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Abstract: It is known from the early results of Coxeter that the generalized Hecke algebras H(Qm, 3), m ∈ {2, 3, 4, 5} ,
are finite dimensional. In this paper we compute the Hilbert series of these finite-type group algebras.

Key words: Braid group, generalized Hecke algebras, Hilbert series

1. Introduction

The braid group Bn+1 admits the following classical presentation given by Artin [1]:

Bn+1=

⟨
x1, x2, . . . , xn

∣∣∣∣∣ xixj = xj xi if | i− j | ≥ 2
xi+1 xi xi+1 = xi xi+1 xi if 1 ≤ i ≤ n− 1

⟩
.

Elements of Bn+1 are words expressed in the generators x1, x2, . . . , xn and their inverses. The braid monoid

MBn+1 has the same presentation as Bn+1 .

The generalized Hecke algebras [5] are defined as the quotients

H(Q,n+ 1) = C[Bn+1]/
(
Q(bi); i = 1, . . . , n

)
of the group algebras of the braid group by the ideal generated by a polynomial Q(bi), having Q(0) ̸= 0. If the

degree of Q equals 3 we call them cubic Hecke algebras.

Coxeter [3] computed the cardinalities of the quotients of B3 by relations xn
i = 1, namely 24 for n = 3,

96 for n = 4, and 600 for n = 5. Then the algebras

H(Qm, 3) =
⟨
b1, b2 : b2b1b2 = b1b2b1, b

m
1 = 1, bm2 = 1

⟩
are finite dimensional of these dimensions, where Qm = xm − 1, m ∈ {2, 3, 4, 5} . For n ≥ 6 these algebras are

infinite dimensional. This motivated us to compute the Hilbert series in the finite dimensional case.

In [6] we constructed a linear system for the braid monoid Bn+1 and computed the Hilbert series for

the braid monoids MB3 and MB4 . In [7] we computed the Hilbert series of braid monoid MB4 in band

generators. In this paper we construct a similar kind of linear system to compute the Hilbert series.
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2. Hilbert series of the group algebras H(Qm, 3),m = 3, 4, 5

Definition 2.1 [4] Let G be a finitely generated group and S be a finite set of generators of G . The word

length lS(g) of an element g ∈ G is the smallest integer n for which there exists s1, . . . , sn ∈ S ∪ S−1 such

that g = s1 · · · sn .

Definition 2.2 [4] Let G be a finitely generated group and S be a finite set of generators of G . The growth

function of the pair (G,S) associates to an integer k ≥ 0 the number a(k) of elements g ∈ G such that

lS(g) = k and the corresponding spherical growth series or the Hilbert series is given by PG(t) =
∞∑
k=0

a(k)tk .

To get a canonical form of a word in an algebra the diamond lemma by Bergman [2] is extremely useful.

To understand the notions of reductions and ambiguities we start with his terminology.

Let k be a commutative associative ring with unity, X a set, ⟨X⟩ the free monoid on X , and k⟨X⟩
the free associative k -algebra on X . Let S be a set of pairs of the form σ = (Wσ, fσ), where Wσ ∈ ⟨X⟩ and

fσ ∈ k⟨X⟩ . For any σ ∈ S and A,B ∈ ⟨X⟩ , let rAσB : k⟨X⟩ → k⟨X⟩ be a k -module endomorphism such that

this morphism sends AWσB to AfσB (r∗ fixes all other elements of ⟨X⟩). The maps r∗ are said to reductions.

Let σ, τ ∈ S and A,B,C ∈ ⟨X⟩ − 1 such that Wσ = AB , Wτ = BC , and then ABC is said to an ambiguity

of S . An element a ∈ k⟨X⟩ is called irreducible (or canonical) if a involves none of the monomials AWσB ;

otherwise, a is called reducible (for more details see [2]).

If all relations in k⟨X⟩ as a module are defined then we say that we have a complete set of relations in

k⟨X⟩ . The diamond lemma [2] says that a set of relations is complete if all the ambiguities are solved. We call a

complete set of relations in H(Qm, 3) a complete presentation of H(Qm, 3). The other names for the complete

presentation being used are Gröbner bases, presentation with solvable ambiguities, rewriting systems, etc.

We made the terminology more understandable for the words in the braid monoids and for the algebra

H(Qm, 3). Applying the above reductions we solve the ambiguities in H(Qm, 3). The solution of all the

ambiguities gives us a complete set of relations in H(Qm, 3).

Let us have a few more words about the ambiguity and its solution. Let U , V , and w be nonempty words;

then we denote Uw×w wV by the word UwV . In a relation in H(Qm, 3) we place the equivalent words on the

left-hand side that are greater in length-lexicographic ordering (we choose a natural order b1 < b2 < · · · < bn

between the generators). For example, the words b2b1b2 and b1b2b1 are equivalent in the braid monoid MB3 .

Hence, we write b2b1b2 = b1b2b1 as the basic braid relation. Let Uw and wV be two words consisting of the

left-hand sides of two relations in MB3 ; then (defined as above, too) the word W = Uw×wwV is an ambiguity.

