## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $795-809$
(C) TÜBİTAK
doi:10.3906/mat-1410-26

# On Condition $(P W P)_{w}$ for $S$-posets 

Xingliang LIANG*, Yanfeng LUO<br>School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, P.R. China

| Received: 09.10 .2014 | Accepted/Published Online: 09.02 .2015 | Printed: 30.11 .2015 |
| :--- | :--- | :--- | :--- |


#### Abstract

Golchin and Rezaei (Commun Algebra 2009; 37: 1995-2007) introduced the weak version of Condition $(P W P)$ for $S$-posets, called Condition $(P W P)_{w}$. In this paper, we continue to study this condition. We first present a necessary and sufficient condition under which the $S$-poset $A(I)$ satisfies Condition $(P W P)_{w}$. Furthermore, we characterize pomonoids $S$ over which all cyclic (Rees factor) $S$-posets satisfy Condition $(P W P)_{w}$, and pomonoids $S$ over which all Rees factor $S$-posets satisfying Condition $(P W P)_{w}$ have a certain property. Finally, we consider direct products of $S$-posets satisfying Condition $(P W P)_{w}$.


Key words: Condition $(P W P)_{w}, S$-poset, Rees factor $S$-poset, direct product

## 1. Introduction and preliminaries

A partially ordered monoid, or briefly pomonoid, is a monoid $S$ together with a partial order $\leq$ on $S$ such that $s \leq s^{\prime}$ implies $s u \leq s^{\prime} u$ and $u s \leq u s^{\prime}$ for all $s, s^{\prime}, u \in S$. An ordered right ideal of a pomonoid $S$ is a nonempty subset $I$ of $S$ such that (1) $I S \subseteq I$ and (2) $s \leq t \in I$ implies $s \in I$, for all $s, t \in S$. In this paper, $S$ always denotes a pomonoid, and a right ideal of $S$ is simply a nonempty subset $I$ of $S$ for which $I S \subseteq I$ (not necessarily an ordered right ideal).

Let $S$ be a pomonoid. A right $S$-poset, usually denoted $A_{S}$, is a nonempty set $A$ equipped with a partial order $\leq$ and a right action $A \times S \rightarrow A,(a, s) \mapsto a s$, which satisfies the conditions: (1) the action is monotonic in each variable, (2) $a(s t)=(a s) t$ and $a 1=a$ for all $a \in A$ and $s, t \in S$. Left $S$-posets ${ }_{S} B$ are defined analogously, and $\Theta_{S}=\{\theta\}$ is the one-element right $S$-poset. All left (resp., right) $S$-posets form a category, denoted $S-P O S$ (resp., $P O S-S$ ), in which the morphisms are the functions preserving both the action and the order (see [3]).

Preliminary work on flatness properties of $S$-posets was done by Fakhruddin in the 1980s (see [4, 5]), and continued in recent papers (e.g., [1, 2, 6, 7, 10, 12, 13]).

An $S$-subposet $B_{S}$ of an $S$-poset $A_{S}$ is called convex if, for any $a \in A_{S}$ and $b, b^{\prime} \in B_{S}, b^{\prime} \leq a \leq b$ implies $a \in B$. A pomonoid $S$ is called weakly right reversible if, for any $s, s^{\prime} \in S$, there exist $u, v \in S$ such that $u s \leq v s^{\prime}$. A pomonoid $S$ is called left collapsible if, for any $s, s^{\prime} \in S$, there exists $u \in S$ such that $u s=u s^{\prime}$. A pomonoid $S$ is called weakly left collapsible if, for any $s, s^{\prime}, z \in S, s z=s^{\prime} z$ implies that there exists $u \in S$ such that $u s=u s^{\prime}$.

[^0]In [4], Fakhruddin introduced the concept of order congruence on $S$-posets. An order congruence on an $S$-poset $A_{S}$ is an $S$-act congruence $\theta$ such that the factor act $A / \theta$ can be equipped with a compatible order so that the natural map $A \rightarrow A / \theta$ is an $S$-poset morphism.

An $S$-poset $A_{S}$ is called cyclic if $A=a S=\{a s \mid s \in S\}$ for some $a \in A_{S}$. An $S$-poset $A_{S}$ is cyclic if and only if it is isomorphic to the factor $S$-poset of $S_{S}$ by an $S$-poset congruence. If $K_{S}$ is a convex right ideal of a pomonoid $S$, then there exists an $S$-poset congruence such that one of its classes is $K$ and all the others are singletons. Moreover, the factor $S$-poset by this congruence is called the Rees factor $S$-poset of $S$ by $K$, and denoted $S / K$. For $s \in S$, the congruence class of $s$ in $S / K$ will be denoted by $[s]_{\rho_{K}}$, or briefly $[s]$.

The tensor product $A \otimes_{S} B$ of a right $S$-poset $A_{S}$ and a left $S$-poset ${ }_{S} B$ is a poset that can be constructed in a standard way (see [13] for details) so that the map $A \times B \rightarrow A \otimes_{S} B$ sending ( $a, b$ ) to $a \otimes b$ is balanced, monotonic in both variables, and universal among balanced, monotonic maps from $A \times B$ into posets. The order relation on $A \otimes_{S} B$ can be described as follows: $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A \otimes_{S} B$ if and only if there exist $a_{1}, a_{2}, \ldots, a_{n} \in A_{S}, b_{2}, \ldots, b_{n} \in{ }_{S} B$, and $s_{1}, t_{1}, \ldots, s_{n}, t_{n} \in S$ such that

$$
\begin{array}{rlr}
a \leq a_{1} s_{1} & \\
a_{1} t_{1} \leq a_{2} s_{2} & s_{1} b \leq t_{1} b_{2} \\
a_{2} t_{2} \leq a_{3} s_{3} & s_{2} b_{2} \leq t_{2} b_{3} \\
\vdots & \vdots \\
a_{n} t_{n} & \leq a^{\prime} & s_{n} b_{n} \leq t_{n} b^{\prime}
\end{array}
$$

It is easily established, as for $S$-acts, that $A \otimes_{S} S$ can be equipped with a natural right $S$-action, and $A \otimes_{S} S \cong A$ for any $S$-poset $A_{S}$.

In $[1,12]$, the properties of po-flatness, po-torsion freeness, and Conditions $(P),\left(P_{w}\right)$, and $(E)$ are introduced. An $S$-poset $A_{S}$ is called po-flat if, for all $a, a^{\prime} \in A_{S}$ and $b, b^{\prime} \in{ }_{S} B, a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A \otimes_{S} B$ implies $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A \otimes_{S}\left(S b \cup S b^{\prime}\right)$. An $S$-poset $A_{S}$ is called (principally) weakly po-flat if, for all (principal) left ideals $I$ of a pomonoid $S$, and all $s, s^{\prime} \in I, a, a^{\prime} \in A, a \otimes s \leq a^{\prime} \otimes s^{\prime}$ in $A \otimes_{S} S$ implies $a \otimes s \leq a^{\prime} \otimes s^{\prime}$ in $A \otimes_{S} I$. An $S$-poset $A_{S}$ is said to satisfy Condition $(P)$ if, for all $a, a^{\prime} \in A_{S}$ and $s, s^{\prime} \in S$, as $\leq a^{\prime} s^{\prime}$ implies $a=a^{\prime \prime} u, a^{\prime}=a^{\prime \prime} v$ for some $a^{\prime \prime} \in A_{S}$ and $u, v \in S$ with $u s \leq v s^{\prime}$. An $S$-poset $A_{S}$ is said to satisfy Condition $(E)$ if, for all $a \in A_{S}$ and $s, s^{\prime} \in S$, as $\leq a s^{\prime}$ implies $a=a^{\prime} u$ for some $a^{\prime} \in A_{S}$ and $u \in S$ with $u s \leq u s^{\prime}$. An $S$-poset $A_{S}$ is called strongly flat if it satisfies Conditions $(E)$ and $(P)$. An $S$-poset $A_{S}$ is said to satisfy Condition $\left(P_{w}\right)$ if, for all $a, a^{\prime} \in A_{S}$ and $s, s^{\prime} \in S$, as $\leq a^{\prime} s^{\prime}$ implies $a \leq a^{\prime \prime} u$, $a^{\prime \prime} v \leq a^{\prime}$ for some $a^{\prime \prime} \in A_{S}$ and $u, v \in S$ with $u s \leq v s^{\prime}$. An element $c \in S$ is called right po-cancellable if, for all $s, s^{\prime} \in S, s c \leq s^{\prime} c$ implies $s \leq s^{\prime}$. An $S$-poset $A_{S}$ is called po-torsion free if, for all $a, a^{\prime} \in A_{S}$, and all right po-cancellable elements $c$ of $S, a c \leq a^{\prime} c$ implies $a \leq a^{\prime}$.

