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Abstract: Let T (n) denote the maximum number of unit distances that a set of n points in the Euclidean plane R2 can

determine with the additional condition that the distinct unit length directions determined by the configuration must

be Q -independent. This is related to the Erdös unit distance problem but with a simplifying additional assumption on

the direction set that holds “generically”.

We show that T (n + 1) − T (n) is the Hamming weight of n , i.e. the number of nonzero binary coefficients in

the binary expansion of n , and find a formula for T (n) explicitly. In particular, T (n) is Θ(nlog(n)) . Furthermore, we

describe a process to construct a set of n points in the plane with Q -independent unit length direction set that achieves

exactly T (n) unit distances. In the process of doing this, we show T (n) is also the same as the maximum number of

edges a subset of vertices of size n determines in either the countably infinite lattice Z∞ or the infinite hypercube graph

{0, 1}∞ .

The problem of determining T (n) can be viewed as either a type of packing or isoperimetric problem.

Key words: Unit distance problem, discrete combinatorics, isoperimetric problems

1. Introduction

Erdös posed the following question [6]: What is the maximum possible number u(n) of unit distances determined

by an n -point set in the Euclidean plane? Erdös conjectured that u(n) = O(n1+ϵ) for any ϵ > 0 but the best

that is currently known is that u(n) = O(n
4
3 ); see for example [1, 5, 12, 13].

Examples are also known (see [4] and in fact some are also described in this paper) that show that

u(n) = Ω(n logn). Any upper bound for the Erdos unit distance conjecture would give a lower bound on

the number of distinct distances determined by n points in the Euclidean plane by simple pigeonholing. The

hence related Erdös distinct distance conjecture, recently proven by Guth and Katz [7], says that the number

of distinct distances determined by n points in the Euclidean plane is at least Ω( n
log(n) ).

It follows from some recent work of J. Matous̆ek [10] that if a set of n points, n ≥ 4, in the plane

determines at least Cn log(n) log log(n) unit distances then there must be some integer dependencies within its

unit distance set, i.e. some achieved unit difference vector is a Z -linear combination of others. This indicates that

configurations that are extremal for the Erdös unit distance problem should contain lots of integral (and hence

rational) dependencies in its unit distance set. In particular, it follows from Matous̆ek’s work that if a set of n
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points has rationally independent distinct unit distances, then it determines no more than O(n log(n) log log(n))

unit distances.

In this note, we will study these types of sets exclusively. More precisely note that if A is a finite subset

of the Euclidean plane R2 then A determines a unit vector set UA = {x − y|x, y ∈ A, ∥x − y∥ = 1} ⊂ S1 ,

where S1 is the unit circle. Note that UA is symmetric i.e. if u ∈ UA so is −u . Choose a representative of

each direction represented in UA that has principal argument (in radians) in the interval [0, π) to form the unit

direction set DA = {x − y|x, y ∈ A, ∥x − y∥ = 1, Arg(x − y) ∈ [0, π)} ⊂ S1 . Thus UA is the disjoint union of

DA and −DA .

We say that A has rationally independent unit direction set if the elements of DA are independent over

Q , where Q is the field of rational numbers. We show in this paper that most point configurations have rationally

independent unit direction set and that this condition is generic in a sense. Note this condition imposes no

constraint on differences that are not of unit length nor does it preclude the possibility of a given unit direction

vector occurring multiple times in the difference set of A ; it only imposes the condition of Q -independence on

the distinct unit distances as determined in DA .

We then ask the following question: What is the maximum possible number T (n) of unit distances

determined by an n -point set A in the Euclidean plane with rationally independent unit direction set?

In this paper we find an explicit exact formula for T (n) and describe a process of constructing a

configuration of n-points in the plane with rationally independent unit direction set that achieves T (n) unit

distances.

Theorem 1.1 Let n ≥ 1 ; then T (n) , the maximum number of unit distances that a n-point set of the Euclidean

plane with rationally independent unit direction set determines, is also equal to:

(a) The maximum number of edges determined by n points in the standard countably infinite integer lattice

Z∞ .
(b) The maximum number of edges determined by n points in the standard countably infinite hypercube graph

{0, 1}∞ .

Furthermore, T (n + 1) − T (n) = H(n) , where H(n) is the Hamming weight of n i.e. the number of nonzero

binary coefficients in the binary expansion of n . If n =
∑t

j=1 2
kj , where k1 > k2 > · · · > kt ≥ 0 , then

T (n) =
∑t

j=1(kj2
kj−1 + (j − 1)2kj ) and in particular one always has

n

4
(⌈logn⌉ − 1) < T (n) < n ⌈logn⌉ ,

where log is the base 2 logarithm and ⌈x⌉ is the smallest integer greater or equal to x . Thus T (n) is big-Theta

of nlogn .

The equivalence of (a) is proven in Theorem 2.7, the equivalence of part (b) is proven in Corollary 3.3,

and the formulas for T (n) are proven in Theorem 3.6.

As the first step, we show that any extremal configuration (n -point set in the Euclidean plane with

Q-independent unit direction set and that determines the maximum T (n) of unit distances) can be assumed

to have a good set of unit directions as defined below and furthermore can be assumed to lie in the lattice

generated by this good set of directions.

A set of unit directions u1, . . . uℓ ∈ S1 is good if ∥a1u1 + · · · + aℓuℓ∥ = 1 for (a1, . . . , aℓ) ∈ Zℓ if and

only if exactly one aj is nonzero. We also show that good unit direction sets are “generic” (a dense Gδ set) in
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the space of collections of unit directions and, in particular, that “most” n -point sets in R2 have DA a good

unit direction set. Given this, we describe a process of making a n point set with rationally independent unit

direction set that achieves the maximum possible number T (n) of unit distances:

Proposition 1.2 Let n ≥ 1 be given. Choose d such that 2d−1 < n ≤ 2d and any collection of unit directions

u0, . . . , ud−1 ∈ S1 that is good. Then let

A = {a0u0 + · · ·+ ad−1ud−1|aj ∈ {0, 1}, 0 ≤ a0 + a12 + · · ·+ ad−12
d−1 < n}

Then A is an n-point set in the Euclidean plane with rationally independent unit distance set that determines

exactly the maximum possible T (n) unit distances.

Proposition 1.2 follows from the reductions in section 2 and the results in section 3. Using the notion of

good directions sets, we reduce the problem to a packing problem in Z∞ , the countably infinite integer lattice,

and then to a problem in {0, 1}∞ the countably infinite hypercube graph. These lattice reductions are similar

to what is discussed in work of Brass (see [4] for a reference), but with a particular lattice arising specific to our

particular situation. We reduce to this canonical lattice by reducing the problem to configurations with good

unit direction sets.

