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Abstract: An isophote curve comprises a locus of the surface points whose normal vectors make a constant angle with

a fixed vector. The main objective of this paper is to find the axis of an isophote curve via its Darboux frame and

afterwards to give some characterizations about the isophote curve and its axis in Euclidean 3-space. Particularly, for

isophote curves lying on a canal surface other characterizations are obtained.
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1. Introduction

An isophote curve is one of the characteristic curves on a surface such as parameter, geodesic, and asymptotic

curves or lines of curvature.

An isophote curve on a surface is a nice consequence of Lambert’s cosine law in the optics branch of

physics. Lambert’s law states that the intensity of illumination on a diffuse surface is proportional to the cosine

of the angle generated between the surface normal vector N and the light vector d . According to this law

the intensity is irrespective of the actual viewpoint; hence the illumination is the same when viewed from any

direction [9] . In other words, isophotes of a surface are curves with the property that their points have the

same light intensity from a given source (curves of constant illumination intensity). When the source light is at

infinity, we may consider that the light flow consists of parallel lines. Hence, we can give a geometric description

of isophote curves on surfaces, namely, they are curves such that the surface normal vectors in points of the

curve make a constant angle with a fixed direction (which represents the light direction). These curves are

successfully used in computer graphics but also it is interesting to study them for geometry.

Then to find an isophote curve on a surface we use the formula

⟨N(u, v), d⟩
∥N(u, v)∥

= cos θ, 0 ≤ θ ≤ π

2
.

In the special case, an isophote curve is called a silhouette curve if

⟨N(u, v), d⟩
∥N(u, v)∥

= cos
π

2
= 0,

where d is the direction vector of the line of sight from infinity.
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Koenderink and van Doorn [6] studied the field of constant image brightness contours (isophote curves).

They showed that the spherical image (the Gauss map) of an isophote curve is a latitude circle on the unit

sphere S2 and the problem was reduced to that of obtaining the inverse Gauss map of these circles. By means

of this, they defined two kind singularities of the Gauss map: folds (curves) and simple cusps (apex, antapex

points), and there are structural properties of the field of isophote curves that bear an invariant relation to

geometric features of the object.

Poeschl [7] used isophote curves in car body construction via detecting irregularities along these curves

on a free form surface. These irregularities (discontinuity of a surface or of the Gaussian curvature) emerge by

differentiating of the equation ⟨N(u, v), l⟩ = cos θ = c (constant)

⟨Nu, l⟩ du+ ⟨Nv, l⟩ dv = 0

dv

du
= −⟨Nu, l⟩

⟨Nv, l⟩
, ⟨Nv, l⟩ ̸= 0,

where l (d) is the light vector.

Sara [8] researched local shading of a surface through isophote curve properties. By using the fundamental

theory of surfaces, he focused on accurate estimation of surface normal tilt and on qualitatively correct Gaussian

curvature recovery.

Kim and Lee [5] parameterized isophote curves for a surface of rotation and a canal surface. They utilized

the fact that both these surfaces decompose into a set of circles where the surface normal vectors at points on

each circle construct a cone. Again the vectors that make a constant angle with the fixed vector d construct

another cone and thus the tangential intersection of these cones gives the parametric range of the connected

component isophote curve. Similarly, the same authors [4] parameterized the perspective silhouette of a canal

surface by solving the problem that characteristic circles meet each other tangentially.

Izumiya and Takeuchi [3] defined a slant helix as a space curve whose principal normal lines make a

constant angle with a fixed direction. They showed that a certain slant helix is also a geodesic on the tangent

developable surface of a general helix. As an amazing consequence in our paper, we see that the curve, which

is both a geodesic and a slant helix on a surface, is an isophote curve.

Dogan [1] has studied isophote curves on timelike surfaces in Minkowski space E3
1 . Recently, Dogan and

Yayli [2] have also investigated isophote curves on spacelike surfaces in E3
1 . In both papers, they observed that

there is a close relation between isophote curves and special curves on the surfaces.

A canal surface is the envelope of a family of one parameter spheres and is useful to represent various

objects, e.g., pipes, hoses, ropes, or intestines of a body. A canal surface is an important instrument in surface

modeling for CAD/CAM such as tubular surfaces, tori, and Dupin cyclides.