Recall that an $S$-poset $A_{S}$ is said to satisfy Condition $\left(E^{\prime}\right)$ if, for all $a \in A_{S}$ and $s, s^{\prime}, z \in S$, as $\leq a s^{\prime}$ and $s z=s^{\prime} z$ imply $a=a^{\prime} u$ for some $a^{\prime} \in A_{S}$ and $u \in S$ with $u s \leq u s^{\prime}$. An $S$-poset $A_{S}$ is called weakly subpullback flat if it satisfies Conditions $\left(E^{\prime}\right)$ and $(P)$.

In [6], Conditions $(W P),(W P)_{w},(P W P)$, and $(P W P)_{w}$ were introduced. An $S$-poset $A_{S}$ is said to satisfy Condition $(W P)$ if the corresponding $\phi$ is surjective for every subpullback diagram $P(I, I, f, f, S)$, where $I$ is a left ideal of $S$. An $S$-poset $A_{S}$ is said to satisfy Condition $(W P)_{w}$ if, for all $a, a^{\prime} \in A_{S}, s, t \in S$, and all homomorphisms $f:{ }_{S}(S s \cup S t) \rightarrow{ }_{S} S, a f(s) \leq a^{\prime} f(t)$ implies $a \otimes s \leq a^{\prime \prime} \otimes u s^{\prime}$ and $a^{\prime \prime} \otimes v t^{\prime} \leq a^{\prime} \otimes t$ in
$A \otimes_{S}(S s \cup S t)$ for some $a^{\prime \prime} \in A_{S}, u, v \in S$ and $s^{\prime}, t^{\prime} \in\{s, t\}$ with $f\left(u s^{\prime}\right) \leq f\left(v t^{\prime}\right)$. An $S$-poset $A_{S}$ is said to satisfy Condition $(P W P)$ if the corresponding $\phi$ is surjective for every subpullback diagram $P(S s, S s, f, f, S)$, $s \in S$. An $S$-poset $A_{S}$ is said to satisfy Condition $(P W P)_{w}$ if, for all $a, a^{\prime} \in A_{S}$ and $s \in S$,

$$
\text { as } \leq a^{\prime} s \text { implies } a \leq a^{\prime \prime} u \text { and } a^{\prime \prime} v \leq a^{\prime} \text { for some } a^{\prime \prime} \in A_{S}, u, v \in S \text { with } u s \leq v s
$$

Moreover, the authors in [6] gave equivalent descriptions of Conditions $(P W P),(W P)$, and $(W P)_{w}$ for (cyclic, Rees factor) $S$-posets and obtained the relations between these conditions and properties already studied as follows:

$$
\begin{array}{rlccc}
\text { free } \Rightarrow \text { projective } \Rightarrow \text { strongly flat } \Rightarrow \begin{array}{cc}
(\mathrm{P}) & \Rightarrow \\
\Downarrow & (\mathrm{WP})
\end{array} & \Rightarrow & (\mathrm{PWP}) \\
\left(\mathrm{P}_{\mathrm{w}}\right) & \Rightarrow & (\mathrm{WP})_{\mathrm{w}} & \Rightarrow & (\mathrm{PWP})_{\mathrm{w}} \\
\Downarrow & \Downarrow & \Downarrow \\
\text { po-flat } & \Rightarrow \text { w. po-f. } & \Rightarrow & \text { p. w. po-f. } \Rightarrow \text { po-t. f. } \\
\Downarrow & \Downarrow & & \Downarrow & \text { (incomparable) } \\
\text { flat } & \Rightarrow & \text { w. f. } & \Rightarrow & \text { p. w. f. } \Rightarrow \text { t. f. }
\end{array}
$$

In this paper, we will continue the work of [6] to study Condition $(P W P)_{w}$. For $S$-posets, the definition of the $S$-poset $A(I)$ was introduced in [3]. Qiao et al. in [9] proved that $A(I)$ fails to satisfy Condition ( $P$ ). Later, in [10], they further investigated some flatness properties of $A(I)$ and provided an equivalent description of $A(I)$ satisfying Condition $(P)_{w}$. In fact, observing the proof of [9, Lemma 2.4], we obtain that $A(I)$ also fails to satisfy Condition $(P W P)$. However, the situation for Condition $(P W P)_{w}$ is markedly different. Thereby, in Section 2, we determine the condition under which $A(I)$ satisfies Condition $(P W P)_{w}$. In [1, 11], some flatness properties of Rees factor $S$-posets are discussed. Later, Golchin et al. in [6] gave an equivalent characterization of cyclic (Rees factor) $S$-posets satisfying Condition $(P W P)$ (Conditions $(W P)_{w}$ and $(W P)$ ). In Section 3, we characterize pomonoids $S$ over which all cyclic (Rees factor) $S$-posets satisfy Condition $(P W P)_{w}$. In [7], Khosravi first studied direct products of $S$-posets satisfying some flatness properties. In Section 4, we investigate pomonoids $S$ over which $S$-posets satisfying Condition $(P W P)_{w}$ are preserved under direct products.

## 2. $S$-posets satisfying Condition $(P W P)_{w}$

In this section, we discuss $S$-posets satisfying Condition $(P W P)_{w}$ and provide a necessary and sufficient condition under which the $S$-poset $A(I)$ satisfies Condition $(P W P)_{w}$.

We first give an alternative description for Condition $(P W P)_{w}$.
Proposition 2.1 A right $S$-poset $A_{S}$ satisfies Condition $(P W P)_{w}$ if and only if for all $a, a^{\prime} \in A_{S}, x, y, s \in S$, and all homomorphisms $f:{ }_{S} S s \rightarrow_{S} S, a f(x s) \leq a^{\prime} f(y s)$ implies that there exist $a^{\prime \prime} \in A_{S}$ and $u, v \in S$ such that $f(u s) \leq f(v s), a \otimes x s \leq a^{\prime \prime} \otimes u s$ and $a^{\prime \prime} \otimes v s \leq a^{\prime} \otimes y s$ in $A \otimes_{S} S s$.
Proof It follows from the definition of Condition $(P W P)_{w}$.
The following proposition shows that right $S$-posets satisfying Condition $(P W P)_{w}$ are closed under directed colimits. For more information about directed colimits in the category $P O S-S$ the reader is referred to $[2,3]$.

