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Abstract: The sum of a fractional program is a nonconvex optimization problem in the field of fractional programming

and it is difficult to solve. The development of research is restricted to single objective sums of fractional problems

only. The branch and bound methods/algorithms are developed in the literature for this problem as a single objective

problem. The theoretical and algorithmic development for sums of fractional programming problems is restricted to single

objective problems. In this paper, some new optimality conditions are proposed for the sum of a fractional multiobjective

optimization problem with generalized invexity. The optimality conditions are obtained by using a modified objective

approach and equivalency with the original problem is established.

Key words: Multiobjective programming, sum of ratio, multiobjective linear fractional programming, optimality and

duality, saddle point criteria

1. Introduction

Optimization of the ratio of two functions is called a fractional programming (ratio optimization) problem. If

collections of fractional objective functions are optimized simultaneously, then the problem is called multiob-

jective fractional programming. The general fractional programming is defined as:

Optimize F (x) =
f(x)

g(x)

subject to (1)

x ∈ S = {x ∈ Rn : hl(x) ≤ 0, x ≥ 0, g(x) > 0, l = 1, 2, 3 . . .m}.

Fractional programming is classified according to the nature of the functions involved in the ratio. If the

ratio functions and constraints are linear, then the fractional programming problem is called linear fractional

programming [18]. If any ratio function or any constraint is nonlinear, then the fractional programming problem

is known as nonlinear fractional programming.

If the objective function is in the form of the sum of fractional functions, then the fractional is known as a sum

of fractional programming (SOFP) problem according to Shaible [24].

∗Correspondence: pitams@mnnit.ac.in

2010 AMS Mathematics Subject Classification: 90C29, 90C32.

900



BHATI and SINGH/Turk J Math

A general SOFP problem is defined in the following way:

Min F (x) = Minimize


p∑

j=1

fj(x)

gj(x)


subject to

x ∈ S = {x ∈ Rn : hl(x) ≤ 0, x ≥ 0, l = 1, 2, 3 . . .m}, (2)

where p ≥ 2,

where each hl(x) is a constraint function that constructs the feasible region S . The functions fj(x) ≥ 0 and

gj(x) > 0 are differentiable functions in feasible region S .

The sum of a fractional program is a difficult nonconvex optimization problem with many applications

in managerial sciences. Such problems have been discussed by several authors at various levels of generality.

Benson [6] presented an algorithm for solving the sum of ratios fractional programming problem. The branch-

and-bound search method is used to solve an equivalent concave minimization problem. The main work of

the algorithm is the involvement of a sequence of convex programming problems. Kanno [17] proposed a

branch-and-bound algorithm and an integer programming algorithm for a fractional programming problem that

are the sum of absolute values of affine functions. Chen et al. [8] proposed various versions of Dinkelbach-

type algorithms for solving the generalized fractional programming problem. The convergence analysis of all

the algorithms through geometric observations was discussed and fundamental properties of convex functions

were given. Benson [7] gave a branch-and-bound outer approximation algorithm for globally solving a sum

of ratios fractional programming problem. The main work of the algorithm involved solving a sequence of

convex programming problems whose feasible regions were identical to each other except for a certain linear

constraint. Hackman and Passy [11] proposed a finite pivoting-type algorithm for a sum of linear ratios problem

that solves the maximization problem while computing simultaneously the efficient frontier. Application to

multistage efficiency analysis was discussed. Benson [3] gave a method for the construction of test problems

for the problem of minimization over a convex set of sums of ratios of linear fractional functions. The method

determined a function that is the sum of linear fractional functions and attains a global minimum over the set

at a point that is found by convex programming and univariate search. Benson [4] showed that using a suitable

transformation, several potential and known methods for globally solving these problems become available

and further proposed that these methods are accessible and useful in comparison of customized algorithms.