In this paper, we give some basic facts and concepts concerning curve and surface theory in section 2. In

section 3, we concentrate on finding the axis of an isophote curve and also to characterize it in different ways.

Finally, in section 4, for an isophote curve lying on a canal surface, we obtain interesting results as to a moving

sphere that generates such a canal surface and then we find isophote curves as some v -parameter curves on the

tube.

2. Preliminaries

Firstly, we give some basic notions about curves and surfaces. The differential geometry of curves starts with a

smooth map of s ; let us call it α : I ⊂ R −→ E3 that parameterizes a spatial curve and it will be denoted again
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with α . We say that the curve is parameterized by arc-length if
∥∥∥α′

(s)
∥∥∥ = 1 (unit-speed), where α

′
(s) is the

first derivative of α with respect to s . Let α : I ⊂ R −→ E3 be a regular curve with an arc-length parameter

s and κ(s) =
∥∥∥α′′

(s)
∥∥∥ > 0, where κ is the curvature of α and α

′′
is the second derivative of α with respect

to s . Since the curvature κ is nonzero, the Frenet frame {T, n, b} is well-defined along the curve α and as

follows:

T (s) = α
′
(s),

n(s) =
α

′′
(s)

∥α′′(s)∥
,

b(s) = T (s)× n(s),

where T , n , and b are the tangent, the principal normal, and the binormal of α , respectively. For a unit-speed

curve with κ > 0, the derivatives of the Frenet frame (Frenet-Serret formulas) are given by

T
′
(s) = κ(s)n(s),

n
′
(s) = −κ(s)T (s) + τ(s)b(s),

b
′
(s) = −τ(s)n(s),

where τ(s) =

⟨
α

′
(s)× α

′′
(s), α

′′′
(s)

⟩
κ2(s)

is the torsion of α and ”×” is the cross product on R3 .

Let M be a regular surface and α : I ⊂ R −→ M be a unit-speed curve on the surface. Then the

Darboux frame {T, B, N} is well-defined along the curve α , where T is the tangent of α and N is the unit

normal of M , and B = N × T . Darboux equations of this frame are given by

T
′
= kgB + knN, (2.1)

B
′
= −kgT + τgN,

N
′
= −knT − τgB,

where “ ′ ” denotes the derivative of T, B, and N with respect to s along the curve α ; kn , kg , and τg

are the normal curvature, the geodesic curvature, and the geodesic torsion of α , respectively. With the above

notations, let ϕ denote the angle between the surface normal N and the binormal b . Using equations in (2.1),

we get

κ2 = k2g + k2n, (2.2)

kg = κ cosϕ,

kn = κ sinϕ,

τg = τ − ϕ
′
.

If we rotate the Darboux frame {T, B, N} by ϕ about T , we obtain the Frenet frame {T, n, b} . T
n
b

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 T
B
N


652
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T = T,

n = cos(ϕ)B + sin(ϕ)N,

b = − sin(ϕ)B + cos(ϕ)N.

From the above equations, we obtain

N = sin(ϕ)n+ cos(ϕ)b, (2.3)

B = cos(ϕ)n− sin(ϕ)b.

3. The axis of an isophote curve

In this section, we will get the fixed vector d of an isophote curve via its Darboux frame. Let M be a regular

surface and let α : I ⊂ R −→ M be a unit-speed isophote curve. Then from the definition of the isophote curve

⟨N(u, v), d⟩ = cos θ = constant, (3.1)

where N(u, v) is the unit normal vector of the surface S(u, v) (a parameterization of M ) and d is the unit

fixed vector on the axis of isophote curve.

Now, we begin to find the fixed vector d . Since α : I ⊂ R −→ M is a unit-speed isophote curve, the Darboux

frame can be defined as {T, B, N} along the curve α . If we differentiate Eq. (3.1) with respect to s along

the curve, then we have ⟨
N

′
, d
⟩
= 0. (3.2)

From Eq. (2.1), it follows that

⟨−knT − τgB, d⟩ = 0

−kn ⟨T, d⟩ − τg ⟨B, d⟩ = 0

⟨T, d⟩ = − τg
kn

⟨B, d⟩ .