Proposition 2.2 Every directed colimit of a direct system of right $S$-posets that satisfy Condition $(P W P)_{w}$ satisfies Condition $(P W P)_{w}$.

Proof Let $\left(A_{i}, \phi_{i, j}\right)$ be a direct system of right $S$-posets satisfying Condition $(P W P)_{w}$ over a directed index set $I$ with directed colimit $\left(A, \alpha_{i}\right)$. Suppose that as $\leq a^{\prime} s$ in $A$. Then there exist $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$ with $a=\alpha_{i}\left(a_{i}\right), a^{\prime}=\alpha_{j}\left(a_{j}\right)$. Since $I$ is directed, by [2, Proposition 2.5] there exists $k \geq i, j$ such that $\phi_{i, k}\left(a_{i}\right) s \leq \phi_{j, k}\left(a_{j}\right) s$ in $A_{k}$. Since $A_{k}$ satisfies Condition $(P W P)_{w}$, there exist $a^{\prime \prime} \in A_{k}$ and $u, v \in S$ such that $\phi_{i, k}\left(a_{i}\right) \leq a^{\prime \prime} u, a^{\prime \prime} v \leq \phi_{j, k}\left(a_{j}\right)$ and $u s \leq v s$, but then $a=\alpha_{i}\left(a_{i}\right)=\alpha_{k} \phi_{i, k}\left(a_{i}\right) \leq \alpha_{k}\left(a^{\prime \prime}\right) u$. In a similar way $\alpha_{k}\left(a^{\prime \prime}\right) v \leq a^{\prime}$, and this implies that $A$ satisfies Condition $(P W P)_{w}$.

It follows from [6] that Condition $(P W P)_{w}$ implies principally weakly po-flat but not conversely in general. However, for right po-cancellable pomonoids, we have the following corollary, which follows from [6] and [12, Theorems 3.21 and 3.22].

Corollary 2.3 Let $S$ be a right po-cancellable pomonoid and $A_{S}$ an $S$-poset. Then the following statements are equivalent:
(1) $A_{S}$ satisfies Condition $\left(P_{w}\right)$;
(2) $A_{S}$ satisfies Condition $(W P)_{w}$;
(3) $A_{S}$ satisfies Condition $(P W P)_{w}$;
(4) $A_{S}$ is weakly po-flat;
(5) $A_{S}$ is principally weakly po-flat;
(6) $A_{S}$ is po-torsion free.

Now we consider the right $S$-poset $A(I)$ satisfying Condition $(P W P)_{w}$. The following definition of $A(I)$ first appeared in [3].

Suppose $I$ is a proper right ideal of a pomonoid $S$. For any $x, y, z \notin S$, let $A(I)=(\{x, y\} \times(S-I)) \cup$ $(\{z\} \times I)$. Define a right $S$-action on $A(I)$ by

$$
\begin{aligned}
& (x, u) s= \begin{cases}(x, u s), & \text { if us } \notin I, \\
(z, u s), & \text { if us } \in I,\end{cases} \\
& (y, u) s= \begin{cases}(y, u s), & \text { if us } \notin I, \\
(z, u s), & \text { if us } \in I,\end{cases} \\
& (z, u) s=(z, u s) .
\end{aligned}
$$

The order on $A(I)$ is defined by

$$
\left(w_{1}, s\right) \leq\left(w_{2}, t\right) \Leftrightarrow\left(w_{1}=w_{2}, s \leq t\right) \text { or }\left(w_{1} \neq w_{2}, s \leq i \leq t \text { for some } i \in I\right) .
$$

Then $A(I)$ is a right $S$-poset (see [10] for details).
Theorem 2.4 Let $I$ be a proper right ideal of a pomonoid $S$. Then the right $S$-poset $A(I)$ satisfies Condition $(P W P)_{w}$ if and only if for any $u, v, s \in S$ and $i \in I$,

$$
u s \leq i \leq v s \Rightarrow(\exists j \in I)(u s \leq j s \wedge j \leq v) \vee(j s \leq v s \wedge u \leq j) .
$$

Proof Necessity: If $u s \leq i \leq v s$ for any $u, v, s \in S$ and $i \in I$, then $(x, 1) u s \leq(y, 1) v s$. There are four cases to be considered:

Case 1. $u, v \notin I$. Then $(x, u) s \leq(y, v) s$. Since $A(I)$ satisfies Condition $(P W P)_{w}$, there exist $u^{\prime}, v^{\prime} \in S$ and $(w, p) \in A(I)$ such that

$$
\begin{equation*}
(x, u) \leq(w, p) u^{\prime},(w, p) v^{\prime} \leq(y, v) \text { and } u^{\prime} s \leq v^{\prime} s \tag{1}
\end{equation*}
$$

There are three subcases:
Subcase 1. $w=x$. If $p v^{\prime} \notin I$, then by (1) we have $(x, u) \leq(x, p) u^{\prime},\left(x, p v^{\prime}\right) \leq(y, v)$, and $u^{\prime} s \leq v^{\prime} s$. Hence, there exists $j \in I$ such that $u \leq p u^{\prime}$ and $p v^{\prime} \leq j \leq v$. Since $u^{\prime} s \leq v^{\prime} s$ implies $\left(p u^{\prime}\right) s \leq\left(p v^{\prime}\right) s$, we have $u s \leq\left(p u^{\prime}\right) s \leq\left(p v^{\prime}\right) s \leq j s$. If $p v^{\prime} \in I$, then we can take $j=p v^{\prime}$.

Subcase 2. $w=y$. If $p u^{\prime} \notin I$, then by (1) we have $(x, u) \leq\left(y, p u^{\prime}\right),(y, p) v^{\prime} \leq(y, v)$, and $u^{\prime} s \leq v^{\prime} s$. Hence, there exists $j \in I$ such that $u \leq j \leq p u^{\prime}$ and $p v^{\prime} \leq v$. Since $u^{\prime} s \leq v^{\prime} s$ implies $\left(p u^{\prime}\right) s \leq\left(p v^{\prime}\right) s$, we have $j s \leq\left(p u^{\prime}\right) s \leq\left(p v^{\prime}\right) s \leq v s$. If $p u^{\prime} \in I$, then we can take $j=p u^{\prime}$.

Subcase 3. $w=z$. In the case, we may take $j=p u^{\prime}$ or $j=p v^{\prime}$.
Case 2. $u \notin I, v \in I$. This is analogous to case 1 .
Case 3. $u \in I, v \notin I$. This is also analogous to case 1 .
Case 4. $u \in I, v \in I$. Then $(z, u) s \leq(z, v) s$. Since $A(I)$ satisfies Condition $(P W P)_{w}$, there exist $u^{\prime}, v^{\prime} \in S$ and $(w, p) \in A(I)$ such that $(z, u) \leq(w, p) u^{\prime},(w, p) v^{\prime} \leq(z, v)$, and $u^{\prime} s \leq v^{\prime} s$. We have $(z, u s)=(z, u) s \leq(w, p) u^{\prime} s \leq(w, p) v^{\prime} s \leq(z, v) s=(z, v s)$, so $u s \leq v s$. Then we can take $j=u$ or $j=v$.

Sufficiency: Suppose that $\left(w_{1}, u\right),\left(w_{2}, v\right) \in A(I)$, and $s \in S$ are such that

$$
\begin{equation*}
\left(w_{1}, u\right) s \leq\left(w_{2}, v\right) s \tag{2}
\end{equation*}
$$

There are three cases to be considered:
Case 1. If $w_{1}=w_{2}=x$, then by (2) we have $(x, u) s \leq(x, v) s$. Hence $(x, u) \leq(x, 1) u,(x, 1) v \leq(x, v)$, and $u s \leq v s$.

