Turk J Math
(2015) 39: $618-644$
(c) TÜBITTAK
doi:10.3906/mat-1410-18

Moduli spaces of arrangements of 11 projective lines with a quintuple point

Meirav AMRAM ${ }^{1,3}$, Cheng GONG ${ }^{1,2}$, Mina TEICHER ${ }^{2}$, Wan-Yuan XU ${ }^{1, *}$
${ }^{1}$ Emmy Noether Research Institute for Mathematics, Bar-Ilan University, Ramat-Gan, Israel
${ }^{2}$ School of Mathematics Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
${ }^{3}$ Shamoon College of Engineering, Beer-Sheva, Israel

Received: 08.10 .2014	Accepted/Published Online: 04.03 .2015	Printed: 30.09 .2015

Abstract

In this paper, we try to classify moduli spaces of arrangements of 11 lines with quintuple points. We show that moduli spaces of arrangements of 11 lines with quintuple points can consist of more than 2 connected components. We also present defining equations of the arrangements whose moduli spaces are not irreducible after taking quotients by the complex conjugation by Maple and supply some "potential Zariski pairs".

Key words: Line arrangements, moduli spaces, irreducibility

1. Introduction

Let $\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a line arrangement in the complex projective plane $\mathbb{C P}^{2}$, and denote by $M(\mathcal{A})$ the corresponding complement of the arrangement.

An essential topic in hyperplane arrangement theory is to study the intersection between topology of complements and combinatorics of intersection lattices. It is important to study how closely topology and combinatorics of a given arrangement are related. For line arrangements, Jiang and Yau [8] showed that homeomorphism of the complement always implies lattice isomorphism. However, the converse is not true in general for line arrangements. In [7] and [12], the authors found a large class of line arrangements whose intersection lattices determine topology of the complements, called nice arrangements and simple arrangements respectively. The notion of nice line arrangements has been generalized to arrangements of hyperplanes in higher dimensional projective spaces (see [13, 14, 15]).

We call a pair of line arrangements a Zariski pair if they are lattice isomorphic, but the fundamental groups of their complements are different. The first Zariski pair of line arrangements was constructed by Rybnikov [11]. On the other hand, combining the results of Fan [4], Garber et al. [5] proved that there is no Zariski pair of arrangements of up to 8 real lines. This result was recently generalized to arrangements of 8 complex lines by Nazir and Yoshinaga [9]. In the same paper, Nazir and Yoshinaga also claimed that there is no Zariski pair of arrangements of 9 complex lines. A complete proof of their claim was presented in [16]. Recently, Amram et al. classified arrangements of 10 complex lines in $[2,1]$ and found some "potential Zariski pairs".

Let \mathcal{A} be a complex line arrangement. We define the moduli space of line arrangements with the fixed lattice $L(\mathcal{A})$ (or simply, the moduli space of \mathcal{A}) as

[^0]$$
\left.\mathcal{M}_{\mathcal{A}}=\left\{\mathcal{B} \in\left(\left(\mathbb{C P}^{2}\right)^{*}\right)^{n} \mid \mathcal{B} \sim \mathcal{A}\right)\right\} / P G L_{\mathbb{C}}(2)
$$
where $\mathcal{B} \sim \mathcal{A}$ means \mathcal{B} and \mathcal{A} are lattice isomorphic. We denote by $\mathcal{M}_{\mathcal{A}}^{c}$ the quotient of $\mathcal{M}_{\mathcal{A}}$ under the complex conjugation. By Randell's lattice-isotopy theorem in [10] and Cohen and Suciu's theorem [3, Theorem 3.9], we know that arrangements in the same connected component of the moduli space, or in two complex conjugate components, can not form Zariski pairs. Therefore, to investigate the existence of Zariski pairs of arrangements of 11 lines, it is very important to know the geometry of moduli spaces of arrangements. In this paper, we try to classify the moduli spaces of arrangements of 11 lines with quintuple points, and in particular we completely classify the arrangements of 11 lines with a quintuple point and at least one quadruple point. On this basis, we give forty new "potential Zariski pairs" of arrangements of 11 lines.

The classification of moduli spaces consists of three steps. First, we will roughly classify intersection lattices according the number of multiple intersection points. Second, we divide our classification into some different cases according to different positions between quintuple point and the other multiple intersection points. Third, we will write down defining equations involving parameters for a given intersection lattice.

This paper is structured as follows. Section 2 provides preliminaries and ideas on classifying moduli spaces of arrangements of 11 lines. Section 3 shows that moduli spaces of arrangements with multiple points of high multiplicity are most likely irreducible. In Section 4 and Section 5, we completely classify the arrangements of 11 lines with a quintuple point and at least one quadruple point. In Section 6 we deal with the arrangements of 11 lines with a quintuple point and no quadruple point. Sections 4,5 , and 6 are the main parts of this work and in total forty "potential Zariski pairs" can be found there. In the Appendix (on the journal's website), we give an example to show how to compute the defining equations of the arrangements by Maple.

2. Preliminaries

Let $\mathcal{A}=\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$ be a line arrangement in $\mathbb{C P}^{2}$. We say a singularity of $L_{1} \cup L_{2} \cup \cdots \cup L_{n}$ is a multiple point of \mathcal{A} if it has multiplicity of at least 3 . We call the set $L(\mathcal{A})=\left\{\bigcap_{i \in S} L_{i} \mid S \subseteq\{1,2, \ldots, n\}\right\}$ partially ordered by reverse inclusion in the intersection lattice of \mathcal{A}.

Definition 2.1 Two line arrangements \mathcal{A}_{1} and \mathcal{A}_{2} are lattice isomorphic, denoted as $\mathcal{A}_{1} \sim \mathcal{A}_{2}$, if their intersection lattices $L\left(\mathcal{A}_{1}\right)$ and $L\left(\mathcal{A}_{2}\right)$ are isomorphic, i.e. there is a permutation ϕ of $\{1,2, \ldots, n\}$ such that

$$
\operatorname{dim}\left(\bigcap_{\substack{i \in S \\ L_{i} \in \mathcal{A}_{1}}} L_{i}\right)=\operatorname{dim}\left(\bigcap_{\substack{j \in \phi(S) \\ H_{j} \in \mathcal{A}_{2}}} H_{j}\right)
$$

for any nonempty subset $S \subseteq\{1,2, \ldots, n\}$.
Definition 2.2 ([9, Definition 3.10]) Let $k \in \mathbb{N}$. We say that a line arrangement \mathcal{A} is of type C_{k} if k is the minimum number of lines in \mathcal{A} containing all points of multiplicity of at least three.

Definition 2.3 ([9, Definition 3.13]) Let \mathcal{A} be an line arrangement of type C_{3}. Then \mathcal{A} is a simple C_{3} arrangement if there are three lines $L_{1}, L_{2}, L_{3} \in \mathcal{A}$ such that all points of multiplicity of at least three are contained in $L_{1} \bigcup L_{2} \bigcup L_{3}$ and one of the following holds:

1. $L_{1} \cap L_{2} \cap L_{3} \neq \emptyset$, or
2. $L_{1} \cap L_{2} \cap L_{3}=\emptyset$ and one of L_{1}, L_{2}, and L_{3} contains only one multiple point apart from the other two lines.

Theorem 2.4 ([9, Theorem 3.15]) Let \mathcal{A} be an arrangement of C_{3} of simple type. Then the moduli space $\mathcal{M}_{\mathcal{A}}$ is irreducible.

Theorem 2.5 ([9, Lemma 3.2]) Let $\mathcal{A}=\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$ be a line arrangement. Assume that L_{n} passes through at most 2 multiple points. Set $\mathcal{A}^{\prime}=\left\{L_{1}, L_{2}, \cdots, L_{n-1}\right\}$, and then $\mathcal{M}_{\mathcal{A}}$ is irreducible if $\mathcal{M}_{\mathcal{A}^{\prime}}$ is irreducible.

We say that a line arrangement is nonreductive if each line of the arrangement passes through at least 3 multiple points. Otherwise, we say the arrangement is reductive.

Denote by n_{r} the number of intersection points of multiplicity r. We recall the following useful results.
Lemma 2.6 (See for instance [6].) Let \mathcal{A} be an arrangement of k lines in $\mathbb{C P}^{2}$. Then

$$
\frac{k(k-1)}{2}=\sum_{r \geq 2} \frac{r(r-1) n_{r}}{2} .
$$

Theorem 2.7 (See [6].) Let \mathcal{A} be an arrangement of k lines in $\mathbb{C P}^{2}$. Assume that $n_{k}=n_{k-1}=n_{k-2}=0$. Then

$$
n_{2}+\frac{3}{4} n_{3} \geq k+\sum_{r \geq 5}(2 r-9) n_{r}
$$

The following lemma is well known and is used to facilitate the calculation in our paper.
Lemma 2.8 Let $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ and $\left\{L_{5}, L_{6}, L_{7}\right\}$ be two pencils of lines who intersect at one point and intersect transversally in 12 points. Then there is an automorphism of the dual projective plane such that the 7 lines under the automorphism are defined by $Y=Z, Y=t_{3} Z, Y=t_{2} Z, Y=0, X=0, X=t_{1} Z, X=Z$.

Remark 2.9 All the computations in Sections 4 and 5 are based on Lemma 2.8 above. First, we let L_{1}, \cdots, L_{7} be as in Lemma 2.8 and let L_{11} be the line at infinity. Second, by the intersection points we obtain the defining equations of L_{8}, L_{9}, L_{10}, and by the conditions of slope, parallel, and intersection points, we get the equations on the coefficients t_{1}, t_{2}, t_{3}. Third, using Maple, it is easy to get the solutions of t_{1}, t_{2}, t_{3}, and the defining equations of the arrangements or the arrangements cannot be realized. In Section 6, similarly as in Lemma 2.8, we can establish similar vertical nets and the methods of computing the defining equations of the arrangements is the same as in the above three steps.

3. Arrangements of 11 lines with multiple points of multiplicity at least 6

Theorem 3.1 Let \mathcal{A} be an arrangement of $n(n \geq 9)$ lines. If there is a multiple point of multiplicity $\geq n-4$, then the moduli space $\mathcal{M}_{\mathcal{A}}$ is irreducible.
Proof For $n=9,10$, it was proved in [16, Prop 3.3] and [2, Theorem 3.1]. Now we consider $n \geq 11$. Assume that $L_{1} \cap L_{2} \cap \cdots \cap L_{n-4} \neq \emptyset$. It is easy to see that at least one of the $n-4$ lines contains at most 2 multiple points. By Theorem 2.5 and [2, Theorem 3.1], we see that $\mathcal{M}_{\mathcal{A}}$ is irreducible.

In particular, if $n=11$ and $n_{7} \geq 1$, then $\mathcal{M}_{\mathcal{A}}$ is irreducible.

Theorem 3.2 Let \mathcal{A} be an arrangement of 11 lines with a multiple point of multiplicity 6 and no multiple points of higher multiplicities; then \mathcal{A} is reductive.
Proof Assume that \mathcal{A} is nonreductive, and then by Lemma 2.6 and Theorem 2.7 we have

$$
\begin{equation*}
44-18 n_{6} \geq \frac{9}{4}\left(n_{3}+n_{4}+n_{5}\right) \tag{1}
\end{equation*}
$$

On the other hand, it is easy to see that there must be at least $13-n_{6}$ multiple points of multiplicity ≤ 5. Thus, $13-n_{6} \leq n_{3}+n_{4}+n_{5}$. Together with (1), we get $n_{6} \leq \frac{59}{63}<1$, a contradiction.