Because the Darboux frame {T, B, N} is an orthonormal basis, if we say ⟨B, d⟩ = a in the last equation, then

d can be written as

d = − τg
kn

aT + aB + cos θN.

Since ∥d∥ = 1, we get

a = ∓ kn√
k2n + τ2g

sin θ.

Thus, the vector d is obtained as

d = ± τg√
k2n + τ2g

sin θT ∓ kn√
k2n + τ2g

sin θB + cos θN (3.3)
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or from Eq. (2.2) and Eq. (2.3) in terms of the Frenet frame,

d = ± τg√
k2n + τ2g

sin θT +

∓ knkg

κ
√
k2n + τ2g

sin θ +
kn
κ

cos θ

n

+

± k2n

κ
√

k2n + τ2g

sin θ +
kg
κ

cos θ

 b. (3.4)

Here, in fact, d is a constant vector. Let us see this. If we differentiate N
′
and Eq. (3.2) with respect to s , we

get

N
′′
= (−k

′

n + kgτg)T − (knkg + τ
′

g)B − (k2n + τ2g )N.

and thus ⟨
N

′′

, d
⟩
=

∓(k
′

nτg − knτ
′

g)± kg(k
2
n + τ2g )√

k2n + τ2g

sin θ − (k2n + τ2g ) cos θ = 0,

where d is form of Eq. (3.3). As a result, we have

cot θ = ±

 k2n

(k2n + τ2g )
3
2

(
τg
kn

)′

+
kg

(k2n + τ2g )
1
2

 ,

tan θ =
(k2n + τ2g )

3
2

±kg(k2n + τ2g )± (knτ
′
g − k′

nτg)
. (3.5)

By Eq. (2.1) and Eq. (3.3), the derivative of d with respect to s is that

d
′

= ± sin θ

( τg√
k2n + τ2g

)
′
T +

τg√
k2n + τ2g

(kgB + knN)



∓ sin θ

( kn√
k2n + τ2g

)
′
B +

kn√
k2n + τ2g

(−kgT + τgN)

+ cos θ(−knT − τgB).

If we arrange this equality, we obtain

d
′
=

± sin θ

( τg√
k2n + τ2g

)
′
+

kgkn√
k2n + τ2g

− kn cos θ

T

+

± sin θ

−(
kn√

k2n + τ2g

)
′
+

kgτg√
k2n + τ2g

− τg cos θ

B. (3.6)

Furthermore, from Eq. (3.5) we have

cos θ = ± sin θ
kg(k

2
n + τ2g ) + knτ

′

g − k
′

nτg

(k2n + τ2g )
3
2

.
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If the last equality is replaced in Eq. (3.6), we get

d
′
= ± sin θ


τ

′

g(k
2
n + τ2g )− τg(knk

′

n + τgτ
′

g) + kgkn(k
2
n + τ2g )

(k2n + τ2g )
3
2

+
knk

′

nτg − k2nτ
′

g − kgkn(k
2
n + τ2g )

(k2n + τ2g )
3
2

T

± sin θ


−κ

′

n(k
2
n + τ2g ) + kn(knk

′

n + τgτ
′

g) + kgτg(k
2
n + τ2g )

(k2n + τ2g )
3
2

+
k

′

nτ
2
g − knτgτ

′

g − kgτg(k
2
n + τ2g )

(k2n + τ2g )
3
2

B.

As can be directly seen above, the coefficients of T and B are zero. Therefore, d
′
= 0, namely, d is a constant

vector. Then the axis of an isophote curve is the line in the fixed direction d . From this time, for the axis of

an isophote curve will be also used d .

Theorem 1 A unit-speed curve α on a surface is an isophote curve if and only if

cot θ = µ(s) = ±

 k2n

(k2n + τ2g )
3
2

(
τg
kn

)
′
+

kg

(k2n + τ2g )
1
2

 (s)

is a constant function where kn ̸= 0 .

Proof As α is an isophote curve, the Gauss map along the curve α is a circle on the unit sphere S2 . Hence,

if we compute the Gauss map N|α : I −→ S2 along the curve α , the geodesic curvature of N|α becomes µ(s)

as shown below.

