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Abstract: We construct an actor of a precat1 -algebra and then by using the natural equivalence between the categories

of precat1 -algebras and that of precrossed modules, we construct the split extension classifier of the corresponding

precrossed module, which gives rise to the representability of actions in the category of precrossed modules of commutative

algebras under certain conditions.
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1. Introduction

In an algebraic category, obstruction theory of the objects depends on the representability of actions in the

category. Representability of actions in semiabelian categories was investigated in [6]. A different study of this

problem in the categories of interest was given in [9] with a combinatorial approach. The same was given for

modified categories of interest in [8]. The definition of split extension classifier (object that represents actions)

is formulated in [5] for semiabelian categories in terms of categorical notions of internal object action and

semidirect product. Categories of interest are semiabelian categories. As an application of [7], in this special

case these notions coincide with the ones given in [15]. An analogous situation exists in the case of modified

category of interest defined in [8] and categories equivalent to them.

Many well-known categories of algebraic structures such as precat1 -algebras (Lie algebras, Leibniz

algebras, associative algebras, associative commutative algebras) and commutative Von Neumann rings are

modified categories of interest that satisfy all axioms of a category of groups with operations in [16] except one,

which is replaced by a new axiom; these categories satisfy as well two additional axioms introduced in [15].

The category of precrossed modules of commutative algebras (which is equivalent to a modified category

of interest, namely, the category of precat1 -algebras) was introduced in [16]. For related works, especially in

higher dimensions, see [1, 2, 13]. Moreover, the (pre)crossed modules of commutative algebras were adapted to

the computer environment in [4, 14]. The notion of crossed modules of commutative algebras can be thought

of as a generalization of commutative algebras. For any algebra C , we have the crossed module C
id−→ C and
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so the category of commutative algebras is a full subcategory of crossed modules of commutative algebras. The

same is true for precrossed modules, namely, C −→ 0 is a precrossed module, for any commutative algebra

C . Naturally, it will be important to investigate the representability of actions, in other words, investigate the

existence and construction of split extension classifiers in the category of precrossed modules.

Accordingly, for a given precrossed module C : C1
d−→ C0 , we found a condition under which we construct

an actor of the corresponding precat1 -algebra (C1 ⋊ C0, s, t) by using the general construction of universal

strict general actor of an object given in [8]. Then, applying the equivalence of the categories Precat1 -

Comm ≃ PXComm of precat1 -algebras and precrossed modules, respectively, we carry the construction of

an actor of (C1 ⋊ C0, s, t) to the category of precrossed modules, which is a split extension classifier of the

precrossed module C : C1
d−→ C0 under certain conditions. Therefore, we found a new example of a category

and individual objects there with representable actions. This problem is stated in [6] (Problem 2).

In order to achieve our goals the paper is organized as follows: in section 2, we give some needed

notions from the literature and introduce the notions such as multipliers and generalized crossed multipliers of

a precrossed module. In section 3, we construct an actor of a precat1 -algebra and consequently, in section 4,

we construct the split extension classifier of a precrossed module.

2. Preliminaries

In this section we will recall some basic definitions and properties of precrossed modules of commutative algebras

needed in the rest of the paper. Additionally, we define new notions such as multipliers and generalized crossed

multipliers of a precrossed module and give some related properties. We also will recall the notion of the modified

category of interest, and some related definitions and results from [8]. Finally, we will give the construction

of a universal strict general actor of a precat1 algebra (C, sC , tC) by using the general construction given for

modified categories of interest in [8] .

2.1. Precrossed modules of commutative algebras

Let k be a commutative ring with unit. All algebras in the present work will be over k and associative,

commutative.

Definition 2.1 Let C be an algebra. A k -linear map f : C → C satisfying f(c ∗ c′) = f(c) ∗ c′ is called a

multiplier of C .

The set of all multipliers of C is denoted by M(C).

M(C) is not commutative, in general. If C2 = C or AnnC = 0 then M(C) is commutative. See [3],

for details.

Let C1 and C0 be algebras. Recall that an action of C0 on C1 is a k -linear map C0×C1 → C1, (c0, c1) 7→
c0 ▶ c1 such that

c0 ▶ (c1 ∗ c′1) = (c0 ▶ c1) ∗ c′1,

(c0 ∗ c′0) ▶ c1 = c0 ▶ (c′0 ▶ c1),

for all c0, c
′
0 ∈ C0 , c1, c

′
1 ∈ C1 .
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Example 2.2 Let C be an algebra with C2 = C or AnnC = 0 . Then the map

M(C)× C → C
(f, c) 7→ f(c)

defines an action of M(C) on C .

Definition 2.3 Let d : C1 → C0 be an algebra homomorphism with an action of C0 on C1 denoted by c0 ▶ c1 ,

for all c0 ∈ C0 , c1 ∈ C1 . If

d(c0 ▶ c1) = c0 ∗ d(c1)

for all c0 ∈ C0 , c1 ∈ C1 , then the system C : C1
d−→ C0 is called a precrossed module. Additionally, if

d(c1) ▶ c′1 = c1 ∗ c′1

for all c1, c
′
1 ∈ C1 , then it is called a crossed module (the second condition is called a Peiffer identity).