4. Arrangements of 11 lines with a quintuple point and 2 quadruple points

In this section, we investigate arrangements of 11 lines with a quintuple point and no multiple points of higher multiplicities.

First, we show the possible values of the numerical invariants n_{4}, n_{5} such that the arrangement is nonreductive.

Lemma 4.1 Let \mathcal{A} be a nonreductive arrangement of 11 lines in $\mathbb{C P}^{2}$ with a quintuple point and $n_{r}=0$ for $r \geq 6$. Then $n_{5}=1$ and $n_{4} \leq 2$.
Proof By Lemma 2.6 and Theorem 2.7, we have $n_{3}+n_{4} \geq \frac{4}{9}\left(44-11 n_{5}\right)$. On the other hand, it is easy to see that there must be at least $11-n_{5}$ multiple points of multiplicity ≤ 4. Thus, $11-n_{5} \leq \frac{4}{9}\left(44-11 n_{5}\right)$. It follows that $n_{5} \leq 2$. If $n_{5}=2$ and these 2 quintuple points are not collinear, then it is easy to see that there is a line with at most 2 multiple points. If $n_{5}=2$ and these 2 quintuple points are collinear, let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{11}$ and $L_{5} \cap L_{6} \cap L_{7} \cap L_{8} \cap L_{11}$ be 2 quintuple points, and let L_{11} be the line at infinity. Each of L_{9} and L_{10} must pass through 4 points of $L_{i} \cap L_{j}, i=1,2,3,4 ; j=5,6,7,8$. Assume that L_{9} passes through $L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}, L_{4} \cap L_{5}$, and then to make the arrangement nonreductive, L_{10} should pass through $L_{1} \cap L_{6}, L_{2} \cap L_{5}, L_{3} \cap L_{8}, L_{4} \cap L_{7}$ and $L_{9} \cap L_{10}$ is on L_{11}. After an easy computation, such an arrangement can not be realized. Therefore, $n_{5}=1$.

Also by Lemma 2.6 and Theorem 2.7, we obtain $\frac{9}{4} n_{3}+6 n_{4} \leq 33$. Since each line contains at least 3 multiple points, then there must be at least $11-n_{5}=10$ multiple points. It follows that $n_{4} \leq \frac{42}{15}$, and thus $n_{4} \leq 2$.

Theorem 4.2 Let \mathcal{A} be a nonreductive arrangement of 11 lines in $\mathbb{C P}^{2}$ with a qunituple point such that $n_{4}=2$ and $n_{r}=0$ for $r \geq 6$. Then the moduli space $\mathcal{M}_{\mathcal{A}}$ is irreducible.
Proof First, we assume that the quintuple point and a quadruple point are not collinear in \mathcal{A}. We show that there is a line containing only 2 multiple points. Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ be the quintuple point and let $L_{6} \cap L_{7} \cap L_{8} \cap L_{9}$ be the quadruple point. Then the other quadruple point must be $L_{i} \cap L_{j} \cap L_{10} \cap L_{11}$ for some $i \in 1,2,3,4,5, j \in 6,7,8,9$. Then L_{i} passes through at most 2 multiple points. If there are two noncollinear quadruple points, each one being collinear with the quintuple point, it is easy to see that the arrangement is reductive.

Second, we consider that any 2 of the quintuple points and 2 quadruple points are collinear, but all of them are not collinear. Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{11}, L_{5} \cap L_{6} \cap L_{7} \cap L_{11}$ and $L_{2} \cap L_{6} \cap L_{9} \cap L_{10}$ be the quintuple point and 2 quadruple points. There must be another triple point on L_{11} so that it contains 3 multiple points. We may assume $L_{8} \cap L_{10} \cap L_{11}$ is the triple point.

Case 1. $L_{8} \cap L_{9}$ is not a triple point. It is easy to see that $L_{9} \cup L_{10}$ pass through at most 4 points of $\Delta:=\left\{L_{i} \cap L_{j}, i=1,2,3,4 ; j=5,6,7\right\}$ except $L_{2} \cap L_{6}$. Thus, L_{8} passes through 3 points of Δ and $L_{9} \cup L_{10}$ pass through 5 points of Δ to make the arrangement nonreductive. Up to a lattice isomorphism, we may assume that L_{8} passes through $\left\{L_{2} \cap L_{5}, L_{3} \cap L_{6}, L_{4} \cap L_{7}\right\}$. Then $L_{1} \cap L_{5}$ and $L_{3} \cap L_{7}$ are on L_{9} or L_{10}. Up to a permutation, we can assume they are on L_{9}, and then $L_{1} \cap L_{7}$ and $L_{4} \cap L_{5}$ are on L_{10} (see Figure 1).

Figure 1.

Figure 2.

Figure 3.

After an easy computation, we see that Figure 1 cannot be realized.
Case 2. $L_{8} \cap L_{9}$ is a triple point. We assume that $L_{8} \cap L_{9}$ is on L_{1}, and up to a lattice isomorphism, we assume $L_{1} \cap L_{7}$ is on L_{10} so that L_{1} contains 3 multiple points. Note that $L_{2} \cap L_{5}$ or $L_{2} \cap L_{7}$ is on L_{8} so that L_{2} contains 3 multiple points and $L_{3} \cap L_{6}$ or $L_{4} \cap L_{6}$ is on L_{8} so that L_{6} contains 3 multiple points.

Subcase 1. $L_{2} \cap L_{5}$ and $L_{3} \cap L_{6}$ are on L_{8}.
(I). $L_{4} \cap L_{7}$ is on L_{8}, so then $L_{4} \cap L_{5}$ is on L_{9} or L_{10} so that L_{4} passes through 3 multiple points.
(1). $L_{4} \cap L_{5}$ is on L_{9}, so then $L_{3} \cap L_{5}$ is on L_{10} (Figure 2) or $L_{3} \cap L_{7}$ is on L_{9} (Figure 3).
(2). $L_{4} \cap L_{5}$ is on L_{10}, so then $L_{3} \cap L_{5}$ (Figure 4) or $L_{3} \cap L_{7}$ is on L_{9} (Figure 5).
(II). $L_{4} \cap L_{7}$ is on L_{9}, so then $L_{4} \cap L_{5}$ is on L_{10} and $L_{3} \cap L_{5}$ is on L_{9} so that L_{3}, L_{4} pass through 3 multiple points (Figure 6).

Figure 4.

Figure 5.

Figure 6.

After an easy computation, we see that Figures 2, 3, 4, 5, and 6 cannot be realized.
Subcase 2. $L_{2} \cap L_{7}$ and $L_{3} \cap L_{6}$ are on L_{8}. If $L_{4} \cap L_{5}$ is on L_{9}, then L_{4} contains only 2 multiple points, and thus $L_{4} \cap L_{5}$ is on L_{8} or L_{10}.
(I). $L_{4} \cap L_{5}$ is on L_{8}, so then to make the arrangement nonreductive, $L_{4} \cap L_{7}$ is on L_{9} and $L_{3} \cap L_{5}$ is on L_{9} or L_{10} (Figure 7).
(II). $L_{4} \cap L_{5}$ is on L_{10}, so then to make the arrangement nonreductive, $L_{4} \cap L_{7}$ and $L_{3} \cap L_{5}$ are on L_{9} (Figure 8).

Figure 7.

Figure 8.

After an easy computation, we see that Figures 7 and 8 cannot be realized.
Assume that the quintuple point and 2 quadruple points are collinear in \mathcal{A}. We assume that $L_{1} \cap L_{2} \cap$ $L_{3} \cap L_{4} \cap L_{11}, L_{5} \cap L_{6} \cap L_{7} \cap L_{11}$, and $L_{8} \cap L_{9} \cap L_{10} \cap L_{11}$ are the quintuple point and 2 quadruple points. It is easy to see that L_{8}, L_{9}, L_{10} pass through 8 or 9 points of Δ so that $L_{1}, L_{2}, L_{3}, L_{4}$ contain at least 3 multiple points each.

If L_{8}, L_{9}, L_{10} pass through 9 points of Δ, then each of $L_{5}, L_{6}, L_{7}, L_{8}, L_{9}, L_{10}$ contains 4 multiple points. Then $\mathcal{A}^{\prime}=\mathcal{A} \backslash\left\{L_{i}\right\}, i \in\{1,2,3,4\}$ is a line arrangement of 10 lines with 3 quadruple points, which are collinear in \mathcal{A}^{\prime}. By the last paragraph in the proof [2, Theorem 4.2], $\mathcal{M}_{\mathcal{A}^{\prime}}$ is irreducible. Hence, $\mathcal{M}_{\mathcal{A}}$ is irreducible.

If L_{8}, L_{9}, L_{10} pass through 8 points of Δ, then each of $L_{1}, L_{2}, L_{3}, L_{4}$ passes through 2 triple points. We assume that 8 points of Δ are $L_{2} \cap L_{5}, L_{3} \cap L_{5}, L_{4} \cap L_{5}, L_{1} \cap L_{6}, L_{4} \cap L_{6}, L_{1} \cap L_{7}, L_{2} \cap L_{7}, L_{3} \cap L_{7}$. Furthermore, we assume that $L_{1} \cap L_{6}$ is on L_{8} and $L_{4} \cap L_{6}$ is on L_{9}.
(I). $L_{2} \cap L_{5}$ is on L_{8}, so then we see that $L_{3} \cap L_{7}$ is on $L_{8}, L_{3} \cap L_{5}$ is on L_{9}, and $L_{4} \cap L_{5}$ is on L_{10}.
(1) $L_{1} \cap L_{7}$ is on L_{9} and $L_{2} \cap L_{7}$ is on L_{10} (Figure 9).
(2) $L_{1} \cap L_{7}$ is on L_{10} and $L_{2} \cap L_{7}$ is on L_{9} (Figure 10).

Figure 9.

Figure 10.

After an easy computation, we conclude that Figures 9 and 10 cannot be realized.
(II). $L_{3} \cap L_{5}$ is on L_{8}, so then we see that $L_{2} \cap L_{7}$ is on $L_{8}, L_{2} \cap L_{5}$ is on L_{9}, and $L_{4} \cap L_{5}$ is on L_{10}. Exchanging L_{2}, L_{3}, we see it is lattice isomorphic to (1).
(III). $L_{4} \cap L_{5}$ is on L_{8}, and up to a lattice isomorphism, we assume that $L_{3} \cap L_{5}$ is on L_{9}, so then $L_{2} \cap L_{5}$ is on L_{10} (Figures 11 and 12).
(1) $L_{1} \cap L_{7}$ is on L_{9}, so then $L_{2} \cap L_{7}$ is on $L_{8}, L_{3} \cap L_{7}$ is on L_{10}.
(2) $L_{2} \cap L_{7}$ is on L_{9}, so then $L_{3} \cap L_{7}$ is on $L_{8}, L_{1} \cap L_{7}$ is on L_{10}.

After an easy computation, we conclude that Figures 11 and 12 cannot be realized.

Figure 11.

Figure 12.

Thus, $\mathcal{M}_{\mathcal{A}}$ is irreducible.

5. Arrangements of 11 lines with a quintuple point and exactly 1 quadruple point

In this section, we investigate an arrangement of 11 lines with a quintuple point and exactly 1 quadruple point.

