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Abstract: An almost null ring is a ring R in which for all a, b ∈ R , a3 = 0, Ma2 = 0 for some square-free integer M

that depends on a and ab = ka2 = lb2 for some integers k, l . This paper is devoted to the classification of the almost

null rings.
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1. Introduction and preliminaries

All considered rings are associative, but not necessarily with unity. If the additive group R+ of the ring R

is a p -group, then we say that R is a p -ring. A ring in which every subring is a two-sided ideal is called

a Hamiltonian ring, or, more concisely, an H-ring. An element r in a ring R is said to be nilpotent if

rn = 0 for some n ∈ N . A ring R is a nil ring if every element of R is nilpotent. If a nil ring R is both

a p -ring and an H -ring, we shall say that R is a nil-H -p-ring. The class of H -rings have been studied by

a number of authors and the most important results were obtained by Rédei [8, 9], Andrijanov [1] and Kruse

[6, 7]. They reduced the description of nil-H -rings to the description of nil-p -H -rings. To describe the class

of nil-p -H -rings they used many types of rings defined by complicated relations on generators. Unfortunately,

the problem of classification of nil-p -H -rings (even rings from the same class), up to an isomorphism, is still
open.

A very important subclass of the class of all H -rings is the class of so-called almost null rings, which

were discovered by Kruse and independently by Andrijanov.

Definition 1.1 ([6], Definition 2.1) A ring R is almost null if for all a, b ∈ R the following conditions are

satisfied:

(i) a3 = 0 ,

(ii) Ma2 = 0 for some square-free integer M that depends on a and

(iii) ab = ka2 = lb2 for some integers k, l .

In [1], Kruse, reduced the problem of classification on nil-H -rings to the problem of classification of

torsion nil-H -rings by proving that nontorsion nil-ring R is an H -ring if and only if R is an almost null ring.
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Moreover, the problem of describing torsion nil-H -rings is reduced to the problem of describing nil-H -p -rings

(cf. Remark 1.8 of [1]), and even, as was shown by Kruse in Propositions 2.5 and 2.5, to the problem of

describing nil-H -p -rings of bounded exponent (modulo the description of almost null rings).

Almost null rings play a central role in the classification of so-called filial rings (cf. [2, 3]).

Let p be any prime integer. By Zp∞ we denote the quasicyclic p-group, i.e. the group

⟨x1, x2, . . . | px1 = 0; pxi+1 = xi for any i ∈ N⟩ . Throughout the paper, N , Z , and P stand for the

set of all positive integers, the set of all integers, and the set of all primes, respectively. For n ∈ N , let

Zn = {0, 1, . . . , n − 1} be the residue class ring modulo n . Let p ∈ P ; an integer µ is called a quadratic

nonresidue modulo p if the congruence x2 ≡ µ (mod p) has no solution.

In the current paper for a ring R we will use the following notation: for a subset S of R , we denote by

⟨S⟩ , [S] , aR(S) = {x ∈ R : xS = Sx = 0} the subgroup of R+ generated by S , the subring of R generated by

S , the two-sided annihilator of S in R , respectively. Instead of aR(R) we will write a(R), for short. Moreover,

T(R) = {x ∈ R : nx = 0 for some n ∈ N} and Rp = {x ∈ R : pnx = 0 for some n ∈ N} for any p ∈ P . For an
abelian group M , by M0 we denote the ring with a zero multiplication and the additive group M .

2. Basic examples of almost null rings

Clearly, every almost null ring R is an H -ring such that R3 = 0 and a(R) = {x ∈ R : x2 = 0} . For a ring R

and a prime integer p let R[p] = {a ∈ R : pa2 = 0}.
Some characterizations of almost null rings were found by Kruse and Andrijanov, but are unsatisfac-

tory due to lack of description up to an isomorphism. The following theorems were proved by Kruse, and

independently by Andrijanov, via nontrivial methods such as Chevalley’s theorem (cf. [5, pages 143–144]):

Theorem 2.1 ([6], Proposition 2.10) Let S be a ring and let p be a prime integer. Then S is an almost

null ring such that S = S[p] if and only if one of the following conditions is satisfied:

(1) S2 = 0 ,

(2) there exists x ∈ S such that x2 ̸= 0 , px2 = 0 , px, x2 ∈ a(S) , and S = ⟨x⟩+ a(S) ,

(3) there exist x, y ∈ S such that S = ⟨x, y⟩ + a(S) , x2 ̸= 0 , px2 = 0 , px, py, x2 ∈ a(S) , y2 = Ax2 ,

xy = F1x
2 , yx = F2x

2 , where A,F1, F2 ∈ Z and the congruence

X2 + (F1 + F2)X +A ≡ 0 (mod p) (1)

has no integer solution.