This final packing/graph theoretic result for hypercube graphs is interesting in its own right and had

been previously studied. The result says that the best way to choose n points, n ≤ 2d , in the d-dimensional

hypercube {0, 1}d graph to maximize the number of edges determined (an edge is determined every time two

vectors have Hamming distance one, i.e. differ in exactly one coordinate) is to choose the n points as the binary

representations of the numbers 0 through n− 1.

Theorem 1.3 Fix n ≤ 2d . Let V be an n-point subset of the hypercube graph on vertex set {0, 1}d that

determines E(V ) edges. Let Vn ⊆ {0, 1}d be the vertex set on n vertices given by the binary expansions of the

numbers 0 through n− 1 ; then E(Vn) ≥ E(V ) .

We provide an alternate proof of this result in this paper for completeness and because we feel it is

somewhat shorter and cleaner than those that have previously appeared in the literature [2, 8, 9]. These

“packing problems” are also related to isoperimetric problems [3].

2. Good direction sets

Let A be an n -point set in the Euclidean plane (R2 equipped with the Euclidean metric). We define its unit

difference set

UA = {x− y|x, y ∈ A, ∥x− y∥ = 1} ⊂ S1

where S1 is the unit circle. Note that UA is symmetric i.e. if u ∈ UA so is −u . Choose a representative of

each direction represented in UA that has principal argument (in radians) in the interval [0, π) to form the unit

direction set

DA = {x− y|x, y ∈ A, ∥x− y∥ = 1, Arg(x− y) ∈ [0, π)} ⊂ S1.

We will say that A has rationally independent unit direction set if the elements of DA are independent

over Q , where Q is the field of rational numbers.
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The unit direction graph determined by A is the graph whose vertex set is the set A and where there is

an edge between a1, a2 ∈ A if and only if ∥a1 − a2∥ = 1.

Definition 2.1 An extremal configuration will denote an n-point set A in the Euclidean plane with ratio-

nally independent unit direction set that achieves the maximum possible number T (n) of unit distances subject

to these conditions.

Note that trivially T (1) = 0 and so we might as well restrict our attention to n ≥ 2. Our first lemma

shows that we may always assume certain properties about our extremal configurations:

Lemma 2.2 For any fixed n ≥ 2 , there exists an extremal configuration A such that (0, 0) ∈ A, (1, 0) ∈ DA

and the unit direction graph determined by A is path connected. Thus A ⊂ Z(DA) ∼= Zd , where d = |DA| .
Here Z(DA) denotes the set of all Z-linear combinations of elements in DA . We also have 1 ≤ d ≤ n− 1 .

Proof It is clear that as n ≥ 2, DA is nonempty and thus there is a pair of points a1, a2 ∈ A such that

∥a1 − a2∥ = 1. After applying a translation and a rotation to all the points of A (which changes DA by a

rotation and so disturbs neither Q -independence nor |DA|), we may assume a1 = (0, 0) and a2 = (1, 0) lie in

A . Thus WLOG (0, 0) ∈ A and (1, 0) ∈ A and hence (1, 0) ∈ DA also.

Now suppose that the unit direction graph of A was disconnected. Let C1 be a component and C2

the rest of the graph. Then C1 contains a right-most vector (vector with maximal x-coordinate) û and C2

contains a left-most vector (vector with minimal x-coordinate) v̂ . We may then translate C2 so that the image

of v̂ lies one unit to the right of û . This changes no internal connections in either C1 (which was left alone)

or C2 but raises the number of connections between them. It does not change the direction set DA either as

(1, 0) ∈ DA already and no other unit directions were created in the process as the translated C2 as a set lies

one unit to the right of the rightmost point(s) of C1 . Thus we achieve a new extremal configuration with at

least one more unit distance than the one we started with, which contradicts the extremality of the original

configuration. Thus an extremal configuration always has a (path) connected unit direction graph.

Now as the unit direction graph of A is path connected and (0, 0) ∈ A , we know for any x ∈ A it is

possible to go from (0, 0) to x with a path of edges consisting of vectors in UA = DA ∪ −DA . Thus A is

contained in the Z-span of DA as claimed. Finally as the elements of DA are Q -independent, they are also

Z-independent and so the Z -span of DA is a free abelian group of rank d where d = |DA| .
List A as A = {a1, . . . , an} . Now note that the Z -span of DA is itself contained in the Z -span of

{ai − aj |ai, aj ∈ A} . This later set is contained in the Z -span of the set {a2 − a1, a3 − a1, . . . , an − a1} , a free

abelian group of rank ≤ n− 1. Thus d ≤ n− 1 as the rank d of a subgroup of free abelian group of rank n− 1

must have d ≤ n− 1 as Z is a PID. 2

Note that while the Z -span of DA is a subgroup of R2 isomorphic to Zd , it cannot be a closed subgroup

unless d ≤ 2. This is because by Lie theory the only closed subgroups of R2 are isomorphic to Rm,Zm with

m ≤ 2 or R × Z , and thus the closure of the Z -span of DA must be all of R2 whenever d > 2, i.e. it must

generate a dense “lattice”.

By Lemma 2.2, an extremal configuration A of any size n ≥ 2 may be constructed by choosing a

“lattice” Zd ⊆ R2 and distributing n points in it to maximize the number of unit distances achieved by the

set. Furthermore, the basis vectors of this lattice have unit length and can be assumed to be achieved by the

set as differences. Note that any other pair of points of unit distance in the lattice would have difference vector
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in the Z-span of these basis vectors and so such a pair would have to be avoided by the set A to maintain the

condition of Q -independence of unit directions.

This indicates that a “good lattice” to work with would be one where the only pairs of lattice points

with unit distance apart are those that differ by plus or minus a basis vector. This motivates the definition of

a “good direction set”, which we make next:

Definition 2.3 Let S1 be the unit circle in the Euclidean plane and let E ⊂ S1 be the set of points on the unit

circle whose principal argument lies in the interval [0, π) . Let F (E, d) = {(u1, . . . , ud)|uj ∈ E, ui ̸= uj , 1 ≤ i <

j ≤ d} be the configuration space of d-tuples of distinct directions in E , topologized as a subspace of Ed with

the product topology.

(u1, . . . , ud) ∈ F (E, d) is a good set of directions if whenever
∑d

k=1 akuk ∈ S1 with (a1, . . . , ad) ∈ Zd ,

we necessarily have all but one aj is zero. (Note that this nonzero aj would then have to be ±1 .)