Let C : C1
d−→ C0 and C′ : C ′

1
d′

−→ C ′
0 be precrossed modules. A pair (µ1, µ0) consists of k -algebra

homomorphisms µ1 : C1 → C ′
1 , µ0 : C0 → C ′

0 satisfying µ0d = d′µ1 and µ1(c0 ▶ c1) = (µ0(c0)) ▶ (µ1(c1)),

for all c0 ∈ C0 , c1 ∈ C1 is called a homomorphism from C to C′ . This gives rise to the category of precrossed

modules whose objects are precrossed modules and morphisms are homomorphisms of precrossed modules. We

denote this category by PXComm . Simultaneously, we have the category of crossed modules, which we denote

here by XComm .

Examples 2.4 (i) Any ideal I of an algebra C gives rise to an inclusion map I
inc.
↪→ C , which is a crossed

module with the action defined by the multiplication. Conversely, if d : C1 → C0 is a crossed module, then Im(d)

is an ideal of C0 . In particular, C
id→ C and 0

inc.
↪→ C are also crossed modules.

(ii) Let C be an algebra. Consider the map π1 : C × C → C and the action of C on C × C defined by

componentwise multiplication. Then C × C
π1→ C is a precrossed module, which is not a crossed module.

(iii) Let C be an algebra satisfying C2 = C or AnnC = 0 . Then d : C → M(C), c 7→ φc is a crossed module

with the action defined in Example 2.2 where φc : C → C is defined by φc(x) = c ∗ x , for all x ∈ C .

A precrossed module C′ : C ′
1

d′

−→ C ′
0 is a precrossed submodule of the precrossed module C : C1

d−→ C0 if

C ′
1 , C

′
0 are subalgebras of C1 , C0 respectively, d′ is the restriction of d , and the action of C ′

0 on C ′
1 is induced

from the action of C0 on C1 . In addition, if C ′
1 , C

′
0 are ideals of C1 , C0 , respectively, c0 ▶ c′1 ∈ C ′

1 , for all

c0 ∈ C0 , c
′
1 ∈ C ′

1 and c′0 ▶ c1 ∈ C ′
1 , for all c

′
0 ∈ C ′

0 , c1 ∈ C1 then the precrossed submodule C′ : C ′
1

d′

−→ C ′
0 is

called an ideal of C : C1
d−→ C0 .

Definition 2.5 Let C : C1
d→ C0 be a precrossed module. The pair (f, g) satisfying

1. f ∈ M(C1) , g ∈ M(C0) ,

2. df = gd ,
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3. f(c0 ▶ c1) = c0 ▶ (f(c1)) = (g(c0)) ▶ c1 , for all c0 ∈ C0 , c1 ∈ C1 ,

is called a multiplier of the precrossed module C .

The set of all multipliers of a precrossed module C : C1
d→ C0 is denoted by MUL (C) and it is an algebra

with the usual scalar multiplication, componentwise addition, and multiplication defined by

(f, g)(f ′, g′) = (ff ′, gg′),

for all (f, g), (f ′, g′) ∈ MUL (C), where ff ′ and gg′ are compositions.

Now we will define the generalized multipliers of a precrossed module.

Definition 2.6 Let C : C1
d−→ C0 be a precrossed module. Consider the triples (α, ∂, α1) such that

1. α(c0 ▶ c1) = c0 ▶ α(c1) = (∂(c0)) ∗ c1
2. α1(c0 ▶ c1) = c0 ▶ α1(c1) = (β(c0)) ▶ c1

3. βd = dα = dα1,

for all c0 ∈ C0 , c1 ∈ C1 where α, α1 ∈ M(C1), ∂ : C0 −→ C1 is a crossed multiplier that is a k -linear map

that satisfies ∂(c0 ∗ c′0) = c0 ▶ ∂(c′0), for all c0, c
′
0 ∈ C0 , and β = d∂. These kinds of triples will be called

generalized multipliers of the precrossed module C and denoted by GMUL (C) .

By a direct calculation we have that β is a multiplier of C0.

Example 2.7 Let C : C1 −→ C0 be a precrossed module. Fix an element c1 ∈ C1 . Define αc1(c
′
1) = c1 ∗ c′1,

α1
c1(c

′
1) = d (c1) ▶ c′1, ∂c1(c0) = c0 ▶ c1, for all c0 ∈ C0 , c

′
1 ∈ C1. Then (αc1 , ∂c1 , α

1
c1) is a generalized crossed

multiplier of the precrossed module C .

Consequently, GMUL (C) is nonempty

Proposition 2.8 Let C : C1 −→ C0 be a precrossed module and (α, ∂, α1), (δ, ∂′, δ1) ∈ GMUL (C) where C0

satisfies C0C0 = C0 or AnnC0 = 0 . Define

(α, ∂, α1)(δ, ∂′, δ1) = (αδ, ∂∂′, α1δ1)

where αδ, α1δ1 are compositions and ∂∂′ = α∂′. Then this multiplication is commutative, i.e. αδ = δα,

α1δ1 = δ1α1 and ∂∂′ = α∂′ = δ∂ = ∂′∂ .