N
′

|α = −knT − τgB,

N
′′

|α = (−k
′

n + kgτg)T − (knkg + τ
′

g)B − (k2n + τ2g )N,

N
′

|α ×N
′′

|α = τg(k
2
n + τ2g )T +

(
kg(k

2
n + τ2g ) + k2n(

τg
kn

)
′
)
N − kn(k

2
n + τ2g )B.

Therefore, we get the curvature
−
κ of N|α

−
κ =

∥∥∥N ′

|α ×N
′′

|α

∥∥∥∥∥∥N ′

|α

∥∥∥3

=

√
τ2g (k

2
n + τ2g )

2 +

(
kg(k2n + τ2g ) + k2n(

τg
kn

)′
)2

+ k2n(k
2
n + τ2g )

2√
(k2n + τ2g )

3

=

√√√√√√1 +

(
kg(k2n + τ2g ) + k2n(

τg
kn

)′
)2

(k2n + τ2g )
3

.
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Let
−
kg and

−
kn be the geodesic curvature and the normal curvature of the Gauss map N|α , respectively. Since

the normal curvature
−
kn = 1 on S2 , if we substitute

−
kn and

−
κ in the following equation, we obtain the geodesic

curvature
−
kg as follows:

(
−
κ)2 = (

−
kg)

2 + (
−
kn)

2

−
kg(s) = µ(s) = cot θ = ±

 k2n

(k2n + τ2g )
3
2

(
τg
kn

)
′
+

kg

(k2n + τ2g )
1
2

 (s).

Then the spherical images of isophote curves are circles if and only if µ(s) is a constant function. 2

Lemma 1 ([3]) Let α be a unit-speed space curve with κ(s) ̸= 0 . Then α is a slant helix if and only if

σ(s) =

 κ2

(κ2 + τ2)
3
2

(
τ

κ
)
′

 (s) is a constant function.

Lemma 2 (The Lancret Theorem) Let α be a unit-speed space curve with κ(s) ̸= 0 . Then α is a general

helix if and only if (
τ

κ
)(s) is a constant function.

Theorem 2 Let α be a unit-speed isophote curve on the surface M . In that case, we have the following:

(1) α is a geodesic on M if and only if α is a slant helix with the fixed vector

d = ± τ√
κ2 + τ2

sin θT ± cos θn± κ√
κ2 + τ2

sin θb.

(2) α is an asymptotic curve on M if and only if α is a general helix with the fixed vector d = ± sin θT ±cos θb .

(3) If α is a line of curvature, then α is a plane curve and the angle θ = ∓ϕ or θ = ∓ (π − ϕ) .

Proof (1) Since α is a geodesic (i.e. the surface normal N concurs with the principal normal n along the

curve α), we have kg = 0 and therefore from Eq. (2.2) it follows that kn = ±κ and τg = τ . By substituting

kg and kn in the expression of µ(s), we obtain that

µ(s) = ±

 κ2

(κ2 + τ2)
3
2

(
τ

κ
)
′

 (s)

is a constant function. Then, by Lemma 1, α is a slant helix. Using Eq. (3.4), the fixed vector of the slant

helix is obtained as

d = ± τ√
κ2 + τ2

sin θT ± cos θn± κ√
κ2 + τ2

sin θb.

In contrast, let α be a slant helix with the fixed vector

d = ± τ√
κ2 + τ2

sin θT ± cos θn± κ√
κ2 + τ2

sin θb.
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Then from Eq. (3.4) the geodesic curvature kg must be zero, that is to say, α is a geodesic on M .

(2) Since α is an asymptotic curve on M , we have kn = 0 and consequently from Eq. (2.2) it follows that

kg = ±κ and τg = τ . If we replace kn , kg , and τg in Eq. (3.5), we obtain that

tan θ = ±(
τg
kg

)(s) = ±(
τ

κ
)(s)

is a constant function. Then, from Lemma 2 and Eq. (3.4) it follows that α is a general helix with the fixed

vector

d = ± sin θT ± cos θb.

For the converse, let α be a general helix with the fixed vector d = ± sin θT ± cos θb . By applying Eq. (3.4)

again, we get kn = 0; in other words α is an asymptotic curve on M .