Note that Ed is homeomorphic to [0, π)d and is hence locally compact, Hausdorff. F (E, d) is an open

subset of Ed and so is also locally compact, Hausdorff and hence in particular a Baire space. Further note that

a good set of directions has Z -span equal to a “lattice” where the only pairs of vertices that have unit distance

apart occur when the difference is plus or minus a basis vector. We record some properties of good direction

sets in the next proposition.

Proposition 2.4 Let {u1, . . . , ud} ⊂ E ⊂ S1 be a good direction set; then {u1, . . . , ud} is Q-independent and

thus the Z-span of {u1, . . . , ud} is isomorphic to Zd ⊂ R2 . We can then express any v̂ in the Z-span of

{u1, . . . , ud} uniquely as an integer d-tuple (a1, . . . , ad) , where v̂ =
∑d

j=1 ajuj . The aj ’s are referred to as the

lattice coordinates of v̂ . Then in this lattice two vectors v̂1, v̂2 have Euclidean distance one if and only if they

have ℓ1 distance one, i.e. if and only if they differ in exactly one lattice coordinate by an amount ±1 .

Proof Let {u1, . . . , ud} be a good direction set. If d = 1 the set is Q -independent as u1 ∈ S1 is nonzero and

so WLOG d ≥ 2. Suppose that this set were rationally dependent. Then q1u1 + · · · + qdud = 0 for rational

numbers qj , not all zero. We can then clear denominators and conclude that a1u1 + · · ·+ adud = 0 for integers

aj , not all zero. WLOG suppose a1 ̸= 0; then we can write (a1 − 1)u1 + · · ·+ adud = −u1 and so the left-hand

side of the equation lies on S1 . Since the set of directions is good, this implies either a2 = · · · = ad = 0, which

implies a1u1 = 0 and so a1 = 0, also a contradiction, or that a1 = 1, and all but one of the other aj ’s are

equal to 0. Without loss of generality let a2 be the other aj that is nonzero and then we get u1 + a2u2 = 0,

which implies u1 = −a2u2 , implying a2 = ±1. However, both u1, u2 ∈ E and so we conclude u1 = u2 . This

is a contradiction as good direction sets are defined to consist of distinct elements or by noticing this would

mean 1u1 − 2u2 = −u1 ∈ S1 , contradicting the good direction condition. Thus we conclude good direction

sets are Q -independent and so the abelian group they generate is free abelian of rank d as claimed. Finally if

v1 = a1u1 + · · · + adud and v2 = b1u1 + · · · + bdud for (a1, . . . , ad), (b1, . . . , bd) ∈ Zd , it is easy to check that

∥v1 − v2∥ = 1 if and only if ∥(a1, . . . , ad)− (b1, . . . , bd)∥1 = 1 using the definition of good direction set. (Here

∥ · ∥ is the Euclidean norm on R2 while ∥ · ∥1 is the ℓ1 -norm on Zd .) 2

Example 2.5 Identify R2 with the complex plane C . The set {1, ξ = e
2πi
3 } ⊂ E ⊂ S1 is Q-independent but

is not a good direction set as 1(1) + 1(ξ) = −ξ2 ∈ S1 .
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We now show that the set G ⊂ F (E, d) of good sets of unit directions is a dense Gδ set. Recall a Gδ

set is a countable intersection of open sets.

Theorem 2.6 Let G ⊆ F (E, d) be the set of good direction sets (u1, . . . , ud) ; then G is a dense Gδ set in

F (E, d) .

Proof First note that when d = 1, G = F (E, 1) and so there is nothing to show. Thus WLOG assume

d ≥ 2. For any (a1, . . . , ad) ∈ Zd with two or more aj nonzero, define A(a1,...,ad) = {(u1, . . . , ud) ∈

F (E, d)|
∑d

j=1 ajuj ∈ S1} . Note that the function f(a1,...,ad)(u1, . . . , ud) = a1u1 + · · ·+ adud : F (E, d) → R2 is

continuous and so A(a1,...,ad) = f−1
(a1,...,ad)

(S1) is hence a closed subset of F (E, d). We now show that A(a1,...,ad)

is nowhere dense in F (E, d). Toward this let U ⊆ F (E, d) where U is nonempty and open. We have to show

that there exists (v1, . . . , vd) ∈ U such that (v1, . . . , vd) /∈ A(a1,...,ad) .

Setting θjk to be the angle between vj and vk , we have (v1, . . . , vd) ∈ A(a1,...,ad) if and only if∑
j<k 2ajakcos(θjk) = 1−

∑d
j=1 a

2
j .

Now note if we parametrize E ⊂ S1 by the principal argument and tj ∈ [0, π) is the argument of vj , we

have θij = ti − tj and so the last equation can be written as:

2
d∑

i<j

aiajcos(ti − tj) = 1− a21 − · · · − a2d.

Suppose contrary to what we want to show that U ⊆ A(a1,...,ad) then the equation above holds for all choices

of t1, . . . , td in an nonempty open subset of F ([0, π), d) ⊆ [0, π)d and so we may differentiate it with respect to

any of the variables tj on this open set. Differentiating this last identity with respect to t1 twice would kill all

terms not involving t1 and replicate those involving t1 yielding:

d∑
1<j

a1ajcos(t1 − tj) = 0

and thus imply that the net contribution of all terms involving t1 in the original identity is zero! Continuing in

this way with t2 and then t3 etc., we see that the identity can only hold for a nonempty open set of (t1, . . . , td)

if and only if its left-hand side is identically zero. This yields

0 = 1− a21 − · · · − a2d

which is a contradiction as at least two of the aj ’s are nonzero integers and so the right-hand side is negative.

Thus U ̸⊂ A(a1,...,ad
) and we can conclude that A(a1,...,ad) is a nowhere dense closed set.

As G = F (E, d)−∪(a1,...,ad)∈ZdA(a1,...,ad) , where the union is taken only over d-tuples in Zd with at least

two coordinates nonzero, we conclude G is a dense Gδ set as its complement is a countable union of nowhere

dense closed sets in the Baire space F (E, d) (see [11]). 2

Let Zd denote the integer lattice graph whose vertices are given by the set Zd and where there is an edge

joining (u1, . . . , ud) with (v1, . . . , vd) if and only if they differ in exactly one coordinate and in this coordinate
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the entries differ by ±1. Alternatively û and v̂ are joined by an edge exactly when ∥û− v̂∥1 = 1, where ∥ · ∥1
is the ℓ1 -norm.

Note that we may regard these graphs as nested Z1 ⊂ Z2 ⊂ Z3 ⊂ . . . and we define Z∞ as their

union graph, the integer lattice graph on countably infinitely many coordinates. The vertices of this graph are

eventually zero integer sequences and two such sequences û, v̂ are joined by an edge if ∥û− v̂∥1 = 1.