In this case W has two resolutions, namely (Uw)V and U(wV ). If we apply finite reductions on (Uw)V and

U(wV ) and both give exactly the same word then we say that the ambiguity W is solvable. If (Uw)V and

U(wV ) differ by lexicographically then W gives a new relation in MB3 .

For example, consider a word b2b1b2 from the left-hand side of a relation in H(Q3, 3). Then a word

b2b1b2b1b2 is an ambiguity and it has two resolutions b2b1(b2b1b2) and (b2b1b2)b1b2 . Applying a reduction on

the first we have b2b
2
1b2b1 and on second we get b1b2b

2
1b2 . Hence, we have the relation

b2b
2
1b2b1 = b1b2b

2
1b2 (2.1)

in a complete presentation of H(Q3, 3). In this way we solve all ambiguities in H(Qm, 3). Funar [5] gave a

complete presentation of H(Q3, 3):
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H(Q3, 3) =
⟨
b1, b2 : b2b1b2 = b1b2b1, b

3
1 = 1, b32 = 1, b2b

2
1b2b1 = b1b2b

2
1b2, b2b

2
1b

2
2 = b21b

2
2b1, b

2
2b

2
1b2 = b1b

2
2b

2
1

⟩
.

As defined earlier (here in the form of relations), in a complete presentation of H(Qm, 3), a word

containing a subword consisting of L.H.S. of any relation of H(Qm, 3) will be called a reducible word and

a word that does not contain a subword consisting of L.H.S. of any relation will be called an irreducible word.

In general we denote by B
(m)
∗ the set of reducible words and by A

(m)
∗ the set of irreducible words in

H(Qm, 3). The words Ub2 ×2 b2V and Ub2b1 ×21 b2b1V denote the products Ub2V and Ub2b1V , respectively.

Let us denote by B
(m)
1 = {b2b1b2} and B

(m)
k+1 = {b2bk+1

1 b2b1} the set of reducible words of H(Qm, 3).

For the irreducible words we use the following notations: A
(m)
k denote the set of irreducible words starting with

bk and A
(m)

2k·1 denote the set of irreducible words starting with bk2b1 . The Hilbert series of A
(m)
k , A

(m)

2k·1 , and

H(Qm, 3) are denoted by P
(m)
k , P

(m)

2k·1 , and P
(m)
H (t), respectively, where

P
(m)
H (t) = 1 + P

(m)
1 + P

(m)
2 .

For the computations of the Hilbert series of H(Q3, 3), we have the following linear system for the

irreducible words.

Proposition 2.3 The following equalities hold for the Hilbert series of irreducible words in H(Q3, 3) :

1) P
(3)
1 = t+ t2 + (t+ t2)P

(3)
2 ,

2) P
(3)
2 = t+ t2 + P

(3)
2·1 + P

(3)
22·1 ,

3) P
(3)
2·1 = tP

(3)
1 − t2P

(3)
2 − t3P

(3)
2·1 − t5 − t6 − t7 ,

4) P
(3)
22·1 = tP

(3)
2·1 − t5 .

Proof 1) The set A
(3)
1 is decomposed as A

(3)
1 = {b1, b21} ∪

(
{b1, b21} ×A

(3)
2

)
. This implies Relation 1).

2) It follows immediately from A
(3)
2 = {b1, b21} ∪A

(3)
2·1 ∪A

(3)
22·1 .

3) The decomposition of A
(3)
2·1 is given by

A
(3)
2·1 =

(
{b2} ×A

(3)
1

)
∖
((

B
(3)
1 ×2 A

(3)
2

)
∪
(
B

(3)
2 ×21 A

(3)
2·1

)
∪ {b2b21b22, b2b21b22b1, b2b21b22b21}

)
and hence we have 3)).

4) It follows from A
(3)
22·1 =

(
{b2} ×A

(3)
2·1

)
∖ {b22b21b2} . 2

For the computation of Hilbert series the complete presentation of the algebra is very important. By the

diamond lemma [2], the set of relations is complete in the complete presentation. Here we give the complete

presentation of H(Q4, 3) in the following:

Proposition 2.4 A complete presentation of H(Q4, 3) is given as

H(Q4, 3) =
⟨
b1, b2 : b2b1b2 = b1b2b1, b

4
1 = 1, b42 = 1, b2b

2
1b2b1 = b1b2b

2
1b2, b2b

3
1b2b1 = b1b2b

2
1b

2
2,

b2b
2
1b

2
2b

2
1 = b21b

2
2b

2
1b2, b2b

2
1b

3
2 = b31b

2
2b1, b2b

3
1b

3
2 = b31b

3
2b1, b2b

3
1b

2
2b

3
1 = b31b

2
2b

3
1b2, b2b

3
1b

2
2b

2
1b2 = b1b2b

3
1b

2
2b

2
1,

b22b
2
1b

2
2b1 = b1b

2
2b

2
1b

2
2, b

2
2b

3
1b

2
2b1 = b1b

2
2b

3
1b

2
2, b

3
2b

2
1b2 = b1b

2
2b

3
1, b

3
2b

3
1b2 = b1b

3
2b

3
1

⟩
.
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(An outline of the proof of Proposition 2.4 is given in the Appendix.)