(3) Since α is a line of curvature on M , we have τg = 0. Accordingly, from Eq. (3.5) we conclude that

tan θ = ±kn
kg

= ± κ sinϕ

κ cosϕ
= ± tanϕ.

In this situation, we conclude that ϕ = ±θ or ϕ = π ± θ . Because ϕ is a constant, by τg = τ − ϕ
′
= 0, we

obtain τ = 0. Then α is a plane curve. 2

We now illustrate Theorem 2 case 1 in the following example.

Example 1 ([3]) We consider a space curve defined by

γ(θ) = ( − (a2 − b2)

2a

(
cos ((a+ b)θ)

(a+ b)2
+

cos ((a− b)θ)

(a− b)2

)
,

− (a2 − b2)

2a

(
sin ((a+ b)θ)

(a+ b)2
+

sin ((a− b)θ)

(a− b)2

)
,−

√
a2 − b2

ab
cos(bθ) ).

We can calculate that

κ(θ) =
√
a2 − b2 cos(bθ), τ(θ) =

√
a2 − b2 sin(bθ),

σ(θ) =
b√

a2 − b2
,

τ

κ
(θ) = tan(bθ),

( τ
κ
(θ)

)′

=
b

cos2(bθ)
̸= 0, and

( τ
κ
(θ)

)′′

=
2b2 tan(bθ)

cos2(bθ)
̸= 0.

Therefore, γ(θ) is a slant helix and it is not a cylindrical helix. By Theorem 4.2 [3] , it is a geodesic of the

tangent developable surface of a cylindrical helix. In fact, the corresponding tangent developable surface is the

rectifying developable surface of γ(θ) by Proposition 4.1 [3] . We now draw the picture of γ(θ) (a = 2, b = 1)

in Figure a[3]. We also draw the rectifying developable surface of γ(θ) in Figure b[3].
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Figure. a) [3] The slant helix γ(θ), which is also a geodesic (isophote curve) of the tangent developable surface of

a clylindrical helix, b) The rectifying developable surface of γ(θ) corresponds to the tangent developable surface of a

cylindrical helix.

In that case, we can say that there is a curve that is both a slant helix and a geodesic on a surface. This

example is a consequence of Theorem 2 case 1, that is to say, such a curve on a surface is an isophote curve. As

a simpler example, a helix on a circular cylinder is a geodesic. Moreover, each helix is also a slant helix. Thus,

the helix on a circular cylinder is both a slant helix and a geodesic, namely, it is an isophote curve.

Theorem 3 Let α be a unit-speed isophote curve on the surface M . Then we have the following:

(1) The axis d is perpendicular to the tangent line of α if and only if α is a line of curvature on M .

(2) The axis d is perpendicular to the principal normal line of α if and only if α is an asymptotic curve on M

or
τg
kn

is a constant function.

Proof (1) Let α be a unit-speed isophote curve. Then from Eq. (3.4) it follows that

⟨T, d⟩ = ± τg√
k2n + τ2g

sin θ.

Therefore, the axis d is perpendicular to the tangent line of α if and only if α is a line of curvature on M .

(2) Let the axis d be perpendicular to the principal normal line of α . Then by Eq. (3.4) we have

⟨n, d⟩ = ∓ knkg

κ
√
k2n + τ2g

sin θ +
kn
κ

cos θ

=
kn
κ

∓ kg√
k2n + τ2g

sin θ + cos θ


= 0.
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By solving this equation, we get kn = 0 or cot θ = ± kg√
k2n + τ2g

. From Eq. (3.5), we gather that

cot θ =
kg√

k2n + τ2g

=
k2n

(k2n + τ2g )
3
2

(
τg
kn

)
′
+

kg

(k2n + τ2g )
1
2

k2n

(k2n + τ2g )
3
2

(
τg
kn

)
′
= 0.

In the last equation, for kn ̸= 0, (
τg
kn

)
′
(s) = 0 and hence (

τg
kn

)(s) is a constant function. In the same way, the

proof of sufficiency is clear. 2

Corollary 1 Let α be a silhouette curve on M . Then α is a line of curvature if and only if it is a plane

geodesic curve.

