2 ∩ L6, L1 ∩ L7)} .

(3). L9 passes through (L1 ∩ L7, L3 ∩ L8). After a permutation (7, 8)(1, 2), it is lattice isomorphic to

(2).

Subcase 2 cannot be realized.

Case 3. There are 11 triple points in A .

Subcase 1. One of (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) is a triple point. Let L10 ∩ L11 be the triple

point. Then each of L9, L10 , and L11 passes through 3 triple points in (L6 ∪ L7 ∩ L8). We assume that

(L1 ∩ L8, L2 ∩ L7, L3 ∩ L6) are on L11 and L10 ∩ L11 is on L4 . Note that L9 must pass through one of

(L5 ∩ L6, L5 ∩ L7, L5 ∩ L8). Up to a lattice isomorphism, let L9 pass through (L5 ∩ L6, L4 ∩ L7, L2 ∩ L8) or

(L5 ∩ L6, L4 ∩ L7, L3 ∩ L8).

(I). L9 passes through L5 ∩ L6, L4 ∩ L7, L2 ∩ L8 . Then L10 passes through (L4 ∩ L6, L1 ∩ L7, L3 ∩ L8)

or (L4 ∩ L8, L3 ∩ L7, L1 ∩ L6).

The first equation can be defined by

XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t4X)(Y − (t3 − t2)X − t2Z)(Y − (1−
t3)X − t3Z) = 0, where t1 = t3, t2 = t2, t3 = t, t4 = t3 − 1, and t satisfies t4 − t− 1 = 0.

The second equation can be defined by

XY (X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t4Z)(Y −t4X)(Y −(t2−1)X−Z)(Y −(1−t3)X−t3Z) =

0, where t1 = t, t2 = t3, t3 = −t, t4 = t2 , and t satisfies t4 + 1 = 0.

(II). L9 passes through (L5∩L6, L4∩L7, L3∩L8). Then L10 passes through (L4∩L6, L1∩L7, L2∩L8)

or (L4 ∩ L8, L2 ∩ L6, L1 ∩ L7) (the first case cannot be realized).

The equation can be defined by

XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t3X)(Y − (t2 − t4)X − t4Z)(Y − (1−
t3)X− t3Z) = 0, where t1 = t3+ t2−2t−2, t2 = t3− t−1, t3 = t, t4 = t2−1, and t satisfies t4−2t2− t+1 = 0.

Subcase 2. Two of (L9 ∩ L10, L9 ∩ L11, L10 ∩ L11) are triple points. Let L9 ∩ L11 and L10 ∩ L11 be

triple points on L4 and L5 , respectively. Then L9, L10 , and L11 pass 8 triple points in (L6 ∪ L7 ∩ L8).

(I). L11 passes through 2 triple points in (L6 ∪L7 ∩L8). Assume that L1 ∩L8 and L2 ∩L7 are on L11 .

Note that L9 must pass through one of (L5 ∩ L6, L5 ∩ L7, L5 ∩ L8), so that L5 contains 3 multiple points.

À L5 ∩ L6 is on L9 , so then (L1 ∩ L7, L3 ∩ L8) or (L3 ∩ L7, L2 ∩ L8) is on L9 .

If (L1 ∩ L7, L3 ∩ L8) are on L9 , then L10 must pass through one of {(L4 ∩ L6, L3 ∩ L7, L2 ∩ L8), (L4 ∩
L7, L3 ∩ L6, L2 ∩ L8), (L4 ∩ L8, L3 ∩ L7, L2 ∩ L6)} (only the first case can be realized).

The equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t3X)(Y − (t4− t2)X− t2Z)(Y − 1−t4
1−t1

X−
t1−t4
1−t1

Z) = 0, where t1 = t, t2 = −2t+ 6, t3 = −t+ 3, t4 = −2 + t , and t satisfies t2 − 3t+ 1 = 0.

If (L3 ∩ L7, L2 ∩ L8) are on L9 , then by a permutation (7, 8)(1, 2), it is lattice isomorphic to the case

that (L1 ∩ L7, L3 ∩ L8) are on L9 .

Á L5 ∩ L7 is on L9 , so then L9 must pass through one of {(L1 ∩ L6, L3 ∩ L8), (L2 ∩ L6, L3 ∩ L8), (L3 ∩
L6, L2 ∩ L8)} .