Now we develop a linear system for the irreducible words in H(Q4, 3).

Proposition 2.5 The following equalities hold for the Hilbert series of irreducible words in H(Q4, 3) :

1) P
(4)
1 = t+ t2 + t3 + (t+ t2 + t3)P

(4)
2 ,

2) P
(4)
2 = t+ t2 + t3 + P

(4)
2·1 + P

(4)
22·1 + P

(4)
23·1 ,

3) P
(4)
2·1 = tP

(4)
1 − t2P

(4)
2 − t3P

(4)
2·1 − t4P

(4)
2·1 − t6 − 3t7 − 4t8 − 6t9 − 4t10 − t11 ,

4) P
(4)
22·1 = tP

(4)
2·1 − t7 − t8 − t9 ,

5) P
(4)
23·1 = tP

(4)
22·1 − t6 − 2t7 − t8 .

Proof 1) The set A
(4)
1 is decomposed as A

(4)
1 = {b1, b21, b31} ∪

(
{b1, b21, b31} ×A

(4)
2

)
. This gives Relation 1).

2) It follows immediately from A
(4)
2 = {b2, b22, b32} ∪A

(4)
2·1 ∪A

(4)
22·1 ∪A

(4)
23·1 .

3) The decomposition of A
(4)
2·1 is given by

A
(4)
2·1 =

(
{b2}×A

(4)
1

)
∖
((

B
(4)
1 ×2A

(4)
2

)
∪
(
B

(4)
2 ×21A

(4)
2·1

)
∪
(
B

(4)
3 ×21A

(4)
2·1

)
∪
{
b2b

2
1b

3
2, b2b

2
1b

3
2b1, b2b

2
1b

3
2b

2
1, b2b

2
1b

3
2b

3
1,

b2b
3
1b

3
2, b2b

3
1b

3
2b1, b2b

3
1b

3
2b

2
1, b2b

3
1b

3
2b

3
1, b2b

2
1b

2
2b

2
1, b2b

2
1b

2
2b

2
1b2, b2b

2
1b

2
2b

2
1b

2
2, b2b

2
1b

2
2b

3
1, b2b

2
1b

2
2b

3
1b2, b2b

2
1b

2
2b

3
1b

2
2, b2b

3
1b

2
2b

3
1,

b2b
3
1b

2
2b

3
1b2, b2b

3
1b

2
2b

3
1b

2
2, b2b

3
1b

2
2b

2
1b2, b2b

3
1b

2
2b

2
1b

2
2

})
and hence we have 3).

4) It follows from A
(4)
22·1 =

(
{b2} ×A

(4)
2·1

)
∖

{
b22b

2
1b

2
2b1, b

2
2b

3
1b

2
2b1, b

2
2b

3
1b

2
2b

2
1

}
.