Moreover, if S is an almost null ring, then S/a(S) is a Zp -algebra and dimZp S/a(S) ≤ 2 , wherein

dimZp S/a(S) = k − 1 if and only if S satisfies the condition (k).

Theorem 2.2 ([6], Proposition 2.10) A ring R is an almost null ring if and only if R =
∑

p∈P R[p] , where

for all distinct prime integers p, q we have R[p] · R[q] = 0 , R[p] � R and R[p] satisfies one of the conditions

(1), (2), or (3) of Theorem 2.1.
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Example 2.3 Let p be any prime integer and let M be any, additively written, abelian group that possesses

an element α of order p . Then ⟨α⟩ is a vector space over a field Zp . In the abelian group Z+
p ×M we define

a multiplication by the formula

(k1,m1) · (k2,m2) = (0, (k1k2)α), (2)

for all k1, k2 ∈ Z , m1,m2 ∈ M . A standard computation shows that this multiplication is well-defined,

distributive over addition, and commutative. Moreover, (ab)c = a(bc) = 0 for all a, b, c ∈ Zp × M . The

ring constructed above will be denoted by

Zp ×α M.

Notice that (Zp ×α M)2 = {0} × ⟨α⟩ , a(Zp ×α M) = {0} ×α M and if x = (1, 0) , then Zp ×α M =

⟨x⟩+ a(Zp ×α M) and x2 = (0, α) ̸= 0 , px2 = 0 .

From Theorem 2.1 it follows that Zp ×α M is an almost null ring such that Zp ×α M = (Zp ×α M)[p] .

Proposition 2.4 Let p be any prime integer and let M1 , M2 be any additively written abelian p-groups. Let

α ∈ M1 , β ∈ M2 be such that o(α) = o(β) = p . Then the following conditions are equivalent:

(i) Zp ×α M1
∼= Zp ×β M2 ,

(ii) there exists a group isomorphism f : M1 → M2 such that f(α) = β .

Proof (i) ⇒ (ii). Let F : Zp ×α M1 → Zp ×β M2 be a ring isomorphism. Then F ((Zp ×α M1)
2) =

(Zp×β M2)
2 , and so F ({0}×⟨α⟩) = {0}×⟨β⟩ . Hence F ((0, α)) = k(0, β) for some nonzero k ∈ Zp . Moreover,

F (a(Zp×αM1)) = a(Zp×βM2); thus F ({0}×M1) = {0}×M2 . Therefore, there exists a bijection g : M1 → M2

such that F ((0,m)) = (0, g(m)) for every m ∈ M1 . Hence g is a group isomorphism and g(α) = kβ . There

exists l ∈ Zp such that kl ≡ 1 (mod p). However, M2 is a p-group, and so the function h : M2 → M2 given

by the formula h(x) = lx is a group isomorphism. Therefore, it is enough to set f = h ◦ g .
(ii) ⇒ (i). Let the function F : Zp ×α M1 → Zp ×β M2 be given by the formula

F ((k,m)) = (k, f(m)) for any k ∈ Zp, m ∈ M1.

It is easy to check that F is an isomorphism of additive groups. Moreover, for any k1, k2 ∈ Zp ,

m1,m2 ∈ M1 we have F ((k1,m1)(k2,m2)) = F ((0, (k1k2)α)) = (0, k1k2f(m)) = (0, (k1k2)β) and

F ((k1,m1))F ((k2,m2)) = (k1, f(m1))(k2, f(m2)) = (0, (k1k2)β). It shows that F is a ring isomorphism. 2

Proposition 2.5 Let p be any prime integer. Then for a ring S the following conditions are equivalent:

(i) S is an almost null ring such that S = S[p] , dimZp S/a(S) = 1 and there exists x ∈ S \ a(S) such that

o(x) = p ,

(ii) S ∼= Zp ×α M for some abelian group M and an element α ∈ M .