Case 2. If $w_{1}=x, w_{2}=y$, then by (2) we have $(x, u) s \leq(y, v) s$. By the definition of $A(I)$, there exists $i \in I$ such that $u s \leq i \leq v s$. By assumption, there exists $j \in I$ such that $u s \leq j s$ and $j \leq v$, or $j s \leq v s$ and $u \leq j$. If $u s \leq j s, j \leq v$, then $(x, 1) j=(z, j)=(y, 1) j \leq(y, 1) v=(y, v)$ and $(x, u) \leq(x, 1) u$, and if $j s \leq v s, u \leq j$, then $(x, u)=(x, 1) u \leq(x, 1) j=(z, j)=(y, 1) j$ and $(y, 1) v \leq(y, v)$. Therefore, $A(I)$ satisfies Condition $(P W P)_{w}$.

Case 3. If $w_{1}=x, w_{2}=z$, then (2) means $(x, u) s \leq(z, v) s$. Hence, $(x, u) \leq(x, 1) u,(x, 1) v \leq(z, v)$, and $u s \leq v s$.

The other cases can be discussed similarly and we obtain that $A(I)$ satisfies Condition $(P W P)_{w}$.

Corollary 2.5 Let $S$ be a pomonoid and 1 the identity of $S$, in which 1 is incomparable with every other element of $S$. Then the following conditions on pomonoids are equivalent:
(1) All right $S$-posets satisfy Condition $(P W P)_{w}$;
(2) All right $S$-posets satisfying Condition ( $E$ ) satisfy Condition $(P W P)_{w}$;
(3) All finitely generated right $S$-posets satisfy Condition $(P W P)_{w}$;
(4) All finitely generated right $S$-posets satisfying Condition $(E)$ satisfy Condition $(P W P)_{w}$;
(5) $S$ is a pogroup.

Proof The implications $(1) \Rightarrow(2) \Rightarrow(4)$ and $(1) \Rightarrow(3) \Rightarrow(4)$ are all clear.
$(4) \Rightarrow(5)$. Suppose that $I$ is a proper right ideal of a pomonoid $S$. It follows from [10, Lemma 2.2] that the right $S$-poset $A(I)$ satisfies Condition $(E)$. By assumption, $A(I)$ satisfies Condition $(P W P)_{w}$. Since $i \leq i \leq i$ for every $i \in I$, we take $u=v=1$, and by Theorem 2.4, there exists $j \in I$ such that $j \leq 1$ or $1 \leq j$. However, 1 is isolated and we obtain $j=1$, a contradiction. Hence, $S$ has no proper right ideals, and so $S$ is a pogroup.
$(5) \Rightarrow(1)$. It is straightforward to verify.
At the end of this section, we present an example from [12, Example] that $A(I)$ satisfies Condition $(P W P)_{w}$. Let $S=\{1,0\}$ be a monoid with the usual order. We consider the ideal $I=\{0\}$. It follows from Theorem 2.4 that $A(I)$ satisfies Condition $(P W P)_{w}$. However, if $S=\{1,0\}$ with the discrete order, and the ideal $I=\{0\}$, then $A(I)$ does not satisfy Condition $(P W P)_{w}$. This is because, taking $u=v=1$ and $s=i=0$ in Theorem 2.4, we have $u s \leq i \leq v s$, and there does not exist $j \in I$ such that $j \leq v$, or $u \leq j$.

## 3. Cyclic (Rees factor) $S$-posets satisfying $(P W P)_{w}$

In this section, we will give a description of pomonoids $S$ by Condition $(P W P)_{w}$ of cyclic (Rees factor) $S$-posets.

A relation $\sigma$ on an $S$-poset $A_{S}$ is called a pseudo-order on $A_{S}$ if it is transitive, compatible with the $S$-action, and contains the relation $\leq$ on $A_{S}$. The relationship between order congruences and pseudo-orders on $A_{S}$ was given in [14].

Suppose that $\rho$ is a right order congruence on a pomonoid $S$. Define a relation $\hat{\rho}$ by

$$
s \widehat{\rho} t \Leftrightarrow[s]_{\rho} \leq[t]_{\rho} \text { in } S / \rho
$$

It is clear that $\hat{\rho}$ is a pseudo-order on $A_{S}$. Below we will describe cyclic $S$-posets satisfying Condition $(P W P)_{w}$.

Proposition 3.1 Let $\rho$ be a right order congruence on a pomonoid $S$. Then the cyclic right $S$-poset $S / \rho$ satisfies Condition $(P W P)_{w}$ if and only if

$$
(\forall x, y, t \in S)\left([x]_{\rho} t \leq[y]_{\rho} t \Rightarrow(\exists u, v \in S)(u t \leq v t \wedge x \widehat{\rho} u \wedge v \widehat{\rho} y)\right)
$$

Proof It is a routine matter.
The following is a direct corollary of Proposition 3.1.

Corollary 3.2 Let $S$ be any pomonoid. Then $\Theta_{S}$ satisfies Condition $(P W P)_{w}$.
To get the results for Rees factor $S$-posets we need some more preliminary material.

Lemma 3.3 ([1, Lemma 3]) Let $K$ be a convex, proper right ideal of a pomonoid $S$. Then for $x, y \in S$,

$$
[x]_{\rho_{K}} \leq[y]_{\rho_{K}} \text { in } S / K \Leftrightarrow(x \leq y) \text { or }\left(x \leq k \text { and } k^{\prime} \leq y \text { for some } k, k^{\prime} \in K\right)
$$

Moreover, $[x]_{\rho_{K}}=[y]_{\rho_{K}}$ in $S / K$ if and only if either $x=y$ or else $x, y \in K$.

Recall from $[1,11]$ that a convex, proper right ideal $K$ of a pomonoid $S$ is strongly left stabilizing, if

$$
(\forall k \in K)(\forall s \in S)\left(k \leq s \Rightarrow\left(\exists k^{\prime} \in K\right)\left(k^{\prime} s \leq s\right), \text { and } s \leq k \Rightarrow\left(\exists k^{\prime \prime} \in K\right)\left(s \leq k^{\prime \prime} s\right)\right)
$$

The following two concepts first appeared in [6]. For convenience, we will define them as follows.

Definition 3.4 A convex, proper right ideal $K$ of a pomonoid $S$ is called strongly left annihilating, if

$$
(\forall t \in S)(\forall x, y \in S \backslash K)\left([x]_{\rho_{K}} t \leq[y]_{\rho_{K}} t \Rightarrow x t \leq y t\right)
$$

Definition 3.5 A convex, proper right ideal $K$ of a pomonoid $S$ is called double-strongly left annihilating (briefly, $D$-strongly left annihilating), if for every $s, t \in S \backslash K$ and homomorphism $f:{ }_{s}(S s \cup S t) \rightarrow{ }_{s} S$,

$$
[f(s)]_{\rho_{K}} \leq[f(t)]_{\rho_{K}} \Rightarrow f(s) \leq f(t)
$$

Every $D$-strongly left annihilating convex, proper right ideal of a pomonoid $S$ is strongly left annihilating. Indeed, if $[x]_{\rho_{K}} t \leq[y]_{\rho_{K}} t$ for $t \in S$ and $x, y \in S \backslash K$, then $\left[\rho_{t}(x)\right]_{\rho_{K}} \leq\left[\rho_{t}(y)\right]_{\rho_{K}}$. (If $S$ is a pomonoid and $t \in S$, then $\rho_{t}: S \rightarrow S$ will denote the right translation by $t$, that is, $\rho_{t}(s)=s t$ for any $s \in S$.) This implies that if $K$ is $D$-strongly left annihilating, then $\rho_{t}(x) \leq \rho_{t}(y)$, that is, $x t \leq y t$. Hence, $K$ is strongly left annihilating. The next example from [8, Example 2] shows that not all strongly left annihilating convex, proper right ideals are $D$-strongly left annihilating.

