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Abstract: We give explicit expressions of the Tutte polynomial of asymmetric complete flower graph and asymmetric

incomplete flower graph. We then express these Tutte polynomials as generating functions and decode some valuable

information about the asymmetric complete flower graph and asymmetric incomplete flower graph. Furthermore, we

convert the Tutte polynomials into coboundary polynomials and give explicit expressions of the k -defect polynomials

of these structures. Finally, we conclude that nonisomorphic graphs in this class have the same Tutte polynomials, the

same chromatic polynomials, and the same defect polynomials.
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1. Introduction

There are several polynomials associated with a graph G ; we refer the reader to [4] for a detailed background.

Polynomials play an important role in the study of graphs as they encode various information about a graph.

Chromatic polynomials of graphs are sometimes easy to compute. However, Tutte polynomials of such graphs

seem harder to find, and if known they are complicated. For example, the chromatic polynomial of Kn is

λ
∏n−1

i=1 (λ − i), but the Tutte polynomial of the same structure as described by Tutte [10] and Welsh [11] is

complicated. There are several methods that are used to compute the Tutte polynomial of a graph; just to

sample a few methods, we refer to [1, 6].

The coboundary polynomial B(G;λ, S) of a graph G is a polynomial in two independent variables λ

and S. It was originally defined and studied by Crapo [2] as a generating function in S as

B(G;λ, S) =
∑

Skϕk(G;λ),

where ϕk(G;λ) is a polynomial in λ . ϕk(G;λ) is called the k -defect polynomial of the graph.

Let G a vertex colored graph. An edge is called bad if it joins two vertices of the same color. The

k -defect polynomial, ϕk(G;λ), counts the number of ways of coloring G with k bad edges. It is easily seen

that the chromatic polynomial of a graph G , χ(G;λ), is equal to ϕ0(G;λ).

The coboundary polynomial of a graph G, B(G;λ, S) can be obtained from the Tutte polynomial by the

following transformation:

B(G;λ, S) = (S − 1)rT (G;
S + λ− 1

S − 1
, S).
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Chromatic polynomials of graphs have been studied widely; we refer the reader to [3]. On the other hand,

little is known about the properties of the k -defect polynomials. The importance of the k -defect polynomials

should not be underestimated, since if the k -defect polynomials are known it is equivalent to finding the Tutte

polynomial. In addition, the improper coloring is applicable in network theory and time tabling just as is the

proper coloring.

Flower graphs form a class of graphs that is highly symmetric. Some classes of flower graphs have

attractive simple formulas for the chromatic polynomial; see [8]. In this paper, we study the asymmetric

complete flower graph and asymmetric incomplete flower graph.

2. Asymmetric flower graphs

In this section we give a definition and an example of an asymmetric complete flower graph and an asymmetric

incomplete flower graph.

A graph G is called a complete flower graph if it has n vertices that form an n-cycle and n sets of m−2

vertices which form m-cycles around the n cycle so that each m-cycle uniquely intersects with the n -cycle on

a single edge. This graph is denoted by Fnm . It is clear that Fnm has n(m − 1) vertices and nm edges. The

m-cycles are called the petals and the n-cycle is called the center of Fnm . The n vertices that form the center

are all of degree 4 and all the other vertices have degree 2. Note that m ≥ 2 and n ≥ 2.

Removing a petal p of Fnm is to take one m -cycle and delete all the vertices of degree 2 and their

adjacent edges. We define an incomplete flower graph with i petals to be a complete flower graph with n − i

petals removed for i ∈ {1, 2, · · · , n− 1}. This graph is denoted by F i
nm

. It should be noted that the positions

of petals removed may be relevant and Fnm = Fn
nm

. Thus, we have several nonisomorphic graphs represented

by F i
nm

. An asymmetric complete flower graph is a flower graph with center Cn and n petals of different sizes,

mk where k ∈ {1, 2, · · · , n} . If an asymmetric complete flower graph has jk petals of size mk it is denoted by

Fnm1j1
,m2j2

,···mtjt

where j1+ j2+ · · · jt = n. An asymmetric incomplete flower graph with i petals is isomorphic

to an asymmetric complete flower graph with n − i petals missing. If an asymmetric incomplete flower graph

has i petals where jk petals are of size mk it is denoted by F i
nm1j1

,m2j2
,···mtjt

where j1 + j2 + · · · jt = i.