5) It follows from A
(4)
23·1 =

(
{b2} ×A

(4)
22·1

)
∖

{
b32b

2
1b2, b

3
2b

2
1b

2
2, b

3
2b

3
1b2, b

3
2b

3
1b

2
2

}
. 2

Proposition 2.6 A complete presentation of H(Q5, 3) is given by

H(Q5, 3) =
⟨
b1, b2 : b2b1b2 = b1b2b1, b

5
1 = 1, b52 = 1, Ri, 1 ≤ i ≤ 41

⟩
, where the relations Ri are given by

R1 : b2b
2
1b2b1 = b1b2b

2
1b2, R2 : b2b

3
1b2b1 = b1b2b

2
1b

2
2, R3 : b2b

4
1b2b1 = b1b2b

2
1b

3
2 ,

R4 : b2b
2
1b

4
2 = b41b

2
2b1, R5 : b2b

3
1b

4
2 = b41b

3
2b1, R6 : b2b

4
1b

4
2 = b41b

4
2b1,

R7 : b42b
2
1b2 = b1b

2
2b

4
1 , R8 : b42b

3
1b2 = b1b

3
2b

4
1, R9 : b42b

4
1b2 = b1b

4
2b

4
1,

R10 :b2b
2
1b

2
2b

3
1 = b31b

2
2b

2
1b2, R11 :b2b

2
1b

3
2b

3
1 = b31b

3
2b

2
1b2, R12 :b2b

3
1b

2
2b

4
1 = b41b

2
2b

3
1b2,

R13 :b2b
4
1b

2
2b

4
1 = b41b

3
2b

3
1b2, R14 :b2b

3
1b

3
2b

4
1 = b41b

2
2b

4
1b2, R15 :b2b

4
1b

3
2b

4
1 = b41b

3
2b

4
1b2 ,

R16 :b
3
2b

2
1b

2
2b1 = b1b

2
2b

2
1b

3
2, R17 :b

3
2b

3
1b

2
2b1 = b1b

2
2b

3
1b

3
2, R18 :b

3
2b

4
1b

2
2b1 = b1b

2
2b

4
1b

3
2 ,

R19 : b32b
4
1b

3
2b1 = b1b

3
2b

4
1b

3
2, R20 : b2b

2
1b

2
2b

2
1b

2
2 = b21b

2
2b

2
1b

2
2b1,

R21 : b2b
2
1b

3
2b

2
1b

3
2 = b31b

2
2b

3
1b

2
2b1 , R22 : b2b

3
1b

2
2b

3
1b

3
2 = b31b

3
2b

2
1b

3
2b1,

R23 : b2b
3
1b

3
2b

3
1b

3
2 = b31b

3
2b

3
1b

3
2b1, R24 : b2b

4
1b

2
2b

2
1b2 = b1b2b

3
1b

2
2b

3
1 ,

R25 : b2b
4
1b

3
2b

2
1b2 = b1b2b

3
1b

3
2b

3
1, R26 : b22b

2
1b

2
2b

2
1b2 = b1b

2
2b

2
1b

2
2b

2
1,

R27 : b22b
3
1b

2
2b

2
1b2 = b1b

2
2b

2
1b

3
2b

2
1, R28 : b22b

4
1b

2
2b

3
1b2 = b1b

2
2b

3
1b

3
2b

3
1,

R29 : b22b
4
1b

3
2b

3
1b2 = b1b

2
2b

4
1b

3
2b

3
1, R30 : b32b

2
1b

3
2b

2
1b2 = b1b

2
2b

3
1b

2
2b

3
1,

R31 : b32b
3
1b

3
2b

2
1b2 = b1b

2
2b

4
1b

2
2b

3
1, R32 : b32b

3
1b

3
2b

3
1b2 = b1b

3
2b

3
1b

3
2b

3
1,

R33 : b2b
3
1b

2
2b

2
1b

2
2b1 = b1b2b

3
1b

2
2b

2
1b

2
2, R34 : b2b

3
1b

2
2b

2
1b

3
2b

2
1 = b31b

2
2b

2
1b

3
2b

2
1b2,

R35 : b2b
3
1b

2
2b

3
1b

2
2b

3
1 = b31b

2
2b

3
1b

2
2b

3
1b2, R36 : b2b

4
1b

2
2b

3
1b

2
2b1 = b1b2b

3
1b

3
2b

2
1b

3
2,
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R37 : b2b
4
1b

2
2b

3
1b

3
2b

3
1 = b41b

2
2b

3
1b

3
2b

3
1b2, R38 : b2b

4
1b

3
2b

3
1b

3
2b1 = b1b2b

4
1b

3
2b

3
1b

3
2,

R39 : b22b
3
1b

2
2b

3
1b

2
2b1 = b1b

2
2b

3
1b

2
2b

3
1b

2
2, R40 : b22b

3
1b

3
2b

2
1b

3
2b1 = b1b

2
2b

3
1b

3
2b

2
1b

3
2,

R41 : b2b
4
1b

2
2b

3
1b

3
2b

2
1b2 = b1b2b

4
1b

2
2b

3
1b

3
2b

2
1 .

(An outline of the proof of Proposition 2.6 is given in the Appendix.)

Now we develop a linear system for the irreducible words in H(Q5, 3).

Proposition 2.7 The following equalities hold for the Hilbert series of irreducible words in H(Q5, 3) :

1) P
(5)
1 = t+ t2 + t3 + t4 + (t+ t2 + t3 + t4)P

(5)
2 ,

2) P
(5)
2 = t+ t2 + t3 + t4 + P

(5)
2·1 + P

(5)
22·1 + P

(5)
23·1 + P

(5)
24·1 ,

3) P
(5)
2·1 = tP

(5)
1 − t2P

(5)
2 − (t3 + t4 + t5)P

(5)
2·1 − t7 − 3t8 − 7t9 − 11t10

− 17t11 − 19t12 − 21t13 − 20t14 − 19t15 − 14t16 − 7t17 − 2t18 ,

4) P
(5)
22·1 = tP

(5)
2·1 − t9 − t10 − t11 − 2t12 − 4t13 − 4t14 − 3t15 − t16 ,

5) P
(5)
23·1 = tP

(5)
22·1 − t8 − 2t9 − 2t10 − 4t11 − 5t12 − 4t13 − 2t14 ,

6) P
(5)
24·1 = tP

(5)
22·1 − t7 − 2t8 − 3t9 − 3t10 − 3t11 − t12 − t13 .

Proof 1) The set A
(5)
1 is decomposed as

A
(5)
1 = {b1, b21, b31, b41} ∪

(
{b1, b21, b31, b41} ×A

(5)
2

)
. This gives Relation 1).

2) It follows immediately from

A
(5)
2 = {b2, b22, b32, b42} ∪A

(5)
2·1 ∪A

(5)
22·1 ∪A

(5)
23·1 ∪A

(5)
24·1 .