Proof (i) ⇒ (ii). It is easy to see that S = ⟨x⟩+ a(S). Since o(x) ∈ P and x ∈ S \ a(S); so ⟨x⟩ ∩ a(S) = 0

and hence S+ = ⟨x⟩ ⊕ a(S). It is routine to check that the function G : Zp ×x2 a(S) → S given by the formula

G((k,m)) = kx+m is a ring isomorphism.

(ii) ⇒ (i) It follows directly from Example 2.3. 2
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Example 2.6 Let p be any prime integer and let F1, F2, A ∈ Z be such that the congruence (1) has no solution.

Let M be any, additively written, abelian group that possesses an element α of order p . In the abelian group

Z+
p × Z+

p ×M we define a multiplication by the formula

(k1, l1,m1)(k2, l2,m2) = (0, 0, (k1l2F2 + l1k2F1 + k1k2A+ l1l2)α). (3)

A standard computation shows that this multiplication is well-defined, distributive over addition, and commuta-

tive. Moreover, (ab)c = a(bc) = 0 for any a, b, c ∈ Zp ×Zp ×M . The ring constructed above will be denoted by

(Zp × Zp)F1,F2,A ×α M. (4)

Note that ((Zp × Zp)F1,F2,A ×α M)2 = {0} × {0} × ⟨α⟩ , a((Zp × Zp)F1,F2,A ×α M) = {0} × {0} ×α M and

if y = (1, 0, 0) and x = (0, 1, 0) , then (Zp × Zp)F1,F2,A ×α M = ⟨x, y⟩ + a((Zp × Zp)F1,F2,A ×α M) and

x2 = (0, 0, α) ̸= 0 , px2 = 0 , px, py, x2 ∈ a(S) , y2 = Ax2 , xy = F1x
2 , yx = F2x

2 . From Theorem 2.1, it follows

that (Zp×Zp)F1,F2,A×αM is an almost null ring such that (Zp×Zp)F1,F2,A×αM = ((Zp×Zp)F1,F2,A×αM)[p] .

Furthermore, if M is a p-group, then for any W ∈ Z , W ≡/ 0 (mod p) , the congruence X2 +

(WF1 + WF2)X + W 2A ≡ 0 (mod p) has no solution and the function f : (Zp × Zp)F1,F2,A ×α M →
(Zp ×Zp)WF1,WF2,W 2A ×α M, given by the formula f((k, l,m)) = (k,Wl,W 2m) is a ring isomorphism. More-

over, for any U ∈ Z , U ≡/ 0 (mod p) the function g : (Zp ×Zp)F1,F2,A ×α M → (Zp ×Zp)F1,F2,A ×Uα M given

by the formula g(k, l,m) = (k, l, Um) is a ring isomorphism.

Proposition 2.7 Let p be any prime integer. Then for a ring S the following conditions are equivalent:

(i) S is an almost null ring such that S = S[p] , dimZp S/a(S) = 2 and there exist x, y ∈ S \ a(S) such that

o(x) = o(y) = p and the cosets x+ a(S) , y + a(S) are linearly independent over Zp ,

(ii) S ∼= (Zp × Zp)F1,F2,A ×α M for some abelian group M and an element α ∈ M .

Proof (i) ⇒ (ii). By the assumptions, S = ⟨x, y⟩+ a(S). Since o(x) = o(y) = p ∈ P and dimZp S/a(S) = 2,

and so ⟨x, y⟩ = ⟨x⟩ ⊕ ⟨y⟩ and S+ = (⟨x⟩ ⊕ ⟨y⟩) + a(S). Linear independence of cosets x + a(S), y + a(S)

over Zp implies that S+ = ⟨x⟩ ⊕ ⟨y⟩ ⊕ a(S). By Theorem 2.1, there exists A,F1, F2 ∈ Z such that y2 = Ax2 ,

xy = F1x
2 , yx = F2x

2 and the congruence (1) has no solutions. Direct computations show that the function

G : (Zp × Zp)F1,F2,A ×α M → S given by the formula G((k, l,m)) = lx+ ky +m is a ring isomorphism.

(ii) ⇒ (i) It follows directly from Example 2.6. 2

Theorem 2.8 Let p be any prime integer and if p > 2 then let µp be a fixed quadratic nonresidue modulo p .

Let M be any additively written abelian p-group that possesses an element α of order p . Then:

(i) If p > 2 and the ring (Zp × Zp)F1,F2,A ×α M is commutative, then F1 ≡ F2 (mod p) and (Zp ×
Zp)F1,F2,A ×α M ∼= (Zp × Zp)0,0,−µp ×α M.