Proof Suppose Ann(C0) = 0. Let x ∈ C0. We have y ▶ α(∂′(x)) = α(y ▶ ∂′(x)) = α(∂′(x ∗ y)) = α(x ▶
∂′(y)) = ∂(x) ∗ ∂′(y) = ∂′(y) ∗ ∂(x) = δ(y ▶ ∂(x)) = y ▶ δ(∂(x)), for all y ∈ C0. Then we have α∂ = δ∂.

Suppose C0C0 = C0. Let x ∈ C0. Then there exists a, b ∈ C0 such that a∗b = x. Then α(∂′(x)) = α(∂′(a∗b)) =
a ∗ α(∂′(b)) = δ(a ▶ ∂(b)) = δ(a ▶ ∂(b)) = δ(∂(a ∗ b)) = δ(∂(x)). Then we have α∂ = δ∂, as required. By a

similar way we have that αδ = δα, α1δ1 = δ1α1. 2

With this defined multiplication and usual scalar multiplication and addition, GMUL (C) is an algebra.

Remark 2.9 Let C : C1
d→ C0 be a precrossed module that does not satisfy the Peiffer identity. Then we have

at least two elements c1, c
′
1 ∈ C1 such that (d(c1)) ▶ c′1 ̸= c1 ∗ c′1 . Consider the triple (αc1 , dc1 , α

1
c1) ∈ GMUL

(C) . Then we have αc1 ̸= α1
c1 .
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Remark 2.10 Definition of generalized crossed multipliers of precrossed modules is deduced from the multipliers

of the semidirect product of precat1 -algebras constructed in Section 3.

We will finish this subsection by recalling the category of precat1 -algebras. Details can be found in [10].

Let C be an algebra and s, t : C → C be endomorphisms such that st = t and ts = s . Then the

triple (C, s, t) is called a precat1 -algebra and the endomorphisms s, t are called unary operations. A morphism

between two precat1 -algebras (C, s, t) and (C ′, s′, t′) is an algebra homomorphism C → C ′ compatible with

the unary operations. The resulting category will be denoted here by Precat1 −Comm .

Given a precrossed module C1
d−→ C0. We have the corresponding precat1 -algebra (C1 ⋊C0, s, t) where

s(c1, c0) = (0, c0), t(c1, c0) = (0, d(c1)+ c0), for all c1 ∈ C1 , c0 ∈ C0 . Furthermore, for a given precat1 -algebra

(C, s, t) we have the corresponding precrossed module Kers
t|kers−→ Ims . This process gives rise to the natural

equivalence of the categories of PXComm and Precat1 −Comm diagrammed as follows:

PXComm
PC // Precat1 −Comm
PX

oo

The same argument also gives rise to the natural equivalence of categories of crossed modules and that

of cat1 -algebras.

2.2. Modified category of interest

Let C be a category of groups with a set of operations Ω and with a set of identities E , such that E includes

the group identities and the following conditions hold. If Ωi is the set of i -ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2 ;

(b) the group operations (written additively : 0,−,+) are elements of Ω0 , Ω1 , and Ω2 , respectively. Let

Ω′
2 = Ω2 \ {+} , Ω′

1 = Ω1 \ {−}. Assume that if ∗ ∈ Ω2 , then Ω′
2 contains ∗◦ defined by x ∗◦ y = y ∗ x

and assume Ω0 = {0} ;

(c) for each ∗ ∈ Ω′
2 , E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z ;

(d) for each ω ∈ Ω′
1 and ∗ ∈ Ω′

2 , E includes the identities ω(x+y) = ω(x)+ω(y) and ω(x∗y) = ω(x)∗ω(y).

Let C be an object of C and x1, x2, x3 ∈ C :

Axiom 1. x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1 , for each ∗ ∈ Ω′
2 .

Axiom 2. For each ordered pair (∗, ∗) ∈ Ω′
2 × Ω′

2 there is a word W such that

(x1 ∗ x2)∗x3 =W (x1(x2x3), x1(x3x2), (x2x3)x1,

(x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′
2 .

Definition 2.11 A category of groups with operations C satisfying conditions (a)− (d) , Axiom 1 and Axiom

2, is called a modified category of interest.
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Let EG be the subset of identities of E that includes the group identities and the identities (c) and (d).

We denote by CG the corresponding category of groups with operations. Thus we have EG ↪→ E , C = (Ω,E),
CG = (Ω,EG) and there is a full inclusion functor C ↪→ CG . CG is called a general category of groups with

operations of a modified category of interest C.

Example 2.12 The categories Cat1 -Comm of cat1 -algebras and PreCat1 -Comm of precat1 -algebras are

modified categories of interest, which are not categories of interest. Further examples can be found in [8].

Definition 2.13 Let A , B ∈ C . An extension of B by A is a sequence

0 // A
i // E

p // B // 0 , (2.1)

in which p is surjective and i is the kernel of p . We say that an extension is split if there is a morphism

s : B −→ E such that ps = 1B .

Definition 2.14 For A,B ∈ C , it is said that there is a set of actions of B on A , whenever there is a map

f∗ : A×B −→ A , for each ∗ ∈ Ω2.