Example 3.6 (strongly left annihilating $\nRightarrow D$-strongly left annihilating) Let $S$ be an annihilating chain of semigroup $S_{1}=\{1\}$, a right zero semigroup $S_{2}=\{s, t\}$, a left zero semigroup $S_{3}=\{x, y\}$, and a semigroup $S_{4}=\{0\} \quad(1>2>3>4)$. The order of $S$ is discrete. (A chain of semigroups $S_{\gamma}, \gamma \in \Gamma$ is called an annihilating chain if $x \in S_{\alpha}$ and $y \in S_{\beta}, \alpha>\beta$ implies $x y=y x=y$.) Consider the right ideal $K=\{x, y, 0\}$. If $[u]_{\rho_{K}} z \leq[v]_{\rho_{K}} z$ for $z \in S$ and $u, v \in S \backslash K$, then $u z \leq v z$, proving that $K$ is strongly left annihilating. Define a mapping $f: S s \cup S t \rightarrow S$ by $f(u s)=u x$ and $f(u t)=u y$ for all $u \in S$. It is straightforward to check that $f$ is a homomorphism of left $S$-posets. Now $[f(s)]_{\rho_{K}} \leq[f(t)]_{\rho_{K}}$, but it does not imply $f(s) \leq f(t)$, so $K$ is not $D$-strongly left annihilating.

Lemma 3.7 ([1, Propositions 10 and 13]) Let $K$ be a convex, proper right ideal of a pomonoid $S$. Then:
(1) $S / K$ is principally weakly po-flat if and only if $K$ is strongly left stabilizing.
(2) $S / K$ is weakly po-flat if and only if $S$ is weakly right reversible and $K$ is strongly left stabilizing.

Lemma 3.8 ([6, Theorem 4.5, Corollary 5.7]) Let $K$ be a convex, proper right ideal of a pomonoid $S$. Then:
(1) $S / K$ satisfies Condition $(P W P)$ if and only if $K$ is strongly left stabilizing and strongly left annihilating.
(2) $S / K$ satisfies Condition $(W P)$ if and only if $S$ is weakly right reversible, and $K$ is strongly left stabilizing and $D$-strongly left annihilating.

For Rees factor $S$-posets satisfying Condition $(P W P)_{w}$, we can give the following description.

Definition 3.9 A convex, proper right ideal $K$ of a pomonoid $S$ is called $w$-strongly left annihilating, if $[x]_{\rho_{K}} t \leq[y]_{\rho_{K}} t$ for any $x, y \in S \backslash K$ and $t \in S$, there exist $u, v \in S$, and $k, k^{\prime}, l, l^{\prime} \in K$ such that one of the following four conditions is satisfied:
(a) $x \leq u, v \leq y$, and $u t \leq v t$;
(b) $x \leq u, v \leq l, l^{\prime} \leq y$, and $u t \leq v t$;
(c) $x \leq k, k^{\prime} \leq u, v \leq y$, and $u t \leq v t$;
(d) $x \leq k, k^{\prime} \leq u, v \leq l, l^{\prime} \leq y$, and $u t \leq v t$.

By the definition, every strongly left annihilating convex, proper right ideal of a pomonoid $S$ is $w$-strongly left annihilating, but the converse is not true by the following Example 3.11.

Theorem 3.10 Let $K$ be a convex, proper right ideal of a pomonoid $S$. Then $S / K$ satisfies Condition $(P W P)_{w}$ if and only if
(1) $K$ is strongly left stabilizing, and
(2) $K$ is $w$-strongly left annihilating.

Proof Necessity: Suppose that $S / K$ satisfies Condition $(P W P)_{w}$. Then $S / K$ is principally weakly po-flat, so by Lemma 3.7, we have (1).

To prove (2) we suppose that $[x]_{\rho_{K}} t \leq[y]_{\rho_{K}} t$ for $x, y \in S \backslash K$ and $t \in S$. Since $S / K$ satisfies Condition $(P W P)_{w}$, by Proposition 3.1, there exist $u, v \in S$ such that $x \widehat{\rho_{K}} u, v \widehat{\rho_{K}} y$ and $u t \leq v t$. Thus, we have $[x]_{\rho_{K}} \leq[u]_{\rho_{K}}$ and $[v]_{\rho_{K}} \leq[y]_{\rho_{K}}$. By Lemma 3.3, $[x]_{\rho_{K}} \leq[u]_{\rho_{K}}$ implies $x \leq u$, or $x \leq k$ and $k^{\prime} \leq u$ for $k, k^{\prime} \in K$. Similarly, $[v]_{\rho_{K}} \leq[y]_{\rho_{K}}$ implies $v \leq y$, or $v \leq l$ and $l^{\prime} \leq y$ for $l, l^{\prime} \in K$. Hence, we get the four possible cases of Definition 3.9, and this implies that $K$ is $w$-strongly left annihilating.

Sufficiency: Assume (1) and (2) hold. To show that $S / K$ satisfies Condition $(P W P)_{w}$, where $K$ is a convex, proper right ideal of the pomonoid $S$, it suffices to show that $S / K$ satisfies the conditions of Proposition 3.1. Now we suppose that $[x]_{\rho_{K}} t \leq[y]_{\rho_{K}} t$ for $x, y, t \in S$. Then $[x t]_{\rho_{K}} \leq[y t]_{\rho_{K}}$. By Lemma 3.3, we have $x t \leq y t$, or $x t \leq k$ and $k^{\prime} \leq y t$ for $k, k^{\prime} \in K$. If $x t \leq y t$, then it suffices in Proposition 3.1 to take $u=x, y=v$. Otherwise, there are the following four cases:

Case 1. $x, y \in K$. We can take $u=v=x$.
Case 2. $x \in K, y \notin K$. Since $k^{\prime} \leq y t$, by assumption (1) there exists $k^{\prime \prime} \in K$ such that $k^{\prime \prime} y t \leq y t$, and so it suffices in Proposition 3.1 to take $u=k^{\prime \prime} y$ and $v=y$.

Case 3. $x \notin K, y \in K$. This is analogous to Case 2.
Case 4. $x, y \notin K$. By (2) of the assumption, there exist $u, v \in S$ and $k, k^{\prime}, l, l^{\prime} \in K$ such that one of the conditions of Definition 3.9 holds. However, in any condition, we always have $x \widehat{\rho_{K}} u, v \widehat{\rho_{K}} y$, and $x t \leq y t$.

The following example illustrates that Condition $(P W P)_{w}$ does not imply Condition $(P W P)$.