Scott and Jefferson [25] derived a duality theory for sum of ratios of the linear fractional and established

their connection with geometric programming. Benson [2] gave a branch-and-bound method for solving the

nonlinear sum of ratios problem globally. The steps of the algorithm economize the required computations by

conducting the branch-and-bound search in Rp . The algorithm is implemented using a sequence of convex

programming problems for which standard algorithms are available. Benson [1] presented an algorithm to find

the global optimal solution of the nonlinear sum of ratios problem. The branch-and-bound procedure is used to

develop the proposed algorithm. Shen and Lin [28] proposed a global optimization algorithm for maximization

of the sum of concave-convex ratios within the convex feasible region. The branch-and-bound scheme is used

to develop the algorithm. Wang and Zhang [33] presented a branch-and-bound algorithm for globally solving

the nonlinear sum of ratios problem on a nonconvex feasible region. It is claimed that the proposed algorithm

is convergent to the global minimum through the refinement of the solution of series of linear programming

problems. Shen and Wang [31] proposed a branch-and-bound algorithm for solving the sum of linear ratios
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problem. It was proved that the proposed algorithm is convergent to the global optimal solution. Jiao and Shen

[14] gave a short extension of the work of Wang and Zhang for the nonlinear sum of ratios problem. More general

results are proposed by using different equivalent problems. Qu et al. [22] proposed a new branch-and-bound

algorithm based on rectangle partition and the Lagrangian relaxation for solving the sum of quadratic ratios

problem with nonconvex quadratic convergence of the algorithm. Shen et al. [26] proposed a branch-reduced-

bound algorithm for solving sum of quadratic ratios with nonconvex constraints. The problem is modified as

a monotonic optimization problem and finds the globally optimal solution. Shen et al. [29] gave a method

to solve the problem of minimization of sum of convex-convex ratios problem within a feasible region. It was

also established that the method is globally convergent. Shen and Wang [30] gave an algorithm for the sum

of general fractional functions using linearization of the method and the branch-bound method. Shen et al.

[27] proposed a branch-bound algorithm to solve the sum of convex-convex ratios with non-convex constraints.

The branch-bound method and Lagrange duality were used to develop the proposed scheme. Jaberipour and

Khorram [13] proposed a harmony search algorithm for solving a sum of ratios problem. They claimed that the

solutions obtained using their algorithm were better than those of the other proposed methods in the literature.

Benson [5] presented a branch-and-bound algorithm to solve the sum of ratios problem. To develop

this algorithm, Lagrangian duality theory was used and it was claimed that the proposed algorithm is better.

Recently, Li and Hou [15] proposed a branch-and-bound algorithm to find the global optimum solution for

the sum of ratios problem with the ratio of the absolute value of affine functions with coefficients. To

develop this algorithm, rectangular partition and space of small dimension were used. Gao and Jin [10]

proposed a branch-and-bound algorithm by transformation of sum ratios programming problem into a bilinear

programming problem. This algorithm was developed by using three functions, the linear characteristic of

convex envelope, concave envelope of double variables, and linear relaxation programming of the bilinear

programming. Freund and Jarre [9] proposed an algorithm for the global minimum solution for the sum of

a quasiconvex ratio. The interior point method was used to compute the global minimum solution. Singh

and Gupta [32] studied the multiparametric sensitivity analysis for the ratios of linear functions. Shaible and

Shi [23] published a review of the sum-of-ratios program. This survey contained the applications, theoretical

results, and various algorithmic approaches of this difficult fractional programming. Due to the difficult problem,

all the methods/algorithms available in the literature were developed for single objective problems only. The

theoretical research developments in the direction of multiobjective optimization theory for the sum of fractional

programming problem are fewer in comparison with single objectives. Thus, in this paper we develop optimality

conditions that are parallel to those of Kim [18].

Consider the following sum of the fractional multiobjective programming problem:

Minimize


p∑
j

f1j(x)

g1j(x)
,

p∑
j

f2j(x)

g2j(x)
, . . . ,

p∑
j

fkj(x)

gkj(x)

 ,

subject to

x ∈ S = {x ∈ Rn : hl(x) ≤ 0, x ≥ 0, l = 1, 2, 3 . . . ,m}, (3)

where p, k ≥ 2.

Each hl(x) is a constraint function that constructs the feasible region S . fij(x) and gij(x) and hl(x) are

continuously differentiable over S ⊆ Rn , S denotes the set of all feasible solutions and (f11, f12, . . . , fkp) =
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f : S → Rk (−g11, −g12, . . . ,−gkp) = −g : S → Rk are invex, and it is assumed that fij(x) ≥ 0 and

gij(x) > 0∀ x, y ∈ S, i = 1, 2 . . . , k, j = 1, 2, . . . , p .