636



AMRAM et al./Turk J Math

If L1 ∩ L6, L3 ∩ L8 are on L9 , then L10 must pass through one of {(L4 ∩ L6, L3 ∩ L7, L2 ∩ L8), (L4 ∩
L7, L3 ∩ L6, L2 ∩ L8), (L4 ∩ L8, L3 ∩ L7, L2 ∩ L6)} .

The first equation can be defined by

XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t4 − t3)X − t3Z)(Y − (t3 − t2)X −
t2Z)(Y − 1−t4

1−t1
X − t1−t4

1−t1
Z) = 0, where t1 = 1± (t− t2 + t3), t2 = 4∓ (t2 + 2t3), t3 = 2∓ (t2 + t3), t4 = ±t , and

t satisfies t4 − t3 + 2t− 1 = 0.

The second equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t4− t3)X− t3Z)(Y − (t3−1)X−Z)(Y −
1−t4
1−t1

X − t1−t4
1−t1

Z) = 0, where t1 = 1∓ t, t2 = −1
2 ± t, t3 = −1± t, t4 = ±t , and t satisfies 2t2 − 4t+ 1 = 0.

The third equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t4− t3)X− t3Z)(Y − (t2−1)X−Z)(Y −
1−t4
1−t1

X− t1−t4
1−t1

Z) = 0, where t1 = ±(t+t2), t2 = −2±t2, t3 = −1±t2, t4 = ±t , and t satisfies t3−t2−2t+1 = 0.

If L2∩L6, L3∩L8 are on L9 , then L10 must pass through {(L4∩L8, L3∩L6, L1∩L7)} , {(L4∩L8, L3∩
L7, L1 ∩ L6)} (the second case cannot be realized).

The first equation can be defined by

XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t3 − t4)X − t4Z)(Y − (t2 − t3)X −
t3Z)(Y − 1−t4

1−t1
X− t1−t4

1−t1
Z) = 0, where t1 = ±t, t2 = −3± (4t− t2), t3 = 2∓ t, t4 = −1∓ (t2−3t), and t satisfies

t3 − 5t2 + 6t− 1 = 0.

If L3 ∩ L6, L2 ∩ L8 are on L9 , then L10 must pass through one of {(L4 ∩ L6, L3 ∩ L8, L1 ∩ L7), (L4 ∩
L7, L3 ∩ L8, L1 ∩ L6), (L4 ∩ L8, L3 ∩ L7, L1 ∩ L6)} .

The first equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t3−1)X−Z)(Y − (t4− t2)X− t2Z)(Y −
1−t4
1−t1

X− t1−t4
1−t1

Z) = 0, where t1 = ±(t2+t), t2 = ±(t−t3), t3 = ±t2, t4 = ±t , and t satisfies t4+t3−t2−t+1 = 0.

The second equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t3−1)X−Z)(Y − (t4− t3)X− t3Z)(Y −
1−t4
1−t1

X − t1−t4
1−t1

Z) = 0, where t1 = 1
2 ± 1

2 t, t2 = 1∓ 2t, t3 = ∓t, t4 = ±t and t , satisfies t2 + 2t− 1 = 0.

The third equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − (t3−1)X−Z)(Y − (t2− t4)X− t4Z)(Y −
1−t4
1−t1

X − t1−t4
1−t1

Z) = 0, where t1 = −1, t2 = ±2t, t3 = 2, t4 = 1± t , and t satisfies t2 + t− 1 = 0.

Â L5 ∩ L8 is on L9 . After a permutation (7, 8)(1, 2), it is lattice isomorphic to Á.

(II). L10 passes through 2 triple points in (L6 ∪ L7 ∩ L8). We assume that (L1 ∩ L8, L2 ∩ L7, L3 ∩ L6)

are on L11 , (L9∩L10, L10∩L11) are on L4, L5 respectively, and L5∩L6 is on L9 . Then L9 must pass through

one of {(L1 ∩ L7, L2 ∩ L8), (L3 ∩ L7, L2 ∩ L8), (L1 ∩ L7, L3 ∩ L8)} .
À (L1∩L7, L2∩L8) are on L9 , so then up to lattice isomorphism L10 must pass through {L4∩L6, L3∩L7}

or {L4 ∩ L7, L3 ∩ L8} .
The first equation can be defined by

XY (X − Z)(2X + Z)(Y − Z)(2Y + Z)(Y + Z)(Y + 2Z)(Y + 2X)(Y − 2X + Z)(2Y − 2X + Z) = 0.