3) The decomposition of A
(5)
2·1 is given by

A
(5)
2·1 =

(
{b2} ×A

(5)
1

)
∖
((

B
(5)
1 ×2 A

(5)
2

)
∪
(
B

(5)
2 ×21 A

(5)
2·1

)
∪
(
B

(5)
3 ×21 A

(5)
2·1

)
∪
(
B

(5)
4 ×21 A

(5)
2·1

)
∪
{
b2b

2
1b

4
2,

b2b
2
1b

4
2b1, b2b

2
1b

4
2b

2
1, b2b

2
1b

4
2b

3
1, b2b

2
1b

4
2b

4
1, b2b

3
1b

4
2, b2b

3
1b

4
2b1, b2b

3
1b

4
2b

2
1, b2b

3
1b

4
2b

3
1, b2b

3
1b

4
2b

4
1, b2b

4
1b

4
2, b2b

4
1b

4
2b1,

b2b
4
1b

4
2b

2
1, b2b

4
1b

4
2b

3
1, b2b

4
1b

4
2b

4
1, b2b

2
1b

2
2b

3
1, b2b

2
1b

2
2b

3
1b2, b2b

2
1b

2
2b

3
1b

2
2, b2b

2
1b

2
2b

3
1b

2
2b1, b2b

2
1b

2
2b

3
1b

2
2b

2
1, b2b

2
1b

2
2b

3
1b

2
2b

3
1,

b2b
2
1b

2
2b

3
1b

2
2b

3
1b2, b2b

2
1b

2
2b

3
1b

2
2b

3
1b

2
2, b2b

2
1b

2
2b

3
1b

3
2, b2b

2
1b

2
2b

3
1b

3
2b1, b2b

2
1b

2
2b

3
1b

3
2b

2
1, b2b

2
1b

2
2b

3
1b

3
2b

2
1b2, b2b

2
1b

2
2b

3
1b

3
2b

2
1b

2
2,

b2b
2
1b

2
2b

3
1b

3
2b

2
1b

3
2, b2b

2
1b

2
2b

3
1b

3
2b

3
1, b2b

2
1b

2
2b

3
1b

3
2b

3
1b2, b2b

2
1b

2
2b

3
1b

3
2b

3
1b

2
2, b2b

2
1b

2
2b

4
1, b2b

2
1b

2
2b

4
1b2, b2b

2
1b

2
2b

4
1b

2
2,

b2b
2
1b

2
2b

4
1b

2
2b1, b2b

2
1b

2
2b

4
1b

2
2b

2
1, b2b

2
1b

2
2b

4
1b

2
2b

3
1, b2b

2
1b

2
2b

4
1b

3
2, b2b

2
1b

2
2b

4
1b

3
2b1, b2b

2
1b

2
2b

4
1b

3
2b

2
1, b2b

2
1b

2
2b

4
1b

3
2b

3
1,

b2b
2
1b

3
2b

3
1, b2b

2
1b

3
2b

3
1b2, b2b

2
1b

3
2b

3
1b

2
2, b2b

2
1b

3
2b

3
1b

3
2, b2b

2
1b

3
2b

3
1b

3
2b1, b2b

2
1b

3
2b

3
1b

3
2b

2
1, b2b

2
1b

3
2b

3
1b

3
2b

3
1, b2b

2
1b

3
2b

4
1,

b2b
2
1b

3
2b

4
1b2, b2b

2
1b

3
2b

4
1b

2
2, b2b

2
1b

3
2b

4
1b

3
2, b2b

3
1b

2
2b

4
1, b2b

3
1b

2
2b

4
1b2, b2b

3
1b

2
2b

4
1b

2
2, b2b

3
1b

2
2b

4
1b

2
2b1, b2b

3
1b

2
2b

4
1b

2
2b

2
1,

b2b
3
1b

2
2b

4
1b

2
2b

3
1, b2b

3
1b

2
2b

4
1b

3
2, b2b

3
1b

2
2b

4
1b

3
2b1, b2b

3
1b

2
2b

4
1b

3
2b

2
1, b2b

3
1b

2
2b

4
1b

3
2b

3
1, b2b

4
1b

2
2b

4
1, b2b

4
1b

2
2b

4
1b2, b2b

4
1b

2
2b

4
1b

2
2,

b2b
4
1b

2
2b

4
1b

2
2b1, b2b

4
1b

2
2b

4
1b

2
2b

2
1, b2b

4
1b

2
2b

4
1b

2
2b

3
1, b2b

4
1b

2
2b

4
1b

3
2, b2b

4
1b

2
2b

4
1b

3
2b1, b2b

4
1b

2
2b

4
1b

3
2b

2
1, b2b

4
1b

2
2b

4
1b

3
2b

3
1, b2b

3
1b

3
2b

4
1,

b2b
3
1b

3
2b

4
1b2, b2b

3
1b

3
2b

4
1b

2
2, b2b

3
1b

3
2b

4
1b

3
2, b2b

4
1b

3
2b

4
1, b2b

4
1b

3
2b

4
1b2, b2b

4
1b

3
2b

4
1b

2
2, b2b

4
1b

3
2b

4
1b

3
2, b2b

2
1b

2
2b

2
1b

2
2,

b2b
2
1b

2
2b

2
1b

2
2b1, b2b

2
1b

2
2b

2
1b

2
2b

2
1, b2b

2
1b

2
2b

2