Throughout this article, the following notations are used in Rn :

x < y ⇔ xr < yr

x ≤ y ⇔ xr ≤ yr

n∑
r=1

xr.

n∑
r=1

yr ⇔
n∑

r=1

xryr.

1.1. Optimality

The concept of Pareto optimality was given by Pareto in 1906 [21]. For solving a particular multiobjective

fractional programming problem, the problem formulation serves as optimality conditions for Pareto optimality

and it is central to the performance. However, these characterizations are slightly different from their meaning

in single objective fractional programming. If the formulation provides a necessary condition, then for a point

to be Pareto optimal, it must be a solution to that formulation. However, some solutions obtained using this

method are not Pareto optimal. On the other hand, if a method provides a condition of sufficiency, then the

solution is always Pareto optimal. A point is said to be weakly Pareto optimal if the feasible region has no

point that improves all of the objectives simultaneously. In comparison, a point is Pareto optimal if any other

point does not exist that improves at least the single objective function without determining another function.

Pareto optimal points are weakly Pareto optimal but a weakly Pareto optimal point is not Pareto optimal.

Definition 1 Pareto sptimal solution:A solution xo ∈ S is said to be a Pareto optimal (efficient) solution to

the SOFMP(3) problem if and only if there is no other solution y ∈ S such that
∑p

j=1

fij(y)

gij(y)
≤

∑p
j=1

fij(x
o)

gij(xo)

∀ i and j and
∑p

j=1

flj(y)

glj(y)
<

∑p
j=1

flj(x
o)

glj(xo)
for at least one l .

Definition 2 Weak Pareto optimal solution: A solution point, x0 ∈ S , is said to be weak Pareto optimal

if and only if there does not exist another solution point, y ∈ S , such that
∑p

j=1

fij(y)

gij(y)
<

∑p
j=1

fij(x
o)

gij(xo)

∀ i = 1, 2, . . . , k and j = 1, 2, . . . , p .

1.2. Generalized invexity

Generalized invexity plays an important role in the theory of multiobjective optimization. The name ‘invex’

was given by Craven in 1981 and stands for invariant convex. Henson [12] introduced the concept of invexity

as a generalization of convexity for scalar constrained optimization problems. He proved that sufficiency of

Kuhn–Tucker optimality conditions and weak duality hold with invexity instead of convexity.

Definition 3 A differentiable function (f11, f12, . . . , fkp) = f : S → Rk on a nonempty open set S ⊆ Rn

is said to be invex with respect to η at y ∈ S if for all x ∈ S , there exists η : S × S → Rn for all

i = 1, 2, . . . , k, j = 1, 2 . . . , p such that

fij(x)− fij(y) ≥ ∇fij(y)η
T (x, y). ∀x, y ∈ S.
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Definition 4 The function fij is said to be strictly invex with respect to η , if there exists η : S×S → Rn such

that for all i = 1, 2, . . . , k, j = 1, 2 . . . , p with x ̸= y such that

fij(x)− fij(y) > ∇fij(y)η
T (x, y). ∀x, y ∈ S. (4)

Lemma 1 If real valued functions fij(x) and −gij(x) are invex with respect to the same η(x, y) then
fij(x)

gij(x)

is invex function with respect to η(x, y) =
gij(y)

gij(x)
η(x, y) .

Proof

fij(x)

gij(x)
− fij(y)

gij(y)
=

fij(x)− fij(y)

gij(x)
− fij(y) [gij(x)− gij(y)]

gij(x)gij(y)
≥ gij(y)

gij(x)

[
∇fij(y)

gij(y)
− fij(y)∇gij(y)

[gij(y)]2

]
η(x, y)

=
gij(y)

gij(x)
∇

(
fij(y)

gij(y)

)
η(x, y).

= ∇
(
fij(y)

gij(y)

)
η(x, y).

Therefore, each ratio
fij(x)

gij(x)
is an invex function with respect to η̃(x, y) =

gij(y)

gij(x)
η(x, y) ∀ i = 1, 2, . . . , k,

j = 1, 2, . . . , p . 2

Lemma 2 If real valued functions fij(x) and −gij(x) are invex with respect to the same η(x, y) , then∑p
j=1

fij(x)

gij(x)
is an invex function with respect to η̃(x, y) =

∑p
j=1

gij(y)

gij(x)
η(x, y) .

