
Turk J Math

(2015) 39: 665 – 682

c⃝ TÜBİTAK
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Abstract: Let F = (Fn)n≥0 be a quadratic recursive tower of algebraic function fields over the finite field F2 , i.e. F is

a recursive tower such that [Fn : Fn−1] = 2 for all n ≥ 1. For any integer r ≥ 1, let βr(F) := limn→∞ Br(Fn)/g(Fn) ,

where Br(Fn) is the number of places of degree r and g(Fn) is the genus, respectively, of Fn/F2 . In this paper we give

a classification of all rational functions f(X,Y ) ∈ F2(X,Y ) that may define a quadratic recursive tower F over F2 with

at least one positive invariant βr(F) . Moreover, we estimate β1(F) for each such tower.
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1. Introduction

Throughout this paper we use basic facts and notations as in [15]. We will consider (algebraic) function fields

F/Fq of one variable over the finite field Fq . In all cases, Fq will be the full constant field of F/Fq . We denote

by g(F ), Br(F ) (for r ∈ N), and P(F ) the genus, the number of places of degree r , and the set of all places,

respectively, of F/Fq .

An infinite sequence F = (Fn)n≥0 of function fields Fn/Fq is called a tower over Fq , if

F0 ⫋ F1 ⫋ F2 ⫋ . . . ,

all extensions Fn+1/Fn are finite separable, and g(Fn) → ∞ as n → ∞ . For brevity, we denote it by F/Fq .

Let F = (Fn)n≥0 be a tower. For any r ≥ 1 the limit

βr(F) := lim
n→∞

Br(Fn)

g(Fn)

is called a global invariant of F/Fq . These invariants were studied, for instance, in [8, 9, 11, 17]. For those

invariants, the generalized Drinfeld–Vladut bound says that βr(F) ≤ (qr/2 − 1)/r for all r ≥ 1. Moreover, for

any tower F/Fq , one has that β1(F) ≤ A(q), where A(q) is the well-known Ihara constant, which is quite

important in coding theory and cryptography. Notice that β1(F) = λ(F) is often called the limit of the tower

F/Fq . Hence, the case r = 1 has been extensively studied by many researchers; see [1, 3, 4, 13]. More recently,

towers with many positive invariants were studied; see [8, 9, 11, 17].
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In this paper, we are interested in a particular type of towers, namely recursive towers (for the definition

of a recursive tower see Definition 1.3(a)). There are some interesting examples of such towers as given in [3, 7].

In the literature, there are many known recursive towers of function fields having positive β1 over the finite

field Fq , where q = pk with p prime and k ≥ 2; for instance, see [1]. However, the existence of recursive towers

of function fields having positive β1 over prime fields Fp is not known. This is one of the open problems in the

theory of recursive towers of function fields over finite fields.

Lenstra [12] showed that the construction of Kummer towers with β1 > 0 over nonprime fields given

by Garcia et al. [6] does not work over prime fields. That means that the towers over prime fields obtained

by that construction have β1 = 0. In [16] we investigated the recursive tower F defined by the polynomial

f(X,Y ) = Y 2X + Y +X2 + 1 over F2 and obtained some bounds for the invariant β1(F).

In this paper, we investigate the polynomials f(X,Y ) ∈ F2[X,Y ] that yield quadratic recursive towers

F = (Fn)n≥0 , i.e. [Fn : Fn−1] = 2 for all n ≥ 1, of function fields over F2 . Our main goal is to give a

classification of polynomials f(X,Y ) ∈ F2[X,Y ] that recursively define a potentially good quadratic tower over

F2 (i.e. quadratic recursive towers that have at least one positive invariant βr over F2 ).

The organization of our paper is as follows. We first introduce some basic results and some notions, and

then we give our main results in Section 2.

We now give some more notations that will be used throughout this paper. For f ∈ F and P ∈ P(F ), we

denote by vP (f) the valuation of f at P . Moreover, for a rational function field Fq(x) we will write (x = a)

for the place that is the zero of x− a (where a ∈ Fq ) and (x = ∞) for the pole of x .

Let E/F be a finite separable extension, and P and Q be places of F/Fq and E/Fq , respectively. We

will write Q|P if the place Q lies above P . In this case, we will denote by

e(Q|P ), f(Q|P ), and d(Q|P )

the ramification index, the relative degree, and the different exponent, respectively, of Q|P . Moreover, since

P = Q ∩ F , the place P is called the restriction of Q to F .

We now give some definitions and recall the following limits whose existence is well known (for instance,

see [15, Lemma 7.2.3], [9, Corollary 2.7]).

Definition 1.1 Let F = (Fn)n≥0 be a tower over Fq and r ∈ N . The real numbers

νr(F) = lim
n→∞

Br(Fn)

[Fn : F0]
, βr(F) = lim

n→∞

Br(Fn)

g(Fn)
, and γ(F) = lim

n→∞

g(Fn)

[Fn : F0]

are called the global invariants of F/Fq and the genus of the tower F over F0 , respectively.

Obviously, βr(F) = νr(F)/γ(F) for all r ≥ 1.

Definition 1.2 For any tower F/Fq , if βr(F) > 0 for some r ∈ N , we say that F/Fq is a potentially good

tower.

Definition 1.3 Let F = (Fn)n≥0 be a tower over Fq and f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible

polynomial.
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(a) Suppose that there exist elements xn ∈ Fn (for n ≥ 0) such that F0 = Fq(x0) is the rational function

field and

Fn+1 = Fn(xn+1) with f(xn, xn+1) = 0 for all n ≥ 0.

Then we say that the tower F is recursively defined over Fq by the equation f(X,Y ) = 0 .

(b) If [Fn+1 : Fn] = 2 for all n ≥ 0 we say that F/Fq is a quadratic tower.

(c) The function field F/Fq with F := Fq(x, y) , where x, y satisfy the equation f(x, y) = 0 , is called the

basic function field of F/Fq (note that F ∼= F1 ).

(d) The tower G/Fq , which is recursively defined by the equation f(Y,X) = 0 , is called the dual tower of

F/Fq .

We call two towers F = (Fn)n≥0 and G = (Gn)n≥0 isomorphic if for every n ≥ 0, Fn is isomorphic to

Gn . In particular, every recursive tower is isomorphic to its dual tower. It is clear that isomorphic towers have

the same invariants, i.e. for all r ≥ 1:

νr(F) = νr(G), γ(F) = γ(G), and βr(F) = βr(G).

From now on, by a tower F over Fq , we mean a recursive tower, i.e. a tower that is recursively defined

by an equation f(X,Y ) = 0 or in other words by a polynomial f(X,Y ) ∈ Fq[X,Y ] . In this paper we are in

general interested in potentially good quadratic recursive towers over F2 . However, our main interest is the

case r = 1. We here give a classification of potentially good towers over F2 , up to isomorphism. Our main

result is as follows:

Theorem 1.4 Suppose that F/F2 is a potentially good quadratic recursive tower. Then the basic function

field F/F2 of F/F2 is an elliptic function field with B1(F ) ∈ {2, 3, 4, 5} and, up to isomorphism, we have the

following:

(a) If B1(F ) = 2 , then there exists only one equation that can define F/F2 . In this case, β3(F) = 1
2 and

βr(F) = 0 for all r ̸= 3 .