Proof Let α be a line of curvature. Because α is both a silhouette curve and a line of curvature, we possess

τg = 0 and ϕ = θ = ±π

2
. Therefore, kg = 0, namely, α is a geodesic. Now that ϕ is a constant and τg = 0,

from Eq. (2.2) it follows that τ must be zero. Eventually, α is a plane geodesic curve.

Conversely, let α be a plane geodesic curve. In this case, kg and τ need to be zero. From this, τg = 0, in other

words, α is a line of curvature. This completes the proof.

Furthermore, from this corollary and Eq. (2.1) it follows that B
′
= 0, i.e., by Eq. (3.3) the axis of silhouette

curve d becomes B . 2

Corollary 2 Let α be a silhouette curve with arc-length parameter on M . Then

(1) The axis d lies in the plane spanned by T and B ,

(2) α is a geodesic if and only if the axis d lies on the rectifying plane of the silhouette curve α .

Proof (1) Since α is a silhouette curve, the surface normal vectors are orthogonal to the axis d , that is,

θ =
π

2
. Then by Eq. (3.3) we get

d = ± τg√
k2n + τ2g

T ∓ kn√
k2n + τ2g

B.

We see that d lies in the plane spanned by T and B .

(2) Since α is a geodesic, by Theorem 2, α is a slant helix with the fixed vector

d = ± τ√
κ2 + τ2

sin θT + cos θn± κ√
κ2 + τ2

sin θb.

Moreover, as α is a silhouette curve, we have θ =
π

2
and

d = ± τ√
κ2 + τ2

T ∓ κ√
κ2 + τ2

b.
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In other words, the axis d lies on the rectifying plane of the silhouette curve α . By contrast, suppose that the

axis d lies on the rectifying plane of the silhouette curve α . Applying Eq. (3.4) we see that kg = 0, namely, α

is a geodesic on M . 2

4. Some characterizations for isophote curves on a canal surface

In this section, we introduce canal surfaces and tubes and then give some characterizations for isophote curves on

them. Firstly, we define a canal surface. A canal surface is defined as the envelope of a family of one parameter

spheres. Alternatively, a canal surface is the envelope of a moving sphere with varying radius, defined by the

trajectory C(t) (spine curve) of its centers and a radius function r(t). If the radius function r(t) = r is a

constant, then the canal surface is called a tube or pipe surface.

Now we give parametric representation of a canal surface. Since a canal surface is the envelope of one

parameter spheres with center C(t) and radius r(t), a surface point p ∈ E3 satisfies the following equations.

∥p− C(t)∥ = r(t),

(p− C(t)) � C ′
(t) + r(t)r

′
(t) = 0, (4.1)

where ” �” is the dot product on E3 . If the spine curve C(t) has arc-length parametrization, then the canal

surface (equations in (4.1)) is parametrized as

K(s, v) = C(s)− r(s)r
′
(s)T (s)∓ r(s)

√
1− r′(s)2 (cos v n(s) + sin v b(s)) , (4.2)

where 0 ≤ v < 2π ; T , n , and b are the tangent, principal normal, and binormal of C(s), respectively.

Since the moving sphere with center C(s) is tangent to the canal surface, the sphere and canal surface have

the same tangent plane at arbitrary canal surface points. We know that the normal vector of the sphere is the

position vector of it. Then the unit normal vector of the canal surface can be computed as follows:

N(s, v) = K(s, v)− C(s)

N(s, v) = −r(s)r
′
(s)T (s)∓ r(s)

√
1− r′(s)2 (cos v n(s) + sin v b(s)) .