Example $3.11\left((\mathrm{PWP})_{\mathrm{w}} \nRightarrow(\mathrm{PWP})\right)$ Let $S=\{1, e, f, 0\}$ denote the monoid with the Cayley table

LIANG and LUO/Turk J Math

|  | 1 | $e$ | $f$ | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $e$ | $f$ | 0 |
| $e$ | $e$ | $e$ | 0 | 0 |
| $f$ | $f$ | 0 | $f$ | 0 |
| 0 | 0 | 0 | 0 | 0 |

and suppose that the only nontrivial order relations are $e<1$ and $0<f$. We consider the ideal $K_{S}=\{e, 0\}$. Then $(S, \leq)$ is a pomonoid, and $K$ is a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal. It follows from Theorem 3.10 that $S / K$ satisfies Condition $(P W P)_{w}$. On the other hand, since $1, f \in S \backslash K$ and $[1] e \leq[f] e$, but $1 e \not \leq f e$. Hence, $K$ is not strongly left annihilating. It follows from Lemma 3.8 that $S / K$ does not satisfy Condition ( $P W P$ ).

In what follows, we give the homological classification of pomonoids $S$ over which all Rees factor $S$-posets satisfying Condition $(P W P)_{w}$ have a certain flatness property. To do this, we require the following results.

Lemma 3.12 ([1, Theorem 1]) Let $S$ be any pomonoid. Then:
(1) $\Theta_{S}$ satisfies Condition $(E)$ if and only if $S$ is left collapsible.
(2) $\Theta_{S}$ satisfies Condition $\left(E^{\prime}\right)$ if and only if $S$ is weakly left collapsible.
(3) The following statements are equivalent:
(a) $\Theta_{S}$ satisfies Condition $(P)$;
(b) $\Theta_{S}$ satisfies Condition (WP) (see [6, Corollary 5.4]);
(c) $\Theta_{S}$ is weakly (po-)flat;
(d) $S$ is weakly right reversible.
(4) $\Theta_{S}$ is (always) principally weakly (po-) flat and (po-) torsion free.

Lemma 3.13 ([11, Lemma 1.8]) Let $K$ be a convex, proper right ideal of a pomonoid $S$. Then the following statements are equivalent:
(1) $S / K$ is strongly flat;
(2) $S / K$ satisfies Condition $(P)$;
(3) $|K|=1$.

Theorem 3.14 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ is weakly po-flat;
(2) $S / K$ satisfying Condition $(P W P)_{w}$ is weakly flat;
(3) $S$ is weakly right reversible.

Proof (1) $\Rightarrow$ (2). It is obvious.
$(2) \Rightarrow(3)$. Since $\Theta_{S}$ always satisfies Condition $(P W P)_{w}$ and, by assumption, $\Theta_{S}$ is weakly flat, it follows from Lemma 3.12 that $S$ is weakly right reversible.
$(3) \Rightarrow(1)$. Suppose that $K$ is a convex right ideal of a pomonoid $S$ and $S / K$ satisfies Condition $(P W P)_{w}$. If $K$ is a proper, convex right ideal, using Theorem 3.10, $K$ is a strongly left stabilizing convex, proper right ideal, since $S$ is weakly right reversible and by Lemma 3.7, $S / K$ is weakly po-flat. However, if $K=S$ and $S$ is weakly right reversible, then by Lemma $3.12, S / K \cong \Theta_{S}$ is weakly po-flat.

Note that Condition $(P W P)_{w}$ and weakly po-flat are independent notions. Indeed, on the one hand, if a pomonoid $S$ is not weakly right reversible, then by Theorem 3.14, there exists a Rees factor $S$-poset $S / K$ satisfying Condition $(P W P)_{w}$ that is not weakly po-flat. Therefore, Condition $(P W P)_{w}$ does not imply weakly po-flat in general. On the other hand, by [6, Example 6.3], there exists a weakly po-flat Rees factor $S$-poset that fails to satisfy Condition $(P W P)_{w}$.

Theorem 3.15 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ satisfies Condition $(W P)$;
(2) $S$ is weakly right reversible, and every strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ of $S$ is $D$-strongly left annihilating.
Proof $\quad(1) \Rightarrow(2)$. Since $\Theta_{S}$ satisfies Condition $(P W P)_{w}$ and by assumption, $\Theta_{S}$ satisfies Condition $(W P)$, from Lemma 3.8, it follows that $S$ is weakly right reversible. Let $K$ be a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal. From Theorem 3.10, it follows that $S / K$ satisfies Condition $(P W P)_{w}$. By assumption, $S / K$ satisfies Condition $(W P)$ and so by Lemma 3.8, $K$ is $D$-strongly left annihilating.
$(2) \Rightarrow(1)$. Let $K$ be a convex right ideal of the pomonoid $S$ and $S / K$ satisfies Condition $(P W P)_{w}$. If $K$ is a convex, proper right ideal, then by Theorem 3.10, $K$ is a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal, and so by assumption, $K$ is a $D$-strongly left annihilating right ideal. Since $S$ is weakly right reversible, from Lemma 3.8, it follows that $S / K$ satisfies Condition $(W P)$. However, if $K=S$ and $S$ is weakly right reversible, then by Lemma 3.12, $S / K \cong \Theta_{S}$ satisfies Condition $(W P)$.

Applying Lemma 3.8 and Theorem 3.10, we can get:
Theorem 3.16 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ satisfies Condition $(P W P)$;
(2) Every strongly left stabilizing and w-strongly left annihilating convex, proper right ideal $K$ of $S$ is strongly left annihilating.

Theorem 3.17 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ satisfies Condition $(P)$;
(2) $S$ is weakly right reversible, and $S$ has no strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$.

Proof $(1) \Rightarrow(2)$. Since $\Theta_{S}$ satisfies Condition $(P W P)_{w}$, by assumption, $\Theta_{S}$ satisfies Condition ( $P$ ). From Lemma 3.12, we obtain that $S$ is weakly right reversible. Assume $S$ has a strongly left stabilizing and $w$ strongly left annihilating convex, proper right ideal $K$ with $|K|>1$. From Theorem 3.10 it follows that $S / K$ satisfies Condition $(P W P)_{w}$. By assumption, $S / K$ satisfies Condition $(P)$, and so by Lemma $3.13,|K|=1$, a contradiction is obtained.
$(2) \Rightarrow(1)$. Let $K$ be a convex right ideal of the pomonoid $S$. Suppose that $S / K$ satisfies Condition $(P W P)_{w}$. If $K$ is a convex, proper right ideal of $S$, it follows from Theorem 3.10 that $K$ is a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal. By assumption, $|K|=1$, and so $S / K$ satisfies Condition $(P)$. However, if $K=S, S / K \cong \Theta_{S}$ satisfies Condition $(P W P)_{w}$. Since $S$ is weakly right reversible, by Lemma 3.12, $\Theta_{S}$ satisfies Condition ( $P$ ).

The following example shows that Condition $(P W P)_{w}$ does not imply Condition $(P)$.

Example 3.18 ([11, Example 3.22]) Let $S$ be a left zero semigroup $K$ with 1 adjoined and $|K|>1$. The order of $S$ is discrete. It is easy to verify that $K$ is strongly left stabilizing and $w$-strongly left annihilating. It follows from Theorem 3.10 that $S / K$ satisfies Condition $(P W P)_{w}$. However, by Theorem 3.17, $S / K$ does not satisfy Condition ( $P$ ).

In what follows we will use the following.

Theorem 3.19 Let $K$ be a convex right ideal of a pomonoid $S$. The right Rees factor $S$-poset $S / K$ is weakly subpullback flat if and only if $K=S$ is weakly right reversible and weakly left collapsible, or $|K|=1$.
Proof Necessity: If $K=S$ and $S / K \cong \Theta_{S}$ is weakly subpullback flat, then $\Theta_{S}$ satisfies Conditions ( $P$ ) and $\left(E^{\prime}\right)$. From Lemma 3.12, we obtain that $S$ is weakly right reversible and weakly left collapsible. Assume $S$ has a convex, proper right ideal $K$ and $S / K$ is weakly subpullback flat. Then $S / K$ satisfies Condition $(P)$, and so by lemma 3.13, $|K|=1$.