The next theorem relates T (n), the maximum number of unit distances determined by n points in the

Euclidean plane with Q -independent unit distance set, with the maximum number of edges that n points in

Z∞ can determine.

Theorem 2.7 T (n) is equal to the maximum number of edges that n points in Z∞ can determine. It is also

the maximum number of edges that n points in Zn−1 can determine.

Proof When n = 1, T (1) = 0 and there is nothing to show and so assume n ≥ 2. By Lemma 2.2, we may

take A an extremal set of n points such that A is a subset of the Z-span of DA and hence is a subset of

Zd ⊆ Zn−1 . However, if DA is not a good set of directions, there can be some pairs û, v̂ in this “lattice” that

have Euclidean unit distance apart but that have ∥û− v̂∥1 ̸= 1. For these pairs, we cannot have both members

of the pair in A as that would generate a unit difference vector (which is not one of the unit basis vectors of the

lattice) that is an integral combination of the basis unit vectors indicating a Z -linear dependency in DA . This

contradicts that A has rationally independent unit direction vectors. Thus the placement of the n points of A

in Z[DA] ∼= Zd must avoid placing two points of A in these sorts of pair locations. Subject to these restrictions,

A is a placement of n points in the standard Zd graph that maximizes the number of edge connections.

On the other hand, we know by Theorem 2.6 that we can find (u1, . . . , ud) a set of good directions that

generate a “good lattice” Zd and an arbitrary placement of n points in this lattice will yield a set B ⊂ R2

with DB ⊆ {u1, . . . , ud} and hence rationally independent unit directions.

Comparing the situation for sets A and B we see that they are both subsets of the standard Zd integer

lattice graph but A is constrained while B is not, in the sense we may choose B to correspond to A under

the isomorphism of these lattices or we could choose B to be something else. Thus we see that we never lose

if we choose B inside a lattice generated by a good set of directions so as to maximize the number of edges

determined by B within the graph Zd . Furthermore, because the set of directions is good, the edge count

within the standard Zd -lattice is the same as the unit distance count determined by the set B , i.e. two points

in the lattice are a unit distance apart in the Euclidean metric if and only if they are unit distance apart in the

ℓ1 -metric.

Thus extremal configurations for the Euclidean unit distance problem correspond to extremal configura-

tions within the standard lattice Z∞ or in fact Zd for some d ≤ n− 1.

Note also: given a set C of n points in the standard integer lattice Z∞ that maximize edge count, we

may translate one to the origin and argue once again by extremality for path connectedness of the unit distance

graph. From this it follows easily that there are at most n − 1 coordinates for which the elements of C can

have nonzero entries in these coordinates, i.e. C can be viewed as a subset of Zn−1 . 2

3. Edge maximizing configurations in Zd and {0, 1}d

In the following, an induced subgraph on a set of vertices V refers to the subgraph within a given graph whose

vertex set is V and whose edge set is obtained by taking all the edges joining the vertices in V in the ambient
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graph. Throughout this section let Zd denote the standard d-dimensional integer lattice graph whose vertex

set is Zd and where two integer vectors are adjacent if and only if they differ in exactly one coordinate by ±1.

Furthermore, let {0, 1}l × Zd ⊂ Zd+l and {0, 1}d ⊂ Zd be given the induced subgraph structures also.

We seek to find edge maximizing configurations in the sense that we would like to place n points in some

lattice Zm so that the number of edge connections amongst those points is maximized. The first lemma and its

corollary shows that any such edge maximizing configuration can be found inside the hypercube graph {0, 1}d

for some d .

Let V ⊆ Zd be a finite set of vertices; we can and will always translate V so that the number of edges

it determines is unchanged and such that 0 ∈ V and all v = (x1, . . . , xd) ∈ V have xi ≥ 0 for all i = 1, . . . , d .

We then define Mj(V ) = maxv∈V {xj} and M(V ) = maxj∈{1,...,d} Mj . Note that Mj(V ) is the maximum j th

coordinate achieved in the set of vectors V and M(V ) is a nonnegative integer.

Lemma 3.1 Let V ⊂ Zd be a finite set and G = (V,E) be the induced subgraph of Zd and M(V ) ≥ 2 , where

M(V ) is the quantity defined in the previous paragraph. Then there exists V ′ ⊂ {0, 1}l × Zd and induced

subgraph G′ = (V ′, E′) of {0, 1}l × Zd with |V | = |V ′| and |E| = |E′| . Furthermore, M(V ′) = M(V )− 1 .

Proof Let M denote M(V ) throughout. Without loss of generality we assume M1(V ) = M ≥ 2. Let V1 be

the set of vertices in V with x1 = M and let V0 = V \ V1 . Note that v = (M,a2, · · · , ad) ∈ V1 shares an edge

with w = (b1, b2, · · · , bd) ∈ V0 if and only if b1 = M − 1 and bj = aj for j = 2, · · · , d .

We map the elements of V into {0, 1} × Zd as follows:

if v = (M,a2, · · · , ad) ∈ V1 , then v → (1,M − 1, a2, · · · , ad) and if w = (b1, · · · , bd) ∈ V0 , then w →
(0, b1, · · · , bd). Let G′ = (V ′, E′) be the graph resulting from this mapping. By construction |V ′| = |V | . We

see that v ∈ V1 and w ∈ V0 share in edge in G if and only if their images share an edge in G′ . Moreover,

we also see that v1, v2 ∈ V1 share an edge in G if and only if their images share an edge in G′ and likewise

w1, w2 ∈ V0 share an edge in G if and only if their images share an edge in G′ . Thus |E′| = |E| . We have

M2(V
′) = M1(V ) − 1 and M(V ) − 1 ≤ M(V ′) ≤ M(V ). At this point, if M(V ′) = M(V ) − 1 we are done.

Otherwise, there is another coordinate xj with Mj(V
′) = M(V ) and we repeat the process for this coordinate.

Continuing in this fashion eventually results in a graph with M(V ′) = M(V ) − 1 since there are at most d

possible (original) coordinates to consider. 2

Corollary 3.2 Let G = (V,E) be a finite induced subgraph of the standard integer lattice graph Zd . Then

there exists an induced subgraph G′ = (V ′, E′) on {0, 1}d′
for some d′ ∈ N , with |V | = |V ′| and |E| = |E′| .