Lemma 5.1 Let \mathcal{A} be a nonreductive arrangement of 11 lines in $\mathbb{C P}^{2}$ with $n_{5}=n_{4}=1$ and $n_{r}=0$ for $r \geq 6$. If the quintuple point and the quadruple point are not collinear, then $\mathcal{M}_{\mathcal{A}}$ is empty.
Proof Assume that $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ is the quintuple point and $L_{6} \cap L_{7} \cap L_{8} \cap L_{9}$ is the quadruple point. Since L_{10} and L_{11} pass through at most 8 triple points of $\left\{L_{6} \cup L_{7} \cup L_{8} \cup L_{9}\right\}$, then one of $\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$ contains at most 2 multiple points, and then \mathcal{A} is reductive, contradiction. Then $\mathcal{M}_{\mathcal{A}}$ is empty.

In the following theorem, we assume that the quintuple point and the quadruple point are collinear.

Theorem 5.2 Let \mathcal{A} be a nonreductive arrangement of 11 lines in $\mathbb{C P}^{2}$ with $n_{5}=n_{4}=1$ and $n_{r}=0$ for $r \geq 6$. If the quintuple point and the quadruple point are collinear, then $\mathcal{M}_{\mathcal{A}}$ or $\mathcal{M}_{\mathcal{A}}^{c}$ is irreducible except in the cases of Figures 14, 15, 17, 26, 27, 30, 31, 32, 33, 35, 37, 46, 55, 56, 57, 58, and 60 and the corresponding arrangements of these figures are"potential Zariski pairs".
Proof Assume that $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{11}$ is the quintuple point and $L_{5} \cap L_{6} \cap L_{7} \cap L_{11}$ is the quadruple point. Then one of $\left\{L_{8} \cap L_{9}, L_{8} \cap L_{10}, L_{9} \cap L_{10}\right\}$ is on L_{11} so that it contains at least 3 multiple points. We may assume $L_{8} \cap L_{9}$ is on L_{11}.

Case 1. Neither of $L_{8} \cap L_{10}$ and $L_{9} \cap L_{10}$ is a triple point. Then L_{10} must pass through at 3 points of Δ. Then L_{8}, L_{9} must pass through at least 5 points of Δ so that $L_{1}, L_{2}, L_{3}, L_{4}$ contains at least 3 multiple points.

Subcase 1. Both L_{8} and L_{9} pass through 3 points of Δ. Let L_{4} be the line such that $L_{4} \cap L_{10}$ is not a triple point and let $\mathcal{A}^{\prime}=\mathcal{A} \backslash\left\{L_{4}\right\}$. Then \mathcal{A}^{\prime} is an arrangement of 10 lines with 2 quadruple points on the same line and none of $L_{10} \cap\left(L_{8} \cup L_{9}\right)$ is a triple point, it is just [2, Theorem 4.4, Case 1]. Then $\mathcal{M}_{\mathcal{A}^{\prime}}$ is either empty or irreducible, and then $\mathcal{M}_{\mathcal{A}}$ is either empty or irreducible.

Subcase 2. One of L_{8}, L_{9} passes through 2 points of Δ. We assume that L_{8} passes through 2 points of Δ. Up to a lattice isomorphism, we assume that $\left\{L_{1} \cap L_{7}, L_{2} \cap L_{6}, L_{3} \cap L_{5}\right\}$ are on L_{10}. To make L_{4} pass
through at least 3 multiple points, L_{8}, L_{9} must pass through 2 points of $\left\{L_{4} \cap L_{5}, L_{4} \cap L_{6}, L_{4} \cap L_{7}\right\}$. Up to a permutation, let L_{8} contain $L_{4} \cap L_{6}$ and let L_{9} contain $L_{4} \cap L_{5}$.
(I). $L_{1} \cap L_{5}$ is on L_{8}. It is easy to see that $L_{2} \cap L_{7}$ and $L_{3} \cap L_{6}$ are on L_{9} so that L_{2}, L_{3} pass through 3 multiple points (Figure 13).
(II). $L_{2} \cap L_{5}$ is on L_{8}. To make L_{1}, L_{3} pass through 3 multiple points, $L_{1} \cap L_{6}$ and $L_{3} \cap L_{7}$ must be on L_{9} (Figure 14).

Figure 13.

Figure 14.
(III). $L_{2} \cap L_{7}$ is on L_{8}. Obviously, L_{9} must pass through $L_{1} \cap L_{6}$ and $L_{3} \cap L_{7}$ so that L_{1}, L_{3} pass through 3 multiple points (see Figure 15).
(IV). $L_{3} \cap L_{7}$ is on L_{8}. Note that $L_{1} \cap L_{6}$ and $L_{2} \cap L_{7}$ should be on L_{9}, and then L_{1}, L_{2} contains 3 multiple points (see Figure 16).

Figure 15.

Figure 16.

An easy computation shows that Figures $13,14,15$, and 16 cannot be realized.
Case 2. One of $\left(L_{8} \cup L_{9}\right) \cap L_{10}$ is a triple point in \mathcal{A}. We assume that $L_{8} \cap L_{10}$ is a triple point, and then L_{10} passes through 2 or 3 points of Δ.

Subcase 1. L_{10} passes through 3 points of Δ. We assume that $L_{1} \cap L_{7}, L_{2} \cap L_{6}, L_{3} \cap L_{5}$ are on L_{10} and $L_{8} \cap L_{10}$ is on L_{4}. Note that $\left(L_{8} \cup L_{9}\right)$ contain at least 4 points of Δ so that $L_{1}, L_{2}, L_{3}, L_{4}$ pass through at least 3 multiple points.
(I). Both L_{8} and L_{9} contain 2 points of Δ. Note that L_{9} must pass through one of $\left\{L_{4} \cap L_{5}, L_{4} \cap\right.$ $\left.L_{6}, L_{4} \cap L_{7}\right\}$. Up to a lattice isomorphism, we assume $L_{4} \cap L_{5}$ is on L_{9}.
(1) $L_{1} \cap L_{6}$ is on L_{9}, and then $L_{2} \cap L_{5}, L_{3} \cap L_{7}$ or $L_{2} \cap L_{7}, L_{3} \cap L_{6}$ is on L_{8} so that $L_{1}, L_{2}, L_{3}, L_{4}$ pass through at least 3 multiple points (Figures 17 and 18).

Figure 17 can be defined by the following equation:

Figure 17.

Figure 18.
$X Y Z(X-Z)(X+t Z)(Y-Z)(Y-t Z)\left(Y-t^{2} Z\right)\left(Y-\left(t-t^{2}\right) X-t^{2} Z\right)(t Y+X)(Y+(t-1) X-t Z)=0$, where t satisfies $t^{3}-t^{2}-1=0$.

Figure 18 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(t_{1} Y-X\right)\left(\left(1-t_{1}\right) Y-\left(t_{3}-t_{2}\right)(X-1)-t_{3} Z\right)(Y+$ $\left.\left(t_{2}-1\right) X-t_{2} Z\right)=0$, where $t_{1}=t, t_{2}=2 t^{2}+5 t-3, t_{3}=t^{2}+3 t-1$ and t satisfies $t^{3}+2 t^{2}-3 t+1=0$.
(2) $L_{3} \cap L_{6}$ is on L_{9}, and then $L_{2} \cap L_{7}, L_{1} \cap L_{5}$ or $L_{2} \cap L_{7}, L_{1} \cap L_{6}$ is on L_{8} so that L_{1}, L_{2}, L_{7} pass through at least 3 multiple points (Figures 19 and 20).

Figure 19 cannot be realized. Figure 20 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(t_{1} Y-t_{2} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y+\left(t_{2}-1\right) X-t_{2} Z\right)=0$, where $t_{1}=t^{2}+t+1, t_{2}=t, t_{3}=t^{2}+t$, and t satisfies $t^{3}+t^{2}-1=0$.

Figure 19.

Figure 20.
(3) $L_{2} \cap L_{7}$ is on L_{9}; it is lattice isomorphic to (1).
(4) $L_{3} \cap L_{7}$ is on L_{9}; it is lattice isomorphic to (2).
(II). L_{8} contains 2 points of Δ and L_{9} contains 3 points of Δ. Then L_{9} passes through one of $\left\{\left(L_{1} \cap L_{6}, L_{2} \cap L_{7}\right),\left(L_{1} \cap L_{6}, L_{3} \cap L_{7}\right)\right\},\left(L_{3} \cap L_{6}, L_{2} \cap L_{7}\right)$.
(1) $L_{1} \cap L_{6}, L_{2} \cap L_{7}$ is on L_{9}, and then $L_{3} \cap L_{6}$ or $L_{3} \cap L_{7}$ is on L_{8}; up to a permutation, we assume that $L_{3} \cap L_{6}$ is on L_{8}. Then $L_{1} \cap L_{5} L_{2} \cap L_{5}$ is on L_{8} (Figures 21 and 22).

Figure 21 cannot be realized.
Figure 22 can be defined by the following equation:
$X Y Z(X+2 Z)(X-Z)(Y-Z)(2 Y-Z)(2 Y+Z)(X+2 Y)(X+2 Y+Z)(X-2 Y+Z)=0$.
(2) $L_{1} \cap L_{6}, L_{3} \cap L_{7}$ is on L_{9}. Then $L_{2} \cap L_{5}$ or $L_{2} \cap L_{7}$ is on L_{8} so that L_{2} contains 3 multiple points. If $L_{2} \cap L_{5}$ is on L_{8}, then $L_{3} \cap L_{6}$ is on L_{8} (Figure 23). If $L_{2} \cap L_{7}$ is on L_{8}, then $L_{1} \cap L_{5}$ or $L_{3} \cap L_{6}$ is on L_{8} (Figures 24 and 25).

AMRAM et al./Turk J Math

Figure 21.

Figure 23.

Figure 22.

Figure 25.

Figures 23, 24, and 25 cannot be realized.
(3) $L_{3} \cap L_{6}, L_{2} \cap L_{7}$ is on L_{9}. It is lattice isomorphic to (2) (under permutation (6,7)(1,2)).
(III). L_{8} contains 3 points of Δ and L_{9} contains 2 points of Δ. Since $L_{4} \cap L_{5}$ is on L_{9}, then one of $\left\{L_{1} \cap L_{6}, L_{3} \cap L_{6}, L_{2} \cap L_{7}, L_{3} \cap L_{7}\right\}$ is on L_{9}.
(1) $L_{1} \cap L_{6}$ is on L_{9}. To make L_{2}, L_{3} contain at least 3 multiple points, $\left\{L_{1} \cap L_{5}, L_{2} \cap L_{7}, L_{3} \cap L_{6}\right\}$ are on L_{8} (Figure 26).
(2) $L_{3} \cap L_{6}$ is on L_{9}. To make L_{1}, L_{2} contain at least 3 multiple points, $\left\{L_{1} \cap L_{6}, L_{2} \cap L_{5}, L_{3} \cap L_{7}\right\}$ are on L_{8} (Figure 27).

Figure 26.

Figure 27.

Figures 26 and 27 cannot be realized.
(3) $L_{2} \cap L_{7}$ is on L_{9}. After a permutation $(6,7)(1,2)$, it is isomorphic to (1).
(4) $L_{3} \cap L_{7}$ is on L_{9}. After a permutation $(6,7)(1,2)$, it is isomorphic to (2).
(IV). L_{8} contains 3 points of Δ and L_{9} contains 3 points of Δ. Since (III) cannot be realized, case (IV) cannot be realized.
(V). L_{8} contains 1 point of Δ and L_{9} contains 3 points of Δ. From (III), we need to remove one L_{8} intersecting with Δ, and it is easy to see that there are 3 cases (see Figures 28, 29, and 30).