As ∥K(s, v)− C(s)∥ = r(s), norm of the vector N(s, v) is r(s). Hence, if we normalize N(s, v), we get

N(s, v)

∥N(s, v)∥
= −r

′
(s)T (s)∓

√
1− r′(s)2 (cos v n(s) + sin v b(s)) . (4.3)

In the previous section, we mentioned the axis of an isophote curve and obtained some characterizations of

it. This time we shall give other characterizations as regards isophote curves lying on a canal surface. More

precisely,

Theorem 4 If α is a unit-speed isophote curve with the axis d on the canal surface K(s, v) , then

−r
′
⟨T, d⟩ ∓

√
1− r′2 cos(v + ϕ) ⟨B, d⟩+

(√
1− r′2 sin(v + ϕ)− 1

)
⟨N, d⟩ = 0,

where ϕ is the angle between the surface normal N and the binormal b .
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Proof Inner product of the axis d and the unit normal vector N in Eq. (4.3) is that

⟨N, d⟩ = −r
′
⟨T, d⟩ ∓

√
1− r′2 [cos v ⟨n, d⟩+ sin v ⟨b, d⟩] .

If we substitute ⟨n, d⟩ and ⟨b, d⟩ above, we get

⟨N, d⟩ = −r
′
⟨T, d⟩ ∓

√
1− r′2

∓ knkg

κ
√
k2n + τ2g

sin θ +
kn
κ

cos θ

 cos v

∓
√

1− r′2

± k2n

κ
√

k2n + τ2g

sin θ +
kg
κ

cos θ

 sin v.

By arranging this equation, we obtain

⟨N, d⟩ = −r
′
⟨T, d⟩ ∓

√
1− r′2

kn (kg cos v − kn sin v)

κ
√

k2n + τ2g

 sin θ

+
√
1− r′2

[
kn cos v + kg sin v

κ

]
cos θ.

If we substitute kg = κ cosϕ , kn = κ sinϕ , ⟨B, d⟩ =
kn√

k2n + τ2g

, and ⟨N, d⟩ = cos θ above, and use addition

formulas for sine and cosine, we obtain

−r
′
⟨T, d⟩ ∓

√
1− r′2 cos(v + ϕ) ⟨B, d⟩+

(√
1− r′2 sin(v + ϕ)− 1

)
⟨N, d⟩ = 0.

2

Corollary 3 Let α be a unit-speed isophote curve on the canal surface K(s, v) . Then we have the following:

(1) If the axis d is orthogonal to the tangent line of α , then the canal surface is generated by a moving sphere

with linear radius function r(s) = λs+ c , where

λ =

√
(tan θ cos(v + θ)∓ sin(v + θ))

2 − 1

tan θ cos(v + θ)∓ sin(v + θ)
and

|sin(v + 2θ)| > cos θ, cos θ < sin v < − cos θ.

(2) If α is a silhouette curve and the spine curve C(s) is a general helix with the axis d , then the canal surface

is generated by a moving sphere with the radius function

r(s) =

∫
tanβ√

tan2 β + cos2(v + ϕ)
ds+ c; c > 0.
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Proof (1) Assume that the axis d is orthogonal to the tangent line of α , namely, d lies in the plane spanned

by N and B . Because ⟨N, d⟩ = cos θ , by the preceding theorem we get

√
1− r′2 cos(v + ϕ) ⟨B, d⟩ ∓

(√
1− r′2 sin(v + ϕ)− 1

)
⟨N, d⟩ = 0√

1− r′2 cos(v + ϕ) sin θ ∓
(√

1− r′2 sin(v + ϕ)− 1
)
cos θ = 0.

Since ⟨T, d⟩ = 0, from Theorem 2 and Theorem 3, α is a line of curvature with ϕ = θ (constant). Therefore,

if the final equation is arranged, it follows that

1− r
′2 =

1

cos2(v + θ) (tan θ ∓ tan(v + θ))
2 .

If we solve this quadratic equation with unknown r
′
, we obtain

r(s) =


√

(tan θ cos(v + θ)∓ sin(v + θ))
2 − 1

tan θ cos(v + θ)∓ sin(v + θ)

 s+ c; c > 0.

For (tan θ cos(v + θ)∓ sin(v + θ))
2 − 1 > 0, r(s) > 0. By solving this inequality, we have the condition

|sin(v + 2θ)| > cos θ and cos θ < sin v < − cos θ .

(2) Assume that α is a silhouette curve, namely, ⟨N, d⟩ = 0. Additionally, since C(s) is a general helix, we can

write ⟨T, d⟩ = cosβ where β is acute angle. Then

−r
′
⟨T, d⟩ ∓

√
1− r′2 cos(v + ϕ) ⟨B, d⟩ = 0

−r
′
cosβ ∓

√
1− r′2 cos(v + ϕ) sinβ = 0.