The second equation can be defined by

XY (X −Z)(X − 2Z)(Y −Z)(4Y − 3Z)(2Y − 3Z)(2Y −Z)(2Y −X)(2Y +X − 3Z)(4Y +3X − 9Z) = 0.

637



AMRAM et al./Turk J Math

Á (L3∩L7, L2∩L8) are on L9 , so then L10 must pass through one of {(L4∩L6, L1∩L7), (L4∩L7, L1∩
L6), (L4 ∩ L8, L1 ∩ L6), (L4 ∩ L8, L1 ∩ L7)} .

The first equation can be defined by

XY (X−Z)(X−t1Z)(Y−Z)(Y−t2Z)(Y−t3Z)(Y−t4Z)(Y−t4X)(Y− 1−t2
t1

X−Z)(Y−(1−t3)X−t3Z) = 0,

where t1 = t, t2 = t, t3 = −1 + 2t, t4 = 2t , and t satisfies 2t2 − 2t+ 1 = 0.

The second equation can be defined by XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y −
t4X)(Y − t2−1

t1
X −Z)(Y − (1− t3)X − t3Z) = 0, where t1 = 1− t, t2 = t2 − t+ 2, t3 = t, t4 = t2 − t+ 1, and t

satisfies t3 − 2t2 + 3t− 1 = 0.

The third equation can be defined by

XY (X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t4Z)(Y −t4X)(Y −(t2−1)X−Z)(Y −(1−t3)X−t3Z) =

0, where t1 = t2 + t, t2 = −t3 − t2 + 2t+ 2, t3 = t, t4 = −t3 + 2t , and t satisfies t4 + t3 − 2t2 − 2t+ 1 = 0.

The fourth equation can be defined by

XY (X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t4Z)(Y −t4X)(Y − t2−1
1−t1

X−t2Z)(Y −(1−t3)X−t3Z) =

0, where t1 = 1
2 + 1

2 t
2, t2 = 1

2 t
2 + t+ 1

2 , t3 = t, t4 = t2 + t , and t satisfies t4 + t3 − 2t2 − 2t+ 1 = 0.

Â (L1 ∩ L7, L3 ∩ L8) are on L9 . After a permutation (7, 8)(1, 2), it is lattice isomorphic to Á.

Subcase 3. All of (L9 ∩L10, L9 ∩L11, L10 ∩L11) are triple points. Then L9, L10 , and L11 pass through

8 triple points in (L6∪L7∩L8) and at least one of L9, L10, L11 passes through 3 triple points in (L6∪L7∩L8).

We always assume that L11 can be such a line. Furthermore, up to a lattice isomorphism, we assume that

(L1 ∩ L8, L2 ∩ L7, L3 ∩ L6) are on L11 , and L9 ∩ L10, L9 ∩ L11, L10 ∩ L11 are on L1, L4, L5 respectively.

(I). L9 passes through 3 triple points in (L6 ∪ L7 ∩ L8) and L10 must pass through 1 triple point in

(L6∪L7∩L8). Note that L9 must pass through one of {L5∩L6, L5∩L7, L5∩L8} so that L5 contains 3 multiple

points. Up to a permutation (6, 7)(2, 3), we assume that {L5∩L6, L3∩L7, L2∩L8} or {L5∩L8, L3∩L7, L2∩L6}
are on L9 .

À L5 ∩L6, L3 ∩L7, L2 ∩L8 are on L9 . Then L10 must pass through one of {L4 ∩L6, L4 ∩L7, L4 ∩L8} .
The first equation can be defined by

XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t4X)(Y + t4(t2 − 1)X − t2Z)(Y − (1−
t3)X − t3Z) = 0, where t1 = 1

2 t, t2 = 1
4 t+ 1, t3 = t, t4 = 2, and t satisfies t2 − 3t+ 4 = 0.

The second cannot be realized.

The third equation can be defined by

XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t4X)(Y − t4(t2−1)
t4−1 X + t4−t2

t4−1 Z)(Y − (1−

t3)X − t3Z) = 0, where t1 = t, t2 = 1
2 t−

1
2 , t3 = −1, t4 = 2t− 1, and t satisfies 2t2 − t+ 1 = 0.