Figure 28.

Figure 29.

Figure 30.

Figure 28 cannot be realized.
Figure 29 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(t_{1} Y-X\right)\left(t_{1} Y-X-t_{1} t_{3} Z\right)\left(Y+\left(t_{2}-1\right) X-t_{2} Z\right)=0$, where $t_{1}=2 t^{2}-2 t+2, t_{2}=t, t_{3}=2 t^{2}-t+1$, and t satisfies $2 t^{3}-2 t^{2}+2 t-1=0$.

Figure 30 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(t_{1} Y-X\right)\left(t_{1} Y-X-\left(t_{1} t_{3}-1\right) Z\right)\left(Y+\left(t_{2}-1\right) X-t_{2} Z\right)=0$, where $t_{1}=t^{2}-t+2, t_{2}=t, t_{3}=t^{2}+1$, and t satisfies $t^{3}-t^{2}+2 t-1=0$.

Subcase 2. L_{10} passes through 2 points of Δ. We assume that $L_{1} \cap L_{7}, L_{2} \cap L_{6}$ are on L_{10} and $L_{8} \cap L_{10}$ is on L_{4}. Note that $\left(L_{8} \cup L_{9}\right)$ contain at least 5 points of Δ so that $L_{1}, L_{2}, L_{3}, L_{4}$ pass through at least 3 multiple points. To make L_{3}, L_{4} contain at least 3 multiple points, $L_{9} \cap\left(L_{3} \cup L_{4}\right)$ is a triple point.
(I). L_{8} contains 3 points of Δ and L_{9} contains 2 points of Δ.
(1) $L_{4} \cap L_{5}$ is on L_{9}.
(a) $L_{3} \cap L_{6}$ is on L_{9}. Then $L_{1} \cap L_{6}$ is on L_{8}, and ($L_{2} \cap L_{5}, L_{3} \cap L_{7}$) or ($L_{2} \cap L_{7}, L_{3} \cap L_{5}$) is on L_{8} (see Figures 28 and 29).
(b) $L_{3} \cap L_{7}$ is on L_{9}. By a permutation, it is lattice isomorphic to the previous case.

Figure 31.

Figure 32.

Figure 31 can be defined by the following equation:
$X Y Z(X-Z)(3 X+Z)(Y-Z)(2 Y-Z)(Y+Z)(2 Y+3 X-Z)(2 Y+3 X)(2 Y-3 X+Z)=0$.
Figure 32 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y+\left(t_{3}-t_{2}\right) X-t_{3} Z\right)\left(t_{1} Y-t_{2} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=\frac{1}{3}+\frac{1}{3} t, t_{2}=1-t, t_{3}=t$, and t satisfies $t^{2}-t+1=0$.
(2) $L_{4} \cap L_{6}$ is on L_{9}. Then $L_{3} \cap L_{5}$ is on L_{9} and $L_{1} \cap L_{5}$ or $L_{2} \cap L_{5}$ is on L_{8} so that L_{5} passes through 3 multiple points.
(a) $L_{1} \cap L_{5}$ is on L_{8}. Then $L_{2} \cap L_{7}$ or $L_{3} \cap L_{6}$ is on L_{8} so that \mathcal{A} is nonreductive (Figure 33).
(b) $L_{2} \cap L_{5}$ is on L_{8} Then $L_{1} \cap L_{6}$ or $L_{3} \cap L_{7}$ is on L_{8} so that \mathcal{A} is nonreductive (Figure 34).

Figure 33.

Figure 34.

Figure 33 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y+\frac{t_{2}}{t_{1}} X-t_{2} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=$ 0 , where $t_{1}= \pm t, t_{2}=\frac{1}{2}, t_{3}= \pm t-1$, and t satisfies $2 t^{2}-4 t+1=0$.

Figure 34 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{2}-t_{3}\right) X-t_{3} Z\right)\left(Y+\frac{t_{2}}{t_{1}} X-t_{2} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\right.$ $\left.\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}= \pm t-1, t_{2}= \pm t-1, t_{3}= \pm t$, and t satisfies $t^{2}-t-1=0$.
(II). L_{8} contains 2 points of Δ and L_{9} contains 3 points of Δ.
(1) $L_{4} \cap L_{5}$ is on L_{9}. Then ($L_{3} \cap L_{6}, L_{2} \cap L_{7}$) or ($L_{1} \cap L_{6}, L_{3} \cap L_{7}$) are on L_{9}. Up to a permutation $(6,7)(1,2)$, we may assume that $\left(L_{3} \cap L_{6}, L_{2} \cap L_{7}\right)$ are on L_{9}. Then $\left(L_{1} \cap L_{5}, L_{3} \cap L_{7}\right)$ or $\left(L_{1} \cap L_{6}, L_{3} \cap L_{5}\right)$ are on L_{8} (Figures 35 and 36).

Figure 35.

Figure 36.

Figure 35 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{3} X\right)\left(Y-\frac{1-t_{2}}{t_{1}} X-t_{2} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=\frac{1}{2} t+\frac{1}{2}, t_{2}=\frac{1}{2}, t_{3}=t$, and t satisfies $t^{2}-2 t-1=0$.

Figure 36 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{3} X\right)\left(Y-\left(t_{2}-1\right) X-Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$,
where $t_{1}=\frac{1}{4}+\frac{1}{2} t, t_{2}=t, t_{3}=t-1$, and t satisfies $2 t^{2}+t-2=0$.
(2) $L_{4} \cap L_{6}$ is on L_{9}. Then $L_{3} \cap L_{5}$ or $L_{3} \cap L_{7}$ is on L_{9}.

If $L_{3} \cap L_{5}$ is on L_{9}, then ($L_{1} \cap L_{5}, L_{3} \cap L_{6}$) or ($L_{1} \cap L_{5}, L_{3} \cap L_{7}$) are on L_{8} so that \mathcal{A} is nonreductive (Figures 37 and 38).

Figure 37 can be defined by the following equation:

Figure 37.

Figure 38.
$X Y Z(X-Z)(3 X-Z)(Y-Z)(2 Y-Z)(Y+Z)(2 Y+3 X-2 Z)(2 Y+3 X-Z)(Y-3 X+2 Z)=0$.
Figure 38 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{3}-t_{2}\right) X-t_{2} Z\right)\left(Y-\left(t_{2}-1\right) X-Z\right)(Y-$ $\left.\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=2 t+1, t_{2}=t, t_{3}=2 t-1$, and t satisfies $2 t^{2}-1=0$.

If $L_{3} \cap L_{7}$ is on L_{9}, then $L_{1} \cap L_{5}$ or $L_{2} \cap L_{5}$ is on L_{9} so that L_{5} contains at least 3 multiple points.
(1). $L_{1} \cap L_{5}$ is on L_{9}, so then $\left(L_{2} \cap L_{5}, L_{3} \cap L_{6}\right)$ or ($\left.L_{2} \cap L_{7}, L_{3} \cap L_{5}\right)$ is on L_{8} so that \mathcal{A} is nonreductive (Figures 39 and 40).

Figure 39.

Figure 40.

Figure 39 can be defined by the following equation:
$X Y Z(X-Z)(3 X-2 Z)(Y-Z)(2 Y+Z)(Y-2 Z)(2 Y+3 X-2 Z)(2 Y+3 X-Z)(2 Y-3 X-Z)=0$.
Figure 40 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{3}-t_{2}\right) X-t_{2} Z\right)\left(Y-\left(t_{2}-1\right) X-Z\right)(Y-$ $\left.\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=t, t_{2}=\frac{1}{4} t+\frac{1}{4}, t_{3}=-\frac{1}{2}+\frac{1}{2} t$, and t satisfies $t^{2}-3 t+4=0$.
(2). $L_{2} \cap L_{5}$ is on L_{9}, so then $\left(L_{1} \cap L_{5}, L_{3} \cap L_{6}\right)$ or ($\left.L_{1} \cap L_{6}, L_{3} \cap L_{5}\right)$ are on L_{8} so that \mathcal{A} is nonreductive (Figures 41 and 42).

Figure 41 cannot be realized.
Figure 42 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{2}-t_{3}\right) X-t_{3} Z\right)\left(Y-\frac{1-t_{2}}{t_{1}} X-t_{2} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\right.$ $\left.\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=-t, t_{2}=1+t, t_{3}=t$, and t satisfies $t^{2}+2 t-1=0$.
(3). $L_{4} \cap L_{7}$ is on L_{9}. Up to a permutation $(6,7)(1,2)$, it is lattice isomorphic to (2).
(III). Both L_{8} and L_{9} contain 3 points of Δ. We only need to add 1 point of Δ to L_{8} for (I) or to L_{9} for (II), so we obtain 5 cases (Figures 43, 44, 45, 46, and 47).

Figure 41.

Figure 43.

Figure 42

Figure 44

Figures $43,44,45,46$, and 47 cannot be realized.
Case 3. $\left(L_{8} \cup L_{9}\right) \cap L_{10}$ are triple points in \mathcal{A}. Then L_{10} passes through at least 1 point of Δ so that it contains at least 3 multiple points.

Subcase 1. L_{10} passes through 2 points of Δ. We assume that L_{10} passes through $\left(L_{1} \cap L_{7}, L_{2} \cap L_{6}\right)$, $L_{8} \cap L_{10}$ is on L_{4}, and $L_{9} \cap L_{10}$ is on L_{3}. Note that $L_{8} \cup L_{9}$ pass through at least 4 points of Δ so that \mathcal{A} is nonreductive.
(I). L_{8} contains 3 points of Δ and L_{9} contains 1 point of Δ. To make L_{4}, L_{5} contain at least 3 multiple points, $L_{4} \cap L_{5}$ is on L_{9}.
(1) $L_{3} \cap L_{5}$ is on L_{8}. Then $L_{1} \cap L_{6}, L_{2} \cap L_{7}$ are on L_{8} (Figure 48).
(2) $L_{3} \cap L_{6}$ is on L_{8}. Then $L_{1} \cap L_{5}, L_{2} \cap L_{7}$ are on L_{8} (Figure 49).
(3) $L_{3} \cap L_{7}$ is on L_{8}. Then $L_{1} \cap L_{6}, L_{2} \cap L_{5}$ are on L_{8}. After a permutation $(6,7)(1,2)$, it is lattice isomorphic to (2).

Figure 48 cannot be realized.
Figure 49 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{3}-1\right) X\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=$ 0 , where $t_{1}=t, t_{2}=1+t^{2}-2 t, t_{3}=t-1$, and t satisfies $t^{3}-4 t^{2}+5 t-3=0$.
(II). L_{8} contains 3 points of Δ and L_{9} contains 2 points of Δ.
(1) $L_{3} \cap L_{5}$ is on L_{8}. Then $L_{1} \cap L_{6}, L_{2} \cap L_{7}$ are on L_{8}. To make L_{4}, L_{5} contain at least 3 multiple points, up to a permutation $(6,7)(1,2), L_{1} \cap L_{5}, L_{4} \cap L_{6}$, or $L_{2} \cap L_{5}, L_{4} \cap L_{6}$ must be on L_{9} (Figures 50 and 51).
(2) $L_{3} \cap L_{6}$ is on L_{8}. Then $L_{1} \cap L_{5}, L_{2} \cap L_{7}$ are on L_{8}. To make L_{4}, L_{5} contain at least 3 multiple points, L_{9} passes through one of $\left\{\left(L_{4} \cap L_{5}, L_{1} \cap L_{6}\right),\left(L_{4} \cap L_{6}, L_{2} \cap L_{5}\right),\left(L_{4} \cap L_{7}, L_{2} \cap L_{5}\right)\right\}$ (Figures 52, 53, and 54).