The diagrams in Figure are examples of an asymmetric complete flower graph and an asymmetric

incomplete flower graph.

3. Tutte polynomial

The Tutte polynomial T (G;x, y) of a graph G, is a polynomial in two independent variables x and y and is

defined as
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Figure. Asymmetric complete flower graph and asymmetric incomplete flower graph.

707



MPHAKO-BANDA and MANSOUR/Turk J Math

T (G;x, y) =
∑
X⊆E

(x− 1)r(E)−r(X)(y − 1)|X|−r(X),

where r(X) denotes the rank of the graph (V,X), V the set of vertices, and X the set of edges. Recall that

G\e is the graph obtained by deleting an edge e of G and G/e is the graph obtained by contracting an edge

e of G. The Tutte polynomial can also be computed using the following deletion and contraction formula:

T1. T (I;x, y) = x and T (L;x, y) = y where I is an isthmus and L is a loop.

T2. If e is an edge of the graph G and e is neither a loop nor an isthmus, then

T (G;x, y) = T (G\e;x, y) + T (G/e;x, y).

T3. If e is a loop or an isthmus of the graph G, then

T (G;x, y) = T (e;x, y)T (G/e;x, y).

The following theorem follows from the deletion and contraction formula of the Tutte polynomials.

Theorem 3.1 Let tn be a tree on n vertices and let Cn be an n-cycle. Then

(i) T (tn;x, y) = xn−1.

(ii) T (Cn;x, y) = y +
∑n−1

q=1 xq.

Some well-known evaluations of the Tutte polynomial are given in the following theorems; we refer to

[5, 7, 9].

Theorem 3.2 Let G be a graph of order n . Then the chromatic polynomial of G follows:

χ(G;λ) = (−1)r(G)λn−r(G)T (Γ; 1− λ, 0).

Theorem 3.3 If G = (V,E) is a 2-connected graph, then each of the following statements holds:

(a) T (G;−2, 0) corresponds to the number of Eulerian orientations.

(b) T (G;−1,−1) corresponds to the dimension of the bicycle space of binary codes.

(c) T (G; 0,−1) corresponds to the characteristic function of Eulerian graphs.

(d) T (G; 0, 0) corresponds to the characteristic function of the empty graph.

(e) T (G; 0, 2) corresponds to the number of orientations of a bridgeless graph G such that each edge is

contained in an oriented cycle.

(f) T (G; 1, 0) corresponds to the number of acyclic orientations with one fixed source vertex.

(g) T (G; 1, 2) corresponds to the number of connected spanning subgraphs.
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(h) T (G; 2, 0) corresponds to the number of acyclic orientations of G .

(i) T (G; 2, 1) corresponds to the number of acyclic subgraphs.

(j) T (G; 2, 2) corresponds to the number of spanning subgraphs.

To ease notation in this paper, if G1 and G2 are disjoint graphs, the graph obtained by the operation

of merging one vertex of G1 and one vertex of G2 will be denoted by G1 • G2. For any flower graph F i
nm

,

the edges of a petal will be labeled in the following sequence: e1, e2, · · · , em, e1, where e1 is the edge in both

the center and the petal, ei is adjacent to ei+1 , and em is adjacent to e1. We are interested in the edge e2

to ease our clarification in the following lemmas and theorems. Note that e2 is an edge of the petal with one

vertex in the center and if we delete e2 from F i
nm

we get F i−1
nm

•Pm−2 where Pm−2 is a tree with m− 2 edges,

isomorphic to a path.

In the following lemmas and theorems, we shall use the edge e2 in the deletion and contraction formula

when applied to a petal unless otherwise stated.