(ii) If p = 2 , then the ring (Z2 × Z2)F1,F2,A ×α M is not commutative, A ≡ 1 (mod 2) and F1 ≡ 0

(mod 2) , F2 ≡ 1 (mod 2) or F1 ≡ 1 (mod 2) , F2 ≡ 0 (mod 2) . Moreover, (Z2 × Z2)F1,F2,A ×α M ∼=
(Z2 × Z2)1,0,1 ×α M.
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(iii) If p > 2 and the ring (Zp × Zp)F1,F2,A ×α M is not commutative, then F1 ≡/ F2 (mod p) and (Zp ×
Zp)F1,F2,A ×α M ∼= (Zp × Zp)−1,1,−V 2µp

×α M, where V = 1, 2, . . . , (p − 1)/2 . Moreover, the rings

(Zp × Zp)−1,1,−V 2µp
×α M for V = 1, 2, . . . , (p− 1)/2 are pairwise nonisomorphic.

Proof

(i). By the assumptions xy = yx and so F1x
2 = F2x

2 and since o(x2) = p , F1 ≡ F2 (mod p). The

congruence (1) has no solutions and p > 2, and so (F1 + F2)
2 − 4A is a quadratic nonresidue modulo p . Thus

F 2
1 − A is also a quadratic nonresidue modulo p . Hence, there exists W ∈ Z such that F 2

1 − A ≡ W 2µp

(mod p) and W ≡/ 0 (mod p). The function F : (Zp × Zp)0,0,−W 2µp
×α M → (Zp × Zp)F1,F2,A ×α M given by

the formula F ((k, l,m)) = (k, (l − F1k) · 1,m) is a ring isomorphism. Hence, and by Example 2.6, we get that

(Zp × Zp)F1,F2,A ×α M ∼= (Zp × Zp)0,0,−µp ×α M.

(ii). A standard verification shows that for p = 2 the congruence (1) has no solutions only in the cases

listed in the formulation of theorem. The function F : (Z2 ×Z2)1,0,1 ×α M → (Z2 ×Z2)0,1,1 ×α M given by the

formula F ((k, l,m)) = (k, (k + l) · 1,m) is a ring isomorphism.

(iii). Since the ring (Zp × Zp)F1,F2,A ×α M is not commutative, xy ̸= yx . Hence F1x
2 ̸= F2x

2

and since o(x2) = p , F1 ≡/ F2 (mod p). Thus, there exist u, v,W ∈ Z such that W (F1 − F2) ≡ 1

(mod p), u(F1 − F2) ≡ F1 + F2 (mod p) and v(F1 − F2) ≡ −2 (mod p). Moreover, the congruence

(1) has no solutions and p > 2, so (F1 + F2)
2 − 4A is a quadratic non-residue modulo p . Hence,

there exists V ∈ {1, 2, . . . , (p − 1)/2} such that (4A − (F1 + F2)
2)W 2 ≡ −V 2µp (mod p). A standard

verification shows that the function F : (Zp × Zp)−1,1,(4A−(F1+F2)2)W 2 ×α M → (Zp × Zp)F1,F2,A ×α M

given by the formula F ((k, l,m)) = (vk, (uk + l) · 1,m) is a ring isomorphism. Therefore,

(Zp × Zp)F1,F2,A ×α M ∼= (Zp × Zp)−1,1,−V 2µp
×α M . By Remark 1 of [4] we get that the rings

(Zp × Zp)−1,1,−V 2µp
×α M for V = 1, 2, . . . , (p− 1)/2 are pairwise nonisomorphic. 2

3. Embeddings of almost null rings

Theorem 3.1 Let R be an almost null ring. There exists an almost null ring S in which R is an essential

ideal and such that the group a(S)+ is divisible and pS = p2S for every prime p .

Proof Let A = a(R) and denote by B+ a divisible group in which A+ is an essential subgroup. Denote

by B the ring with zero multiplication with additive group B+ . It is a simple matter to check that the ring

R ⊕ B is almost null. Moreover, the ring R ⊕ B is commutative if and only if R is commutative. Obviously

I = {(x, x) : x ∈ A}�R ⊕B and I ⊆ a(R ⊕B). Let S = (R ⊕B)/I . Then (R + I)/I ∼= R/(R ∩ I) ∼= R and

(R+I)/I�S , and so one can identify R with (R+I)/I . Moreover, S is an almost null ring as a homomorphic

image of the almost null ring R⊕B .