(b) If B1(F ) = 3 , then there are exactly three equations that can define F/F2 . In all cases, β1(F) = 0 .

(c) If B1(F ) = 4 , then there are exactly six equations that can define F/F2 . In all cases, β1(F) = 0 .

(d) If B1(F ) = 5 , then there are exactly four equations that can define F/F2 .

Proof The proof will follow from Remark 2.3; Theorems 2.4, 2.5, 2.9, and 2.14; and Corollaries 2.8 and 2.13. 2

Now let A =

(
a b
c d

)
∈ GL(2,Fq) (i.e. a, b, c, d ∈ Fq , and ad ̸= bc) and let u be an element in some

extension field of Fq with cu+ d ̸= 0. Set

A · u :=
au+ b

cu+ d
.

Let F/Fq be a tower defined by the equation f(X) = g(Y ), where f(T ), g(T ) ∈ Fq(T ). In [2] it was proved

that for any A ∈ GL(2,Fq) the equation f(A ·X) = g(A · Y ) also defines the tower F . In Remark 1.5, we give

a more general observation, which can be shown in a similar way as in [2].
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Remark 1.5 Let F/Fq be a tower defined by the equation f(X,Y ) = 0 . For any A ∈ GL(2,F2) , the equation

f(A ·X,A ·Y ) = 0 also defines the tower F/Fq . Moreover, it is clear that the equations f(X,Y ) = f1(X,Y )
f2(X,Y ) = 0 ,

where f1(X,Y ) , f2(X,Y ) ∈ F2[X,Y ] are relatively prime, and f1(X,Y ) = 0 recursively define the same

sequence of function fields over Fq .

Lemma 1.6 Let F = (Fn)n≥0 be a tower over Fq defined by the equation f(X,Y ) = 0 such that g(Fk−1) = 0

and g(Fk) ≥ 1 for some k ≥ 1 . We set Gi := Fi+k−1 for all i ≥ 0 . The sequence G := (Gi)i≥0 of function

fields Gi/Fq is also a recursive tower, and its basic function field is nonrational.

Proof The field Fk−1 has genus 0, and hence it is rational, say Fk−1 = Fq(u0) for some transcendenal element

u0 . We write u0 = ϕ(x0, ..., xk−1) where ϕ is a rational function in k variables and define ui := ϕ(xi, ..., xi+k−1)

for any i ≥ 0. Let h(u0, u1) = 0 be the irreducible equation for u1 over Fk−1 . Then h(ui, ui+1) = 0 for all

i ≥ 0, which implies that the tower G = (Fk−1, Fk, ...) can be defined recursively by the equation h(U, V ) = 0.

Thus, the lemma follows. 2

Remark 1.7 By Lemma 1.6, it is enough to consider only towers F/Fq whose basic function field F/Fq has

genus strictly greater than zero. For the rest of the paper, we will always assume this.

Let f(X,Y ) ∈ Fq[X,Y ] be a polynomial. For T = X (or T = Y ) we set

degT f(X,Y ) := max{degT f1(X,Y ), degT f2(X,Y )} and call it the degree of f(X,Y ) in the variable X (or

Y , respectively).

Lemma 1.8 Suppose that F/Fq is a tower defined by the equation f(X,Y ) = 0 where degX f(X,Y ) ̸=
degY f(X,Y ) . Then βr(F) = 0 for all r ≥ 1 .

The proof of Lemma 1.8 can be omitted; one can prove it by using the same method used for the proof of the

case r = 1 in [5] and the following formula (c.f. [15, p.207]): for all r, d ≥ 1,

rβr(F/Fq) =
∑
d|r

µ
( r
d

)
β1(F · Fqd/Fqd), (1)

where µ is the Möbius function and F · Fqd := (FnFqd)n≥0 is the tower of constant field extensions FnFqd/Fqd

of Fn/Fq .

Suppose now that F is a potentially good quadratic tower defined by the equation f(X,Y ) = 0 over F2 .

It follows from Lemma 1.8 that degX f(X,Y ) = degY f(X,Y )=2. In other words, for the basic function field

F/F2 of the tower F/F2 , we have that F = F2(x, y) with f(x, y) = 0 such that [F : F2(x)] = [F : F2(y)] = 2.

Now it follows from Riemann’s inequality [15, Corollary 3.11.4] that the function field F/F2 has genus g ≤ 1

and hence g = 1 (because of our assumption in Remark 1.7). Therefore, F/F2 is an elliptic function field. We

also note that by the Hasse–Weil bound [15, Theorem 5.2.3], we have 1 ≤ B1(F ) ≤ 5.

Proposition 1.9 Up to isomorphism over F2 , for each n ∈ {1, 2, 3, 4, 5} , there exists exactly one elliptic

function field F = F2(x, y) over F2 having B1(F ) = n . These function fields can be described explicitly as

follows:
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(i) B1(F ) = 1 and y2 + y = x3 + x+ 1 ,

(ii) B1(F ) = 2 and y2 + y = (x2 + x+ 1)/x ,

(iii) B1(F ) = 3 and y2x+ yx2 + 1 = 0 ,

(iv) B1(F ) = 4 and y2 + y = x/(x2 + x+ 1) ,

(v) B1(F ) = 5 and y2x+ y = x2 + 1 .

Proof It follows from [10, Proposition 6.4, p.79] or [15, Proposition 6.1.2] that up to isomorphism over F2

there are five elliptic function fields F/F2 . Hence, it is enough to show that the given equations define elliptic

function fields with the desired number of rational places. We first consider the equation in (iii). Multiplying

both sides of that equation by y2x yields that y4x2 + y3x3 + y2x = 0. Now set t := yx and z := y2x = ty .

Clearly, F2(x, y) = F2(z, t) and z2+z = t3 . Similarly, by multiplying both sides of the equation in (v) by x and

setting w := xy , we obtain that F2(x,w) = F2(x, y) and w2+w = x3+x . Now by applying the Artin–Schreier

extensions theorem [15, Proposition 3.7.8] and Kummer’s theorem [15, p. 86, Theorem 3.3.7], all assertions

follow. 2

We summarize as follows:

Theorem 1.10 Suppose that F = (Fn)n≥0 is a potentially good quadratic recursive tower defined by the

equation f(X,Y ) = 0 over F2 . Then the following hold:

(a) If G/F2 is the dual tower of F/F2 , then βr(F) = βr(G) for all r ≥ 1 ,

(b) for any A ∈ GL(2,F2) , the equation f(A ·X,A · Y ) = 0 also defines the tower F ,

(c) degX f(X,Y ) = degY f(X,Y ) = 2 ,

(d) w.l.o.g. the basic function field F1/F2 is an elliptic function field with

B1(F1) ∈ {1, 2, 3, 4, 5} ,

(e) f(X,Y ) ̸= f(Y,X) .