A split extension of B by A induces an action of B on A corresponding to the operations in C . For a given

split extension (2.1) , we have

b · a = s(b) + a− s(b), (2.2)

b ∗ a = s(b) ∗ a, (2.3)

for all b ∈ B , a ∈ A and ∗ ∈ Ω2
′. Actions defined by (2.2) and (2.3) will be called derived actions of B on A .

The notation b
·∗ a is used to denote both the dot and the star actions.

Definition 2.15 Given an action of B on A, a semidirect product A ⋊ B is a universal algebra, whose

underlying set is A×B and the operations are defined by

ω(a, b) = (ω (a) , ω (b)),
(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),
(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b),
for all a, a′ ∈ A, b, b′ ∈ B.

Theorem 2.16 [9] An action of B on A is a derived action if and only if A⋊B is an object of C .

Now we will define the actions in the category Precat1 -Comm of precat1 -algebras according to the

definition of action in a modified category of interest.

Example 2.17 Let (C0, s0, t0) and (C1, s1, t1) be precat1 -algebras with an action of (C0, s0, t0) on (C1, s1, t1) .

According to Definition 2.15 we have

c0 ▶ (c1 ∗ c′1) = (c0 ▶ c1) ∗ c′1
(c0 ∗ c′0) ▶ c1 = c0 ▶ (c′0 ∗ c1)
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and from the precat1 - structure we have

(s0(c0)) ▶ (s1(c1)) = s1(c0 ▶ c1)

(t0(c0)) ▶ (t1(c1)) = t1(c0 ▶ c1)

(s0(c0)) ▶ (t1(c1)) = s1(c0 ▶ t1(c1))

(t0(c0)) ▶ (s1(c1)) = t1(c0 ▶ s1(c1))

s0(c0) ▶ (t1(c1)) = t1(s0(c0) ▶ c1)

t0(c0) ▶ (s1(c1)) = s1(t0(c0) ▶ c1)

for any c0 ∈ (C0, s0, t0), c1 ∈ (C1, s1, t1).

The definition of a split extension classifier in modified categories of interest has the following form.

Consider the category of all split extensions with fixed kernel A ; thus the objects are

0 → A→ C
s↶−→ C ′ → 0

and the arrows are the triples of morphisms (1A, γ, γ
′) ) between the extensions, which commute with the

section homomorphisms as well. By the definition, an object [A] is a split extension classifier for A if there

exists a derived action of [A] on A , such that the corresponding extension

0 → A→ A⋊ [A]
s↶−→ [A] → 0

is a terminal object in the above defined category.

Proposition 2.18 [8] Let C be a modified category of interest and A be an object in C. An object B ∈ C is

a split extension classifier for A in the sense of [5] if and only if it satisfies the following condition: B has

a derived action on A such that for all C in C and a derived action of C on A there is a unique morphism

φ : C −→ B, with c · a = φ(c) · a , c ∗ a = φ(c) ∗ a, for all ∗ ∈ Ω2
′ , a ∈ A and c ∈ C .

The object B in C satisfying the above stated condition is called an actor of A and denoted by Act(A).

The corresponding universal acting object, which represents actions in the sense of [5, 6], in the categories

equivalent to modified categories of interest is called a split extension classifier and denoted by [A] , as it is in

semiabelian categories.

Remark 2.19 As a consequence of this proposition, an actor of an object is unique up to an isomorphism.

Definition 2.20 [8] Let A , B ∈ C . A set of actions of B on A is strict if for any two elements b, b′ ∈ B,

from the conditions b · a = b′ · a , ω(b) · a = ω(b′) · a , b ∗ a = b′ ∗ a and ω(b) ∗ a = ω(b′) ∗ a, for all a ∈ A ,

ω ∈ Ω1
′ and ∗ ∈ Ω2

′ ; it follows that b = b′ .

Definition 2.21 [8] A general actor GA(A) of an object A in C is an object of CG , having a set of actions

on A , which is a set of derived actions in CG , and for any object C ∈ C and a derived action of C on A in

C , there exists in CG a unique morphism φ : C −→ GA(A) such that c
·∗ a = φ(c)

·∗ a , for all c ∈ C , a ∈ A

and ∗ ∈ Ω2
′ .
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Definition 2.22 [8] If the action of a general actor GA(A) on A is strict, then it is said that GA(A) is a

strict general actor of A and denoted by SGA(A) .

Condition 2.23 [8] Let A ∈ C and {Bj}j∈J denote the set of all objects of C that have derived actions on

A . Let φj : Bj −→ GA(A) , j ∈ J , denote the corresponding unique morphism such that bj
·∗ a = φj(bj)

·∗ a ,
for all bj ∈ Bj , a ∈ A , ∗ ∈ Ω2

′ . The elements of GA(A) satisfy the following equality:

(φi(bi) ∗ φj(bj))∗a =W (φi(b), φj(b
′); a; ∗, ∗)

for any bi ∈ Bi , bj ∈ Bj , ∗ ∈ Ω2
′ and i, j ∈ J .

Definition 2.24 [8] A universal strict general actor of an object A , denoted by USGA(A) , is a strict general

actor with Condition 2.23, such that for any strict general actor SGA(A) with Condition 2.23 there exists

a unique morphism η : USGA(A) → SGA(A) in the category CG , with ψjη = φj , for any j ∈ J , where

φj : Bj → SGA(A) and ψj : Bj → USGA(A) denote the corresponding unique morphisms with the appropriate

properties from the definition of a general actor.