Let J�R⊕B be such that I ⊊ J . Take any (a, b) ∈ J \I . If a /∈ a(R), then there exists x ∈ R such that

xa ̸= 0 or ax ̸= 0. Then (x, 0)(a, b) = (xa, 0) /∈ I or (a, b)(x, 0) = (ax, 0) /∈ I ; hence (xa, 0)+I ∈ (R+I)/I∩J/I
or (ax, 0) + I ∈ (R + I)/I ∩ J/I . If a ∈ a(R), then (a, a) ∈ I and (a, b) = (a, 0) + (0, b − a), and so

(a, b) + I = (0, b − a) + I wherein (0, b − a) ∈ J \ I . Therefore, b − a ̸= 0 and ⟨b − a⟩ ∩ a(R) ̸= 0 by the

essentiality of the subgroup A+ in B+ . Thus 0 ̸= k(b−a) ∈ a(R) for some k ∈ Z and hence (0, k(b−a)) ∈ J \I .
Next (0, k(b− a)) + I = (−k(b− a), 0) + I ∈ (R+ I)/I ∩ J/I . This shows that (R+ I)/I is an essential ideal

in the ring S .
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Note that (0, b) + I ∈ a(S) for any b ∈ B . If (r, b) + I ∈ a(S) for some r ∈ R, b ∈ B , then for every

y ∈ R , [(r, b) + I] · [(y, 0) + I] = (0, 0) + I . Hence (ry, 0) ∈ I , and so ry = 0. This shows that rR = 0,

and similarly Rr = 0. Thus r ∈ a(R) = A and (r, b) + I = [(r, r) + (0, b − r)] + I = (0, b − r) + I . Hence

a(S) = {(0, b) + I : b ∈ B} . Moreover, the function b 7→ (0, b) + I is a ring isomorphism from B onto a(S).

Hence the group a(S)+ is divisible.

Take any s ∈ S and any prime number p . Then there exists a square-free integer M such that Ms2 = 0.

Hence (Ms)2 = 0, and directly by the definition of an almost null ring, Ms ∈ a(S). Since GCD(p2,M) | p ,
there exist k, l ∈ Z such that p = kM+ lp2 . Thus ps = k(Ms)+p2(ls), and by divisibility of a(S)+ , ps ∈ p2S .

Finally, pS = p2S . 2

Lemma 3.2 Let R be an almost null ring with divisible annihilator. Then R = T(R) ⊕ C , where C � R ,

C2 = 0 and the group C+ is divisible.

Proof Since the group a(R)+ is divisible, a(R)+ = T(a(R))+ ⊕ C+ for some torsion-free subgroup

C+ ≤ a(R)+ . The subgroups T(a(R))+ and C+ are divisible as direct summands of divisible group

and obviously T(R) ∩ C = {0} . We claim that R = T(R) + C . Take any a ∈ R . Since R is an

almost null ring, there exists a square-free integer m ∈ N such that ma2 = 0. Hence (ma)2 = 0 and

ma ∈ a(R). Therefore, ma = t + c , where t ∈ T(a(R)), c ∈ C . Moreover, c = mc1 , t = mt1 for some

c1 ∈ C , t1 ∈ T(a(R)). Thus m(a−t1−c1) = 0, a−t1−c1 ∈ T(R), and a = (a−t1−c1)+t1+c1 ∈ T(R)+C . 2

Remark 3.3 Let p be any prime integer and let R be an almost null p-ring such that the group a(R)+ is

divisible and R2 ̸= 0 . By Theorem 2.1, it follows that there exists x ∈ R (or exist x, y ∈ R) such that x2 ̸= 0

and R = ⟨x⟩ + a(R) (x, y are as in the item (3) of Theorem 2.1). Then px ∈ a(R) and px = px1 for some

x1 ∈ a(R) . Hence p(x−x1) = 0 and x−x1 /∈ a(R) , and so R = ⟨x−x1⟩+ a(R) and without loss of generality

we may assume that o(x) = p (similarly, we may assume that o(x) = o(y) = p). Since o(x2) = p , there

exists a subgroup M ≤ a(R) , M ∼= Zp∞ such that x2 ∈ M and a(R)+ = M ⊕ N for some divisible subgroup

N ≤ a(R) . Hence, N and ⟨x⟩+M , (⟨x, y⟩+M ) are subrings of an H -ring R , and so N�R and ⟨x⟩+M�R ,

(⟨x, y⟩ +M � R). Moreover, R = (⟨x⟩ +M) + N , (R = (⟨x, y⟩ +M) + N ). Let k ∈ Z , m ∈ M , n ∈ N be

such that kx+m = n . Then kx = n−m ∈ a(R) , and so p | k , kx = 0 , and m = n ∈ M ∩N = 0 . This shows

that R = (⟨x⟩+M)⊕N0 (similar arguments to those above show that R = (⟨x, y⟩+M)⊕N0 ).