Proof (a)–(d) follow from our previous discussions and (e) follows from [14, Lemma 3.1]. 2

2. Potentially good quadratic recursive towers over F2

In this section we will find all equations that up to isomorphism recursively define a potentially good quadratic

recursive tower over F2 . We will make a classification of those equations by using Theorem 1.10.

From now on, unless otherwise stated, we suppose that F = (Fn)n≥0 is a potentially good quadratic

recursive tower defined by an equation f(X,Y ) = 0 over F2 with the basic function field F1/F2 . For simplicity,

we set F := F1 . By Theorem 1.10(d), w.l.o.g. F = F2(x, y) for some x, y ∈ F with f(x, y) = 0 and F/F2 is

an elliptic function field with B1(F ) = n for some n ∈ {1, 2, 3, 4, 5} . It follows from Proposition 1.9 that up to

isomorphism F/F2 is unique with n rational places. It is clear that the equations in the following set Sn also

define the function field F/F2 :
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Sn := {f(A ·X,B · Y ) = 0 | A,B ∈ GL(2,F2)}.

It follows from Theorem 1.10(b) that for any A,B ∈ GL(2,F2) and f(X,Y ) ∈ F2[X,Y ] the equations

f(A ·X,B · Y ) = 0 and f(X,A−1 · (B · Y )) = 0 define the same sequence of function fields over F2 . Therefore,

it is enough to investigate all equations f(X,A · Y ) = 0 with A ∈ GL(2,F2) for each f(X,Y ) ∈ F2[X,Y ] such

that f(x, y) = 0 and the following holds:

degX f(X,Y ) = [F : F2(x)] = [F : F2(y)] = degY f(X,Y ) = 2.

We will make a classification of the desired equations according to the number of rational places of the

basic function field F/F2 for which B1(F ) ∈ {1, 2, 3, 4, 5} . Throughout the subsequent subsections we will use

the following notations:

Notations: (1) For any rational function f(X,Y ) ∈ Fq(X,Y ) we denote by f̂(X,Y ) the numerator of

f(X,Y ).

(2) We assign the elements of the group GL(2,F2) as follows:

A0 =

(
1 0
0 1

)
, A1 =

(
1 1
0 1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
1 1
1 0

)
, A4 =

(
1 0
1 1

)
, A5 =

(
0 1
1 1

)
.

Note that A0 is the identity of the group GL(2,F2).

Definition 2.1 Let F be a field and suppose that it has a subfield F2(x) such that [F : F2(x)] = 2 . We say

that F2(x) is a degree-2 rational subfield of F .

Observe that in our situation the basic function field F/F2 is generated by x and y , and the rational function

fields F2(x) and F2(y) are degree-2 rational subfields of F . To prove Theorem 1.4, we first need to prove the

following theorem:

Theorem 2.2 Suppose that F/F2 is an elliptic function field with B1(F ) = n . Then n ∈ {1, 2, 3, 4, 5} and

there are exactly n degree-2 rational subfields of F/F2 . Moreover, when n ∈ {2, 3, 4, 5} , one can write F as

follows:

(i) If n = 2 , then F = F2(x, y) with x(y2 + y) = x2 + x+ 1 .

(ii) If n = 3 , then F = F2(u, v) with distinct u, v ∈ {x, y, z} , where

z := x2+x+1
xy+x , with

y2x+ yx2 + 1 = 0 and y2 + zy2 + yz2 + y + 1 = 0. (2)

(iii) If n = 4 , then F = F2(u, v) with distinct u, v ∈ {x, y, z, t} , where
z := 1

y(x2+x+1)+x+1 and t := 1
y(x2+x+1)+x2+1 , with

(y2 + y)(x2 + x+ 1) = x and z(t2 + t) = z2 + 1. (3)

(iv) If n = 5 , then F = F2(u, v) with distinct u, v ∈ {x, y, z, t, w} , where
z := xy+x+1

x2 , t := x
xy+1 , and w := y+1

x , with

uv2 + v = u2 + 1 for (u, v) ∈ {(x, y), (w, y)} and z2t2 + z = t2 + t. (4)
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Proof It follows from the Hasse–Weil bound [15, Theorem 5.2.3] that n ∈ {1, 2, 3, 4, 5} . We first suppose

that n = 1. Assume that F2(y) is a degree-2 rational subfield of F , which is distinct from F2(x). Then we

must have that F2(x, y) = F . Let P be the unique rational place of F/F2 . Then P ∩ F2(x) = (x = α) and

P ∩ F2(y) = (y = β) for some α, β ∈ F2 ∪ {∞} . Hence, we have the following cases:

(a) α = β = ∞, (b) α = ∞, β ∈ F2 or β = ∞ , α ∈ F2, (c) α, β ∈ F2 .

First, suppose that (a) holds. As B1(F ) = 1, it is clear that place P must be ramified over both of the

fields F2(x) and F2(y). Then by [15, Theorem 1.5.17], the Riemann–Roch space L(2P ) of the divisor 2P has

dimension two. Since x, y ∈ L(2P ), we have that L(2P ) =< 1, x >=< 1, y >, and so x = a + by for some

a, b ∈ F2 . This implies that F = F2(x), which contradicts the fact that g(F ) = 1. If (b) or (c) holds, then

similarly we get a contradiction. Thus, F has only one degree-2 rational subfield, namely F2(x). Next, we

prove assertions (i) and (iii), and the proofs of (ii) and (iv) are similar to that of (i):

(i) We know from Proposition 1.9 that up to isomorphism there exists exactly one elliptic function field F/F2

with B1(F ) = 2 and F = F2(x, y) such that the equation given in (i) holds. Hence, F2(x) and F2(y) are

degree-2 rational subfields of F . Denote by R1 and R2 the rational places of F/F2 . By using Kummer’s

theorem [15, Theorem 3.3.7], we have the following ramification structures in F/F2(x) and F/F2(y),

respectively:

(I) (x = 0) and (x = ∞) are ramified in F , and (x = 1) is inert in F . W.l.o.g. we assume that R1|(x = 0)

and R2|(x = ∞).

(II) (y = ∞) splits in F and R1 , R2 lie above it. The places (y = 0) and (y = 1) are inert in F .

Now let F2(z) be a degree-2 rational subfield of F . Since B1(F ) = 2, the ramification structure in F/F2(z)

must be similar to one of the types (I) or (II). That means that in F/F2(z) either two rational places are

ramified and one rational place is inert, or one rational place splits and two rational places are inert. In the first

case, w.l.o.g. we have that (z = 0) = (x = 0) = 2R1 , and so L(2R1) =< 1, z >=< 1, x > . Hence, x = a + bz

for some a, b ∈ F2 , which implies that F2(z) = F2(x). In the second case, one similarly gets that F2(z) = F2(y).