Proposition 2.25 [8] Let C be a modified category of interest and A ∈ C . If an actor Act(A) exists, then the

unique morphism η : USGA(A) → Act(A) is an isomorphism with x
·∗ a = η(x)

·∗ (a), for all x ∈ USGA(A),

a ∈ A.

Theorem 2.26 [8] Let C be a modified category of interest and A ∈ C . A has an actor if and only if the

semidirect product A⋊USGA(A) is an object of C . If it is the case, then Act(A) ∼= USGA(A) .

Let (C, sC , tC) be a precat1 -algebra. Consider all split extensions of (C, sC , tC) in Precat1−Comm

Ej : 0 −→ (C, sC , tC) −→ (Kj , s
Kj , tKj )

↶−→ (Dj , s
Dj , tDj ) −→ 0 j ∈ J

where (Dj , s
Dj , tDj ) = (Dk, s

Dk, tDk) = (D, sD, tD), for j ̸= k in the case the corresponding extensions derive

different actions of (D, sD, tD) on (C, sC , tC). Let {dj ·, dj ▶} be the set of functions defined by the action of

(Dj , s
Dj , tDj on (C, sC , tC). For any element dj ∈ Dj denotes dj = {dj ·, dj ▶}. Let D = {dj , dj ∈ Dj , j ∈ J}.

Thus each element dj ∈ D , j ∈ J is a special type of a function dj = {+, ∗, ∗op} −→ Maps, (C, sC , tC) −→
(C, sC , tC) defined by dj(∗) = dj ▶ : C −→ C, dj(∗op) = dj ▶ : C −→ C, dj(+) = (dj+ ) : C −→ C. The

multiplication on D is defined by

(di ∗ dk) ▶ c = (dk ∗ di) ▶ c = di ∗ (dk ▶ c) ,

(di ∗ dk) · (c) = c.

Furthermore, we define

(di + dk) · (c) = di · (dk · c),
(di + dk) ▶ c = di ▶ c+ dk ▶ c,

s(dk) · (c) = sDk(dk) · c, s(dk) ▶ c = sDk(dk) ▶ c],

t(dk) · (c) = tDk(dk) · c, t(dk) ▶ c = tDk(dk) ▶ c,

s (di ∗ dk) = sDi(di) ∗ sDk(dk), t (di ∗ dk) = tDi(di) ∗ tDk(dk),
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s(d1 + d2) = sD1(d1) + sD2(d2), t(d1 + d2) = tD1(d1) + tD2(d2),

(−di) · (c) = (−di) · c, (−d) · c = c,

(−di) ▶ c = − (di ▶ (c)) , (−d) ▶ (c) = − (d ▶ (c)) ,

−(d1 + d2) = −d2 − d1

where d, d1, d2 are certain combinations of the multiplication of the elements of D .

Denote by L′(M) the set of all functions (Ω2 →Maps(C, sC , tC) −→ (C, sC , tC)) obtained by performing

all kind of operations defined above on the elements of L and on the new obtained elements as the results of

operations. Note that it may happen that d ▶ c = d′ ▶ c , for any c ∈ C , but we do not have the equalities

σ (d) ▶ c = σ (d′) ▶ c, for any c ∈ C , where σ is a finite combination of s and t . Define a relation on L′(C)

by ” d ∼ d′ if and only if d ▶ c = d′ ▶ c, s (d) ▶ c = s (d′) ▶ c, t (d) ▶ c = t (d′) ▶ c ” for any d, d′ ∈ L′(C),

c ∈ C. This is a congruence relation on L′(C). Denote L′(C)/ ∼ by L(C). The operations defined on L′(C)

define the corresponding operations on L(C).

Theorem 2.27 [8]Let A ∈ C. Then we have B(A) ∼= USGA(A) .

Corollary 2.28 Let (C, sc, tc) ∈ Precat1−Comm . Then (L(C), sL(C), tL(C)) is a universal strict general

actor of (C, sC , tC) .

Proof Follows from Theorem 2.27. 2

3. Actor of an object in Precat1 -Comm

In this section, we will construct an object
(
A(C), s, t

)
according to a given precat1 -algebra (C, s, t) and then

we show that it is an actor of (C, s, t) in Precat1 -Comm under certain conditions. The construction is

deduced from the interpretation of L(C) given in Section 2.

Let (C, s, t) be a precat1 -algebra. Consider the triples (θ, θ0, θ1) of multipliers of C such that

C1) θ0s = sθ,

C2) θ1t = tθ,

C3) θjs = sθi, for i = 0, 1,

C4) θjt = tθi, for i = 0, 1.