Lemma 3.4 Let F 1
nm

be a flower graph with 1 petal of size m and center Cn . Then

T (F 1
nm

;x, y) =

(
m−2∑
q=0

xq

)
T (Cn;x, y) + yT (Cn−1;x, y).

Proof We use induction on m and the deletion and contraction method of the Tutte polynomial. Let m = 2;

thus, we have a flower graph with center Cn and a 2-cycle petal. Thus, F 1
n2

is just Cn with one pair of parallel

edges. Let e be one of the parallel edges. If we delete e we get Cn and if we contract e we get Cn−1 with a

loop. Hence,

T (F 1
nm

;x, y) = T (Cn;x, y) + yT (Cn−1;x, y)

=

(
m−2∑
q=0

xq

)
T (Cn;x, y) + yT (Cn−1;x, y),

therefore true for the base case. Assume it is true when m = k and k > 2. Now let m = k+ 1 and let e be an

edge e2 of the petal P . By deletion and contraction method,

T (F 1
nk+1

;x, y) = T (F 1
nk+1

\e;x, y) + T (F 1
nk+1

/e;x, y). (3.1)

However, F 1
nk+1

\e is isomorphic to Cn •Pk−1. Recall that Pk−1 is a tree isomorphic to a path with k−1 edges.

Thus, the k − 1 edges of Pk−1 are isthmuses in F 1
nk+1

\e. Hence,

T (F 1
nk+1

\e;x, y) = xk−1T (Cn;x, y).

F 1
nk+1

/e is isomorphic to F 1
nk
. Thus,

T (F 1
nk+1

/e;x, y) = T (F 1
nk
;x, y).
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By induction hypothesis,

T (F 1
nk+1

/e;x, y) =

(
k−2∑
q=0

xq

)
T (Cn;x, y) + yT (Cn−1;x, y).

If we substitute in Equation 3.1 we get the required result. 2

Recalling the following notation, F i
nm1j1

,m2j2
,··· ,mtjt

is an asymmetric incomplete flower graph with center

Cn and i petals where jk petals are of size mk . The following lemma gives the recursive method for the Tutte

polynomial of an asymmetric incomplete flower graph with center Cn and i petals, F i
nm1j1

,m2j2
,··· ,mtjt

.

Lemma 3.5 Let G be an asymmetric incomplete flower graph with i petals, F i
nm1j1

,··· ,mtjt

, where i ∈ {1, 2, · · · ,

n− 1}. If we pick one petal, say of size mt, then

T (G;x, y) =

[
mt−2∑
q=0

xq

]
T (F i−1

nm1j1
,··· ,mtjt−1

;x, y) + yT (F i−1
(n−1)m1j1

,··· ,mtjt−1

;x, y).

Proof Let G be F i
nm1j1

,m2j2
,··· ,mtjt

. We fix and consider one petal of G of size mt and call this petal P . Let

e be an edge e2 of petal P. Now by deletion and contraction formula of the Tutte polynomial,

T (G;x, y) = T (G\e;x, y) + T (G/e;x, y). (3.2)

Now G\e is isomorphic to F i−1
nm1j1

,··· ,mtjt−1

•Pmt−2 and the mt − 2 edges of Pmt−2 are isthmuses G\e. Hence,

T (G\e;x, y) = xmt−2T (F i−1
nm1j1

,··· ,mtjt−1

;x, y).

G/e is isomorphic to F i
nm1j1

,··· ,mtjt−1
,(mt−1)1

. Now petal P is of size mt−1. Repeat the deletion and contraction

formula on petal P until this petal is removed and get T (G/e;x, y) . Then substitute back T (G\e;x, y) and

T (G/e;x, y) in Equation 3.2 to get the required result. 2

Lemma 3.6 Let F i
nm1j1

,··· ,mtjt
,mt+1jt+1

be an asymmetric flower graph with i petals, where i ∈ {1, 2, · · · , n}

and let jt+1 = 1. Then

∑
ϕ1+···+ϕt+1=i+1−k

0≤ϕr≤jr

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


=

(
mt+1−2∑

q=0

xq

) ∑
ϕ1+···+ϕt=i−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


+
∑

ϕ1+···+ϕt=i+1−k
0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 .
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Proof Since jt+1 = 1, then ϕt+1 ∈ {0, 1}. Thus the sum

∑
ϕ1+···+ϕt+1=i+1−k

0≤ϕr≤jr

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


can be split into two sums where one sum takes the case ϕt+1 = 1 and the other sum takes the case ϕt+1 = 0.