Thus, (i) follows.

(iii) By Proposition 1.9(iv), F = F2(x, y) such that the first equation given in (iii) holds. Hence, F2(x)

and F2(y) are distinct degree-2 rational subfields of F . By the Artin–Schreier extensions theorem [15,

Proposition 3.7.8] we have the following ramification structure in F/F2(x) and F/F2(y), respectively:

(I) (x = 0) and (x = ∞) split, and (x = 1) is inert in F . The zero of x2 + x + 1, say P1 , in F2(x) is

ramified in F . Let Q1 and Q2 be places of F/F2 lying above (x = 1) and P1 , respectively.

(II) (y = 0) and (y = 1) split, and (y = ∞) is inert in F . The zero of y2+y+1, say P2 , in F2(y) is ramified

in F . Moreover, Q1 ∩ F2(y) = P2 and Q2 ∩ F2(y) = (y = ∞).

Next, we consider the field F2(z, t). By the Artin–Schreier extensions theorem [15, Proposition 3.7.8],

F2(z, t)/F2 has genus one and four rational places. Since, up to isomorphism, there is only one elliptic

function field with four rational places, w.l.o.g. we can assume that F2(z, t) = F . Now let R1, R2, R3 , and
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R4 be the rational places of F/F2 . By the same theorem, we have the following ramification structure in

F/F2(z) and F/F2(t), respectively:

(III) (z = ∞) and (z = 0) are ramified, and (z = 1) splits in F . W.l.o.g. we assume that R1|(z = ∞),

R2|(z = 0), and then R3 and R4 lie above (z = 1).

(IV) (t = 0) and (t = 1) are ramified, and (t = ∞) splits in F . Moreover, R3|(t = 0) and R4|(t = 1).

Hence, F2(z),F2(t) /∈ {F2(x),F2(y)} are distinct degree-2 rational subfields of F . It follows from (I) and (II)

that for any place Q of F/F2 with degree two, we have that Q ∩ F2(x) = P1 or (x = 1), and Q ∩ F2(y) = P2

or (y = ∞). Hence, F/F2 has exactly two places of degree two, say Q1 , Q2 . Suppose now that F2(w) is a

degree-2 rational subfield of F . We then have the following cases:

c.1. Two rational places of F2(w) split in F and one rational place of F2(w), w.l.o.g. say (w = 0), is

inert in F . Then Qi ∩ F2(w) = (w = 0) for i = 1 or 2. If i = 1, then (w = 0) = (x = 1) in F .

Hence, vQ1(w(x− 1)−1) = 0, which implies that F2(w) = F2(x). If i = 2, similarly we then obtain that

F2(w) = F2(y).

c.2. Two rational places of F2(w) are ramified and one rational place of F2(w) splits in F . W.l.o.g. suppose

that (w = 0) is ramified in F . Then (w = 0) = 2Ri for some i ∈ {1, 2, 3, 4} . Hence, similar as in c.1.,

we obtain that F2(w) ∈ {F2(z),F2(t)} .

Therefore, (iii) follows. 2

Remark 2.3 It follows from Theorem 2.2 that there is no equation defining a tower of function fields over F2

whose basic function field has only one rational place.

We next investigate towers over F2 whose basic function field F/F2 has n rational places for each n = 2, 3, 4, 5.

2.1. B1(F ) = 2

In this subsection we suppose that the basic function field F/F2 has two rational places.

Theorem 2.4 Suppose that F/F2 is a potentially good quadratic recursive tower with the basic function field

F/F2 having B1(F ) = 2 . Then, up to isomorphism, F/F2 can be defined by the following equation:

Y 2 + Y =
X2 +X + 1

X
. (5)

Moreover, β3(F) = 1
2 and βr(F) = 0 for all r ̸= 3 .

Proof Suppose that f(X,Y ) = 0 is an equation defining a tower F/F2 with the desired properties. By

Theorem 2.2(i), F = F2(x, y) where x(y2+ y) = x2+x+1. It follows from Theorem 1.10 that f(u′, v′) = 0 for

some distinct u′, v′ ∈ {A·x,B ·y | A,B ∈ GL(2,F2)} and F = F2(u
′, v′). Set g(X,Y ) := X(Y 2+Y )+X2+X+1

and let Ai ∈ GL(2,F2) for i = 1, 2, 3, 4, 5. By the same theorems (see also the discussion and notations of the

previous section), we have the following:

f(X,Y ) = ĝ(X,Ai · Y ) for some 0 ≤ i ≤ 5 where
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(1) ĝ(X,Y ) = ĝ(X,A0 · Y ) = ĝ(X,A1 · Y ) = g(X,Y ) = 0,

(2) ĝ(X,A2 · Y ) = ĝ(X,A3 · Y ) = 0,

(3) h(X,Y ) := ĝ(X,A4 · Y ) = ĝ(X,A5 · Y ) = (X2 +X + 1)Y 2 +XY +X2 +X + 1 = 0.

Since g(A2 ·X,A2 · (A3 · Y )) = g(X,Y ) = 0, by Remark 1.5, Eqs. (1) and (2) describe the same tower over F2 .

Next, we claim that Eq. (3) does not define a tower over F2 . To prove this claim first let E0 := F2(x0) be the

rational function field and En := En−1(xn) for any n ≥ 1 with h(xn−1, xn) = 0. For n = 2, we have that

h(x2, T ) =
x0x2

x2
0 + 1

(
T +

1

x0

)
(T + x0) ∈ E2[T ].

Hence, Ei = E2 for all i ≥ 3, and so the claim follows. Therefore, we have f(X,Y ) = g(X,Y ). The rest

follows from [7] and [9, Example 4.3]. 2

2.2. B1(F ) = 3

In this part we suppose that the basic function field F/F2 has three rational places.

Theorem 2.5 Suppose that F/F2 is a potentially good quadratic recursive tower with the basic function field

F/F2 having B1(F ) = 3 . Then, up to isomorphism, F/F2 can be defined by one of the following equations:

(1) Y 2X +X + Y X2 +X2 + 1 = 0 ,

(2) Y X2 + Y 2 +X = 0 ,

(3) X2Y 2 +X2Y +XY 2 +X + Y 2 = 0 .