By Proposition 2.5 (Proposition 2.7), ⟨x⟩+M ∼= Zp×x1 Zp∞ (and ⟨x, y⟩+M ∼= (Zp×Zp)F1,F2,A×x1 Zp∞ ,

where F1, F2, A ∈ Z are such that the congruence (1) has no solutions).

4. Main Theorem

Lemma 4.1 Let S be a ring described in Theorem 2.1 in the item (2) or (3). If the subgroup ⟨x2⟩ is essential

in the group a(S)+ , then the ring S cannot be expressed as a direct sum of two nonzero ideals.

Proof Assume that I ⊕ J = S for some nonzero ideals I, J of a ring S . Then I2 ⊕ J2 = S2 = ⟨x2⟩ . Since

o(x2) = p , I2 = 0 or J2 = 0. Assume that J2 = 0. Then J ⊆ a(S). Because J ̸= 0 and the subgroup ⟨x2⟩+

is essential in the group a(S)+ , J ∩ ⟨x2⟩ ̸= 0. However, I2 = ⟨x2⟩ , and so I ∩ J ̸= 0, a contradiction. 2
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Proposition 4.2 ([10], Proposition 4.2.2) Suppose that an abelian group G can be expressed in two ways

as a direct sum of quasicyclic groups, cyclic groups of prime-power order, and infinite cyclic groups. Then the

sets of direct summands of each isomorphism type in the two decompositions have the same cardinality.

The next theorem classifies all almost null rings with a divisible annihilator.

Theorem 4.3 For every odd prime integer p let µp be a fixed quadratic nonresidue modulo p . All, up to

isomorphism, almost null rings with a divisible annihilator are rings of the form:

⊕
p∈Π

R(p) ⊕ C, (5)

where Π ⊆ P and R(p) is one of the following rings:

(i) Zp ×x1
Zp∞ ,

(ii) (Zp × Zp)0,0,−µp ×x1 Zp∞ , for p > 2 ,

(iii) (Zp × Zp)−1,1,−V 2µp
×x1 Zp∞ , for p > 2 , V = 1, 2, ..., p−1

2 ,

(iv) (Z2 × Z2)1,0,1 ×x1
Z2∞ ,

and C is any ring such that C2 = 0 and the group a(C)+ is divisible. Moreover, the rings described in items

(i)− (iv) cannot be expressed as a direct sum of two nonzero ideals.

Proof Let R be an almost null ring with a divisible annihilator. By Lemma 3.2, R = T(R) ⊕ C1 for

some C1 � R such that C2
1 = 0 and the group C+

1 is divisible. Hence, a(R) = a(T(R)) ⊕ C1 and the group

a(T(R))+ is divisible. Next, T(R) =
⊕

p∈P T(R)p , and so the group T(R)+p is divisible for all p ∈ P . Let

Π = {p ∈ P : T(R)2p ̸= 0} . If Π = ∅ , then R2 = 0 and the group R+ is divisible. Otherwise, fix a p ∈ Π. By

Remark 3.3 and Theorem 2.8, T(R)p ∼= R(p) ⊕Np where R(p) is one of the rings described in items (i)− (iv)

and Np is a p -ring with a zero multiplication and divisible additive group. Therefore, it is enough to assume

that C = (
⊕

p∈Π Np) ⊕ C1 . Moreover, Lemma 4.1 implies that the rings described in items (i) − (iv) cannot

be expressed as a direct sum of two nonzero ideals.