Proof

p∑
j=1

fij(x)

gij(x)
−

p∑
j=1

fij(y)

gij(y)
=

p∑
j=1

(
fij(x)

gij(x)
− fij(y)

gij(y)

)
=

p∑
j=1

[
fij(x)− fij(y)

gij(x)
− fij(y) [gij(x)− gij(y)]

gij(x)gij(y)

]

≥
p∑

j=1

gij(y)

gij(x)

[
∇fij(y)

gij(y)
− fij(y)∇gij(y)

[gij(y)]2

]
η(x, y)

=

p∑
j=1

∇
(
fij(y)

gij(y)

)
gij(y)

gij(x)
η(x, y)

= ∇

 p∑
j=1

fij(y)

gij(y)

 η̃(x, y).

Therefore, each sum of fraction
∑p

j=1

fij(x)

gij(x)
is an invex function with respect to η̃(x, y) =

∑p
j=1

gij(y)

gij(x)
η(x, y)

∀ i = 1, 2, . . . , k, j = 1, 2, . . . , p . 2
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2. Equivalency of sum of fractional multiobjective programming

In this section, we will prove that the following sum of the fractional multiobjective program is equivalent to

SOFMP(3).

Minimize

η̃(x, y)∇

 p∑
j=1

f1j(y)

g1j(y)

 , η̃(x, y)∇

 p∑
j=1

f2j(y)

g2j(y)

 , . . . , η̃(x, y)∇

 p∑
j=1

fkj(y)

gkj(y)

 (5)

subject to

hl(x) ≤ 0, and I(x) = {l : hl(x) = 0} ∀ x ∈ Rn l ∈ Rm.

Each hl(x) is a constraint function that constructs the feasible region S . fij(x) and gij(x) and hl(x) are

continuously differentiable over S ⊆ Rn , S denotes the set of all feasible solutions and (f11, f12, . . . , fkp) =

f : S → Rk (−g11, −g12, . . . ,−gkp) = −g : S → Rk are invex, and it is assumed that fij(x) ≥ 0 and

gij(x) > 0∀ x, y ∈ S, i = 1, 2 . . . , k, j = 1, 2, . . . , p .

Theorem 1 Let y be any weakly efficient solution of SOFMP(3) and assume that there exists α ∈ S such that

(∇hl(y), α) > 0, l ∈ I(y), ∇hl(y), l ∈ I(y) are linearly independent. Further, we assume that hl is strictly

invex with respect to η̃ at y on S and η̃(y, y) = 0 . Then y is a weakly efficient solution of SOFMP(5).

Proof Since y is any weakly efficient solution of SOFMP(3) and ∇hl(y), l ∈ I(x) are linearly independent,

KKT conditions are satisfied. Assume that y is not efficient for SOFMP(5). This implies that there exist y∗

feasible for SOFMP(5) such thatη̃(y∗, y)∇
 p∑

j=1

f1j(y)

g1j(y)

 , η̃(y∗, y)∇

 p∑
j=1

f2j(y)

g2j(y)

 . . . , η̃(y∗, y)∇

 p∑
j=1

fkj(y)

gkj(y)


≤

η̃(y, y)∇
 p∑

j=1

f1j(y)

g1j(y)

 , η̃(y, y)∇

 p∑
j=1

f2j(y)

g2j(y)

 . . . , η̃(y, y)∇

 p∑
j=1

fkj(y)

gkj(y)


= (0, 0, . . . , 0).

Since λi ≥ 0 ∀ i ,

k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

 η̃(y∗, y) ≤ 0. (6)

It is given that y∗ is feasible and µl ≥ 0, µT
l hl(y

∗) ≤ 0 ∀ l. From this point of view µT
l hl(y

∗) ≤ µT
l hl(y).

It is assumed that each hl ∀ l is strictly invex with η̃ at y .

µT
l ∇hl(y)η̃(y

∗, y) < 0. (7)

From (6) and (7):

η̃(y∗, y)

 k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

+ µT
l ∇hl(y) < 0.
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This inequality contradicts the fact that

k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

+ µT
l ∇hl(y) = 0.