1b

3
2, b2b

2
1b

2
2b

2
1b

3
2b1, b2b

2
1b

2
2b

2
1b

3
2b

2
1, b2b

2
1b

2
2b

2
1b

3
2b

2
1b2, b2b

2
1b

2
2b

2
1b

3
2b

2
1b

2
2, b2b

2
1b

3
2b

2
1b

3
2,

b2b
2
1b

3
2b

2
1b

3
2b1, b2b

2
1b

3
2b

2
1b

3
2b

2
1, b2b

3
1b

2
2b

3
1b

3
2, b2b

3
1b

2
2b

3
1b

3
2b1, b2b

3
1b

2
2b

3
1b

3
2b

2
1, b2b

3
1b

2
2b

3
1b

3
2b

2
1b2, b2b

3
1b

2
2b

3
1b

3
2b

2
1b

2
2, b2b

3
1b

2
2b

3
1b

3
2b

2
1b

3
2,

b2b
3
1b

2
2b

3
1b

3
2b

3
1, b2b

3
1b

2
2b

3
1b

3
2b

3
1b2, b2b

3
1b

2
2b

3
1b

3
2b

3
1b

2
2, b2b

3
1b

3
2b

3
1b

3
2, b2b

3
1b

3
2b

3
1b

3
2b1, b2b

3
1b

3
2b

3
1b

3
2b

2
1, b2b

3
1b

3
2b

3
1b

3
2b

3
1, b2b

4
1b

2
2b

2
1b2,

b2b
4
1b

2
2b

2
1b

2
2, b2b

4
1b

2
2b

2
1b

2
2b1, b2b

4
1b

2
2b

2
1b

2
2b

2
1, b2b

4
1b

2
2b

2
1b

3
2, b2b

4
1b

2
2b

2
1b

3
2b1, b2b

4
1b

2
2b

2
1b

3
2b

2
1, b2b

4
1b

2
2b

2
1b

3
2b

2
1b2, b2b

4
1b

2
2b

2
1b

3
2b

2
1b

2
2,

b2b
4
1b

3
2b

2
1b2, b2b

4
1b

3
2b

2
1b

2
2, b2b

4
1b

3
2b

2
1b

3
2, b2b

4
1b

3
2b

2
1b

3
2b1, b2b

4
1b

3
2b

2
1b

3
2b

2
1, b2b

3
1b

2
2b

2
1b

2
2b1, b2b

3
1b

2
2b

2
1b

2
2b

2
1, b2b

3
1b

2
2b

2
1b

3
2b

2
1,

b2b
3
1b

2
2b

2
1b

3
2b

2
1b2, b2b

3
1b

2
2b

2
1b

3
2b

2
1b

2
2, b2b

3
1b

2
2b

3
1b

2
2b

3
1, b2b

3
1b

2
2b

3
1b

2
2b

3
1b2, b2b

3
1b

2
2b

3
1b

2
2b

3
1b

2
2, b2b

4
1b

2
2b

3
1b

2
2b1, b2b

4
1b

2
2b

3
1b

2
2b

2
1,
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b2b
4
1b

2
2b

3
1b

2
2b

3
1, b2b

4
1b

2
2b

3
1b

2
2b

3
1b2, b2b

4
1b

2
2b

3
1b

2
2b

3
1b

2
2, b2b

4
1b

2
2b

3
1b

3
2b

3
1, b2b

4
1b

2
2b

3
1b

3
2b

3
1b2, b2b

4
1b

2
2b

3
1b

3
2b

3
1b

2
2, b2b

4
1b

3
2b

3
1b

3
2b1, b2b

4
1b

3
2b

3
1b

3
2b

2
1,

b2b
4
1b

3
2b

3
1b

3
2b

3
1, b2b

4
1b

2
2b

3
1b

3
2b

2
1b2, b2b

4
1b

2
2b

3
1b

3
2b

2
1b

2
2, b2b

4
1b

2
2b

3
1b

3
2b

2
1b

3
2,
})

and hence we have 3).

4) It follows from

A
(5)
22·1 =

(
{b2} ×A

(5)
2·1

)
∖
{
b22b

2
1b

2
2b

2
1b2, b

2
2b

3
1b

2
2b

2
1b2, b

2
2b

3
1b

2
2b

2
1b

2
2, b

2
2b

3
1b

2
2b

2
1b

3
2, b

2
2b

3
1b

2
2b

2
1b

3
2b1, b

2
2b

4
1b

2
2b

3
1b2, b

2
2b

4
1b

2
2b

3
1b

2
2,

b22b
4
1b

2
2b

3
1b

3
2, b

2
2b

4
1b

2
2b

3
1b

3
2b1, b

2
2b

4
1b

2
2b

3
1b

3
2b

2
1, b

2
2b

4
1b

3
2b

3
1b2, b

2
2b

4
1b

3
2b

3
1b

2
2, b

2
2b

4
1b

3
2b

3
1b

3
2, b

2
2b

3
1b

3
2b

2
1b

3
2b1, b

2
2b

3
1b

3
2b

2
1b

3
2b

2
1, b

2
2b

3
1b

2
2b

3
1b

2
2b1,

b22b
3
1b

2
2b

3
1b

2
2b

2
1

}
.