Á L5 ∩L8, L3 ∩L7, L2 ∩L6 are on L9 . Then L10 must pass through one of {L4 ∩L6, L4 ∩L7, L4 ∩L8} .
The first equation can be defined by

XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y + t4X)(Y − t2(1−t3)
t3

X − t2Z)(Y − (1 −

t3)X − t3Z) = 0, where t1 = 5
2 , t2 = 3

2 , t3 = 3, t4 = −2.

The second cannot be realized.

The third equation can be defined by

XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y − t4X)(Y + t2(t3 − 1)X − t2t3Z)(Y − (1−
t3)X − t3Z) = 0, where t1 = −t+ 2, t2 = t, t3 = 2t, t4 = −2t+ 1, and t satisfies 2t2 − t+ 1 = 0.
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(II). Both L9 and L10 pass through 2 triple points in (L6 ∪ L7 ∩ L8). Up to a lattice isomorphism,

assume that L5 ∩ L6, L3 ∩ L7 or L5 ∩ L8, L3 ∩ L7 are on L9 .

À L5 ∩ L6, L3 ∩ L7 are on L9 . Then L10 must pass through one of {(L4 ∩ L6, L2 ∩ L8), (L4 ∩ L7, L2 ∩
L6), (L4 ∩ L7, L2 ∩ L8), (L4 ∩ L8, L2 ∩ L6)} .

The first equation can be defined by

XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(t1Y − t3X)(Y − (t4 − t2)X − t2Z)(Y − (1−
t3)X − t3Z) = 0, where t1 = t, t2 = −2t+ 4, t3 = 2t, t4 = 2t− 2, and t satisfies 2t2 − t− 2 = 0.

The second case cannot be realized.

The third equation can be defined by

XY (X−Z)(X− t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(t1Y − t3X)(Y − t2−t4
1−t1

X+( t2−t4
1−t1

− t4)Z)(Y −

(1− t3)X − t3Z) = 0, where t1 = −2
5 t

3 + 1
5 t

2 + t− 2
5 , t2 = −4t3 + t2 + 7t− 12, t3 = t, t4 = −t3 + 2t− 2, and t

satisfies t4 + t3 − 2t2 + t+ 4 = 0.

The fourth equation can be defined by

XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(t1Y − t3X)(Y − (t2 − t4)X − t4Z)(Y − (1−
t3)X − t3Z) = 0, where t1 = t, t2 = −2t+ 1, t3 = −1, t4 = 2t− 1, and t satisfies 2t2 − 1 = 0.

Á L5 ∩ L8, L3 ∩ L7 are on L9 . Then L10 must pass through one of {(L4 ∩ L6, L2 ∩ L8), (L4 ∩ L7, L2 ∩
L6), (L4 ∩ L7, L2 ∩ L8), (L4 ∩ L8, L2 ∩ L6)} .

The first equation can be defined by

XY (X−Z)(X−t1Z)(Y −Z)(Y −t2Z)(Y −t3Z)(Y −t4Z)(Y − t3
t1−1X+ t3

t1−1Z)(Y −(t4−t2)X−t2Z)(Y −

(1− t3)X − t3Z) = 0, where t1 = −t2 − t, t2 = t4, t3 = t, t4 = t3 , and t satisfies t5 + t4 − t2 − t− 1 = 0.

The second equation can be defined by XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y −
t3

t1−1X + t3
t1−1Z)(Y − t2−t4

t1
X − t4Z)(Y − (1− t3)X − t3Z) = 0, where t1 = 3

2 − 1
2 t, t2 = 1

2 t+
1
2 , t3 = t, t4 = 2,

and t satisfies t2 − 2t− 1 = 0.

The third equation can be defined by XY (X − Z)(X − t1Z)(Y − Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y −
t3

t1−1X+ t3
t1−1Z)(Y − t2−t4

1−t1
X− (t4− t2−t4

1−t1
)Z)(Y − (1− t3)X− t3Z) = 0, where t1 = −t, t2 = t+2, t3 = t, t4 = 2,

and t satisfies t2 − 2 = 0.

The fourth equation can be defined by XY (X −Z)(X − t1Z)(Y −Z)(Y − t2Z)(Y − t3Z)(Y − t4Z)(Y −
t3

t1−1X + t3
t1−1Z)(Y − (t2 − t4)X − t4Z)(Y − (1− t3)X − t3Z) = 0, where t1 = 2− t, t2 = t, t3 = t− 2, t4 = 2,

and t satisfies t2 − 4t+ 2 = 0. 2

6.2. All triple points are in the pencil of the quintuple point

Assume that all the triple points are on the lines passing through the quintuple point. We first show that there

at most 13 triple points, and at least 10 triple points if the arrangement is nonreductive.