Proof After M(V )− 1 iterations of lemma 3.1 we have M(V ′) = 1, which implies the resulting graph is now

an induced subgraph of {0, 1}d′
. 2

In particular, suppose K is an extremal graph on Z∞ , i.e. |V (K)| = n and |E(K)| equals the maximum

number of edges determined by n points in Z∞ . The corollary tells us that there is a graph K ′ on {0, 1}∞

with the same number of vertices and edges; hence

max
G∈Z∞

|V (G)|=n

|E(G)| = |E(K)| = |E(K ′)| ≤ max
G∈{0,1}∞

|V (G)|=n

|E(G)|

Since the inequality in the other direction is obvious we have established the following.
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Corollary 3.3 The maximum number of edges determined by n points in the standard countably infinite integer

lattice Z∞ is equal to the maximum number of edges determined by n points in the standard countably infinite

hypercube graph {0, 1}∞ .

This reduces the problem of finding T (n) to the edge maximizing problem on {0, 1}∞ , which we now

focus on. The solution that we give in theorem 3.4 is known, and was proved in [2, 8, 9]. We provide an alternate

proof of this result for completeness and because we feel it is somewhat shorter and cleaner than those that

have previously appeared. See also [3] for an overview of related isoperimetric problems.

We label the elements of the d dimensional unit hypercube {0, 1}d via binary representation. That is, let

vj = (ad−1, ad−2, . . . , a0), where j =
∑d−1

k=0 ak2
k , each ak ∈ {0, 1} . In the following, for any graph embedded

in {0, 1}d it is implied that vertices vi and vj are adjacent if and only if the Hamming distance between vi

and vj is 1, i.e. if and only if vi and vj differ in exactly one coordinate.

For the sake of clarity, we use the following example to introduce some definitions we will use. Although

they are introduced in this example, it should be clear how they are defined in general.

3.1. Example: d = 5

Consider the array for (x4, x3, · · · , x0) ∈ {0, 1}5 :

Block
A

v0 = (0, 0, 0, 0, 0)
v1 = (0, 0, 0, 0, 1)
v2 = (0, 0, 0, 1, 0)
v3 = (0, 0, 0, 1, 1)

...
v7 = (0, 0, 1, 1, 1)

v8 = (0, 1, 0, 0, 0)
v9 = (0, 1, 0, 0, 1)
v10 = (0, 1, 0, 1, 0)
v11 = (0, 1, 0, 1, 1)

...
v15 = (0, 1, 1, 1, 1)

Block
B

Block
C

v16 = (1, 0, 0, 0, 0)
v17 = (1, 0, 0, 0, 1)
v18 = (1, 0, 0, 1, 0)

...
v23 = (1, 0, 1, 1, 1)

v24 = (1, 1, 0, 0, 0)
v25 = (1, 1, 0, 0, 1)
v26 = (1, 1, 0, 1, 0)

...
v31 = (1, 1, 1, 1, 1)

Block
D

The blocks are determined by using the leftmost two coordinates: Block A: (0, 0, ∗), Block B: (0, 1, ∗), Block
C: (1, 0, ∗), Block D: (1, 1, ∗). Note that induced subgraphs of {0, 1}5 never contain “diagonal edges” between

a vertex in block A and a vertex in block D or between a vertex in block B and a vertex in C.

Arrays of this form will also be used to represent induced subgraphs of {0, 1}5 by putting a dark dot

next to vertices that occur in the subgraph. For instance, the induced subgraph T with vertex set

V = {v0, v1, v9, v10, v11, v19, v23, v24, v25, v26, v27, v28, v29, v30}

is represented by
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Block
A

v0 = (0, 0, 0, 0, 0) •
v1 = (0, 0, 0, 0, 1) •
v2 = (0, 0, 0, 1, 0)
v3 = (0, 0, 0, 1, 1)
v4 = (0, 0, 1, 0, 0)
v5 = (0, 0, 1, 0, 1)
v6 = (0, 0, 1, 1, 0)
v7 = (0, 0, 1, 1, 1)

v8 = (0, 1, 0, 0, 0)
v9 = (0, 1, 0, 0, 1) •
v10 = (0, 1, 0, 1, 0) •
v11 = (0, 1, 0, 1, 1) •
v12 = (0, 1, 1, 0, 0)
v13 = (0, 1, 1, 0, 1)
v14 = (0, 1, 1, 1, 0)
v15 = (0, 1, 1, 1, 1)

Block
B

Block
C

v16 = (1, 0, 0, 0, 0)
v17 = (1, 0, 0, 0, 1)
v18 = (1, 0, 0, 1, 0)
v19 = (1, 0, 0, 1, 1) •
v20 = (1, 0, 1, 0, 0)
v21 = (1, 0, 1, 0, 1)
v22 = (1, 0, 1, 1, 0)
v23 = (1, 0, 1, 1, 1) •

v24 = (1, 1, 0, 0, 0) •
v25 = (1, 1, 0, 0, 1) •
v26 = (1, 1, 0, 1, 0) •
v27 = (1, 1, 0, 1, 1) •
v28 = (1, 1, 1, 0, 0) •
v29 = (1, 1, 1, 0, 1) •
v30 = (1, 1, 1, 1, 0) •
v31 = (1, 1, 1, 1, 1)

Block
D

In a graph G , let VA(G) denote the vertices of G in block A (VB(G), VC(G), VD(G) defined analogously).

Note that each vertex in VD(G) shares an edge with at most one vertex in VC(G) (the element directly to

the left). For instance, in the graph above v19 and v27 share an edge but there are no other vertices in VD

sharing an edge with a vertex in VC . We call these “horizontal” edges, as with edges connecting a vertex of VB

with the vertex to the left in VA . The horizontal edges in a graph G will be denoted Ehor(G). In the graph

above, |Ehor| = 2, the horizontal edges are [v19, v27] and [v1, v9] . Similarly, each vertex of VD(G) shares an

edge with at most one vertex of VB(G). For instance, in the graph above v25 shares an edge with v9 but no

other vertices in VB . We call these “vertical” edges as with edges connecting a vertex of VC(G) with a vertex

of VA(G). The vertical edges in a graph G will be denoted Evert(G). In the graph above, |Evert| = 3, the

vertical edges are [v9, v25], [v10, v26], [v11, v27] . Let VAB(G) = VA(G) ∪ VB(G) and define VAC(G), VBD(G) and

VCD(G) analogously. One can observe that the following inequalities hold in general:

|Ehor(G)| ≤ min{|VAC(G)|, |VBD(G)|} (1)

|Evert(G)| ≤ min{|VAB(G)|, |VCD(G)|} (2)

Let EA(G) be the edges in the subgraph of G induced by VA(G), and EB(G), EC(G), ED(G) defined

analogously. In particular, an edge is in EA(G) if and only if it is an edge of G that connects a vertex in VA(G)

with another vertex in VA(G). Similarly, let EAB(G) be the edges in the subgraph of G induced by VAB(G),

and EAC(G), EBD(G), ECD(G) defined analogously. In particular, EAB(G) contains precisely all the edges in

EA(G), all the edges in EB(G), and those edges of G that connect a vertex in VA(G) and a vertex in VB(G).