Sufficiency: If $K$ is a convex, proper right ideal of the pomonoid $S$, then by assumption, we have $|K|=1$ and $S / K \cong S$ is strongly flat, and it is clear that $S / K$ is weakly subpullback flat. However, if $K=S$ is weakly right reversible and weakly left collapsible, then by Lemma 3.12, $S / K \cong \Theta_{S}$ satisfies Conditions ( $P$ ) and $\left(E^{\prime}\right)$. Hence, $\Theta_{S}$ is weakly subpullback flat.

Theorem 3.20 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ is weakly subpullback flat;
(2) $S$ is weakly right reversible and weakly left collapsible, and $S$ has no strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$.

Proof $(1) \Rightarrow(2)$. Since $\Theta_{S}$ satisfies Condition $(P W P)_{w}$, by assumption, $\Theta_{S}$ is weakly subpullback flat. Applying Theorem 3.19, we obtain that $S$ is weakly right reversible and weakly left collapsible. Assume $S$ has a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$. From Theorem 3.10, it follows that $S / K$ satisfies Condition $(P W P)_{w}$. By assumption, $S / K$ is weakly subpullback flat, and so by Theorem 3.19, $|K|=1$, a contradiction.
$(2) \Rightarrow(1)$. Suppose that $K$ is a convex right ideal of the pomonoid $S$ and $S / K$ satisfies Condition $(P W P)_{w}$. If $K$ is a convex, proper right ideal of $S$, by Theorem $3.10, K$ is a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal. By assumption, $|K|=1$, and so $S / K \cong S$ is strongly flat. Clearly, $S / K$ is weakly subpullback flat. However, if $K=S, S / K \cong \Theta_{S}$ satisfies Condition $(P W P)_{w}$. Since $S$ is weakly right reversible and weakly left collapsible, by Lemma 3.12, $\Theta_{S}$ satisfies Conditions $(P)$ and $\left(E^{\prime}\right)$. Hence, $\Theta_{S}$ is weakly subpullback flat.

Theorem 3.21 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ is strongly flat;
(2) $S$ is left collapsible, and $S$ has no strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$.

Proof $(1) \Rightarrow(2)$. Since $\Theta_{S}$ satisfies Condition $(P W P)_{w}$ and by assumption, $\Theta_{S}$ is strongly flat, thus $\Theta_{S}$ satisfies Condition $(E)$. Using Lemma 3.12, $S$ is left collapsible. Assume $S$ has a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$. By Theorem $3.10, S / K$ satisfies Condition $(P W P)_{w}$, so by assumption, $S / K$ is strongly flat, and by Lemma $3.13,|K|=1$, a contradiction is obtained.
$(2) \Rightarrow(1)$. Let $K$ be a convex right ideal of the pomonoid $S$ and $S / K$ satisfies Condition $(P W P)_{w}$. If $K$ a is convex, proper right ideal, by Theorem $3.10, K$ is a strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal. By assumption, $|K|=1$, and so $S / K \cong S$ is strongly flat. However, if $K=S, S / K \cong \Theta_{S}$ satisfies Condition $(P W P)_{w}$. Since $S$ is left collapsible, by Lemma 3.12, $\Theta_{S}$ satisfies Condition $(E)$. Hence, $\Theta_{S}$ is strongly flat.

Theorem 3.22 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ is projective;
(2) $S$ has a left zero element, and $S$ has no strongly left stabilizing and $w$-strongly left annihilating convex, proper right ideal $K$ with $|K|>1$.

Proof It is similar to that of Theorem 3.21.

Theorem 3.23 For any pomonoid $S$, the following statements are equivalent:
(1) $S / K$ satisfying Condition $(P W P)_{w}$ is free;
(2) $|S|=1$.

Proof It can be easily proved.

Example 3.24 Let $S$ be a pogroup and $|S|>1$. Then the Rees factor $S$-poset $\Theta_{S}$ satisfies Condition $(P W P)_{w}$, but, by Theorem 3.23, $\Theta_{S}$ is not free.

## 4. Direct products of $S$-posets satisfying Condition $(P W P)_{w}$

In this section, we are going to discuss direct products of any arbitrary nonempty family of $S$-posets satisfying Condition $(P W P)_{w}$.

If $S$ is a pomonoid, the Cartesian product $S^{I}$ is a right and left $S$-poset equipped with the order and the action componentwise where $I$ is a nonempty set. Moreover, $\left(s_{i}\right)_{i \in I} \in S^{I}$ is denoted simply by $\left(s_{i}\right)$, and the right $S$-poset $S \times S$ is called the diagonal right $S$-poset of $S$, usually denoted $D(S)$. (For more information the reader is referred to [7]).

According to [7], the set $L(s, s):=\{(u, v) \in D(S) \mid u s \leq v s\}$ is a left $S$-subposet of $D(S)$. Moreover, for each $(p, q) \in D(S)$, the set $\widehat{S(p, q)}:=\{(u, v) \in D(S) \mid u \leq w p$ and $w q \leq v$ for some $w \in S\}$ is a left $S$-poset. Clearly, $\widehat{S(p, q)}$ contains the cyclic $S$-poset $S(p, q)$.

Theorem 4.1 Let $S$ be a pomonoid. Then the following statements are equivalent:
(1) Any finite product of right $S$-posets satisfying Condition $(P W P)_{w}$ satisfies Condition $(P W P)_{w}$;
(2) The diagonal right $S$-poset $D(S)$ satisfies Condition $(P W P)_{w}$;
(3) For every $s \in S$, the set $L(s, s)$ is either empty or for each 2 elements $(u, v),\left(u^{\prime}, v^{\prime}\right) \in L(s, s)$, there exists $(p, q) \in L(s, s)$ such that $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \widehat{S(p, q)}$.
Proof $\quad(1) \Rightarrow(2)$ It is obvious.
$(2) \Rightarrow(3)$. Suppose that $D(S)$ satisfies Condition $(P W P)_{w}$. Let $(u, v),\left(u^{\prime}, v^{\prime}\right) \in L(s, s)$ for any $s \in S$. From the inequalities $u s \leq v s$ and $u^{\prime} s \leq v^{\prime} s$ we obtain $\left(u, u^{\prime}\right) s \leq\left(v, v^{\prime}\right) s$. Since $D(S)$ satisfies Condition $(P W P)_{w}$, there exist $\left(w, w^{\prime}\right) \in D(S)$ and $p, q \in S$ such that $\left(u, u^{\prime}\right) \leq\left(w, w^{\prime}\right) p,\left(w, w^{\prime}\right) q \leq\left(v, v^{\prime}\right)$, and $p s \leq q s$. Thus, we have $(p, q) \in L(s, s)$ and we are done.
$(3) \Rightarrow(1)$. Suppose that $A_{1}, \ldots, A_{n}$ are right $S$-posets satisfying Condition $(P W P)_{w}$. Suppose $a_{i}, a_{i}^{\prime} \in A_{i}$ for each $1 \leq i \leq n$, and let $s \in S$ be such that $\left(a_{1}, \ldots, a_{n}\right) s \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) s$ in $A=\prod_{i=1}^{n} A_{i}$. For every $A_{i}$, applying Condition $(P W P)_{w}$ to the inequalities $a_{i} s \leq a_{i}^{\prime} s(1 \leq i \leq n)$, we get $a_{i}^{\prime \prime} \in A_{i}$ and $p_{i}, q_{i} \in S$ such that $a_{i} \leq a_{i}^{\prime \prime} p_{i}, a_{i}^{\prime \prime} q_{i} \leq a_{i}^{\prime}$ and $p_{i} s \leq q_{i} s$. Then $\left(p_{i}, q_{i}\right) \in L(s, s)$ for each $i$, and so by assumption, there exists $(p, q) \in L(s, s)$ such that $\left(p_{i}, q_{i}\right) \in L(p, q)$ for each $i$. Thus, $p_{i} \leq w_{i} p$ and $w_{i} q \leq q_{i}$ for some $w_{i} \in S$ $(1 \leq i \leq n)$. Thus, we calculate that $\left(a_{1}, \ldots, a_{n}\right) \leq\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) p,\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) q \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, and $p s \leq q s$, proving that $A=\prod_{i=1}^{n} A_{i}$ satisfies Condition $(P W P)_{w}$.