5) It follows from A
(5)
23·1 =

(
{b2}×A

(5)
22·1

)
∖
{
b32b

2
1b

2
2b1, b

3
2b

2
1b

2
2b

2
1, b

3
2b

3
1b

2
2b1, b

3
2b

3
1b

2
2b

2
1, b

3
2b

3
1b

2
2b

3
1, b

3
2b

3
1b

2
2b

3
1b2, b

3
2b

3
1b

2
2b

3
1b

2
2,

b32b
4
1b

2
2b1, b

3
2b

4
1b

2
2b

2
1, b

3
2b

4
1b

2
2b

3
1, b

3
2b

4
1b

3
2b1, b

3
2b

4
1b

3
2b

2
1, b

3
2b

4
1b

3
2b

3
1, b

3
2b

2
1b

3
2b

2
1b2, b

3
2b

2
1b

3
2b

2
1b

2
2, b

3
2b

3
1b

3
2b

2
1b2, b

3
2b

3
1b

3
2b

2
1b

2
2, b

3
2b

3
1b

3
2b

2
1b

3
2,

b32b
3
1b

3
2b

3
1b2, b

3
2b

3
1b

3
2b

3
1b

2
2

}
.

6) It follows from A
(5)
24·1 =

(
{b2}×A

(5)
23·1

)
∖
{
b42b

2
1b2, b

4
2b

2
1b

2
2, b

4
2b

2
1b

3
2, b

4
2b

2
1b

3
2b1, b

4
2b

2
1b

3
2b

2
1, b

4
2b

3
1b2, b

4
2b

3
1b

2
2, b

4
2b

3
1b

3
2, b

4
2b

3
1b

3
2b1,

b42b
3
1b

3
3b

2
1, b

4
2b

3
1b

3
3b

3
1, b

4
2b

4
1b2, b

4
2b

4
1b

2
2, b

4
2b

4
1b

3
2

}
. 2

At the end we give our main result.

Theorem 2.8 The Hilbert series of the group algebras H(Qm, 3),m = 3, 4, 5 are given by

1) P
(3)
H (t) = 1 + 2t+ 4t2 + 5t3 + 6t4 + 4t5 + 2t6.

2) P
(4)
H (t) = 1 + 2t+ 4t2 + 7t3 + 10t4 + 14t5 + 17t6 + 16t7 + 13t8 + 8t9 + 3t10 + t11.

3) P
(5)
H (t) = 1+ 2t+4t2 +7t3 +14t4 +18t5 +27t6 +38t7 +50t8 +59t9 +67t10 +70t11 +68t12 +59t13 +48t14 +

34t15 + 21t16 + 10t17 + 4t18 + t19.

Proof 1) Solving (using any suitable software) the system given in Proposition 2.3 we have P
(3)
1 = t + 2t2 +

3t3 + 4t4 + 4t5 + 2t6 and P
(3)
2 = t+ 2t2 + 2t3 + 2t4. Hence,

P
(3)
H (t) = 1 + P

(3)
1 + P

(3)
2

= 1 + 2t+ 4t2 + 5t3 + 6t4 + 4t5 + 2t6.

2) Solving the linear system given in Proposition 2.5 we have

P
(4)
1 = t+2t2+4t3+6t4+9t5+12t6+14t7+12t8+8t9+3t10+t11 and P

(4)
2 = t+2t2+3t3+4t4+5t5+5t6+2t7+t8.

Hence,

P
(4)
H (t) = 1 + P

(4)
1 + P

(4)
2

= 1 + 2t+ 4t2 + 7t3 + 10t4 + 14t5 + 17t6 + 16t7 + 13t8 + 8t9

+3t10 + t11.

3) Solving the linear system given in Proposition 2.7 we have

P
(5)
1 = t+ 2t2 + 4t3 + 7t4 + 11t5 + 17t6 + 25t7 + 35t8 + 45t9 + 52t10 + 57t11 + 57t12

+ 53t13 + 45t14 + 33t15 + 21t16 + 10t17 + 4t18 + t19 and

P
(5)
2 = t+ 2t2 + 3t3 + 5t4 + 7t5 + 10t6 + 13t7 + 15t8 + 14t9 + 15t10 + 13t11 + 11t12
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+ 6t13 + 3t14 + t15. Therefore, we have

P
(5)
H (t) = 1 + P

(5)
1 + P

(5)
2

= 1 + 2t+ 4t2 + 7t3 + 12t4 + 18t5 + 27t6 + 38t7 + 50t8 + 59t9

+67t10 + 70t11 + 68t12 + 59t13 + 48t14 + 34t15 + 21t16 + 10t17

+4t18 + t19.