Let Π,Π′ ⊆ P . Assume that R ∼=
⊕

p∈Π R(p) ⊕ C and R′ ∼=
⊕

p∈Π′ R′
(p) ⊕ C ′ , where R(p) for p ∈ Π

and R′
(p) for p ∈ Π′ are rings described in items (i) − (iv), while C and C ′ are arbitrary rings with a zero

multiplication and divisible additive groups. Assume that R ∼= R′ . Then

T(R) ∼= T(R′), R/T(R) ∼= R′/T(R′), Rp
∼= R′

p for every p ∈ P. (6)

Note that Π = {p ∈ P : (Rp)
2 ̸= 0} and Π′ = {p ∈ P : (R′

p)
2 ̸= 0} , and so

Π = Π′ . Fix any p ∈ Π. Then Rp
∼= R(p) ⊕ Cp and R′

p
∼= R′

(p) ⊕ C ′
p , and so (6) implies that

R(p) ⊕ Cp
∼= R′

(p) ⊕ C ′
p . Thus dimZp(R(p) ⊕ Cp)/a(R(p) ⊕ Cp) = dimZp(R

′
(p) ⊕ C ′

p)/a(R
′
(p) ⊕ C ′

p);

hence dimZp(R(p))/a(R(p)) = dimZp(R
′
(p))/a(R

′
(p)). Therefore, if dimZp(R(p))/a(R(p)) = 1, then

R(p) = R′
(p) = Zp ×x1 Zp∞ and by Proposition 4.2, Cp

∼= C ′
p . Next, let dimZp(R(p))/a(R(p)) = 2. If
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p = 2, then R(p) = R′
(p) = (Z2×Z2)1,0,1×x1 Z2∞ and by Proposition 4.2, Cp

∼= C ′
p . Now assume that p > 2. If

a ring R(p) is commutative, then R(p) = R′
(p) = (Zp×Zp)0,0,−µp ×x1 Zp∞ and by Proposition 4.2, Cp

∼= C ′
p . If a

ring R(p) is not commutative, then R(p) = (Zp×Zp)−1,1,−V 2µp
×x1

Zp∞ and R′
(p) = (Zp×Zp)−1,1,−V ′2µp

×x1
Zp∞

for all V, V ′ ∈ {1, 2, ..., (p − 1)/2} . By Remark 1 of [4] we get that V = V ′ , and so R(p) = R′
(p) and by

Proposition 4.2, Cp
∼= C ′

p . Moreover, for any p ∈ P \Π, by (6), Cp
∼= C ′

p . Hence, Cp
∼= C ′

p for every p ∈ P and

thus T(C) ∼= T(C ′). Since C/T(C) ∼= R/T(R) and C ′/T(C ′) ∼= R′/T(R′), and so by (6), C/T(C) ∼= C ′/T(C ′).

However, divisibility C and C ′ implies that C ∼= C/T(C)×T(C) and C ′ ∼= C ′/T(C ′)×T(C ′), and so C ∼= C ′ . 2

From Theorems 3.1 and 4.3 it follows at once the following theorem, which classifies all almost null rings.

Theorem 4.4 A ring R is an almost null ring if and only if R is isomorphic to an essential subring of the

ring
⊕

p∈P R(p) ⊕ C , where the rings C and R(p) for every p ∈ P are the same as in Theorem 4.3.

Note that the problem of isomorphism of the rings described in the previous theorem remains. It seems

to be very complicated, especially for nontorsion rings. This problem requires separate, extensive research.

From Theorems 2.1 and 2.2 it follows that an almost null ring R is noetherian i.e satisfies the ascending

chain condition on subrings if and only if the group R+ is finitely generated. Hence, and by description of

subgroups of the group Zp∞ and Theorem 4.3 we have the following theorem, which classifies all noetherian

almost null rings.

Theorem 4.5 For every odd prime integer p let µp be a fixed quadratic nonresidue modulo p . The ring R is

a noetherian almost null ring if and only if R is a subring of the ring of the form:

⊕
p∈Π

R(p) ⊕ C, (7)

where Π is a finite subset of P and R(p) is one of the following rings:

(i) Zp ×ps−1 Zps , s ∈ N ,

(ii) (Zp × Zp)0,0,−µp ×ps−1 Zps , for p > 2 , s ∈ N ,

(iii) (Zp × Zp)−1,1,−V 2µp
×ps−1 Zps , for p > 2 , s ∈ N , V = 1, 2, ..., (p− 1)/2 ,

(iv) (Z2 × Z2)1,0,1 ×ps−1 Z2s , s ∈ N ,

and C is any ring such that C2 = 0 and the group C+ is finitely generated.
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[8] Rédei L. Vollidealringe im weiteren Sinn I. Acta Math Acad Sci Hungar 1952; 3: 243–268.
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