If ϕt+1 = 1 then ϕ1 + · · ·+ ϕt+1 = i+ 1− k implies ϕ1 + · · ·+ ϕt = i− k and
(
jt+1

ϕt+1

)
=
(
1
1

)
. Hence,

∑
ϕ1+···+ϕt+1=i+1−k

0≤ϕr≤jr
ϕt+1=1

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 (3.3)

=

(
mt+1−2∑

q=0

xq

) ∑
ϕ1+···+ϕt=i−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 .

If ϕt+1 = 0 then ϕ1 + · · ·+ ϕt+1 = i+ 1− k implies ϕ1 + · · ·+ ϕt = i+ 1− k and
(
jt+1

ϕt+1

)
=
(
1
0

)
. Hence,

∑
ϕ1+···+ϕt+1=i+1−k

0≤ϕr≤jr
ϕt+1=0

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 =

∑
ϕ1+···+ϕt=i+1−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 . (3.4)

Hence the result if we sum both cases when ϕt+1 = 0 and ϕt+1 = 1. 2

The following theorem gives an explicit expression of the Tutte polynomial of an asymmetric incomplete

flower graph.

Theorem 3.7 Let G be an asymmetric incomplete flower graph with i petals, F i
nm1j1

,m2j2
,··· ,mtjt

, where

i ∈ {1, 2, · · · , n− 1}. Then

T (G;x, y) =
i∑

k=0

yk

 ∑
ϕ1+···+ϕt=i−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


(
y +

n−1−k∑
q=1

xq

)
.

Proof We use induction on the number of petals i. Let i = 2, and let G be F 2
nm11

,m21

, an asymmetric

incomplete flower graph with 2 petals, one of size m1, the other of size m2 and center Cn. Then, by Lemma 3.5,

T (G;x, y) =

(
m1−2∑
q=0

xq

)
T (F 1

nm21

;x, y) + yT (F 1
(n−1)m21

;x, y). (3.5)
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By Lemma 3.4,

T (F 1
nm2

;x, y) =

(
m2−2∑
q=0

xq

)
T (Cn;x, y) + yT (Cn−1;x, y),

T (F 1
(n−1)m2

;x, y) =

(
m2−2∑
q=0

xq

)
T (Cn−1;x, y) + yT (Cn−2;x, y).

Hence, if we substitute in Equation 3.5, we get

T (G;x, y) =

(
m1−2∑
q=0

xq

)(
m2−2∑
q=0

xq

)(
y +

n−1∑
q=1

xq

)

+ y

(
m1−2∑
q=0

xq

)(
y +

n−2∑
q=1

xq

)
+ y

(
m2−2∑
q=0

xq

)(
y +

n−2∑
q=1

xq

)
+ y2

(
y +

n−3∑
q=1

xq

)

=
2∑

k=0

yk

 ∑
ϕ1+···+ϕt=2−k

0≤ϕr≤jr

 2∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


(
y +

n−1−k∑
q=1

xq

)
.

Hence, it is true for an asymmetric incomplete flower graph with 2 petals. Now we assume it is true for i = l

where l > 2 and l < n− 1. Let i = l + 1 where l + 1 ≤ n− 1. Let G be F l+1
nm1j1

,m2j2
,··· ,mtjt

,mt+11

such that it

has one petal of size mt+1 more than F l
nm1j1

,m2j2
,··· ,mtjt

. Then by Lemma 3.5,

T (G;x, y) =

(
mt+1−2∑

q=0

xq

)
T (F l

nm1j1
,m2j2

,··· ,mtjt

;x, y) + yT (F l
(n−1)m1j1

,m2j2
,··· ,mtjt

;x, y).