This proves that y is a weakly efficient solution of SOFMP(5). 2

Theorem 2 If real valued functions fij(x) and −gij(x) are invex with respect to the same η(x, y) ∀ i =

1, 2, . . . , k, j = 1, 2, . . . , p, x, y ∈ S then
∑p

j=1

fij(x)

gij(x)
is an invex function with respect to η̃(x, y) and

η̃(y, y) = 0 according to Kim [18]. If y is any weakly efficient solution of SOFMP(5), then y is also a weakly

efficient solution of SOFMP(3).

Proof Since fij and −gij are invex with respect to the same η(x, y) ∀ x, y ∈ S ,
∑p

j=1

fij
gij

, ∀ i =

1, 2, . . . , k, j = 1, 2, · · · , p , is invex with respect to η̃(x, y) and η̃(y, y) = 0. Assume that y is not efficient

for SOFMP(3), and then there exists a feasible solution y∗ of SOFMP(3) such that p∑
j=1

f1j(y
∗)

g1j(y∗)
,

p∑
j=1

f2j(y
∗)

g2j(y∗)
, . . . ,

p∑
j=1

fkj(y
∗)

gkj(y∗)

 ≤

 p∑
j=1

f1j(y)

g1j(y)
,

p∑
j=1

f2j(y)

g2j(y)
, . . . ,

p∑
j=1

fkj(y)

gkj(y)

 .

As we know,
∑p

j=1

fij
gij

, i = 1, 2, . . . , k, j = 1, 2, . . . , p is invex with respect to η̃ at y and η̃(y, y) = 0. Then

we have η̃(y∗, y)∇

 p∑
j=1

f1j(y)

g1j(y)

 , η̃(y∗, y)∇

 p∑
j=1

f2j(y)

g2j(y)

 , . . . , η̃(y∗, y)∇

 p∑
j=1

fkj(y)

gkj(y)


≤

 p∑
j=1

f1j(y
∗)

g1j(y∗)
−

p∑
j=1

f1j(y)

g1j(y)
,

p∑
j=1

f2j(y
∗)

g2j(y∗)
−

p∑
j=1

f2j(y)

g2j(y)
, , . . . ,

p∑
j=1

fkj(y
∗)

gkj(y∗)
−

p∑
j=1

fkj(y)

gkj(y)


≤ (0, 0, . . . , 0)

=

η̃(y, y)∇

 p∑
j=1

f1j(y)

g1j(y)

 , η̃(y, y)∇

 p∑
j=1

f2j(y)

g2j(y)

 , . . . , η̃(y, y)∇

 p∑
j=1

fkj(y)

gkj(y)

 ,

which contradicts that y is a weakly efficient solution of SOFMP(5). 2

3. Optimality conditions for sum of fractional multiobjective programming

In this section, the necessary works of John [16], Kuhn and Tucker [19], and Mishra [20] are introduced and

conditions of sufficiency for the weakly efficient solution of the SOFMP with generalized invexity are established.

A Lagrangian for the SOFMP is introduced and some theorems based on the saddle point are also established

[18].
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Theorem 3 (Fritz John Necessary Conditions) [16]: If y is a weakly efficient solution of MOSFP(3), then

there exist λi, i = 1, 2, . . . , k and µl, l = 1, 2, . . . , m such that

k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

+
m∑
l=1

µl∇hl(y) = 0

m∑
l=1

µlhl(y) = 0 (8)

(λ1, λ2, . . . , λk, µ1, µ2, . . . , µm) ≥ 0.

Theorem 4 (Harush–Kuhn–Tucker Necessary Conditions) [19]: Assume that there exist α ∈ S such that

(∇hl(y), α) > 0, l ∈ Q(y) , where Q(x) = {l : hl(x) = 0} for any x ∈ S . If y ∈ S is a weakly efficient solution

of MOSFP(3), then there exists λi ≥ 0, i = 1, 2, . . . , k and µl ≥ 0, l = 1, 2, . . . , m such that

k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

+

m∑
l=1

µl∇hl(y) = 0

m∑
l=1

µlhl(y) = 0 (9)

(λ1, λ2, . . . , λk, µ1, µ2, . . . , µm) ≥ 0, (λ1, λ2, . . . , λk) ̸= (0, 0, . . . , 0).

Theorem 5 (Harush–Kuhn–Tucker Necessary Conditions) [19]: Assume that ∇hl(y), l ∈ Q(y) are linearly

independent. If y ∈ S is a weakly efficient solution of SOFMP(3), then there exists λi ≥ 0, i = 1, 2, . . . , k and

µl ≥ 0, l = 1, 2, . . . , m and they satisfy condition (9).