Figures 50, 51, 52, 53, and 54 cannot be realized.
(3) $L_{3} \cap L_{7}$ is on L_{8}. Up to a permutation $(6,7)(1,2)$, it is lattice isomorphic to (2).

Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49
(III). Both L_{8} and L_{9} contain 3 points of Δ.
(1) $L_{3} \cap L_{5}$ is on L_{8}, and it is easy to see L_{9} passes through at most 2 points of Δ.
(2) $L_{3} \cap L_{6}$ is on L_{8}, so then $L_{1} \cap L_{5}, L_{2} \cap L_{7}$ are on L_{8} and L_{9} passes through $L_{1} \cap L_{6}, L_{2} \cap L_{5}, L_{4} \cap L_{7}$ (Figure 55).
(3) $L_{3} \cap L_{7}$ is on L_{8}. Up to a permutation $(6,7)(1,2)$, it is lattice isomorphic to (2).

Figure 55 cannot be realized.
(IV). L_{8} contains 1 or 2 points of Δ and L_{9} contains 3 points of Δ. Up to a permutation $(8,9)(3,4)$, it is lattice isomorphic to (I) or (II).
(V). Both L_{8} and L_{9} contain 2 points of Δ.

If $L_{4} \cap L_{5}$ is on L_{9}, then $L_{1} \cap L_{6}$ or $L_{2} \cap L_{7}$ is on L_{9}.
(1) $L_{1} \cap L_{6}$ is on L_{9}. Then ($L_{2} \cap L_{5}, L_{3} \cap L_{7}$) or ($L_{2} \cap L_{7}, L_{3} \cap L_{5}$) are on L_{8} so that \mathcal{A} is nonreductive (Figures 56 and 57).
(2) $L_{2} \cap L_{7}$ is on L_{9}. Up to a permutation $(6,7)(1,2)$, it is lattice isomorphic to (1).

Figures 56 and 57 cannot be realized.
If $L_{4} \cap L_{6}$ is on L_{9}, then $L_{1} \cap L_{5}$ or $L_{2} \cap L_{5}$ is on L_{9}.

Figure 50.

Figure 51

Figure 52.

Figure 55.

Figure 53.

Figure 56.

Figure 54.

Figure 57.
(1) $L_{1} \cap L_{5}$ is on L_{9}. Then $\left(L_{2} \cap L_{5}, L_{3} \cap L_{7}\right)$ or ($\left.L_{2} \cap L_{7}, L_{3} \cap L_{5}\right)$ are on L_{8} so that \mathcal{A} is nonreductive (Figures 58 and 59).
(2) $L_{2} \cap L_{5}$ is on L_{9}. Then $\left(L_{1} \cap L_{5}, L_{3} \cap L_{7}\right)$ are on L_{8} so that \mathcal{A} is nonreductive (Figure 60).

Figure 58.

Figure 59.

Figure 60.

Figure 58 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{2}-t_{3}\right) X\right)\left(Y-\left(t_{2}-t_{3}\right) X-t_{3} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\right.$ $\left.\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=-1, t_{2}=1 \pm i, t_{3}= \pm i$.

Figure 59 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{3}-t_{2}\right) X-Z\right)\left(Y-\left(t_{3}-t_{2}\right) X-t_{2} Z\right)(Y-$ $\left.\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=2 t-t^{2}, t_{2}=1+t^{2}, t_{3}=t$, and t satisfies $t^{3}-2 t^{2}+t-1=0$.

Figure 60 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-\left(t_{2}-1\right) X-Z\right)\left(Y-\left(t_{2}-1\right) X-t_{3} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\right.$ $\left.\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=-1, t_{2}= \pm \sqrt{2}, t_{3}=\sqrt{2}-1$.

Subcase 2. L_{10} passes through 1 point of Δ. Then $L_{8} \cup L_{9}$ passes through at least 5 points of Δ. We assume that $L_{1} \cap L_{7}$ is on $L_{10}, L_{8} \cap L_{10}$ is on L_{4}, and $L_{9} \cap L_{10}$ is on L_{3}.
(I). $L_{8} \cup L_{9}$ passes through 5 points of Δ. We assume that L_{8} contains 2 points of Δ and L_{9} contains 3 points of Δ.
(1) $L_{4} \cap L_{5}$ is on L_{9}. Then $L_{1} \cap L_{6}, L_{2} \cap L_{7}$ are on L_{9}. To make $L_{2}, L_{3}, L_{5}, L_{6}$ pass through at least 3 multiple points, L_{8} passes through ($L_{2} \cap L_{5}, L_{3} \cap L_{6}$) or ($L_{2} \cap L_{6}, L_{3} \cap L_{5}$) (Figures 61 and 62).
(2) $L_{4} \cap L_{6}$ is on L_{9}. Up to a permutation $(5,6)$, it is lattice isomorphic to (1).
(3) $L_{4} \cap L_{7}$ is on $L_{9} . L_{9}$ passes through $\left(L_{1} \cap L_{5}, L_{2} \cap L_{6}\right)$ or ($\left.L_{1} \cap L_{6}, L_{2} \cap L_{5}\right)$. Up to a permutation (5,6) , we assume ($L_{1} \cap L_{5}, L_{2} \cap L_{6}$) are on L_{9} (Figure 63).

Figure 61.

Figure 62.

Figure 63.

Figure 61 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{3} X\right)\left(Y-t_{3} X-t_{3} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}= \pm \sqrt{2}, t_{2}=1 \pm \frac{\sqrt{2}}{2}, t_{3}= \pm \frac{\sqrt{2}}{2}$.

Figure 62 can be defined by the following equation:
$X Y Z(X-Z)(3 X-2 Z)(Y-Z)(2 Y-Z)(2 Y-3 Z)(2 Y-3 X)(2 Y-3 X-Z)(2 Y+3 X+5 Z)=0$.
Figure 63 can be defined by the following equation:
$X Y Z(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)(Y+X-Z)\left(Y+X-t_{3} Z\right)\left(Y-\frac{1-t_{3}}{1-t_{1}} X-\frac{t_{3}-t_{1}}{1-t_{1}} Z\right)=0$, where $t_{1}=\frac{-1 \pm \sqrt{3}}{2}, t_{2}=2 \pm \sqrt{3}, t_{3}=\frac{3 \pm \sqrt{3}}{2}$.
(II). $L_{8} \cup L_{9}$ passes through 6 points of Δ. It is easy to see from (I) that this case is impossible.

6. Arrangements of 11 lines with a quintuple point and no quadruple point

Let \mathcal{A} be a nonreductive arrangement of 11 with a quintuple point and no quadruple point. By Lemma 2.6 and Theorem 2.7, we know that there are at most 14 triple points.

We say that 2 multiple points of \mathcal{A} are disjoint if they are not on the same line of \mathcal{A}. We say that 2 multiple points of \mathcal{A} are adjoint if they are on the same line of \mathcal{A}.

We claim that there is at most 1 disjoint triple point apart from the quintuple point. Assume that $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ is the quintuple point and $L_{6} \cap L_{7} \cap L_{8}$ is the triple point apart from the quintuple point. Suppose there is another triple point apart from the quintuple point. It is easy to see that $L_{1} \cup L_{2} \cup L_{3} \cup L_{4} \cup L_{5}$ pass through at most 9 triple points, but $L_{1} \cup L_{2} \cup L_{3} \cup L_{4} \cup L_{5}$ pass through at least 10 triple points, a contradiction.

6.1. One disjoint triple point apart from the pencil of the quintuple point

First, we show that there are at most 13 triple points in \mathcal{A}.

Lemma 6.1 Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ be the quintuple point and let $L_{6} \cap L_{7} \cap L_{8}$ be the triple point apart from the quintuple point. Then there are at most 13 triple points in \mathcal{A}.

Proof By Bézout's theorem, the intersection number of ($\left.L_{1} \cup L_{2} \cup \cdots \cup L_{8}\right)$ and ($L_{9} \cup L_{10} \cup L_{11}$) is 24. Since the intersection multiplicity of a triple point is 2 , there will be at most 12 triple points in $\left(L_{1} \cup L_{2} \cup \cdots \cup L_{8}\right) \cap\left(L_{9} \cup L_{10} \cup L_{11}\right)$. In addition with $L_{6} \cap L_{7} \cap L_{8}$, we will have at most 13 triple points.

Theorem 6.2 Let \mathcal{A} be a nonreductive line arrangement of 11 lines in $\mathbb{C P}^{2}$ with a quintuple point $L_{1} \cap L_{2} \cap$ $L_{3} \cap L_{4} \cap L_{5}$. Assume that $L_{6} \cap L_{7} \cap L_{8}$ is the triple point apart from the quintuple point; then there are exactly 11 triple points in \mathcal{A}. Then there are 28 cases that can be realized, 7 of whose moduli spaces are irreducible and 21 of them are "potential Zariski pairs".
Proof Note that we have at least 11 triple points in \mathcal{A}, because it is nonreductive.
Case 1. There are 13 triple points in \mathcal{A}. Then ($\left.L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}\right)$ are triple points, and each of L_{9}, L_{10}, L_{11} passes through 3 triple points on $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. Up to a lattice isomorphism, we assume that ($L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}$) are on L_{11}, and $L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}$ are on L_{1}, L_{4}, L_{5}, respectively. Note that L_{9} must pass through one of $L_{5} \cap L_{6}, L_{5} \cap L_{7}, L_{5} \cap L_{8}$ so that L_{5} contains at least 3 multiple points. Up to lattice isomorphism, we assume that $L_{5} \cap L_{6}$ is on L_{9}. Then $L_{3} \cap L_{7}, L_{2} \cap L_{8}$ are on L_{9} and ($L_{2} \cap L_{6}, L_{3} \cap L_{8}, L_{4} \cap L_{7}$) are on L_{10} so that \mathcal{A} is nonreductive (Figure 64). Figure 64 cannot be realized.

Figure 64.

Case 2. There are 12 triple points in \mathcal{A}. Then at least 2 points of ($L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}$) are triple points.

Subcase 1. All of ($\left.L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}\right)$ are triple points. Note that L_{9}, L_{10}, L_{11} pass through 8 triple points on $\left(L_{6} \cup L_{7} \cap L_{8}\right)$, and we assume L_{10} passes through 2 triple points on $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. Similarly as in Case 1, we assume that $\left(L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}\right)$ are on $L_{11},\left(L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}\right)$ are on L_{1}, L_{4}, L_{5}, respectively, and $L_{5} \cap L_{6}$ is on L_{9}. Then $L_{3} \cap L_{7}, L_{2} \cap L_{8}$ are on L_{9}. Hence, L_{10} contains one of $\left\{\left(L_{4} \cap L_{6}, L_{3} \cap L_{8}\right),\left(L_{4} \cap L_{7}, L_{2} \cap L_{6}\right),\left(L_{4} \cap L_{7}, L_{3} \cap L_{8}\right),\left(L_{4} \cap L_{8}, L_{2} \cap L_{6}\right)\right\}$.