If the last equation is arranged, the solution of the quadratic equation with unknown r
′
is obtained as follows:

(
tan2 β + cos2(v + ϕ)

)
r
′2 − tan2 β = 0

r(s) =

∫
tanβ√

tan2 β + cos2(v + ϕ)
ds+ c; c > 0.

Since β is an acute angle, tanβ > 0. Then r(s) > 0. 2

Proposition 1 Let the spine curve C(s) be a general helix. If an isophote curve on the canal surface and the

general helix C(s) have the same axis d , then the canal surface is generated by a moving sphere with linear

radius function r(s) = ωs+ c , where ω =
−1 + sin2 v tan θ

1 + sin2 v tan2 θ
and tan θ > 1 .

Proof Since C(s) is a general helix with the axis d , from the definition of general helix ⟨T, d⟩ = cos θ

(constant) and so ⟨n, d⟩ = 0. Thus,

⟨N, d⟩ = ⟨T, d⟩ = cos θ = λ1, ⟨b, d⟩ = sin θ = λ2.
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If we take inner product of the axis d and unit normal N , we have

⟨N, d⟩ = −r
′
⟨T, d⟩ ∓

√
1− r′2 [cos v ⟨n, d⟩+ sin v ⟨b, d⟩] .

Substituting λ1 and λ2 above, we get(
λ2
1 + λ2

2 sin
2 v

)
r
′2 + 2λ2

1r
′
+ λ2

1 − λ2
2 sin

2 v = 0.

If we solve this quadratic equation, we obtain

r(s) =

(
−1 + sin2 v tan θ

1 + sin2 v tan2 θ

)
s+ c; c > 0.

Since θ is an acute angle, tan θ > 0. In addition, for −1 + sin2 v tan θ > 0, r(s) > 0. Therefore, it must be

tan θ > 1. 2

From now on, we will give some characterizations for isophote curves on a tube. If the radius function

r(s) = r is a constant, by Eq. (4.2) a tube is parametrized as follows:

K(s, v) = C(s)∓ r (cos v n(s) + sin v b(s)) .

Proposition 2 Let the spine curve C(s) be a general helix with the axis d . Then v0 =

(
2k + 1

2

)
π (k ∈ Z )

parameter curves of tube are isophote curves with the axis d .

Proof Because the normal vector of tube N(s, v) = K(s, v)−C(s), we obtain N(s, v) = ∓r (cos v n(s) + sin v b(s)).

For v0 =

(
2k + 1

2

)
π ,

N(s, v0) = ∓r b(s).

Since C(s) is a general helix with the axis d , from the definition of general helix ⟨b, d⟩ is a constant. Therefore,

along the curve v0 =

(
2k + 1

2

)
π ,

⟨N(s, v0), d⟩ = ∓r ⟨b, d⟩ = constant.

Hence v0 =

(
2k + 1

2

)
π parameter curves are isophote curves with the axis d on the tube. 2

Proposition 3 Let the spine curve C(s) be a slant helix with the axis d . Then v0 = kπ (k ∈ Z ) parameter

curves of tube are isophote curves with the axis d .

Proof Because the normal vector of tube N(s, v) = K(s, v)−C(s), we obtain N(s, v) = ∓r (cos v n(s) + sin v b(s)).

For v0 = kπ ,

N(s, v0) = ∓r n(s).

Since C(s) is a slant helix with the axis d , from the definition of slant helix ⟨n, d⟩ is a constant. Therefore,

along the curve v0 = kπ ,

⟨N(s, v0), d⟩ = ∓r ⟨n, d⟩ = constant.

Thus, v0 = kπ parameter curves are isophote curves with the axis d on the tube. 2
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5. Conclusions

In this paper, we found the axis (fixed vector) of an isophote curve through its Darboux frame. Subsequently,

we obtained some characterizations regarding these curves. By using the characterizations, we investigated

the relation between special curves on a surface and isophote curves. Finally, we obtained some results for an

isophote curve lying on a canal surface and then obtained several isophote curves as special parameter curves

on a tube.
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