Lemma 6.3 Let A be a nonreductive arrangement of 11 lines with 1 quintuple point so that all triple points

are on the lines passing through the quintuple point. Then there are at most 13 triple points and at least 10

triple points.

Proof From Lemma 2.6 and Theorem 2.7, we have the following equations:
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{
n2 + 3n3 +6n4 + 10n5 = 55,

n2 +
3
4n3 ≥ 11 + n5.

From the above equations, we compute n3 ≤ 14.

Let L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 be the quintuple point. Since there are 14 triple points on those 5 lines

and we know that each of the 5 lines passes through at least 2 and at most 3 triple points, then we may

assume that each of L1, L2, L3 , and L4 passes through 3 triple points. On the other hand, each of the other

six lines passes through at least 3 and at most 5 triple points. Let a , b , and c be the numbers of lines in

{L6, L7, L8, L9, L10, L11} that pass through 3, 4, and 5 triple points, respectively. Then a and b should satisfy

the following system of equations:

a+ b+ c = 6,

3a+ 4b+ 5c = 28.

From the above equations, we have two solutions:

One is

a = 1, b = 0, c = 5.

The other is

a = 0, b = 2, c = 4.

Because there are 14 triple points, one of {L1, L2, L3, L4, L5} has only two triple points. This fact tells

us that c ≤ 4. The first case does not exist. For the second case, we consider A′
= A \ L5 . Now A′

is an

arrangement of 10 lines with 1 quadruple point. All triple points are in the pencil of the quadruple point, and

A′
has 12 triple points. By [2, Lemma 5.3], A′

cannot be realized, so A does not exist.

Because each line of {L1, L2, L3, L4, L5} has at least two triple points, then n3 ≥ 10.

2

The classification will run on the numbers of triple points.

Theorem 6.4 Let A be a nonreductive arrangement of 11 lines with a quintuple point and 13 triple points

such that all triple points are on the 5 lines passing through the quintuple point. Then the moduli space MA is

irreducible, and in fact is one point.

Proof Let L1 ∩L2 ∩L3 ∩L4 ∩L5 be the quintuple point. Since there are 14 triple points on those 5 lines and

we know that each of 5 lines passes through at least 2 and at most 3 triple points, then we may assume that each

of L1, L2 and L3 passes through 3 triple points. On the other hand, each of the other six lines passes through

at least 3 and at most 5 triple points. Let a , b , and c be the numbers of lines in {L6, L7, L8, L9, L10, L11}
that pass through 3, 4, and 5 triple points, respectively. Then a and b should satisfy the following system of

equations:

a+ b+ c = 6,

3a+ 4b+ 5c = 26.

From the above equations, we have three solutions:

a = 2, b = 0, c = 4; a = 1, b = 2, c = 3; a = 0, b = 4, c = 2.
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For the first case, we consider A′
= A \ L4 . Now A′

is an arrangement of 10 lines with 1 quadruple

point. All triple points are in the pencil of the quadruple point, and A′
has 11 triple points. From [2, Theorem

5.4], MA′ is irreducible. In fact, it is one point, because every case has only one solution from the proof of [2,

Theorem 5.4]. The moduli space MA is irreducible.

For the second case, because b = 2, one of {L6, L7, L8, L9, L10, L11} must intersect 4 lines, and one of

the intersect lines must be L4 or L5 . We assume it is L4 . Now we consider A′
= A \ L4 . The rest of this

proof is similar to the first case.

For the third case, we consider A′
= A \ L4 . The rest of this proof is similar to the first case.

2

Remark 6.5 The example of Theorem 6.4 is easy to construct (see Figure 65).

1

0

−1

−1 10

Figure 65.

The equation is defined as follows:

(X − Z)X(X + Z)(Y +X)(Y −X)(Y + Z −X)(Y − Z −X)(Y − 2X)(Y − Z)Y (Y + Z) = 0.

Theorem 6.6 Let A be a nonreductive arrangement of 11 lines with a quintuple point and 12 triple points

such that all triple points are on the 5 lines passing through the quintuple point. Then the quotient moduli space

Mc
A is irreducible, and in fact is one or two points.