Theorem 6 (Harush–Kuhn–Tucker Necessary Conditions) [18]: If (f1j , f2j , . . . , fkj) and (−g1j , −g2j , . . . , −gkj)

are invex with respect to the same η(x, y) ∀ i = 1, 2, . . . , k, j = 1, 2, . . . , p, x, y ∈ S and if (h1, h2, . . . , hm)

are invex with respect to η̃ then suppose that (y, λ, µ) satisfy the KKT conditions (9). Then y is a weakly

efficient solution of SOFMP(3).

Proof Suppose y is not a weakly efficient solution of SOFMP(3). Then for x ∈ S ,

p∑
j=1

fij(x)

gij(x)
<

p∑
j=1

fij(y)

gij(y)
∀ i = 1, 2, . . . , k, j = 1, 2, ..., p.

As we know, fij and −gij ∀ i = 1, 2, . . . , k, j = 1, 2, ..., p are invex with respect to the same η . Then by

Lemma 2,

p∑
j=1

gij(y)

gij(x)
∇

(
fij(y)

gij(y)

)
η̃(x, y) < 0.

From (λ1, λ2, . . . , λk ≥ 0),

k∑
i=1

λi∇

 p∑
j=1

fij(y)

gij(y)

 η̃(x, y) < 0.
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Using the KKT conditions,

m∑
l=1

µl∇hl(y)η̃(x, y) > 0. (10)

Since (h1, h2, . . . , hm) are invex with respect to η̃ ,

m∑
l=1

µlhl(x)−
m∑
l=1

µlhl(y) ≥
m∑
l=1

µl∇hl(y)η̃(x, y).

Then

m∑
l=1

µl∇hl(y)η̃(x, y) ≤ 0, (11)

which is a contradiction of (10). 2

4. Saddle point criteria

In this section, the η -Lagrangian for a multiobjective sum of fractional programming problem SOFMP(3) is

defined and a new definition of a weak vector saddle point for the introduced η -Lagrangian function in a sum

of fractional multiobjective programming is given.

Definition 5 An η -Lagrange function is said to be a Lagrange function for the sum of fractional programming

multiobjective programming.

Lη̃(x, µ) =

η̃(x, y)∇

 p∑
j

f1j(y)

g1j(y)

+ µT
1 h1(x), . . . , η̃(x, y)∇

 p∑
j

flj(y)

glj(y)

+ µT
l hl(x)

 (12)

Definition 6 A point (y, µ̄l) ∈ S × Rm
+ is said to be a weak vector saddle point for the η̃ -Lagrange function

Lη̃ if:

1. Lη̃(y, µl) ≯ Lη̃(y, µ̄l) ∀ µl ∈ Rm
+ ,

2. Lη̃(x, µ̄l) ≮ Lη̃(y, µ̄l) ∀ x ∈ S.

Theorem 7 We assume that fij and gij , ∀ i = 1, 2, ...k, j = 1, 2, ..., p , are invex with respect to the same

η at y with η(y, y) = 0 and some constraint qualification (CQ) holds at y for SOFMP(5). If (y, µ̄l) is a weak

vector saddle point for Lη̃ , then y is a weakly efficient solution in SOFMP(3).

Proof Suppose (y, µl) is a saddle point for the Lagrangian Lη̃ . Then by definition from 6(1), we have

Lη̃(y, µ) ≯ Lη̃(y, µ̄), since, η(y, y) = 0, (13)

µT
l hl(y) ≤ µ̄l

Thl(y), µl ∈ Rm
+ .
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Now assume that y is not a weakly efficient solution in MOSFP. Then there exists y∗ ∈ S such that for all

i = 1, 2, ...k

p∑
j=1

fij(y
∗)

gij(y∗)
<

p∑
j=1

fij(y)

gij(y)
. (14)

Since y ∈ S and µ̄l ∈ Rm
+ , µ̄l

Thl(y) ≤ 0. In equation (13), let µl = 0 ∀ l

µ̄l
Thl(y) ≥ 0.