Proof Let F/F2 be a tower with the given assumptions and F/F2 be its basic function field. Suppose that

f(X,Y ) = 0 is an equation defining the tower F/F2 . By Theorem 2.2(ii) F = F2(u, v) where u, v ∈ {x, y, z}
as in (2). It follows from Theorem 1.10 that f(u′, v′) = 0 for some distinct u′, v′ ∈ {A ·x,B · y, C · z | A,B,C ∈
GL(2,F2)} and F = F2(u

′, v′). In addition, we have that x2 + zx2 + xz2 + x+ 1 = 0. Let Ai ∈ GL(2,F2) for

i = 1, 2, 3, 4, 5. By the same theorems (see also Section 2), we have the following cases:

c.1. f(X,Y ) = f̂1(X,Ai · Y ) for some 1 ≤ i ≤ 5, where f1(X,Y ) := Y 2X + Y X2 + 1 = 0 and

(i) f̂1(X,A1 · Y ) = X2Y +X2 +XY 2 +X + 1 = 0,

(ii) f̂1(X,A2 · Y ) = X2Y +X + Y 2 = 0,

(iii) f̂1(X,A3 · Y ) = X2Y 2 +X2Y +XY 2 +X + Y 2 = 0,

(iv) f̂1(X,A4 · Y ) = X2Y 2 +X2Y +XY 2 + Y 2 + 1 = 0,

(v) f̂1(X,A5·Y ) = X2Y +X2+X+Y 2+1 = 0. Note that f̂1(X,A5·Y ) = 0 and f̂1(A3·X,A3·(A5·Y )) = 0

define the same tower whose dual tower can be defined by the equation f̂1(X,A3 · Y ) = 0.
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c.2. f(X,Y ) = f̂2(X,Ai · Y ) for some 1 ≤ i ≤ 5, where f2(X,Y ) := X2 + Y X2 +XY 2 +X + 1. Note that

f2(X,Y ) = f̂1(X,A1 · Y ) = 0.

Therefore, by Theorem 1.10, f(X,Y ) = 0 must be one of the equations in c.1 (i), (ii), (iii), or (iv). We claim

that the equation in c.1(iv) does not define a tower over F2 . Obviously, if the claim holds, then we are done.

To prove the claim first let G0 := F2(x0) be the rational function field and Gi = Gi−1(xi) for all i ≥ 1 with

f̂1(xi−1, A4 · xi) = 0. We have in G2[T ] that

f̂1(x2, A4 · T ) =
[
(T + (x4

0 + x0)x1 + (x4
0 + x3

0 + x2
0 + 1))x2 + (x4

0 + x3
0 + x0)x1 +A

]
·B · C,

where

A :=
x6
0 + x5

0 + x4
0 + x2

0

x2
0 + x0 + 1

, B :=

(
x1 +

x3
0 + x0 + 1

x3
0 + 1

)
x2 +

x1

x0 + 1
+

1

x2
0 + x0 + 1

,

and

C := T + ((x4
0 + x0)x1 + (x4

0 + x3
0 + x2

0))x2 +
x1(x

5
0 + x4

0 + 1)

x0
+

x6
0 + x5

0 + x2
0 + x0 + 1

x2
0 + x0

.

Hence, Gi = G2 for all i ≥ 3, and so the claim follows. 2

Next, we investigate the invariant β1(F) of the tower F/F2 for each case (1)–(3) in Theorem 2.5 if the given

equation defines a tower.

Remark 2.6 We know from [3] and [17, Example 3.2.2] that the equation in Theorem 2.5(2) defines a poten-

tially good quadratic tower F/F2 with β2(F) = 1
2 and βr(F) = 0 for all r ̸= 2 .

Proposition 2.7 Each of the following equations recursively defines a tower F/F2 with β1(F) = 0 :

(i) Y 2X +X + Y X2 +X2 + 1 = 0 , (ii) X2Y 2 +X2Y +XY 2 +X + Y 2 = 0 .

Proof (i) Suppose that F = (Fn)n≥0 is a sequence of function fields defined recursively by the equation

f(X,Y ) := Y 2X + X + Y X2 + X2 + 1 = 0 over F2 . By definition, F0 = F2(x0), where x0 ∈ F0 is

transcendental over F2 , and F1 = F2(x0, x1) such that x0, x1 satisfy the equation f(x0, x1) = 0. For simplicity,

set F := F2(x, y) = F1 where x := x0 and y := x1 . Multiplying the equation f(x, y) = 0 by 1/x3 and letting

z := y/x yields that

z2 + z =
x2 + x+ 1

x3
.

We denote the rational places of F/F2 by R1, R2 , and R3 . By the Artin–Schreier extensions theorem [15,

Proposition 3.7.8], we have the following:

(I) (x = 0) is ramified in F , R1|(x = 0), and R1 ∩ F2(y) = (y = ∞);

(II) (x = 1) is inert in F ;

(III) (x = ∞) splits in F , R2 and R3 lie above it, and R2 ∩ F2(y) = (y = 1) and R3 ∩ F2(y) = (y = ∞).
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By using (I)–(III), and applying Abhyankar’s lemma [15, Theorem 3.9.1] in the Figure, for any n ≥ 1, we obtain

the following:

- Let P (n) ∈ P(Fn) with P (n) ∩ F2(xk) = (xk = ∞) for all 0 ≤ k < n and P (n) ∩ F2(xn) = (xn = 1), and

Q(n) ∈ P(Fn) with Q(n) ∩ F2(xk) = (xk = ∞) for all 0 ≤ k ≤ n . Then P (n) is inert in Fn+1 and Q(n)

splits in Fn+1 . Thus, [Fn+1 : Fn] = 2 and F2 is algebraically closed in Fn , and so the sequence F is a

quadratic tower over F2 .

- For any place R(n) of Fn with R(n) ∩ F0 = (x0 = 0), we have that R(n) ∩ F2(xn) = (xn = α) for some

α ∈ {1,∞} . If α = 1 (resp. α = ∞), then R(n) is inert (resp. splits) in Fn+1 . Note that conversely for

any α ∈ {1,∞} there exists a place R(n) of Fn that lies above (x0 = 0) and (xn = α).

- B1(Fn) = 4 for all n ≥ 2. Hence, ν1(F) = 0, and so β1(F) = 0.

P ?????

P ∩ F3

??
??

?

��
��
�

P ∩ F2(x1, x2, . . . , xn)??????
P ∩ F2

??
??

?

��
��
�

P ∩ F2(x1, x2, x3)

??
??

??

��
��
�

????????
Ri

??
??

?

��
��
�

P ∩ F2(x1, x2)

??
??

?

��
��
�

??
??

??

��
��
��

??
??

??

(x0 = α) Ri ∩ F2(x1) P ∩ F2(x2) P ∩ F2(x3) P ∩ F2(xn)

Figure. α ∈ {0, 1,∞} and P ∈ {P (n), Q(n), R(n)} .

(ii) We use the same method and notations as in the proof of (i) with f(X,Y ) := X2Y 2 + X2Y + XY 2 +

X + Y 2 = 0. Multiplying the equation f(x, y) = 0 by x2+x+1
x4 and setting z := y(x2+x+1)

x2 yields that

z2 + z = x2+x+1
x3 . In this case, we obtain that B1(Fn) = 2 for all n ≥ 2. Hence, ν1(F) = 0, and so

β1(F) = 0.

2

The following corollary is an immediate consequence of Theorem 2.5, Remark 2.6, and Proposition 2.7.

Corollary 2.8 Suppose that F = (Fn)n≥0 is a quadratic recursive tower of function fields over F2 such that

its basic function field F1/F2 has B1(F1) = 3 . Then β1(F) = 0 .