For example, in the graph T above EA = {[v0, v1]}, EB = {[v9, v11], [v10, v11]} and with the horizontal

edge [v1, v9] we have |EAB | = 4. The reader can verify that |EC | = 1, |ED| = 9 and with the horizontal

edge [v19, v27] we have |ECD| = 11. With the vertical edges [v9, v25], [v10, v26], [v11, v27] and the counts for

|EA|, |EB|, |EC |, |ED| we obtain |EAC | = 2 and |EBD| = 14.

Note that the edge set E(G) of a graph G can be written as a disjoint union as

E(G) = EAB(G) ∪ ECD(G) ∪ Evert(G) (3)

E(G) = EAC(G) ∪ EBD(G) ∪ Ehor(G) (4)
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We also make the following definitions. We say a graph is “completely arranged” if V = {v0, v1, · · · , vI}
for some I . We say a graph is “horizontally arranged” if VAB = {v0, v1, · · · , vJ} and VCD = {v16, v17, · · · , vK}
for some J and K . We say a graph is “vertically arranged” if VAC is filled consecutively downward starting

from v0 , and VBD is filled consecutively downward starting from v8 . Completely arranging a graph is replacing

it by the completely arranged graph with the same number of vertices. Horizontally arranging a graph is

replacing it by the horizontally arranged graph with the same |VAB | and |VCD| . Vertically arranging a graph

is replacing it by the vertically arranged graph with the same |VAC | and |VBD| . For example, the graph T

above is neither vertically nor horizontally arranged. Horizontally arranging T gives

Block
A

v0 •
v1 •
v2 •
v3 •
v4 •
v5
v6
v7

v8
v9
v10
v11
v12
v13
v14
v15

Block
B

Block
C

v16 •
v17 •
v18 •
v19 •
v20 •
v21 •
v22 •
v23 •

v24 •
v25
v26
v27
v28
v29
v30
v31

Block
D

.

The reader can verify that horizontally arranging T increases |EAB | from 4 to 5, |ECD| from 11 to 13, and

|Evert| from 3 to 5, and hence from equation (3) the total number of edges has increased from 18 to 23.

Vertically arranging T gives

Block
A

v0 •
v1 •
v2 •
v3 •
v4
v5
v6
v7

v8 •
v9 •
v10 •
v11 •
v12 •
v13 •
v14 •
v15 •

Block
B

Block
C

v16
v17
v18
v19
v20
v21
v22
v23

v24 •
v25 •
v26
v27
v28
v29
v30
v31

Block
D

We see that vertically arranging T increases |EAC | from 2 to 4, |EBD| from 14 to 15, and |Ehor| from 2 to 4,

and hence from equation (4) the total number of edges has increased from 18 to 23.
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Completely arranging T gives

Block
A

v0 •
v1 •
v2 •
v3 •
v4 •
v5 •
v6 •
v7 •

v8 •
v9 •
v10 •
v11 •
v12 •
v13 •
v14
v15

Block
B

Block
C

v16
v17
v18
v19
v20
v21
v22
v23

v24
v25
v26
v27
v28
v29
v30
v31

Block
D

We see that completely arranging T increases the total number of edges from 18 to 25.

Notice all vertices in blocks A and B have the form (0, xd−2, · · · , x0). Let τAB be the graph isomorphism

from block A ∪ block B onto the hypercube graph {0, 1}d−1 defined by the vertex mapping (0, xd−2, · · · , x0) →
(xd−2, · · · , x0). This is equivalent to ignoring the leading coordinate of the binary expansion associated with a

given vertex, and hence preserves the ordering of vertices as given by binary expansion. Similarly, define the

graph isomorphism τCD from block C ∪ block D onto the hypercube graph {0, 1}d−1 by the vertex mapping

(1, xd−2, · · · , x0) → (xd−2, · · · , x0). Notice that a given graph G is horizontally arranged by the following steps:

(i) apply τAB to the subgraph of G induced by VAB(G)

(ii) completely arrange the resulting subgraph of {0, 1}d−1

(iii) apply τ−1
AB to obtain the resulting A and B blocks

(iv) using τCD repeat the steps analogous to (i)–(iii) for the subgraph of G induced by VCD(G) to obtain the

resulting C and D blocks

For example, to obtain the A and B blocks after horizontally arranging T , we first apply step (i) to the

subgraph of T induced by VAB(T ):

(0, 0, 0, 0) •
(0, 0, 0, 1) •
(0, 0, 1, 0)
(0, 0, 1, 1)
(0, 1, 0, 0)
(0, 1, 0, 1)
(0, 1, 1, 0)
(0, 1, 1, 1)

(1, 0, 0, 0)
(1, 0, 0, 1) •
(1, 0, 1, 0) •
(1, 0, 1, 1) •
(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)
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Then we completely arrange this graph by step (ii):

(0, 0, 0, 0) •
(0, 0, 0, 1) •
(0, 0, 1, 0) •
(0, 0, 1, 1) •
(0, 1, 0, 0) •
(0, 1, 0, 1)
(0, 1, 1, 0)
(0, 1, 1, 1)

(1, 0, 0, 0)
(1, 0, 0, 1)
(1, 0, 1, 0)
(1, 0, 1, 1)
(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)

Applying step (iii):

Block
A

(0, 0, 0, 0, 0) •
(0, 0, 0, 0, 1) •
(0, 0, 0, 1, 0) •
(0, 0, 0, 1, 1) •
(0, 0, 1, 0, 0) •
(0, 0, 1, 0, 1)
(0, 0, 1, 1, 0)
(0, 0, 1, 1, 1)

(0, 1, 0, 0, 0)
(0, 1, 0, 0, 1)
(0, 1, 0, 1, 0)
(0, 1, 0, 1, 1)
(0, 1, 1, 0, 0)
(0, 1, 1, 0, 1)
(0, 1, 1, 1, 0)
(0, 1, 1, 1, 1)

Block
B

We see these are the A and B blocks after horizontally arranging T .