For a right po-cancellable pomonoid, Theorem 4.1 yields the following.

Corollary 4.2 If the pomonoid $S$ is right po-cancellative, then the diagonal right $S$-poset $D(S)$ satisfies Condition $(P W P)_{w}$.

As an extension of Theorem 4.1, the following result is obtained.

Theorem 4.3 Let $S$ be a pomonoid. Then the following statements are equivalent:
(1) The direct product of every nonempty family of right $S$-posets satisfying Condition $(P W P)_{w}$ satisfies Condition $(P W P)_{w}$;
(2) $\left(S^{I}\right)_{S}$ satisfies Condition $(P W P)_{w}$ for every nonempty set $I$;
(3) For every $s \in S$, the set $L(s, s)$ is either empty or there exists $(p, q) \in L(s, s)$ such that $L(s, s)=\widehat{S(p, q)}$. Proof $\quad(1) \Rightarrow(2)$ It is obvious.
$(2) \Rightarrow(3)$. Let $s \in S$ and $L(s, s) \neq \emptyset$. Write $L(s, s)=\left\{\left(u_{i}, v_{i}\right) \mid i \in I\right\}$. Let $u$ and $v$ be the elements of $S^{I}$ whose $i$ th components are $u_{i}$ and $v_{i}$, respectively. Then we get $u s \leq v s$ in $S^{I}$. Since $S^{I}$ satisfies Condition $(P W P)_{w}$, we have that $u \leq w p, w q \leq v$ and $p s \leq q s$ for some $p, q \in S$ and $w \in S^{I}$. Then $(p, q) \in L(s, s)$, and for each $i \in I$ we have $u_{i} \leq w_{i} p, w_{i} q \leq v_{i}$ where $w_{i}$ is the $i$ th component of $w$. Thus, we have $L(s, s)=\widehat{S(p, q)}$, as desired.
$(3) \Rightarrow(1)$. Let $A=\prod_{j \in J} A_{j}$ be a direct product of right $S$-posets satisfying Condition $(P W P)_{w}$. Suppose that $s \in S$, and $a=\left(a_{j}\right), b=\left(b_{j}\right) \in A$ are such that $a s \leq b s$. Then we have $a_{j} s \leq b_{j} s$ for each $j \in J$. Since $A_{j}$ satisfies Condition $(P W P)_{w}$, there are elements $u_{j}, v_{j} \in S$ and $c_{j} \in A_{j}$ with $a_{j} \leq c_{j} u_{j}$, $c_{j} v_{j} \leq b_{j}$, and $u_{j} s \leq v_{j} s$. Therefore, $\left(u_{j}, v_{j}\right) \in L(s, s) \neq \emptyset$ and by assumption there exists $(p, q) \in L(s, s)$ such that $L(s, s)=\widehat{S(p, q)}$. Then for each $\left(u_{j}, v_{j}\right) \in L(s, s)$ there exists $w_{j} \in S$ with $u_{j} \leq w_{j} p$ and $w_{j} q \leq v_{j}$. Thus, $p s \leq q s$, and for each $j \in J$ we can calculate that $a_{j} \leq c_{j} w_{j} p$ and $c_{j} w_{j} q \leq b_{j}$. Taking $a^{\prime}=\left(c_{j} w_{j}\right)_{j \in J} \in A$, we have $a \leq a^{\prime} p$ and $a^{\prime} q \leq b$, as required.

Note that the fact that not every pomonoid $S$ has a diagonal $S$-poset $D(S)$ satisfying Condition $(P W P)_{w}$ is shown by the following example.

Example 4.4 Let $S=\left\{0, x, 1 \mid x^{2}=0\right\}$ be a monoid with the nontrivial order relations $0<x<1$. Then $S$ is a pomonoid, and the diagonal $S$-poset $D(S)$ does not satisfy Condition $(P W P)_{w}$.

Proof It is clear that $S$ is a pomonoid. We use Theorem 4.1 to check that $D(S)$ fails to satisfy Condition $(P W P)_{w}$. Note that $(1,1),(x, 0) \in L(x, x)$ for $x \in S$. However, there is no element $(p, q) \in L(x, x)$ such that $(1,1),(x, 0) \in \widehat{S(p, q)}$.

## Acknowledgments

The authors would like to thank the referee for useful and valuable comments and suggestions relating to this article. The authors dedicate this work to Professor Kar-Ping Shum in honor of his seventy-fourth birthday.

## References

[1] Bulman-Fleming S, Gutermuth D, Gilmour A, Kilp M. Flatness properties of $S$-posets. Commun Algebra 2006; 34: 1291-1317.
[2] Bulman-Fleming S, Laan V. Lazard's theorem for $S$-posets. Math Nachr 2005; 278: 1743-1755.
[3] Bulman-Fleming S, Mahmoudi M. The category of $S$-posets. Semigroup Forum 2005; 71: 443-461.
[4] Fakhruddin SM. Absolute flatness and amalgams in pomonoids. Semigroup Forum 1986; 33: 15-22.
[5] Fakhruddin SM. On the category of $S$-posets. Acta Sci Math (Szeged) 1988; 52: 85-92.
[6] Golchin A, Rezaei P. Subpullbacks and flatness properties of $S$-posets. Commun Algebra 2009; 37: 1995-2007.
[7] Khosravi R. On direct products of $S$-posets satisfying flatness properties. Turk J Math 2014; 38: 79-86.

## LIANG and LUO/Turk J Math

[8] Laan V. Pullbacks and flatness properties of acts I. Commun Algebra 2001; 29: 829-850.
[9] Qiao HS, Li F. When all $S$-posets are principally weakly flat. Semigroup Forum 2007; 75: 536-542.
[10] Qiao HS, Li F. The flatness properties of $S$-poset $A(I)$ and Rees factor $S$-posets. Semigroup Forum 2008; 77: 306-315.
[11] Qiao HS, Liu ZK. On the homological classification of pomonoids by their Rees factor $S$-posets. Semigroup Forum 2009; 79: 385-399.
[12] Shi XP. Strongly flat and po-flat $S$-posets. Commun Algebra 2005; 33: 4515-4531.
[13] Shi XP, Liu ZK, Wang FG, Bulman-Fleming S. Indecomposable, projective, and flat $S$-posets. Commun Algebra 2005; 33: 235-251.
[14] Xie XY, Shi XP. Order-congruences on $S$-posets. Commun Korean Math Soc 2005; 20: 1-14.


[^0]:    *Correspondence: lxl_119@126.com
    2010 AMS Mathematics Subject Classification: 06F05, 20 M 30.
    This research was partially supported by the National Natural Science Foundation of China (No. 11371177, 11201201).