Hence,

µ̄l
Thl(y) = 0. (15)

Since
∑p

j=1

fij
gij

, i = 1, 2, 3...k, j = 1, 2, 3, ..., p is invex with respect to η̃ , and then from equation (14)

η̃(y∗, y)∇

 p∑
j=1

fij(y)

gij(y)

 < 0. (16)

Thus, by equations (15) and (16) and using the definition of Lη̄ , we get

Lη̃(y
∗, µ̄l) =

η̃(y∗, y)∇

 p∑
j=1

f1j(y)

g1j(y)

+ µ̄l
Thl(y), ..., η̃(y

∗, y)∇

 p∑
j=1

fkj(y)

gkj(y)

+ µ̄l
Thl(y)


<

η̃(y, y)∇

 p∑
j=1

f1j(y)

g1j(y)

+ µ̄l
Thl(y), ..., η̃(y, y)∇

 p∑
j=1

fkj(y)

gkj(y)

+ µ̄l
Thl(y)


= Lη̃(y, µ̄l).

This is the contradict of definition by 6(2). Hence, y is a weakly efficient solution in SOFMP(3). 2

Theorem 8 Let y be a weakly efficient solution in SOFMP(3) at which the constraint qualification is satisfied.

Further, we assume that h is invex with respect to η̃ at y and η̃(y, µ̄l) is a weak vector saddle point for the

η̃ -Lagrange function in a sum of fractional multiobjective programming (SOFMP).

Proof Since y is a weakly efficient solution for SOFMP, by Theorem 4, KKT conditions hold. Assume that∑k
i=1 λ̄i = 1. Since hl(x) is invex with respect to η̃ at y and µ̄l ∈ Rm

+ , it follows that the inequality

µ̄l
Th(x)− µ̄l

Thl(y) ≥ µ̄l
T∇hl(x)η̃(x, y)

holds for all x ∈ S . Then, from the KKT conditions,

µ̄l
Thl(x)− µ̄l

Thl(y) ≥ −
k∑
i=

λ̄i
T∇

 p∑
j=1

fij
gij

 η̃(x, y).
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By assumption η̃(x, y) = 0, the inequality

k∑
i=1

λ̄i
T∇

 p∑
j=1

fij(y)

gij(y)

 η̃(x, y) + µ̄l
Th(x) ≥

k∑
i=1

λ̄i
T∇

 p∑
j=1

fij(y)

gij(y)

 η̃(y, y) + µ̄l
Th(y)

holds for all x ∈ S . Since λ̄i ≥ 0.∀ i,
∑k

i λ̄i = 1 and by the definition of the η̃ - Lagrange function, it follows

that, for all x ∈ S ,

λ̄TLη(x, µ̄l) ≥ λ̄TLη̃(y, µ̄l). (17)

Assume that Lη̃(x, µ̄l) < Lη̃(y, µ̄l) for all µl ∈ Rm
+ . Thus, we obtain

η̃(y, y)∇

 p∑
j=1

f1j(y)

g1j(y)

+ µT
l h(y), ..., η̃(y, y)∇

 p∑
j=1

fkj(y)

gkj(y)

+ µ̄l
Th(y) ≤ η̃(y, y)∇

 p∑
j=1

f1j(y)

g1j(y)


+µ̄l

Th(y), ..., η̃(y, y)∇

 p∑
j=1

fkj(y)

gkj(y)

+ µ̄l
Th(y)

and

λ̄TLη̃(y, µl) ≤ λ̄TLη̃(y, µ̄l) ∀ µl ∈ Rm
+ . (18)

Assume that Lη̃(y, µ̄l) < Lη̃(y, µ̄l) for all µl ∈ Rm
+ . Then λ̄TLη̃(y, µ̄l) < λ̄TLη̃(y, µ̄l) ∀ µl ∈ Rm

+ . This

contradicts (18), and hence

λ̄TLη̃(y, µ̄) ≤ λ̄TLη̃(y, µ) ∀ µ ∈ Rm
+ . (19)

Inequalities (17) and (19) mean than (y, µ̄) is a weak vector saddle point for the η̃ - Lagrange function in a

sum of fractional multiobjective fractional programming (MOSF) (3). 2

5. Conclusions

In this paper, optimality conditions for the sum of fractional multiobjective optimization problem are established

with generalized invexity. The modified approach is used to establish all the results and the equivalence of the

modified problem with the original problem is proved by two theorems. A Lagrangian for the SOFMP is

introduced and some saddle point-based results are established.
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