2.3. B1(F ) = 4

In this subsection we suppose that the basic function field F/F2 has four rational places.
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Theorem 2.9 Suppose that F/F2 is a potentially good quadratic recursive tower with the basic function field

F/F2 having B1(F ) = 4 . Up to isomorphism, F/F2 can be defined by one of the following equations:

(1) (Y 2 + Y )(X2 +X + 1) +X = 0, (4) X2Y 2 +X2Y +XY +X + Y ,

(2) XY 2 +XY +X2 + 1 = 0, (5) X2Y +XY +X2 + Y 2 + Y = 0 ,

(3) X2Y 2 +X2Y +XY + Y + 1 = 0, (6) X2Y +XY +X + Y 2 + Y = 0 .

Proof Suppose that F/F2 is a tower with the given assumptions and let F/F2 be its basic function

field. Suppose that F/F2 is defined by an equation f(X,Y ) = 0. By Theorem 2.2(iii) F = F2(u, v) where

u, v ∈ {x, y, z, t} as in (3). It follows from 1.10 that f(u′, v′) = 0 for some distinct u′, v′ ∈ {A1 · x,A2 · y | Ai ∈
GL(2,F2) for i = 1, 2, 3, 4, 5} and F = F2(u

′, v′). Because of (3), we have the following equations:

(a) (y2 + y)(x2 + x+ 1) = x, (d) x2t+ xt2 + xt = t+ 1,

(b) z(t2 + t) = z2 + 1, (e) y2z2 + y2z + y2 + yz = z2 + z ,

(c) x2z2 + x2z + xz = z + 1, (f) y2t2 + y2t+ y2 + yt2 + yt = t+ 1.

Let Ai ∈ GL(2,F2) for i = 0, 1, 2, 3, 4, 5. It follows from Theorems 1.10 and 2.2(iii) (see also Section 2) that

we have the following cases:

c.1. f(X,Y ) = f̂1(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f1(X,Y ) := (Y 2 + Y )(X2 + X + 1) + X with

f1(x, y) = 0 and

(i) f̂1(X,A1 · Y ) = f1(X,Y ).

(ii) f̂1(X,A2 · Y ) = f̂1(X,A3 · Y ) = f̂1(A2 · X,A2 · Y ) = 0. Note that this equation defines the same

tower as defined by f1(X,Y ) = 0.

(iii) g(X,Y ) := f̂1(X,A4 · Y ) = f̂1(X,A5 · Y ) = X2Y + XY 2 + XY + X + Y = 0. Note that since

g(X,Y ) = g(Y,X) = 0, this equation does not define a tower.

c.2. f(X,Y ) = f̂2(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f2(X,Y ) := XY 2 +XY +X2 + 1 with f2(z, t) = 0

and

(i) f̂2(X,A1 · Y ) = f2(X,Y ).

(ii) f̂2(X,A2 · Y ) = f̂2(X,A3 · Y ) = f̂2(A2 · X,A2 · Y ) = 0. Note that this equation defines the same

tower as defined by f2(X,Y ) = 0.

(iii) f̂2(X,A4 · Y ) = f̂2(X,A5 · Y ) = X2Y 2 + X2 + XY + Y 2 + 1 =: g(X,Y ). Note that since

g(X,Y ) = g(Y,X) = 0, this equation does not define a tower.

c.3. f(X,Y ) = f̂3(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f3(X,Y ) := X2Y 2 + X2Y + XY + Y + 1 with

f3(x, z) = 0 and

(i) f̂3(X,A1 · Y ) = X2Y 2 +X2Y +XY +X + Y .

676



STICHTENOTH and TUTDERE/Turk J Math

(ii) f̂3(X,A2 · Y ) = X2Y +XY +X2 + Y 2 + Y .

(iii) f̂3(X,A3 ·Y ) = X2Y +X2+XY 2+XY +Y =: g(X,Y ). Note that g(X,Y ) = f̂3(A4 ·X,A4 ·(A2 ·Y )).

(iv) f̂3(X,A4 · Y ) = X2Y +XY 2 +XY + Y + 1. Note that f̂3(X,A4 · Y ) = f̂3(A2 ·X,A2 · (A1 · Y )).

(v) f̂3(X,A5 · Y ) = X2Y +XY +X + Y 2 + Y .

c.4. f(X,Y ) = f̂3(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f4(X,Y ) := X2Y + XY 2 + XY + Y + 1 with

f4(x, t) = 0. Note that f4(X,Y ) = f̂3(X,A4 · Y ) = 0.

c.5. f(X,Y ) = f̂5(X,Ai ·Y ) for some 0 ≤ i ≤ 5, where f5(X,Y ) := X2Y 2 +X2Y +X2 +XY +Y 2 +Y with

f5(y, z) = 0. Note that f̂5(A4 ·X,A4 · Y ) = f̂3(X,A3 · Y ).

c.6. f(X,Y ) = f̂6(X,Ai ·Y ) for some 0 ≤ i ≤ 5, where f6(X,Y ) := X2Y 2+X2Y +X2+XY 2+XY +Y +1

with f6(y, t) = 0. Note that f6(X,Y ) = f̂3(A4 ·X,A4 · Y ) = 0.

Consequently, by Theorem 1.10, we have only the equations c.1(i), c.2(i), f3(X,Y ) = 0, c.3(i),c.3(ii), and

c.3(v).

2

Next, we investigate the sequences of function fields that are defined by the equations given in Theorem 2.9(1)–

(6).

Remark 2.10 It follows from [4] and [17, Example 3.2.1] that the equation in Theorem 2.9(2) defines a

potentially good quadratic tower F/F2 such that β2(F) = 1
2 and βr(F) = 0 for all r ̸= 2 .

Proposition 2.11 The following equations define a quadratic recursive tower F over F2 with β1(F) = 0 :

(a) (Y 2 + Y )(X2 +X + 1) +X = 0, (c) X2Y +XY +X2 + Y 2 + Y = 0 ,

(b) X2Y 2 +X2Y +XY + Y + 1 = 0, (d) X2Y +XY +X + Y 2 + Y = 0 .

Proof We use a similar method and the same notations as in Proposition 2.7 in (a)–(d). The proofs of (a)–(d)

are all similar, so we omit the details in the proofs of (b)–(d).

(a) Set f(X,Y ) := (Y 2 + Y )(X2 +X + 1) +X = 0. Denote the rational places of F/F2 by R1, R2 , R3 , and

R4 . By the Artin–Schreier extensions theorem [15, Proposition 3.7.8], we have the following:

(I) (x = 0) splits in F , R1 and R2 lie above it, and R1 ∩ F2(y) = (y = 0) and R2 ∩ F2(y) = (y = 1).

(II) (x = 1) is inert in F .

(III) (x = ∞) splits in F , R3 and R4 lie above it, and R3 ∩ F2(y) = (y = 0) and R4 ∩ F2(y) = (y = 1).