The set of all these kinds of triples will be denoted by A(C) and it is an algebra with componentwise addition,

scalar multiplication, and the multiplication defined as the componentwise composition such as

(θ, θ0, θ1) ∗ (ψ,ψ0, ψ1) := (θψ, θ0ψ0, θ1ψ1),

for all (θ, θ0, θ1), (ψ,ψ0, ψ1) ∈ A(C). The zero element is the triple (0, 0, 0) of zero maps. Now we introduce

a precat1 structure on A(C). Define s : A(C) −→ A(C), t : A(C) −→ A(C) by s(θ, θ0, θ1) = (θ0, θ0, θ0),

t(θ, φ0, θ1) = (θ1, θ1, θ1), respectively. (A(C), s, t) is a precat1 -algebra with the defined unary operations s , t .

There is an action of
(
A(C), s, t

)
on (C, s, t) defined by the map

(
A(C), s, t

)
× (C, s, t) −→ (C, s, t)

((θ, θ0, θ1), c) 7−→ θ(c),
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for all c ∈ C and (θ, θ0, θ1) ∈ A(C).

Condition A For an algebra C, Ann(C) = 0 or C2 = C .

Proposition 3.1 If C satisfies Condition A , then (A(C), s, t) and (L(C), sL(C), tL(C)) are isomorphic.

Proof The action of
(
A(C), s, t

)
on (C, s, t) defined above is a derived action in Precat1 -Comm under

Condition A . Therefore, from Definition 2.24, we have the unique morphism η : A(C) −→ L(C) defined as

η((θ, θ0, θ1) ▶ c) = (θ, θ0, θ1) ▶ c, for all c ∈ C and (θ, θ0, θ1) ∈ A(C). By the constructions of (A(C), s, t)

and (L(C),sL(C), tL(C)), we find that η is an isomorphism. 2

Corollary 3.2 If C satisfies Condition A , then (A(C), s, t) is an actor of (C, s, t).

Proof Since (A(C), s, t) ∈ Precat1 -Comm and its action on C is a derived action, then the result follows

from Theorem 2.26, Corollary 2.28, and Proposition 3.1. 2

3.1. Actor of a precat1 -algebra corresponding to a given precrossed module

Let C1, C0 be algebras with an action of C0 on C1. Let θ be a multiplier of the algebra C1 ⋊ C0 . Then

θ : C1 ⋊ C0 −→ C1 ⋊ C0 can be represented by four k -linear maps

α : C1 −→ C1, γ : C1 −→ C0, β : C0 −→ C0 and ∂ : C0 −→ C1

such that
θ(c1, c0) = (α(c1) + ∂(c0), β(c0) + γ(c1)),

for all c1 ∈ C1 , c0 ∈ c0 .

Let C : C1
d−→ C0 be a precrossed module and (C1 ⋊ C0, s, t) be the corresponding precat1 -algebra.

Suppose θ satisfies the Condition C3 or C4. Then γ = 0. On the other hand, any multiplier θ of the algebra

C1 ⋊C0 can be represented by the triple (α, ∂, β). Moreover, for any c := (c1, c0), c
′ := (c′1, c

′
0) ∈ C1 ×C0 , we

obtain

θ((c1, c0) ∗ (c′1, c′0)) = (c1, c0) ∗ θ((c′1, c′0)) = (c′1, c
′
0) ∗ θ((c1, c0))

By direct calculations we get

α(c1 ∗ c′1) = c1 ∗ α(c′1),
∂(c0 ∗ c′0) = c0 ▶ ∂(c′0),
β(c0 ∗ c′0) = c0 ∗ β(c′0),
α(c0 ▶ c1) = c0 ▶ α(c1) = c1 ∗ ∂(c0) + β(c0) ▶ c1,

for all c1, c
′
1 ∈ C1 , c0, c

′
0 ∈ C0.

Proposition 3.3 Let C : C0
d−→ C1 be a precrossed module and (C1 ⋊ C0, s, t) be the corresponding precat1 -

algebra. Let θ, θ0, θ1 be multipliers of the algebra C1 ⋊ C0 and denote θ, θ0, θ1 by the triples (α, ∂, β) ,

(α0, ∂0, β0), (α1, ∂1, β1), respectively. Then (θ, θ0, θ1) ∈ A(C1 ⋊ C0) if and only if (θ, θ0, θ1) satisfies the

following identities:
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1.) β(c0) = β0(c0),

2.) ∂i(c0) = 0, for i = 0, 1,

3.) β1(c0) = β(c0) + d∂(c0),

4.) β1d(c1) = dα(c1),

5.) βid(c1) = dαi(c1), for i = 0, 1,

for all c0 ∈ C0, c1 ∈ C1.

Proof Follows from definition of unary operations s, t and the structure of A(C1 ⋊ C0). 2

Let C : C1
d−→ C0 be a precrossed module, C0, C1 satisfy Condition A and (A(C1⋊C0), s, t) be the actor

of (C1 ⋊C0, s, t). Then from the definition of s and Proposition 3.3 we have ker s = {(θ, 0, θ1) ∈ A(C1 ⋊C0)}.

Proposition 3.4 ker s ∼= GMUL(C)

Proof Let (θ, 0, θ1) ∈ ker s. It follows from Propositions 3.3 that (θ, 0, θ1) = ((α, ∂, 0), (0, 0, 0), (α1, 0, β1))

and the resulting triple (α, ∂, α1) is a generalized crossed multiplier. Conversely, for any (γ, λ, γ1) ∈ GMUL(C)
we have the triples φ = (γ, λ, 0), φ1 =

(
γ1, 0, dλ

)
such that (φ, 0, φ1) ∈ ker s , which completes the proof. 2

By a similar calculation we have Im(s) ∼= MUL(C).