Subcase 1 cannot be realized.
Subcase 2. Two of ($L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}$) are triple points. Let $L_{9} \cap L_{11}, L_{10} \cap L_{11}$ be the triple points. Then L_{9}, L_{10}, and L_{11} pass through 3 triple points on $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. We assume that $\left(L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}\right)$ are on $L_{11},\left(L_{9} \cap L_{10}, L_{10} \cap L_{11}\right)$ are on L_{4}, L_{5} respectively, and $L_{5} \cap L_{6}$ is on L_{9}. Then L_{9} must pass through one of $\left\{\left(L_{1} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{3} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)\right\}$.
(1). L_{9} passes through $\left(L_{1} \cap L_{7}, L_{2} \cap L_{8}\right)$. Up to a permutation $(7,8)(1,2), L_{10}$ contains $\left(L_{1} \cap L_{6}, L_{3} \cap\right.$ $\left.L_{8}, L_{4} \cap L_{7}\right)$ or $\left(L_{2} \cap L_{6}, L_{3} \cap L_{8}, L_{4} \cap L_{7}\right)$.
(2). L_{9} passes through $\left(L_{3} \cap L_{7}, L_{2} \cap L_{8}\right)$. To make \mathcal{A} nonreductive, L_{10} contains one of $\left\{\left(L_{4} \cap L_{6}, L_{3} \cap\right.\right.$ $\left.\left.L_{8}, L_{1} \cap L_{7}\right),\left(L_{4} \cap L_{7}, L_{3} \cap L_{8}, L_{1} \cap L_{6}\right),\left(L_{4} \cap L_{8}, L_{2} \cap L_{6}, L_{1} \cap L_{7}\right)\right\}$.
(3). L_{9} passes through $\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)$. After a permutation $(7,8)(1,2)$, it is lattice isomorphic to (2).

Subcase 2 cannot be realized.
Case 3. There are 11 triple points in \mathcal{A}.
Subcase 1. One of ($\left.L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}\right)$ is a triple point. Let $L_{10} \cap L_{11}$ be the triple point. Then each of L_{9}, L_{10}, and L_{11} passes through 3 triple points in ($L_{6} \cup L_{7} \cap L_{8}$). We assume that ($L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}$) are on L_{11} and $L_{10} \cap L_{11}$ is on L_{4}. Note that L_{9} must pass through one of $\left(L_{5} \cap L_{6}, L_{5} \cap L_{7}, L_{5} \cap L_{8}\right)$. Up to a lattice isomorphism, let L_{9} pass through ($L_{5} \cap L_{6}, L_{4} \cap L_{7}, L_{2} \cap L_{8}$) or $\left(L_{5} \cap L_{6}, L_{4} \cap L_{7}, L_{3} \cap L_{8}\right)$.
(I). L_{9} passes through $L_{5} \cap L_{6}, L_{4} \cap L_{7}, L_{2} \cap L_{8}$. Then L_{10} passes through ($\left.L_{4} \cap L_{6}, L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)$ or $\left(L_{4} \cap L_{8}, L_{3} \cap L_{7}, L_{1} \cap L_{6}\right)$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\left(t_{3}-t_{2}\right) X-t_{2} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t^{3}, t_{2}=t^{2}, t_{3}=t, t_{4}=t^{3}-1$, and t satisfies $t^{4}-t-1=0$.

The second equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\left(t_{2}-1\right) X-Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=$ 0 , where $t_{1}=t, t_{2}=t^{3}, t_{3}=-t, t_{4}=t^{2}$, and t satisfies $t^{4}+1=0$.
(II). L_{9} passes through ($L_{5} \cap L_{6}, L_{4} \cap L_{7}, L_{3} \cap L_{8}$). Then L_{10} passes through ($\left.L_{4} \cap L_{6}, L_{1} \cap L_{7}, L_{2} \cap L_{8}\right)$ or ($L_{4} \cap L_{8}, L_{2} \cap L_{6}, L_{1} \cap L_{7}$) (the first case cannot be realized).

The equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{3} X\right)\left(Y-\left(t_{2}-t_{4}\right) X-t_{4} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t^{3}+t^{2}-2 t-2, t_{2}=t^{3}-t-1, t_{3}=t, t_{4}=t^{2}-1$, and t satisfies $t^{4}-2 t^{2}-t+1=0$.

Subcase 2. Two of ($\left.L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}\right)$ are triple points. Let $L_{9} \cap L_{11}$ and $L_{10} \cap L_{11}$ be triple points on L_{4} and L_{5}, respectively. Then L_{9}, L_{10}, and L_{11} pass 8 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$.
(I). L_{11} passes through 2 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. Assume that $L_{1} \cap L_{8}$ and $L_{2} \cap L_{7}$ are on L_{11}. Note that L_{9} must pass through one of ($\left.L_{5} \cap L_{6}, L_{5} \cap L_{7}, L_{5} \cap L_{8}\right)$, so that L_{5} contains 3 multiple points.
(1) $L_{5} \cap L_{6}$ is on L_{9}, so then ($L_{1} \cap L_{7}, L_{3} \cap L_{8}$) or ($L_{3} \cap L_{7}, L_{2} \cap L_{8}$) is on L_{9}.

If $\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)$ are on L_{9}, then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{3} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{4} \cap\right.\right.$ $\left.\left.L_{7}, L_{3} \cap L_{6}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{8}, L_{3} \cap L_{7}, L_{2} \cap L_{6}\right)\right\}$ (only the first case can be realized).

The equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{3} X\right)\left(Y-\left(t_{4}-t_{2}\right) X-t_{2} Z\right)\left(Y-\frac{1-t_{4}}{1-t_{1}} X-\right.$ $\left.\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}=t, t_{2}=-2 t+6, t_{3}=-t+3, t_{4}=-2+t$, and t satisfies $t^{2}-3 t+1=0$.

If ($\left.L_{3} \cap L_{7}, L_{2} \cap L_{8}\right)$ are on L_{9}, then by a permutation $(7,8)(1,2)$, it is lattice isomorphic to the case that $\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)$ are on L_{9}.
(2) $L_{5} \cap L_{7}$ is on L_{9}, so then L_{9} must pass through one of $\left\{\left(L_{1} \cap L_{6}, L_{3} \cap L_{8}\right),\left(L_{2} \cap L_{6}, L_{3} \cap L_{8}\right),\left(L_{3} \cap\right.\right.$ $\left.\left.L_{6}, L_{2} \cap L_{8}\right)\right\}$.

If $L_{1} \cap L_{6}, L_{3} \cap L_{8}$ are on L_{9}, then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{3} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{4} \cap\right.\right.$ $\left.\left.L_{7}, L_{3} \cap L_{6}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{8}, L_{3} \cap L_{7}, L_{2} \cap L_{6}\right)\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{4}-t_{3}\right) X-t_{3} Z\right)\left(Y-\left(t_{3}-t_{2}\right) X-\right.$ $\left.t_{2} Z\right)\left(Y-\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}=1 \pm\left(t-t^{2}+t^{3}\right), t_{2}=4 \mp\left(t^{2}+2 t^{3}\right), t_{3}=2 \mp\left(t^{2}+t^{3}\right), t_{4}= \pm t$, and t satisfies $t^{4}-t^{3}+2 t-1=0$.

The second equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{4}-t_{3}\right) X-t_{3} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)(Y-$ $\left.\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}=1 \mp t, t_{2}=-\frac{1}{2} \pm t, t_{3}=-1 \pm t, t_{4}= \pm t$, and t satisfies $2 t^{2}-4 t+1=0$.

The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{4}-t_{3}\right) X-t_{3} Z\right)\left(Y-\left(t_{2}-1\right) X-Z\right)(Y-$ $\left.\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}= \pm\left(t+t^{2}\right), t_{2}=-2 \pm t^{2}, t_{3}=-1 \pm t^{2}, t_{4}= \pm t$, and t satisfies $t^{3}-t^{2}-2 t+1=0$.

If $L_{2} \cap L_{6}, L_{3} \cap L_{8}$ are on L_{9}, then L_{10} must pass through $\left\{\left(L_{4} \cap L_{8}, L_{3} \cap L_{6}, L_{1} \cap L_{7}\right)\right\},\left\{\left(L_{4} \cap L_{8}, L_{3} \cap\right.\right.$ $\left.\left.L_{7}, L_{1} \cap L_{6}\right)\right\}$ (the second case cannot be realized).

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{3}-t_{4}\right) X-t_{4} Z\right)\left(Y-\left(t_{2}-t_{3}\right) X-\right.$ $\left.t_{3} Z\right)\left(Y-\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}= \pm t, t_{2}=-3 \pm\left(4 t-t^{2}\right), t_{3}=2 \mp t, t_{4}=-1 \mp\left(t^{2}-3 t\right)$, and t satisfies $t^{3}-5 t^{2}+6 t-1=0$.

If $L_{3} \cap L_{6}, L_{2} \cap L_{8}$ are on L_{9}, then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{3} \cap L_{8}, L_{1} \cap L_{7}\right),\left(L_{4} \cap\right.\right.$ $\left.\left.L_{7}, L_{3} \cap L_{8}, L_{1} \cap L_{6}\right),\left(L_{4} \cap L_{8}, L_{3} \cap L_{7}, L_{1} \cap L_{6}\right)\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y-\left(t_{4}-t_{2}\right) X-t_{2} Z\right)(Y-$ $\left.\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}= \pm\left(t^{2}+t\right), t_{2}= \pm\left(t-t^{3}\right), t_{3}= \pm t^{2}, t_{4}= \pm t$, and t satisfies $t^{4}+t^{3}-t^{2}-t+1=0$.

The second equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y-\left(t_{4}-t_{3}\right) X-t_{3} Z\right)(Y-$ $\left.\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}=\frac{1}{2} \pm \frac{1}{2} t, t_{2}=1 \mp 2 t, t_{3}=\mp t, t_{4}= \pm t$ and t, satisfies $t^{2}+2 t-1=0$.

The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\left(t_{3}-1\right) X-Z\right)\left(Y-\left(t_{2}-t_{4}\right) X-t_{4} Z\right)(Y-$ $\left.\frac{1-t_{4}}{1-t_{1}} X-\frac{t_{1}-t_{4}}{1-t_{1}} Z\right)=0$, where $t_{1}=-1, t_{2}= \pm 2 t, t_{3}=2, t_{4}=1 \pm t$, and t satisfies $t^{2}+t-1=0$.
(3) $L_{5} \cap L_{8}$ is on L_{9}. After a permutation $(7,8)(1,2)$, it is lattice isomorphic to (2).
(II). L_{10} passes through 2 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. We assume that ($\left.L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}\right)$ are on $L_{11},\left(L_{9} \cap L_{10}, L_{10} \cap L_{11}\right)$ are on L_{4}, L_{5} respectively, and $L_{5} \cap L_{6}$ is on L_{9}. Then L_{9} must pass through one of $\left\{\left(L_{1} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{3} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)\right\}$.
(1) $\left(L_{1} \cap L_{7}, L_{2} \cap L_{8}\right)$ are on L_{9}, so then up to lattice isomorphism L_{10} must pass through $\left\{L_{4} \cap L_{6}, L_{3} \cap L_{7}\right\}$ or $\left\{L_{4} \cap L_{7}, L_{3} \cap L_{8}\right\}$.