(IV) The zero of x2 + x+ 1 in F2(x) is ramified in F .

In order to show that F/F2 is a tower, we consider the sequence F ·F4 = (FnF4)n≥0 of constant field extensions

FnF4/F4 of Fn/F2 . If the sequence F · F4/F4 is a quadratic tower, then so is F/F2 . By the Artin–Schreier

extensions theorem [15, Proposition 3.7.8], the following hold:
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(I’) same as (I) with F := FF4 .

(II’) (x = 1) splits in FF4 . Let R′
1 and R′

2 be extensions of (x = 1) in FF4 . Then R′
1 ∩F4(y) = (y = a) and

R′
2 ∩ F4(y) = (y = b), where a, b are roots of the polynomial g(T ) = T 2 + T + 1.

(III’) (x = a) and (x = b) are ramified in FF4 . Let R′
3 and R′

4 be extensions of (x = a) and (x = b),

respectively, in FF4 . Then R′
i ∩ F4(y) = (y = ∞) for i = 3, 4.

Claim: For any n ≥ 1, let Pn be a place of FnF4 such that xn(Pn) = a , xn−1(Pn) = 1, and xk(Pn) = 0

for all k ≤ n− 2 and n ≥ 2. Then Pn is ramified in Fn+1F4 for all n ≥ 0. If the claim holds, then it follows

immediately that F4 is algebraically closed in FnF4 and [Fn+1F4 : FnF4] = 2 for all n ≥ 1. Hence, F · F4/F4

is a quadratic tower.

Proof of the claim: For n = 0, the proof follows from (III’). By definition Fn+1F4 = FnF4(xn+1) for all

n ≥ 0, where xn, xn+1 satisfy the equation f(xn, xn+1) = 0. For simplicity, we first set u := x1

x2
1+x1+1

and let

P be the extension of (x0 = 1) and (x1 = a) in F1 . Then vP (u) = −2. Let t = x0 + 1 be a prime element for

P , i.e. vP (t) = 1. Since vP (x1 + a) = 2, by [15, Theorem 4.2.6], there are elements a2, a3, . . . ∈ F4 such that

x1 = a + a2t
2 + a3t

3 + . . . . By inserting these values of x0 and x1 in the equation f(x0, x1) = 0, we obtain

that x1 = a+ t2 + t3 + t4 + . . . . Now let z := a+1
t . Then vP (u+ z2 + z) = −1. Hence, by the Artin–Schreier

extensions theorem [15, Proposition 3.7.8], P is ramified in F2 . The case n ≥ 2 now follows by chasing a figure,

as in the proof of Proposition 2.7, and applying the same theorem.

Next, as in the proof of Proposition 2.7, by using (I)–(III), one can easily obtain that B1(F2) = 6 and

B1(Fn) = 4 for all n ≥ 3. Hence, ν1(F) = 0, and so β1(F) = 0.

(b) Set f(X,Y ) := X2Y 2 + X2Y + XY + Y + 1 = 0. Multiplying the equation f(x, y) = 0 by x2

(x2+x+1)2

and setting z := x2y
x2+x+1 yields that z2 + z = x2

(x2+x+1)2 . Applying the Artin–Schreier extensions theorem

with u := x
x2+x+1 yields that the place (x2 + x + 1 = 0) is ramified in F1 . In this case, we obtain that

F/F2 is a quadratic tower such that B1(Fn) = 4 for all n ≥ 1. Hence, ν1(F) = 0, and so β1(F) = 0.

(c) Set f(X,Y ) := X2Y +XY +X2 + Y 2 + Y = 0. Multiplying the equation f(x, y) = 0 by 1
(x2+x+1)2 and

setting z := y
x2+x+1 yields that z2 + z = x2

(x2+x+1)2 . In this case, we get that B1(Fn) = 4 for all n ≥ 1.

Hence, ν1(F) = 0, and so β1(F) = 0.

(d) Set f(X,Y ) := X2Y +XY +X + Y 2 + Y = 0. Multiplying the equation f(x, y) = 0 by 1
(x2+x+1)2 and

setting z := y
x2+x+1 yields that z2 + z = x

(x2+x+1)2 . In this case, we obtain that B1(Fn) = 2(n + 1) for

all n ≥ 1. Hence, ν1(F) = 0, and so β1(F) = 0.

2

Proposition 2.12 The equation f(X,Y ) = X2Y 2 + X2Y + XY + X + Y = 0 defines a quadratic recursive

tower F/F2 with β1(F) = 0 . Moreover, for all n ≥ 2 , we have that

B1(Fn) =
αn−1(α3 + 1) + (−1)n(α− 1)√

5
,
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where α :=
√
5+1
2 is the golden ratio.

Proof We use the same method and notations as in Proposition 2.11 with f(X,Y ) = X2Y 2 +X2Y +XY +

X + Y = 0. Multiplying the equation f(x, y) = 0 by x2

(x2+x+1)2 and setting z := x2y
(x2+x+1) yields that

z2 + z =
x3

(x2 + x+ 1)2
.

By the Artin–Schreier extensions theorem [15, Proposition 3.7.8], we have the following:

(I) (x = 0) splits in F , R1 and R2 lie above it, and R1 ∩ F2(y) = (y = 0) and R2 ∩ F2(y) = (y = ∞).

(II) (x = 1) is inert in F .

(III) (x = ∞) splits in F , R3 and R4 lie above it, R3 ∩ F2(y) = (y = 0), and R4 ∩ F2(y) = (y = 1).

By using (I)–(III), as in the proof of Proposition 2.7, one can easily show that the sequence F/F2 is a quadratic

tower over F2 . To estimate B1(Fn), for any n ≥ 1, let

B0(n− 1) := #{P ∈ P(Fn) : xn−1(P ) = 0},

B1(n− 1) := #{P ∈ P(Fn) : xn−1(P ) = 1}, and

B∞(n− 1) := #{P ∈ P(Fn) : xn−1(P ) = ∞}.

By using (I)–(III), we obtain that

B∞(n− 1) = B0(n− 2), B1(n− 1) = B∞(n− 2) and (6)

B0(n− 1) = B0(n− 2) +B∞(n− 2) = B0(n− 2) +B0(n− 3).

Notice that the sequences {B0(n)}n ≥ 0 with B0(0) = 1, B0(1) = 2, and {B1(n)}n ≥ 1, {B∞(n)}n ≥ 0 with

B1(1) = B1(2) = B∞(0) = B∞(1) = 1 satisfy the Fibonacci recursion. Hence, one obtains that

B∞(n) =
α2n+2 + (−1)n√

5αn+1
where α :=

√
5 + 1

2
. (7)

Now using (I)–(III) and applying Abhyankar’s lemma [15, Theorem 3.9.1] gives that for any rational place P

of Fn−1 , we have xn−1(P ) ∈ {0,∞} , and so P splits in Fn . Conversely, if xn−1(P ) ∈ {0,∞} , then P is a

rational place of Fn−1 and it splits in Fn . Hence, it follows from (6) and (7) that

B1(Fn) = 2
(
B0(n) +B∞(n)

)
= 2

(
B∞(n+ 1) +B∞(n)

)
=

αn−1(α3 + 1) + (−1)n(α− 1)√
5

.