By induction hypothesis,(
mt+1−2∑

q=0

xq

)
T (F l

nm1j1
,m2j2

,··· ,mtjt

;x, y) (3.6)

=

(
mt+1−2∑

q=0

xq

)
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr

T (Cn−k;x, y)

and

yT (F l
(n−1)m1j1

,m2j2
,··· ,mtjt

;x, y) (3.7)

= y
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr

T (Cn−1−k;x, y).
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Hence,

T (G;x, y) (3.8)

=

(
mt+1−2∑

q=0

xq

)
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr

T (Cn−k;x, y)

+ y
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr

T (Cn−1−k;x, y).

Let s be a fixed integer in the set {0, 1, · · · , l}. Then track the term ysT (Cn−s;x, y) in Equation 3.6; it occurs

when k = s. In Equation 3.7, the term ysT (Cn−s;x, y) occurs when k− 1 = s. Thus, in Equation 3.8, we have

the term ysT (Cn−s;x, y) with coefficient

(
mt+1−2∑

q=0

xq

) ∑
ϕ1+···ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 (3.9)

+
∑

ϕ1+···ϕt=l−(k−1)
0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


=
∑

ϕ1+···+ϕt+1=i+1−k
0≤ϕr≤jr

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 by Lemma 3.6,

hence true for any i ∈ {1, 2, · · · , n− 1}. 2

In order to state our next result we need the following notation. We denote the coefficient of zm a power

series f(z) by [zm]f(z). Define

Ci,k(d) = Ci,k(d;m1, j1, . . . ,mt, jt)

=
d∑

ℓ=0

(
i− k + d− ℓ

d− ℓ

) ∑
ϕ1+···+ϕt=i+1−k

(m1−1)φ1+···+(mr−1)φt=ℓ
0≤φr≤ϕr≤jr

(−1)
∑t

j=1 φj

t∏
r=1

(
jr
ϕr

)(
ϕr

φr

)
.

Corollary 3.8 Let G be an asymmetric incomplete flower graph with i petals, F i
nm1j1

,m2j2
,··· ,mtjt

, where

i ∈ {1, 2, · · · , n− 1} . Then the coefficient of xdyk in T (G;x, y) is given by

[xdyk]T (G;x, y) = Ci,k(d) + Ci,k(d− 1)− Ci,k(d− (n− k)).
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Proof By Theorem 3.7, we have

[yk]T (G;x, y) =
1

(1− x)i+1−k

∑
ϕ1+···+ϕt=i+1−k

0≤ϕr≤jr

[
t∏

r=1

(
jr
ϕr

)(
1− xmr−1

)ϕr

]

+
x

(1− x)i+1−k

∑
ϕ1+···+ϕt=i−k

0≤ϕr≤jr

[
t∏

r=1

(
jr
ϕr

)(
1− xmr−1

)ϕr

]
(1− xn−1−k),

which implies that [xdyk]T (G;x, y) = Ci,k(d) + Ci,k(d− 1)− Ci,k(d− (n− k)), which completes the proof. 2

Theorem 3.9 Define C ′
i,k(d, n) = Ci,k(d)+Ci,k(d−1)−Ci,k(d− (n−k)) . Let G be an asymmetric incomplete

flower graph with i petals, F i
nm1j1

,m2j2
,··· ,mtjt

, where i ∈ {1, 2, · · · , n− 1} . Then the ℓ-defect polynomial of G

is

ϕℓ(G;λ) =
∑
d,k≥0

r−d∑
a=0

C ′
i,k(d)(−1)r−d−a(λ− 1)d−(ℓ−a−k)

(
r − d

a

)(
d

ℓ− a− k

)
.

Proof By Corollary 3.8, we have that

B(G;λ, S) = (S − 1)rT (G; 1 + λ/(S − 1);S) =
∑
d,k≥0

C ′
i,k(d, n)(S − 1)r−dSk(S + λ− 1)d,

which implies that the coefficient of Sℓ in B(G;λ, S) is given by

ϕℓ(G;λ) =
∑
d,k≥0

r−d∑
a=0

C ′
i,k(d)(−1)r−d−a(λ− 1)d−(ℓ−a−k)

(
r − d

a

)(
d

ℓ− a− k

)
,

which completes the proof. 2

We need the following lemmas before we give the explicit expression of the Tutte polynomial of an

asymmetric complete flower graph.