The first equation can be defined by
$X Y(X-Z)(2 X+Z)(Y-Z)(2 Y+Z)(Y+Z)(Y+2 Z)(Y+2 X)(Y-2 X+Z)(2 Y-2 X+Z)=0$.
The second equation can be defined by
$X Y(X-Z)(X-2 Z)(Y-Z)(4 Y-3 Z)(2 Y-3 Z)(2 Y-Z)(2 Y-X)(2 Y+X-3 Z)(4 Y+3 X-9 Z)=0$.
(2) $\left(L_{3} \cap L_{7}, L_{2} \cap L_{8}\right)$ are on L_{9}, so then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{1} \cap L_{7}\right),\left(L_{4} \cap L_{7}, L_{1} \cap\right.\right.$ $\left.\left.L_{6}\right),\left(L_{4} \cap L_{8}, L_{1} \cap L_{6}\right),\left(L_{4} \cap L_{8}, L_{1} \cap L_{7}\right)\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\frac{1-t_{2}}{t_{1}} X-Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t, t_{2}=t, t_{3}=-1+2 t, t_{4}=2 t$, and t satisfies $2 t^{2}-2 t+1=0$.

The second equation can be defined by $X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)(Y-$ $\left.t_{4} X\right)\left(Y-\frac{t_{2}-1}{t_{1}} X-Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=1-t, t_{2}=t^{2}-t+2, t_{3}=t, t_{4}=t^{2}-t+1$, and t satisfies $t^{3}-2 t^{2}+3 t-1=0$.

The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\left(t_{2}-1\right) X-Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=$ 0 , where $t_{1}=t^{2}+t, t_{2}=-t^{3}-t^{2}+2 t+2, t_{3}=t, t_{4}=-t^{3}+2 t$, and t satisfies $t^{4}+t^{3}-2 t^{2}-2 t+1=0$ 。

The fourth equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\frac{t_{2}-1}{1-t_{1}} X-t_{2} Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=$ 0 , where $t_{1}=\frac{1}{2}+\frac{1}{2} t^{2}, t_{2}=\frac{1}{2} t^{2}+t+\frac{1}{2}, t_{3}=t, t_{4}=t^{2}+t$, and t satisfies $t^{4}+t^{3}-2 t^{2}-2 t+1=0$.
(3) $\left(L_{1} \cap L_{7}, L_{3} \cap L_{8}\right)$ are on L_{9}. After a permutation $(7,8)(1,2)$, it is lattice isomorphic to (2).

Subcase 3. All of ($L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}$) are triple points. Then L_{9}, L_{10}, and L_{11} pass through 8 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$ and at least one of L_{9}, L_{10}, L_{11} passes through 3 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. We always assume that L_{11} can be such a line. Furthermore, up to a lattice isomorphism, we assume that ($L_{1} \cap L_{8}, L_{2} \cap L_{7}, L_{3} \cap L_{6}$) are on L_{11}, and $L_{9} \cap L_{10}, L_{9} \cap L_{11}, L_{10} \cap L_{11}$ are on L_{1}, L_{4}, L_{5} respectively.
(I). L_{9} passes through 3 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$ and L_{10} must pass through 1 triple point in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. Note that L_{9} must pass through one of $\left\{L_{5} \cap L_{6}, L_{5} \cap L_{7}, L_{5} \cap L_{8}\right\}$ so that L_{5} contains 3 multiple points. Up to a permutation $(6,7)(2,3)$, we assume that $\left\{L_{5} \cap L_{6}, L_{3} \cap L_{7}, L_{2} \cap L_{8}\right\}$ or $\left\{L_{5} \cap L_{8}, L_{3} \cap L_{7}, L_{2} \cap L_{6}\right\}$ are on L_{9}.
(1) $L_{5} \cap L_{6}, L_{3} \cap L_{7}, L_{2} \cap L_{8}$ are on L_{9}. Then L_{10} must pass through one of $\left\{L_{4} \cap L_{6}, L_{4} \cap L_{7}, L_{4} \cap L_{8}\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y+t_{4}\left(t_{2}-1\right) X-t_{2} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=\frac{1}{2} t, t_{2}=\frac{1}{4} t+1, t_{3}=t, t_{4}=2$, and t satisfies $t^{2}-3 t+4=0$.

The second cannot be realized.
The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y-\frac{t_{4}\left(t_{2}-1\right)}{t_{4}-1} X+\frac{t_{4}-t_{2}}{t_{4}-1} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t, t_{2}=\frac{1}{2} t-\frac{1}{2}, t_{3}=-1, t_{4}=2 t-1$, and t satisfies $2 t^{2}-t+1=0$.
(2) $L_{5} \cap L_{8}, L_{3} \cap L_{7}, L_{2} \cap L_{6}$ are on L_{9}. Then L_{10} must pass through one of $\left\{L_{4} \cap L_{6}, L_{4} \cap L_{7}, L_{4} \cap L_{8}\right\}$. The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y+t_{4} X\right)\left(Y-\frac{t_{2}\left(1-t_{3}\right)}{t_{3}} X-t_{2} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=\frac{5}{2}, t_{2}=\frac{3}{2}, t_{3}=3, t_{4}=-2$.

The second cannot be realized.
The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-t_{4} X\right)\left(Y+t_{2}\left(t_{3}-1\right) X-t_{2} t_{3} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=-t+2, t_{2}=t, t_{3}=2 t, t_{4}=-2 t+1$, and t satisfies $2 t^{2}-t+1=0$.
(II). Both L_{9} and L_{10} pass through 2 triple points in $\left(L_{6} \cup L_{7} \cap L_{8}\right)$. Up to a lattice isomorphism, assume that $L_{5} \cap L_{6}, L_{3} \cap L_{7}$ or $L_{5} \cap L_{8}, L_{3} \cap L_{7}$ are on L_{9}.
(1) $L_{5} \cap L_{6}, L_{3} \cap L_{7}$ are on L_{9}. Then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{7}, L_{2} \cap\right.\right.$ $\left.\left.L_{6}\right),\left(L_{4} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{8}, L_{2} \cap L_{6}\right)\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(t_{1} Y-t_{3} X\right)\left(Y-\left(t_{4}-t_{2}\right) X-t_{2} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t, t_{2}=-2 t+4, t_{3}=2 t, t_{4}=2 t-2$, and t satisfies $2 t^{2}-t-2=0$.

The second case cannot be realized.
The third equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(t_{1} Y-t_{3} X\right)\left(Y-\frac{t_{2}-t_{4}}{1-t_{1}} X+\left(\frac{t_{2}-t_{4}}{1-t_{1}}-t_{4}\right) Z\right)(Y-$ $\left.\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=-\frac{2}{5} t^{3}+\frac{1}{5} t^{2}+t-\frac{2}{5}, t_{2}=-4 t^{3}+t^{2}+7 t-12, t_{3}=t, t_{4}=-t^{3}+2 t-2$, and t satisfies $t^{4}+t^{3}-2 t^{2}+t+4=0$.

The fourth equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(t_{1} Y-t_{3} X\right)\left(Y-\left(t_{2}-t_{4}\right) X-t_{4} Z\right)(Y-(1-$ $\left.\left.t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=t, t_{2}=-2 t+1, t_{3}=-1, t_{4}=2 t-1$, and t satisfies $2 t^{2}-1=0$.
(2) $L_{5} \cap L_{8}, L_{3} \cap L_{7}$ are on L_{9}. Then L_{10} must pass through one of $\left\{\left(L_{4} \cap L_{6}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{7}, L_{2} \cap\right.\right.$ $\left.\left.L_{6}\right),\left(L_{4} \cap L_{7}, L_{2} \cap L_{8}\right),\left(L_{4} \cap L_{8}, L_{2} \cap L_{6}\right)\right\}$.

The first equation can be defined by
$X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)\left(Y-\frac{t_{3}}{t_{1}-1} X+\frac{t_{3}}{t_{1}-1} Z\right)\left(Y-\left(t_{4}-t_{2}\right) X-t_{2} Z\right)(Y-$ $\left.\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=-t^{2}-t, t_{2}=t^{4}, t_{3}=t, t_{4}=t^{3}$, and t satisfies $t^{5}+t^{4}-t^{2}-t-1=0$ 。

The second equation can be defined by $X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)(Y-$ $\left.\frac{t_{3}}{t_{1}-1} X+\frac{t_{3}}{t_{1}-1} Z\right)\left(Y-\frac{t_{2}-t_{4}}{t_{1}} X-t_{4} Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=\frac{3}{2}-\frac{1}{2} t, t_{2}=\frac{1}{2} t+\frac{1}{2}, t_{3}=t, t_{4}=2$, and t satisfies $t^{2}-2 t-1=0$.

The third equation can be defined by $X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)(Y-$ $\left.\frac{t_{3}}{t_{1}-1} X+\frac{t_{3}}{t_{1}-1} Z\right)\left(Y-\frac{t_{2}-t_{4}}{1-t_{1}} X-\left(t_{4}-\frac{t_{2}-t_{4}}{1-t_{1}}\right) Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=-t, t_{2}=t+2, t_{3}=t, t_{4}=2$, and t satisfies $t^{2}-2=0$.

The fourth equation can be defined by $X Y(X-Z)\left(X-t_{1} Z\right)(Y-Z)\left(Y-t_{2} Z\right)\left(Y-t_{3} Z\right)\left(Y-t_{4} Z\right)(Y-$ $\left.\frac{t_{3}}{t_{1}-1} X+\frac{t_{3}}{t_{1}-1} Z\right)\left(Y-\left(t_{2}-t_{4}\right) X-t_{4} Z\right)\left(Y-\left(1-t_{3}\right) X-t_{3} Z\right)=0$, where $t_{1}=2-t, t_{2}=t, t_{3}=t-2, t_{4}=2$, and t satisfies $t^{2}-4 t+2=0$.

6.2. All triple points are in the pencil of the quintuple point

Assume that all the triple points are on the lines passing through the quintuple point. We first show that there at most 13 triple points, and at least 10 triple points if the arrangement is nonreductive.

Lemma 6.3 Let \mathcal{A} be a nonreductive arrangement of 11 lines with 1 quintuple point so that all triple points are on the lines passing through the quintuple point. Then there are at most 13 triple points and at least 10 triple points.

Proof From Lemma 2.6 and Theorem 2.7, we have the following equations:

$$
\left\{\begin{array}{l}
n_{2}+3 n_{3} \quad+6 n_{4}+10 n_{5}=55 \\
n_{2}+\frac{3}{4} n_{3} \geq 11+n_{5}
\end{array}\right.
$$

From the above equations, we compute $n_{3} \leq 14$.
Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ be the quintuple point. Since there are 14 triple points on those 5 lines and we know that each of the 5 lines passes through at least 2 and at most 3 triple points, then we may assume that each of L_{1}, L_{2}, L_{3}, and L_{4} passes through 3 triple points. On the other hand, each of the other six lines passes through at least 3 and at most 5 triple points. Let a, b, and c be the numbers of lines in $\left\{L_{6}, L_{7}, L_{8}, L_{9}, L_{10}, L_{11}\right\}$ that pass through 3,4 , and 5 triple points, respectively. Then a and b should satisfy the following system of equations:

$$
\begin{gathered}
a+b+c=6 \\
3 a+4 b+5 c=28
\end{gathered}
$$

From the above equations, we have two solutions:
One is

$$
a=1, b=0, c=5 .
$$

The other is

$$
a=0, b=2, c=4 .
$$

Because there are 14 triple points, one of $\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$ has only two triple points. This fact tells us that $c \leq 4$. The first case does not exist. For the second case, we consider $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{5}$. Now \mathcal{A}^{\prime} is an arrangement of 10 lines with 1 quadruple point. All triple points are in the pencil of the quadruple point, and \mathcal{A}^{\prime} has 12 triple points. By [2, Lemma 5.3], \mathcal{A}^{\prime} cannot be realized, so \mathcal{A} does not exist.

Because each line of $\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$ has at least two triple points, then $n_{3} \geq 10$.