Since α < 2 = [Fn : Fn−1] for any n ≥ 1, we have that ν1(F) = 0, and so β1(F) = 0. 2

The following consequence follows from Theorem 2.9, Remark 2.10, and Propositions 2.11 and 2.12.

Corollary 2.13 Suppose that F = (Fn)n≥0 is a quadratic recursive tower of function fields over F2 such that

its basic function field F1/F2 has four rational places. Then β1(F) = 0 .
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2.4. B1(F ) = 5

In this subsection we suppose that the basic function field F/F2 has five rational places.

Theorem 2.14 Suppose that F/F2 is a potentially good quadratic recursive tower of function fields with the

basic function field F/F2 having B1(F ) = 5 . Up to isomorphism, F/F2 can be defined by one of the following

equations:

(1) Y 2X + Y +X2 + 1 = 0 , (3) X2Y 2 +XY 2 +X + Y = 0 ,

(2) X2 +XY 2 +X + Y = 0 , (4) X2Y 2 +X2 +XY 2 + Y + 1 = 0 .

Proof Suppose that F/F2 is a tower with the given assumptions and let F/F2 be its basic function field. By

Theorem 2.2(iv), F = F2(u, v) for some distinct u, v ∈ {x, y, z, t, w} as in (4). Because of (4), the following

hold:

(a) uv2 + v = u2 + 1 for (u, v) ∈ {(x, y), (w, y)},

(b) u2v2 + u = v + 1 for (u, v) ∈ {(x, z), (x,w)},

(c) u2v2 + u = v2 + v for (u, v) ∈ {(x, t), (z, t), (t, w)},

(d) y2z2 + z2 + zy2 = y ,

(e) y2t2 + y2t+ y = t2 + 1,

(f) z2w2 + z2 + z = w2 + w .

Suppose now that F/F2 is defined by the polynomial f(X,Y ) ∈ F2[X,Y ] . Then f(u′, v′) = 0 for some distinct

u′, v′ ∈ {A · x,B · y, C · z,D · t, E · w| A,B,C,D,E ∈ GL(2,F2) for i = 0, 1, 2, 3, 4, 5} and F = F2(u
′, v′), by

Theorem 1.10. Let Ai ∈ GL(2,F2) as before. By Theorems 1.10 and 2.2(iv) (see also Section 2), we have the

following cases:

c.1. f(X,Y ) = f̂1(X,Ai ·Y ) for some 0 ≤ i ≤ 5, where f1(X,Y ) := Y 2X +Y = X2 +1 with f1(u, v) = 0 for

(u, v) ∈ {(x, y), (w, y)} .

(i) f̂1(X,A1 · Y ) = X2 +XY 2 +X + Y = 0,

(ii) f̂1(X,A2 · Y ) = X2Y 2 +X + Y 2 + Y = 0,

(iii) f̂1(X,A3 · Y ) = X2Y 2 +XY 2 +X + Y = 0,

(iv) f̂1(X,A4 · Y ) = X2Y 2 +X2 +XY 2 + Y + 1 = 0,

(v) f̂1(X,A5 · Y ) = X2Y 2 +X2 +X + Y 2 + Y = 0, which is symmetric.

c.2. f(X,Y ) = f̂2(X,Ai ·Y ) for some 0 ≤ i ≤ 5, where f2(X,Y ) := X2Y 2 +X +Y +1 = 0 with f2(u, v) = 0

for (u, v) ∈ {(x, z), (x,w)} . Note that f̂2(A1 ·X,A1 · (A1 · Y )) = f̂1(X,A2 · Y ) = 0.

c.3. f(X,Y ) = f̂3(X,Ai ·Y ) for some 0 ≤ i ≤ 5, where f3(X,Y ) := X2Y 2+X+Y 2+Y = 0 with f3(u, v) = 0

for (u, v) ∈ {(x, t), (z, t), (t, w)} . Note that f3(X,Y ) = f̂2(X,A2 · Y ) = 0.
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c.4. f(X,Y ) = f̂4(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f4(X,Y ) := X2Y 2 + Y 2 + Y X2 + X = 0 with

f4(y, z) = 0. Note that f4(X,Y ) = f̂1(A2 ·X,A2 · Y ) = 0.

c.5. f(X,Y ) = f̂5(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f5(X,Y ) := X2Y 2 +XY 2 + Y +X2 + 1 = 0 with

f5(t, y) = 0. Note that f5(X,Y ) = f̂1(X,A4 · Y ) = 0.

c.6. f(X,Y ) = f̂6(X,Ai · Y ) for some 0 ≤ i ≤ 5, where f6(X,Y ) := X2Y 2 + X2 + X + Y 2 + Y = 0 with

f6(z, w) = 0. Note that f6(X,Y ) = f̂1(X,A5 · Y ) = 0.

By Theorem 1.10, f(X,Y ) = 0 must be one of the equations f1(X,Y ) = 0, c.1.(i)–(iv). We claim that

the equation in c.1.(ii) does not define a tower over F2 . Obviously, if the claim holds, then we are done. To

prove the claim first let G0 := F2(x0) be the rational function field and Gi = Gi−1(xi) for all i ≥ 1 with

f1(xi−1, A2 · xi) = 0. We have that

f1(x2, A2 · T ) =
(
x1 + x2

0 + x0 + 1

x2
0 + 1

)(
T + x2

0 + x1

x2
0 + 1

)(
T +

(x2
0 + 1)x1

x2
0

+
1

x0

)
.

Hence, Gi = G2 for all i ≥ 2, and so the claim follows. 2

The following result is given in [16, Theorems 4.4 and 4.6]:

Proposition 2.15 The equation f(X,Y ) = Y 2X + Y + X2 + 1 = 0 defines a quadratic tower F = (Fn)n≥0

over F2 with the following properties:

(i) 9 · 2n−2 ≤ g(Fn) ≤ (n− 1) · 2n + 1 for all n ≥ 4 ,

(ii) αn ≤ B1(Fn) ≤ 3 · 2n , where α =
√
5+1
2 is the golden ratio, for all n ≥ 0 .

We remark here that we do not know whether the equation given in Theorem 2.14(1) defines a quadratic

tower F/F2 with β1(F) = 0. We only have the bounds given in Proposition 2.15. Moreover, each of the

equations (2)–(4) in Theorem 2.14 also defines a quadratic tower over F2 that behaves similarly to the tower

in Proposition 2.15. Consequently, Theorem 1.4 holds. As a future work, one can study the invariants βr(F),

for r ≥ 2, of the towers defined by the equations given in Theorems 2.5, 2.9, and 2.14.
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