Lemma 3.10 Let G be F2m11
,m21

, an asymmetric complete flower graph with 2 petals of sizes m1 and m2 .

Then

T (G;x, y) =

(
m1−2∑
q=0

xq

)
T (F 1

2m21
;x, y) + y2T (Cm2−1;x, y).

Proof We consider the petal of size m1 and call this petal P , so we use deletion and contraction formula of

the Tutte polynomial on the edges of petal P that are not in the center. Remove isthmuses and loops to get

the required result. 2

The following lemma gives the recursive method of the Tutte polynomial of an asymmetric complete flower

graph.
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Lemma 3.11 Let G be Fnm1j1
,m2j2

,··· ,mtjt

, an asymmetric complete flower graph. Then

T (G;x, y) =

(
mt−2∑
q=0

xq

)
T (Fn−1

nm1j1
,··· ,mtjt−1

;x, y) + yT (F(n−1)m1j1
,··· ,mtjt−1

, ;x, y).

Proof Similar to the proof of Lemma 3.5. 2

The following theorem gives an explicit expression of the Tutte polynomial of an asymmetric complete

flower graph.

Theorem 3.12 Let G be the graph Fnm1j1
,m2j2

,··· ,mtjt

, an asymmetric complete flower graph. Then

T (G;x, y) =

 n∑
k=0

yk
∑

ϕ1+···+ϕt=n−k
0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
(y + [n−1−k∑

q=1

xq

])− yn.

Proof By induction on the number of vertices of the center n. The base case is n = 2. By Lemma 3.10,

T (F2m11
,m21

;x, y) =

(
m1−2∑
q=0

xq

)
T (F 1

2m21
;x, y) + y2T (Cm2−1;x, y).

Applying Lemma 3.4 and then Theorem 3.1 part (ii), we get

T (F2m11
,m21

;x, y)

=

(
m1−2∑
q=0

xq

)(
m2−2∑
q=0

xq

)
T (C2;x, y) + y

(
m1−2∑
q=0

xq

)
T (C1;x, y) + y2T (Cm2 − 1;x, y)

=

(
m1−2∑
q=0

xq

)(
m2−2∑
q=0

xq

)
(y + x) + y

(
m1−2∑
q=0

xq

)
y + y2

(
y +

m2−2∑
q=1

xq

)
.

Rearranging, we get

T (F2m11
,m21

;x, y)

=

(
m1−2∑
q=0

xq

)(
m2−2∑
q=0

xq

)(
y +

2−1∑
q=1

xq

)
+ y2

(
m1−2∑
q=0

xq

)
+ y2

(
m2−2∑
q=0

xq

)
+
(
y3 − y2

)

=

 1∑
k=0

yk
∑

ϕ1+=2−k
0≤ϕr≤jr

 2∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
(y + [1−k∑

q=1

xq

])+
[
y3 − y2

]
.

Hence, it is true for an asymmetric complete flower with 2-cycle center. Assume it is true for n = l where l > 2.

Now consider n = l+1 and let G be F l+1
(l+1)m1j1

,m2j2
,··· ,mtjt

,mt+11

such that G has one petal of size mt+1 more

than F l
nm1j1

,m2j2
,··· ,mtjt

. Then by Lemma 3.11,

T (G;x, y) =

(
mt+1−2∑

q=0

xq

)
T (F l

(l+1)m1j1
,··· ,mtjt

;x, y) + yT (F(l)m1j1
,··· ,mtjt

, ;x, y). (3.10)
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By Theorem 3.7,(
mt+1−2∑

q=0

xq

)
T (F l

(l+1)m1j1
,··· ,mtjt

;x, y) (3.11)

=

(
mt+1−2∑

q=0

xq

)
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


(
y +

l−k∑
q=1

xq

)
.