The classification will run on the numbers of triple points.

Theorem 6.4 Let \mathcal{A} be a nonreductive arrangement of 11 lines with a quintuple point and 13 triple points such that all triple points are on the 5 lines passing through the quintuple point. Then the moduli space $\mathcal{M}_{\mathcal{A}}$ is irreducible, and in fact is one point.

Proof Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ be the quintuple point. Since there are 14 triple points on those 5 lines and we know that each of 5 lines passes through at least 2 and at most 3 triple points, then we may assume that each of L_{1}, L_{2} and L_{3} passes through 3 triple points. On the other hand, each of the other six lines passes through at least 3 and at most 5 triple points. Let a, b, and c be the numbers of lines in $\left\{L_{6}, L_{7}, L_{8}, L_{9}, L_{10}, L_{11}\right\}$ that pass through 3,4 , and 5 triple points, respectively. Then a and b should satisfy the following system of equations:

$$
\begin{gathered}
a+b+c=6 \\
3 a+4 b+5 c=26
\end{gathered}
$$

From the above equations, we have three solutions:

$$
a=2, b=0, c=4 ; \quad a=1, b=2, c=3 ; \quad a=0, b=4, c=2
$$

For the first case, we consider $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$. Now \mathcal{A}^{\prime} is an arrangement of 10 lines with 1 quadruple point. All triple points are in the pencil of the quadruple point, and \mathcal{A}^{\prime} has 11 triple points. From [2, Theorem $5.4], \mathcal{M}_{\mathcal{A}^{\prime}}$ is irreducible. In fact, it is one point, because every case has only one solution from the proof of $[2$, Theorem 5.4]. The moduli space $\mathcal{M}_{\mathcal{A}}$ is irreducible.

For the second case, because $b=2$, one of $\left\{L_{6}, L_{7}, L_{8}, L_{9}, L_{10}, L_{11}\right\}$ must intersect 4 lines, and one of the intersect lines must be L_{4} or L_{5}. We assume it is L_{4}. Now we consider $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$. The rest of this proof is similar to the first case.

For the third case, we consider $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$. The rest of this proof is similar to the first case.

Remark 6.5 The example of Theorem 6.4 is easy to construct (see Figure 65).

Figure 65.

The equation is defined as follows:

$$
(X-Z) X(X+Z)(Y+X)(Y-X)(Y+Z-X)(Y-Z-X)(Y-2 X)(Y-Z) Y(Y+Z)=0
$$

Theorem 6.6 Let \mathcal{A} be a nonreductive arrangement of 11 lines with a quintuple point and 12 triple points such that all triple points are on the 5 lines passing through the quintuple point. Then the quotient moduli space $\mathcal{M}_{\mathcal{A}}^{c}$ is irreducible, and in fact is one or two points.

Proof Let $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ be the quintuple point. On the one hand, since there are 12 triple points on those 5 lines and we know that each of 5 lines passes through at least 2 and at most 3 triple points, then we may assume that each of L_{1} and L_{2} passes through 3 triple points. On the other hand, each of the other six lines passes through at least 3 and at most 5 triple points. Let a, b, and c be the numbers of lines in $\left\{L_{6}, L_{7}, L_{8}, L_{9}, L_{10}, L_{11}\right\}$ that pass through 3,4 , and 5 triple points, respectively. Then a and b should satisfy the following system of equations:

$$
\begin{gathered}
a+b+c=6 \\
3 a+4 b+5 c=24
\end{gathered}
$$

From the above equations, we have these solutions:

$$
a=0, b=6, c=0 ; \quad a=1, b=4, c=1 ; \quad a=2, b=2, c=2 ; \quad a=3, b=0, c=3
$$

For the first case, we consider $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$. Now \mathcal{A}^{\prime} is an arrangement of 10 lines with 1 quadruple point. All triple points are in the pencil of the quadruple point, and \mathcal{A}^{\prime} has 10 triple points. From [2, Theorem 5.5], $\mathcal{M}_{\mathcal{A}^{\prime}}^{c}$ is irreducible. In fact, it is one point. Because every case has only conjugation solutions from the proof of [2, Theorem 5.5], the moduli space $\mathcal{M}_{\mathcal{A}}^{c}$ is irreducible.

For the second case, because $a=1$, we assume that the line is L_{6}. Two of $\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$ cannot intersect with L_{6}. We assume that these lines are L_{4} and L_{5}, and L_{4} must have two triple points. Now we consider that $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$, and \mathcal{A}^{\prime} is an arrangement of 10 lines with 1 quadruple point. All triple points are in the pencil of the quadruple point, and \mathcal{A}^{\prime} has 10 triple points. From [2, Theorem 5.5], $\mathcal{M}_{\mathcal{A}^{\prime}}^{c}$ is irreducible, and in fact is one point, so the moduli space $\mathcal{M}_{\mathcal{A}}^{c}$ is irreducible.

For the third case, because $a=2$, we assume the lines are L_{6} and L_{7}. One of $\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}\right\}$ must not intersect L_{6} and L_{7}. We assume that this line is L_{4}, and L_{4} must have two triple points. Now we consider that $\mathcal{A}^{\prime}=\mathcal{A} \backslash L_{4}$, and \mathcal{A}^{\prime} is an arrangement of 10 lines with 1 quadruple point. The rest of this proof is similar to the second case.

For the fourth case, up to lattice isomorphism, there is only one case (see Figure 66).

Figure 67.

It is easy to see that line 11 and line 10 must have a double point that is not on the 5 lines passing through the quintuple point, so Figure 66 and Figure 67 are equivalent.

It is easy to compute that \mathcal{A} does not exist.
From the above discussions, we have the following corollary:

Corollary 6.7 Let \mathcal{A} be a nonreductive line arrangement of 11 lines with $n_{5}=1, n_{4}=0$, and $n_{r}=0, r \geq 6$. Moreover, all triple points are on the 5 lines passing through the quintuple point. If it contains more than 11 triple points, then there is no Zariski pair.

Let \mathcal{A} be a nonreductive arrangement of 11 lines with a quintuple point and all triple points are on the 5 lines passing through the quintuple point. If the number of the triple points is less than 12 , then there are many cases in which $\mathcal{M}_{\mathcal{A}}$ is more than 2 points or even one dimension. Now we give two examples.

Example 6.1 The line arrangements are with 11 triple points, and all triple points are on the 5 lines passing through the quintuple point (see Figure 68).

Figure 68.

$0 \quad 1$

Figure 69.

After some easy computation, we get the equation as follows: $X(X-Z)(Y-Z)\left(Y-t_{3} Z\right)\left(Y-t_{2} Z\right)(Y-$ $\left.t_{1} Z\right) Y\left(\left(t_{2}-t_{3}\right) X-Y+t_{3} Z\right)(Y-Z+X)\left(Y-\left(t_{1}-\frac{t_{1}-t_{2}}{t_{2}}\right) Z-\left(\frac{t_{1}-t_{2}}{t_{2}}\right) X\right)\left(Y-t_{2} Z-\frac{t_{1}-t_{2}}{1-t_{1}} X\right)=0$, where $t_{1}=\frac{1}{5} t^{2}-\frac{2}{5} t+\frac{4}{5}, \quad t_{2}=t, \quad t_{3}=1-t$, and t satisfies $t^{2}-2 t-t^{3}+1=0$, so that the moduli space $\mathcal{M}_{\mathcal{A}}$ is three points.

Example 6.2 The line arrangements are with 10 triple points, and all triple points are on the 5 lines passing through the quintuple point (see Figure 69).

After some easy computation, we get the equation as follows: $X(X-Z)(Y-Z)\left(Y-t_{3} Z\right)\left(Y-t_{2} Z\right)(Y-$ $\left.\left.t_{1} Z\right)\left(Y\left(1-t_{1}\right)\right) X-Y+t_{1} Z\right)\left(\left(t_{3}-t_{2}\right) X-Y+t_{2} Z\right)\left(t_{2} X-Y\right)\left(t_{2}\left(t_{1}-1\right) X-\left(t_{2}-1\right) Y+\left(t_{2}-t_{1}\right) Z\right)$, where $t_{1}=\frac{1-3 t-t^{2}}{t}, \quad t_{2}=t, \quad$ and $t_{3}=\frac{t^{3}-3 t^{2}+t}{1-2 t}$, so the moduli space $\mathcal{M}_{\mathcal{A}}$ is of one dimension.

Acknowledgments

This work was supported by the Emmy Noether Research Institute for Mathematics, the Minerva Foundation (Germany). This work was also supported by the NSFC and China Postdoctoral Science Foundation (No. 2013M541711). The authors thank Dr Fei Ye for his comments and suggestions. The authors would like to thank the referee for many useful suggestions for the correction of original manuscript.

References

[1] Amram M, Cohen M, Teicher M, Ye F. Moduli spaces of ten-line arrangements with double and triple points. arXiv:1306.6105v1.
[2] Amram M, Teicher M, Ye F. Moduli spaces of arrangements of 10 projective lines with quadruple points. Adv Appl Math 2013; 3: 392-418.
[3] Cohen DC, Suciu AI. The braid monodromy of plane algebraic curves and hyperplane arrangements. Comment Math Helv 1997; 72: 285-315.
[4] Fan K. Direct product of free groups as the fundamental group of the complement of a union of lines. Michigan Math J 1997; 44: 283-291.
[5] Garber D, Teicher M, Vishne U. π_{1}-classification of real arrangements with up to eight lines. Topology 2003; 42: 265-289.
[6] Hirzebruch F. Singularities of algebraic surfaces and characteristic numbers. In: The Lefschetz Centennial Conference, Part I (Mexico City, 1984). Providence, RI, USA: American Mathematical Society, 1986, pp. 141-155.
[7] Jiang T, Yau SST. Diffeomorphic types of the complements of arrangements of hyperplanes. Compos Math 1994; 92: 133-155.
[8] Jiang T, Yau SST. Intersection lattices and topological structures of complements of arrangements in $\mathbb{C P}^{2}$. Ann Sc Norm Super Pisa Cl Sci 1998; 26: 357-381.
[9] Nazir S, Yoshinaga M. On the connectivity of the realization spaces of line arrangements. Ann Sc Norm Super Pisa Cl Sci 2012; 11: 921-937.
[10] Randell R. Lattice-isotopic arrangements are topologically isomorphic. P Am Math Soc 1989; 107: 555-559.
[11] Rybnikov G. On the fundamental group of the complement of a complex hyperplane arrangement. Funct Anal Appl 2011; 45: 137-148.
[12] Wang S, Yau SST. Rigidity of differentiable structure for new class of line arrangements. Comm Anal Geom 2005; 13: 1057-1075.
[13] Wang S, Yau SST. Diffeomorphic types of the complements of arrangements in $\mathbb{C P}^{3}$, I: Point arrangements. J Math Soc Japan 2007; 59: 423-447.
[14] Wang S, Yau SST. The diffeomorphic types of the complements of arrangements in $\mathbb{C P}^{3}$, II. Sci China Ser A 2008; 51: 785802.
[15] Yau SST, Ye F. Diffeomorphic types of complements of nice point arrangements in $\mathbb{C P}^{1}$. Sci China Ser A 2009; 52: 2774-2791.
[16] Ye F. Classification of moduli spaces of arrangements of 9 projective lines. Pacific J Math 2013; 265: 243-256.

[^0]: *Correspondence: xwydy1988@126.com
 2010 AMS Mathematics Subject Classification: 14N20, 32S22, 52C35.