We can vertically arrange a graph by a similar sequence of steps. Notice that all vertices in blocks A and

C have 0 for their second coordinate. Let τAC be the graph isomorphism from block A ∪ block C onto the

hypercube graph {0, 1}d−1 defined by the vertex mapping (xd−1, 0, xd−3, · · · , x0) → (xd−1, xd−3, · · · , x0). This

is equivalent to ignoring the second coordinate of the binary expansion associated with a given vertex, and hence

preserves the ordering of vertices as given by binary expansion. Similarly, define the graph isomorphism τBD

from block B ∪ block D onto the hypercube graph {0, 1}d−1 by the vertex mapping (xd−1, 1, xd−3, · · · , x0) →
(xd−1, xd−3, · · · , x0). Notice that a given graph G is vertically arranged by the following steps:

(i) apply τAC to the subgraph of G induced by VAC(G)

(ii) completely arrange the resulting subgraph of {0, 1}d−1

(iii) apply τ−1
AC to obtain the resulting A and C blocks

(iv) using τBD repeat the steps analogous to (i)–(iii) for the subgraph of G induced by VBD(G) to obtain the

resulting B and D blocks

For example, for the graph T above, applying steps (i)–(iii) for the subgraph of T induced by VAC(T )
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we obtain the same blocks A and C from vertically arranging T :

Step(i)−−−−→

(0, 0, 0, 0) •
(0, 0, 0, 1) •
(0, 0, 1, 0)
(0, 0, 1, 1)
(0, 1, 0, 0)
(0, 1, 0, 1)
(0, 1, 1, 0)
(0, 1, 1, 1)
(1, 0, 0, 0)
(1, 0, 0, 1)
(1, 0, 1, 0)
(1, 0, 1, 1) •
(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1) •

Step(ii)−−−−−→

(0, 0, 0, 0) •
(0, 0, 0, 1) •
(0, 0, 1, 0) •
(0, 0, 1, 1) •
(0, 1, 0, 0)
(0, 1, 0, 1)
(0, 1, 1, 0)
(0, 1, 1, 1)
(1, 0, 0, 0)
(1, 0, 0, 1)
(1, 0, 1, 0)
(1, 0, 1, 1)
(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)

Step(iii)−−−−−→

Block
A

(0, 0, 0, 0, 0) •
(0, 0, 0, 0, 1) •
(0, 0, 0, 1, 0) •
(0, 0, 0, 1, 1) •
(0, 0, 1, 0, 0)
(0, 0, 1, 0, 1)
(0, 0, 1, 1, 0)
(0, 0, 1, 1, 1)

Block
C

(1, 0, 0, 0, 0)
(1, 0, 0, 0, 1)
(1, 0, 0, 1, 0)
(1, 0, 0, 1, 1)
(1, 0, 1, 0, 0)
(1, 0, 1, 0, 1)
(1, 0, 1, 1, 0)
(1, 0, 1, 1, 1)

Let λi be the graph automorphism of the hypercube graph {0, 1}d that changes the xi coordinate of

each vertex from 0 to 1 or 1 to 0 (for instance (xd−1, xd−2, · · · , xi = 1, · · · , x0) maps to (xd−1, xd−2, · · · , xi =

0, · · · , x0) and vice versa). Observe that applying λ4 in this example interchanges block A with C and block B

with D. In particular, λ4(T ) (which changes the leftmost coordinate in the graph T ) is given by

Block
A

v0 = (0, 0, 0, 0, 0)
v1 = (0, 0, 0, 0, 1)
v2 = (0, 0, 0, 1, 0)
v3 = (0, 0, 0, 1, 1) •
v4 = (0, 0, 1, 0, 0)
v5 = (0, 0, 1, 0, 1)
v6 = (0, 0, 1, 1, 0)
v7 = (0, 0, 1, 1, 1) •

v8 = (0, 1, 0, 0, 0) •
v9 = (0, 1, 0, 0, 1) •
v10 = (0, 1, 0, 1, 0) •
v11 = (0, 1, 0, 1, 1) •
v12 = (0, 1, 1, 0, 0) •
v13 = (0, 1, 1, 0, 1) •
v14 = (0, 1, 1, 1, 0) •
v15 = (0, 1, 1, 1, 1)

Block
B

Block
C

v16 = (1, 0, 0, 0, 0) •
v17 = (1, 0, 0, 0, 1) •
v18 = (1, 0, 0, 1, 0)
v19 = (1, 0, 0, 1, 1)
v20 = (1, 0, 1, 0, 0)
v21 = (1, 0, 1, 0, 1)
v22 = (1, 0, 1, 1, 0)
v23 = (1, 0, 1, 1, 1)

v24 = (1, 1, 0, 0, 0)
v25 = (1, 1, 0, 0, 1) •
v26 = (1, 1, 0, 1, 0) •
v27 = (1, 1, 0, 1, 1) •
v28 = (1, 1, 1, 0, 0)
v29 = (1, 1, 1, 0, 1)
v30 = (1, 1, 1, 1, 0)
v31 = (1, 1, 1, 1, 1)

Block
D

Similarly, λ3(T ) interchanges block A with B and C with D.

Let σi,j be the graph automorphism of {0, 1}d that interchanges the xi and xj coordinates of each

vertex. Note that σ3,4(T ) results in interchanging blocks B and C while blocks A and D are left alone.

We will utilize the facts that for any induced subgraph G , |E(λi(G))| = |E(G)| and |E(σi,j(G))| = |E(G)|
in general as σi,j and λi are graph automorphisms of the hypercube graph.

We are now ready to state and prove our result.
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Theorem 3.4 Let G be an induced subgraph of {0, 1}d with vertices adjacent if and only if they are separated

by a Hamming distance 1. Then |E(G)| ≤ |E(H)| , where H is the completely arranged graph with |V (H)| =
|V (G)| , i.e. V (H) = {v0, v1, · · · , v|V (G)|−1} , where vj is defined by binary representation as above.

Proof We proceed by induction on d . For the base step d = 1, let G be an induced subgraph of {0, 1}1 .
Then G has 0, 1, or 2 vertices. If |V (G)| = 0 or 1, then |E(G)| = 0. If |V (G)| = 2, then |E(G)| = 1. In all

cases |E(G)| = |E(H)| , where H is the completely arranged graph with |V (H)| = |V (G)| .

For the inductive step, fix d ≥ 2, let G be an induced subgraph of {0, 1}d , and assume the conclusion

holds for d− 1. Consider the array for (xd−1, xd−2, · · · , x0) ∈ {0, 1}d ; there are 2d−2 vertices in each block:

Block
A

v0
v1
...
v2d−2−1

v2d−2

v2d−2+1
...
v2d−1−1

Block
B

Block
C

v2d−1

v2d−1+1
...
v2d−1+2d−2−1

v2d−1+2d−2

v2d−1+2d−2+1
...
v2d−1

Block
D

We make the following observations using our inductive hypothesis. Recall that horizontally arranging

G can be accomplished by first applying τAB to VAB(G), completely arranging the resulting subgraph of

{0, 1}d−1 , applying τ−1
AB to the result, and then doing the analogous sequence of moves applied to VCD(G).