By induction hypothesis,

yT (Flm1j1
,··· ,mtjt

;x, y) (3.12)

= y


l−1∑
k=0

yk
∑

ϕ1+···+ϕt
=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
(y + [l−1−k∑

q=1

xq

])+
[
yl+1 − yl

]
.

Hence, if we substitute Equation 3.11 and Equation 3.12 in Equation 3.10, we get

T (G;x, y) (3.13)

=

(
mt+1−2∑

q=0

xq

)
l∑

k=0

yk

 ∑
ϕ1+···+ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


(
y +

l−k∑
q=1

xq

)

= y


l−1∑
k=0

yk
∑

ϕ1+···+ϕt
=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
(y + [l−1−k∑

q=1

xq

])+
[
yl+1 − yl

]
.

Let s be a fixed integer in{0, 1, · · · , n− 1}. Track the term ys
(
y +

[∑l−1−s
q=1 xq

])
in Equation 3.11; it occurs

when k = s. In Equation 3.12, the term ys
(
y +

[∑l−1−s
q=1 xq

])
occurs when k− 1 = s. Thus, in Equation 3.13,

we have the term ys
(
y +

[∑l−1−s
q=1 xq

])
with coefficient

(
mt+1−2∑

q=0

xq

) ∑
ϕ1+···ϕt=l−k

0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 (3.14)

+
∑

ϕ1+···ϕt=l−(k−1)
0≤ϕr≤jr

 t∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr


=
∑

ϕ1+···+ϕt+1=i+1−k
0≤ϕr≤jr

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
 by Lemma 3.6.
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Hence,

T (G;x, y)

=


(l+1)−1∑

s=0

ys
∑

ϕ1+···+ϕt,ϕt+1

=(l+1)−s
0≤ϕr≤jr

t+1∏
r=1

(
jr
ϕr

)(mr−2∑
q=0

xq

)ϕr
y +

(l+1)−1−s∑
q=1

xq


+

[
yl+2yl+1

]
,

therefore true for any asymmetric complete flower graph with center Cn where n > 1. 2

By the proof of Corollary 3.8 and Theorem 3.12, we obtain the following result.

Corollary 3.13 Let G be the graph Fnm1j1
,m2j2

,··· ,mtjt

, an asymmetric complete flower graph. Then the

coefficient of xdyk in T (G;x, y) is given by

[xdyk]T (G;x, y) = Cn,k(d) + Cn,k(d− 1)− Cn,k(d− (n− k)− δk,nδd,0,

where δa,b = 1 if a = b and δa,b = 0 otherwise.

Similar techniques as in the proof of Theorem 3.9, Corollary 3.13 lead to the following result.

Theorem 3.14 Define C ′′
i,k(d, n) = Ci,k(d) +Ci,k(d− 1)−Ci,k(d− (n− k))− δn,kδd,0 , where δa,b = 1 if a = b

and δa,b = 0 otherwise. Let G be an asymmetric incomplete flower graph with i petals, F i
nm1j1

,m2j2
,··· ,mtjt

,

where i ∈ {1, 2, · · · , n− 1} . Then the ℓ-defect polynomial of G is

ϕℓ(G;λ) =
∑
d,k≥0

r−d∑
a=0

C ′′
i,k(d)(−1)r−d−a(λ− 1)d−(ℓ−a−k)

(
r − d

a

)(
d

ℓ− a− k

)
.

4. Conclusion

Two nonisomorphic graphs are χ-equivalent if they have the same chromatic polynomial. Two nonisomorphic

graphs are Tutte-equivalent if they have the same Tutte polynomial. The following theorem highlights classes

of graphs that are χ-equivalent and Tutte-equivalent and that have the same k -defect polynomials.

Theorem 4.1 Let G1 and G2 be nonisomorphic asymmetric incomplete flower graphs represented by

F i
nm1j1

,m2j2
,··· ,mtjt

. Then

(i) T (G1;x, y) = T (G2;x, y),

(ii) χ(G1;λ) = χ(G2;λ),

(iii) ϕk(G1;λ) = ϕk(G2;λ).
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