4. Split extension classifier of a precrossed module

As indicated in [12], the category of precrossed modules of commutative algebras is a semiabelian category. For

defining actions in PXComm in the sense of [6], we will define an action in PXComm in an analogous way

as it is defined in a modified category of interest.

In this section we will construct a precrossed module ∆ for a given precrossed module C : C1
d−→ C0

and prove that if C0 and C1 satisfy Condition A , then ∆ is isomorphic to PX(Act(PC (C))). Consequently,
∆ is the split extension classifier of C .

Consider the precrossed module C : C1
d−→ C0 where C0 and C1 satisfy Condition A. We have the

corresponding precat1 -algebra (C1 ⋊ C0, s, t) and its actor (A(C1 ⋊ C0), s, t) in Precat1 -Comm .

Proposition 4.1 The k -bilinear map MUL(C)×GMUL(C) −→ GMUL(C), ((µ1, µ0, (α, ∂, α
1)) 7−→ (µ1α, µ1∂, µ1α

1)

defines an action of MUL(C) on GMUL(C) where µ1α, µ1d , and µ1α
1 are compositions. In addition, the

map ∆ : GMUL(C) −→ MUL(C) defined by (α, ∂, α1) 7−→ (α, β) is a precrossed module with this action where

β = d∂ .

Proof Since

(µ1, µ0) ▶ ((α, ∂, α1)(δ, ∂′, δ1)) = (µ1, µ0)(αδ, α∂
′, α1δ1)

= (µ1αδ, µ1α∂
′, µ1α

1δ1)
= ((µ1α)δ, (µ1α)∂

′, (µ1α
1)δ1)

= (µ1α, µ1∂, µ1α
1)(δ, ∂′, δ1)

= ((µ1, µ0) ▶ (α, ∂, α1))(δ, ∂′, δ1)

and

((µ1, µ0)(µ
′
1, µ

′
0)) ▶ (α, d, α1) = (µ1µ

′
1, µ0µ

′
0) ▶ (α, ∂, α1)

= (µ1µ
′
1α, µ1µ

′
1∂, µ1µ

′
1α

1)
= (µ1(µ

′
1α), µ1(µ

′
1∂), µ1(µ

′
1α

1))
= (µ1, µ0) ▶ (µ′

1α, µ
′
1∂, µ

′
1α

1)
= (µ1, µ0) ▶ ((µ′

1, µ
′
0) ▶ (α, ∂, α1)),
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for all (µ1, µ0), (µ
′
1, µ

′
0) ∈ MUL(C), (α, ∂, α1), (δ, ∂′, δ1) ∈ GMUL(C) we have a good definition of the action.

On the other hand, we have

∆((µ1, µ0) ▶ (δ, ∂, δ1)) = ∆(µ1δ, µ1∂, µ1δ
1)

= (µ1δ, dµ1∂)
= (µ1δ, µ0d∂)
= (µ1, µ0)(δ, d∂)
= (µ1, µ0)

(
∆(δ, ∂, δ1)

)
,

for all (µ1, µ0) ∈ MUL(C), (δ, ∂, δ1) ∈ GMUL(C), as required. 2

Proposition 4.2 ∆ ∼= PX(A(CX (C))).

Proof Follows from Propositions 3.4 and 4.1, since ∆ is isomorphic to the restriction of t . 2

Theorem 4.3 If C1 and C0 satisfy Condition A , then the precrossed module ∆ : GMUL(C) −→ MUL(C)
defined in Proposition 4.1 is the split extension classifier of C .

Proof The semidirect product C1⋊C0 also satisfies Condition A . Therefore, the result is a direct consequence

of Corollary 3.2, Proposition 4.2, and the fact that PX and CX define an equivalence between the categories

PXComm and Precat1 -Comm . 2

The split extension classifier of a precrossed module C : C1
d−→ C0 will be denoted here by [C]PXComm .

Remark 4.4 Let C : C1
d−→ C0 be a crossed module in the category of PXComm . Define the set

M∗(C) := {(α, ∂, α1) ∈M(C0, C1) : α = α1 = ∂d}

Evidently, M∗ is an ideal of GMUL(C) and

M∗(C) ∆|−→ MUL(C)

is a precrossed ideal of the precrossed module [C]PXComm . By direct checking we have that

M∗(C) ∆|−→ MUL(C)

is isomorphic to the split extension classifier of C in the category Xcomm of crossed modules defined in [3]

where the split extension classifier is named as an actor of C .