Proof Let L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 be the quintuple point. On the one hand, since there are 12 triple points

on those 5 lines and we know that each of 5 lines passes through at least 2 and at most 3 triple points, then

we may assume that each of L1 and L2 passes through 3 triple points. On the other hand, each of the other

six lines passes through at least 3 and at most 5 triple points. Let a , b , and c be the numbers of lines in

{L6, L7, L8, L9, L10, L11} that pass through 3, 4, and 5 triple points, respectively. Then a and b should satisfy

the following system of equations:

a+ b+ c = 6,

3a+ 4b+ 5c = 24.

From the above equations, we have these solutions:

a = 0, b = 6, c = 0; a = 1, b = 4, c = 1; a = 2, b = 2, c = 2; a = 3, b = 0, c = 3.
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For the first case, we consider A′
= A \ L4 . Now A′

is an arrangement of 10 lines with 1 quadruple

point. All triple points are in the pencil of the quadruple point, and A′
has 10 triple points. From [2, Theorem

5.5], Mc
A′ is irreducible. In fact, it is one point. Because every case has only conjugation solutions from the

proof of [2, Theorem 5.5], the moduli space Mc
A is irreducible.

For the second case, because a = 1, we assume that the line is L6 . Two of {L1, L2, L3, L4, L5} cannot

intersect with L6 . We assume that these lines are L4 and L5 , and L4 must have two triple points. Now we

consider that A′
= A \ L4 , and A′

is an arrangement of 10 lines with 1 quadruple point. All triple points are

in the pencil of the quadruple point, and A′
has 10 triple points. From [2, Theorem 5.5], Mc

A′ is irreducible,

and in fact is one point, so the moduli space Mc
A is irreducible.

For the third case, because a = 2, we assume the lines are L6 and L7 . One of {L1, L2, L3, L4, L5} must

not intersect L6 and L7 . We assume that this line is L4 , and L4 must have two triple points. Now we consider

that A′
= A\L4 , and A′

is an arrangement of 10 lines with 1 quadruple point. The rest of this proof is similar

to the second case.

For the fourth case, up to lattice isomorphism, there is only one case (see Figure 66).
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Figure 66.
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Figure 67.

It is easy to see that line 11 and line 10 must have a double point that is not on the 5 lines passing

through the quintuple point, so Figure 66 and Figure 67 are equivalent.

It is easy to compute that A does not exist. 2

From the above discussions, we have the following corollary:

Corollary 6.7 Let A be a nonreductive line arrangement of 11 lines with n5 = 1, n4 = 0 , and nr = 0, r ≥ 6 .

Moreover, all triple points are on the 5 lines passing through the quintuple point. If it contains more than 11

triple points, then there is no Zariski pair.

Let A be a nonreductive arrangement of 11 lines with a quintuple point and all triple points are on the

5 lines passing through the quintuple point. If the number of the triple points is less than 12, then there are

many cases in which MA is more than 2 points or even one dimension. Now we give two examples.
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Example 6.1 The line arrangements are with 11 triple points, and all triple points are on the 5 lines passing

through the quintuple point (see Figure 68).
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Figure 68.
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Figure 69.

After some easy computation, we get the equation as follows: X(X −Z)(Y −Z)(Y − t3Z)(Y − t2Z)(Y −
t1Z)Y ((t2 − t3)X − Y + t3Z)(Y − Z + X)(Y − (t1 − t1−t2

t2
)Z − ( t1−t2

t2
)X)(Y − t2Z − t1−t2

1−t1
X) = 0 , where

t1 = 1
5 t

2 − 2
5 t +

4
5 , t2 = t, t3 = 1 − t , and t satisfies t2 − 2t − t3 + 1 = 0 , so that the moduli space MA is

three points.

Example 6.2 The line arrangements are with 10 triple points, and all triple points are on the 5 lines passing

through the quintuple point (see Figure 69).

After some easy computation, we get the equation as follows: X(X −Z)(Y −Z)(Y − t3Z)(Y − t2Z)(Y −
t1Z)(Y (1 − t1))X − Y + t1Z)((t3 − t2)X − Y + t2Z)(t2X − Y )(t2(t1 − 1)X − (t2 − 1)Y + (t2 − t1)Z) , where

t1 = 1−3t−t2

t , t2 = t, andt3 = t3−3t2+t
1−2t , so the moduli space MA is of one dimension.
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