Since τAB is a graph isomorphism and the inductive hypothesis tells us that subgraphs of {0, 1}d−1 can be

completely arranged without decreasing the number of edges, we see that the number of edges on the subgraph

of G induced by VAB(G) does not decrease from these moves. In other words, horizontally arranging G does

not decrease |EAB | , and by the same reasoning |ECD| does not decrease either. Since we have equality in

equation (2) in a horizontally arranged graph, it follows from equation (3) that horizontally arranging G does

not decrease the total number of edges. Since vertically arranging G can similarly be accomplished by applying

graph isomorphisms on VAC(G) and VBD(G), and completely arranging subgraphs of {0, 1}d−1 , we see that

vertically arranging G does not decrease |EAC | or |EBD| , and from equations (1) and (4) we see that vertically

arranging G does not decrease the total number of edges.

We proceed by applying a sequence of operations that does not decrease the number of edges in the graph

and results in the completely arranged graph with the same number of vertices. We first vertically arrange G .

If |VAC | < |VBD| , apply λd−2 (interchanging block A with B and block C with D). This results in a vertically

arranged graph G′ with |VAC | ≥ |VBD| , i.e. of the form:
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Block
A

v0 •
v1 •
...
v2d−2−1 •

v2d−2 •
v2d−2+1 •
v2d−2+2 •
...
v2d−1−1 •

Block
B

Block
C

v2d−1 •
v2d−1+1 •
v2d−1+2•
...
v2d−1+2d−2−1

v2d−1+2d−2 •
v2d−1+2d−2+1 •
v2d−1+2d−2+2
...
v2d−1

Block
D

We now proceed by cases on the form of G′ .

Case 1: Block B is full

By the form of G′ , we know block A is full. We can then horizontally arrange, which results in a completely

arranged graph.

Case 2: Block B is not full

By the form of G′ , we know block D is empty.

2(a): Block C is empty

Horizontally arranging results in a completely arranged graph.

2(b): Block C is nonempty

By the form of G′ we know block A is full. If |VB | < |VC | , we apply σd−2,d−1 (interchanging blocks

B and C). If this results in B full or C empty the graph is completely arranged (since A is full and

D is empty here). Otherwise, we now have the vertically arranged form:

Block
A FULL partially filled Block

B

Block
C

partially filled
with |VC | ≤ |VB |

EMPTY Block
D

From equation (3) we see that |E| = |EAB |+ |ECD|+ |Evert| = |EAB|+ |ECD|+ |VC | in this form.

We now interchange blocks C and D giving us a graph of the form:

Block
A FULL partially filled Block

B

Block
C EMPTY partially filled

with |VD| ≤ |VB |
Block
D

Clearly this operation did not change |EAB | and |ECD| and observe that we now have |E| =

|EAB | + |ECD| + |Evert| = |EAB | + |ECD| + |VD| since |VD| ≤ |VB| . Thus we see that the number

of edges was preserved by this operation.
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We now vertically arrange the graph. If this does not completely fill block B, we have both blocks

C and D empty and the graph is completely arranged. If this does completely fill block B we can

horizontally arrange, which results in a completely arranged graph.

We see that in all cases the graph can be completely arranged without reducing the number of edges. 2

Corollary 3.5 Let G = (V,E) be a finite induced subgraph of some standard integer lattice Zm with |V | = n .

Let 2d−1 < n ≤ 2d . Then |E(G)| ≤ |E(H)| , where H is the completely arranged graph on {0, 1}d with

|V (H)| = n , i.e. V (H) = {v0, v1, · · · , vn−1} , where vj is defined by binary representation as above.

Proof This follows from corollary 3.2 and theorem 3.4. 2

Therefore, the completely arranged graphs are extremal configurations that maximize edge count in

{0, 1}∞ and Z∞ for a given number of vertices. Thus counting their edges gives us T (n). For a natural

number j , let H(j) be the number of nonzero digits in the binary expansion of j (Hamming weight) and make

the following observation: starting with the graph with vertex set V = {v0, v1, . . . , vk−1} , if the single vertex

vk is added the number of edges increases by H(k), i.e. ∇T (k) = T (k + 1) − T (k) = H(k). To see this, note

that if we replace a single 1 in vk by 0 we obtain vj ∈ V , whereas if we replace a single 0 in vk by 1 we obtain

vj /∈ V . We then have T (n) = T (n)− T (1) =
∑n−1

k=1 ∇T (k) =
∑n−1

k=0 H(k). We will use this to obtain an exact

expression for T (n).

Theorem 3.6 (a) T (2d) = d2d−1 for d ∈ N .

(b) More generally, if n =
∑t

j=1 2
kj , where k1 > k2 > · · · > kt ≥ 0 , then T (n) =

∑t
j=1(kj2

kj−1 + (j − 1)2kj ) .

(c) For all n ∈ N , n(⌈log n⌉ − 1)/4 < T (n) < n ⌈log n⌉ , where log is the base 2 logarithm.

Proof

(a) If n = 2d , we note that each vertex in the d−dimensional unit hypercube has degree d , and so the

sum of degrees over all vertices is d2d ; then T (n) = d2d−1 follows from the handshaking theorem.

(b) For 2d−1 < n ≤ 2d and n =
∑t

j=1 2
kj , where k1 > k2 > · · · > kt ≥ 0, define sr =

∑r
j=1 2

kj . We

have:

T (n) =
n−1∑
j=0

H(j) =

s1−1∑
j=0

H(j) +

s2−1∑
j=s1

H(j) + · · ·+
st−1∑

j=st−1

H(j)

We now notice that for sr−1 ≤ j ≤ sr − 1, H(j) = r − 1 +H(j − sr−1) and so

sr−1∑
j=sr−1

H(j) =

sr−1∑
j=sr−1

(r − 1 +H(j − sr−1)) =
2kr−1∑
m=0

(r − 1 +H(m)) = (r − 1)2kr + kr2
kr−1

Here we used that T (2k) =
∑2k−1

m=0 H(m) = k2k−1 by part (a).
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Then

T (n) =

s1−1∑
j=0

H(j) +

s2−1∑
j=s1

H(j) + · · ·+
st−1∑

j=st−1

H(j)

= k12
k1−1 + 2k2 + k22

k2−1 + 22k3 + k32
k3−1 + · · ·+ (t− 1)2kt + kt2

kt−1

=

t∑
j=1

(kj2
kj−1 + (j − 1)2kj ).

(c) Let d be an integer. Note that d = ⌈log n⌉ ⇔ d − 1 < log n ≤ d ⇔ 2d−1 < n ≤ 2d . Then since

T (n) is clearly strictly monotonically increasing we have (⌈log n⌉ − 1)n/4 ≤ (d − 1)2d−2 = T (2d−1) < T (n) ≤
T (2d) = d2d−1 < n ⌈log n⌉ . 2
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