Examples 4.5 i) Let A be an algebra. Consider the precrossed module C : A
id−→ A. Then the split extension

classifier of C is [C]PXComm : M(A)
id−→ M(A) , which coincides with the split extension classifier of C in the

category of crossed modules.

ii) Consider the precrossed modules C : A
0−→ A and C′ : A

0−→ 0 where A is a nonsingular algebra. Then

[C]PXComm : A1
∆−→ A0 where A1 is the set of all triples (δ, ∂, 0) ∈ GMUL(C) with δ = ∂ , A0

∼= M(A) and

∆ is defined by ∆(δ, ∂, 0) = (0, 0) .
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[C′]PXComm is the precrossed module A′
1

∆′

−→ A′
0 , where A′

1 is the set of all triples (δ, 0, δ1) ∈ GMUL(C) ,
A′

0
∼= M(A) and ∆′ is defined by ∆′(δ, 0, δ1) = (δ1, 0) .

iii) Consider the precrossed module C : A×A π1−→ A defined in Examples 2.4. Then [C]PXComm is the precrssed

module A1
∆−→ A0 where A1 is the set of all triples

(
(α, δ), (∂, 0), (α1, δ1)

)
where α, δ, ∂, α1, δ1 are multipliers

of A such that α = ∂ = α1 , A0
∼= M(A)×M(A) and ∆

(
(α, δ), (∂, 0), (α1, δ1)

)
=

(
(α, δ1), α

)
.

Now we are going to define the canonical map (ξ, η) : C −→ [C]PXComm of a given precrossed module C .

Proposition 4.6 Let C : C1
d−→ C0 be precrossed module with its split extension classifier [C]PXComm .

a) Define ξ : C1 −→ GMUL(C), ξ(c1) = (δc1 , ∂c1 , δ
1
c1) where δc1(c

′
1) = c1 ∗ c′1, δ1c1(c

′
1) = d(c1) ▶ c′1 and

∂c1(c0) = c0 ∗ c1, for all c1, c
′
1 ∈ C1, c0 ∈ C0. Then ξ : C1 −→ GMUL(C) is a precrossed module with action

defined by (δ, ∂, δ1) ▶ c1 = δ1 (c1) .

b) Define η : C0 −→ MUL(C) , c0 7−→ (δc0 , γc0) where δc0(c1) = c0 ▶ c1, γc0(c
′
0) = c0 ∗ c′0 , for all c1 ∈ C1,

c0, c
′
0 ∈ C0. η is a precrossed module with the action defined by (µ1, µ0) ▶ c0 = µ0 (c0) .

Proof a) Since

δc1∗c′1(c
′′
1) = (c1 ∗ c′1) ∗ c′′1 = c1 ∗ (c′1 ∗ c′′1) = δc1δc′1(c

′′
1),

δ1c1∗c′1
(c′′1) = d(c1 ∗ c′1) ▶ c′′1 = d(c1) ▶ (d(c′1) ▶ c′′1) = δ1c1δ

1
c′1
(c′′1),

∂c1∗c′1(c0) = c0 ▶ (c1 ∗ c′1) = (c0 ▶ c′1) ∗ c1,
∂c1∂c′1(c0) = δc1∂c′1(c0) = δc1(c0 ▶ c′1) = (c0 ▶ c′1)c1

for all c1, c
′
1 ∈ C1, c0 ∈ C0 we have

ξ(c1 ∗ c′1) = (δc1 , ∂c1 , δ
1
c1
) ∗ (δc′1 , ∂c′1 , δ

1
c′1
)

= ξ(c1) ∗ ξ(c′1)

for all c1, c
′
1 ∈ C1, which makes ξ a homomorphism. Other conditions can be easily checked.

b) It can be checked by similar calculations. 2

Proposition 4.7 Let C : C1
d−→ C0 be a precrossed module. Then (ξ, η) : C −→ [C]PXComm is a homomor-

phism of precrossed modules.

Proof Direct checking 2

Remark 4.8 Im(ξ, η) is an precrossed ideal of [C]PXComm and the ker(ξ, η) : Z1
d−→ Z0 is also a precrossed

ideal of C where Z1 = ker(ξ) = {c1 ∈ C1 : c1 ∗ c′1 = 0, c0 ▶ c1 = 0, d(c1) ▶ c′1 = 0, for all c′1 ∈ C1, c0 ∈ C0} and

Z2 = ker(η) = {c0 ∈ C0 : c0 ∗ c′0 = 0, c0 ▶ c1 = 0, for all c′0 ∈ C0, c1 ∈ C1} .

Proof Direct checking. 2

Definition 4.9 Let C : C1
d−→ C0 be precrossed module. Then the precrossed module Z1

d−→ Z0 is called the

center of the precrossed module C .
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Remark 4.10 This definition recovers the Huq’s definition in [11]. Also PC(Z1
∆−→ Z0) is the center of

C1 ⋊ C0 , and it is compatible with the definition of center of an object in an modified interest category, given

in [8].

Now we define an action in the category PXComm in the sense of [6].

Definition 4.11 Let C : C1
d−→ C0 , and C′ : C ′

1
d′

−→ C ′
0 be precrossed modules. We say that C′ has an action

on C if there exists a split extension

0 → C → E
s↶−→ C′ → 0

in PXComm. Equivalently, an action of C′ on C is defined by an homomorphism C′ → [C]PXComm .

Example 4.12 The homomorphism (ξ, η) : C −→ [C]PXComm given in Proposition 4.7 defines an action of C
on itself.

5. Conclusion

The definition of action allows one to generalize some notions and properties from module theory such as

morphisms preserving actions and the semidirect products to precrossed modules. It also gives rise to definition

of obstructions of precrossed modules.
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