2

Remark 2.9 Note that the degrees d
(
P

(m)
H

)
of the polynomial of the Hilbert series of H(Qm, 3) , m ∈ {1, . . . , 5}

are 1, 3, 6, 11, 19. One can see that d
(
P

(m)
H

)
is related with Fibonacci numbers Fm = Fm−1 +Fm−2 (F0 = 1 ,

F1 = 1) by the relation d
(
P

(m)
H

)
= Fm+2 − 2 .

Remark 2.10 We believe that the result holds also when Qm is an arbitrary polynomial of degree m , with

Qm(0) ̸= 0 , for m = 3, 4, 5 . This is known to be true for m = 3 ([5]).
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Appendix

Proof of Proposition 2.4 (outline). We solve all the ambiguities to find out all the relations given in these

propositions. The computations are too long, so we give here a few computations to find out the relations.

• Relation 2.1 has been explained before.

• The ambiguity b2b
2
1b2b1b2 has two resolutions b2b

2
1(b2b1b2) and (b2b

2
1b2b1)b2 . Applying reductions on

both we get b2b
3
1b2b1 and b1b2b

2
1b

2
2 , respectively. We say that the ambiguity b2b

2
1b2b1b2 gives a relation

b2b
3
1b2b1 = b1b2b

2
1b

2
2 .

• Similarly the ambiguity b2b1b2b
3
1b2b1 gives a relation b21b2b

2
1b

3
2 = b1b

2
2b1 . This relation is nonhomogeneous (i.e.

the degrees are not same on both sides). By left multiplication to this relation by b21 we make it homogeneous

and get another relation, b2b
2
1b

3
2 = b31b

2
2b1 .

• The ambiguity b2b1b2b
2
1b

3
2 gives a relation b1b2b

3
1b

3
2 = b32b1 . Again this relation is not homogeneous. Left

multiplication by b31 gives b2b
3
1b

3
2 = b31b

3
2b1 .

By continuing solving the ambiguities we get new relations. In the process some ambiguities are solvable and

give no new relations. Hence, solving all the ambiguities, we have the presentation of the Proposition 2.4.

Proof of Proposition 2.6 (outline). Proof of this proposition is much longer than that of Proposition 2.4. As

above, here we give the proof of a few relations. Proofs of others are based on similar computations.

• R1 and R2 are the relations of H(Q4, 3).

• The ambiguity b2b
3
1b2b1b2 gives R3 .

• b2b
4
1b2b1b2 gives a nonhomogeneous relation b1b2b

2
1b

4
2 = b22b1 . Left multiplication by b41 gives R4 .

• b2b1b2b
2
1b

4
2 gives b1b2b

3
1b

4
2 = b32b1 . Left multiplication by b41 gives R5 .
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• b2b1b2b
3
1b

4
2 gives b1b2b

4
1b

4
2 = b42b1 . Left multiplication by b41 gives R6 .

• b2b
4
1b

4
2b1b2 gives b41b

4
2b

2
1b2 = b22b

4
1 . Left multiplication by b1 gives R7 .

• b2b
2
1b

4
2b

2
1b2 gives R12 .

• b2b
3
1b

4
2b

2
1b2 gives R13 .

• b2b
3
1b

4
2b

3
1b2 gives R15 .

• b2b1b2b
4
1b

2
2b

4
1 gives R8 .

• b2b1b2b
4
1b

3
2b

4
1 gives R9 and so on. By following this procedure and checking all the ambiguities and after a lot

of computations we have all the relations. This process terminates when all the ambiguities are solvable and

gives no further new relations.

References

[1] Artin E. Theory of braids. Ann Math 1947; 48: 101–126.

[2] Bergman G. The diamond lemma for ring theory. Adv Math 1978; 29: 178–218.

[3] Coxeter HSM. Regular Complex Polytopes. 2nd ed. Cambridge, UK: Cambridge University Press, 1991.

[4] Harpe PD. Topics in Geometric Group Theory. Chicago, IL, USA: University of Chicago Press, 2000.

[5] Funar L. On the quotients of cubic Hecke algebras. Commun Math Phys 1995; 173: 513–558.

[6] Iqbal Z. Hilbert series of positive braids. Algebr Colloq 2011; 18: 1017–1028.

[7] Iqbal Z, Yousaf S. Hilbert series of braid monoid MB4 in band generators. Turk J Math 2014; 38: 977–984.

705

http://dx.doi.org/10.2307/1969218
http://dx.doi.org/10.1016/0001-8708(78)90010-5
http://dx.doi.org/10.1007/BF02101656
http://dx.doi.org/10.1142/S1005386711000897
http://dx.doi.org/10.3906/mat-1401-58

	Introduction
	Hilbert series of the group algebras H(Qm,3), m=3,4,5

