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Abstract:The paper is devoted to the study of metallic Riemannian structures. An integrability condition and curvature

properties for these structures by means of a Φ-operator applied to pure tensor fields are presented. Examples of these

structures are also given.
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1. Introduction

Let M be an n -dimensional manifold. We point out here and once that all geometric objects considered in this

paper are supposed to be of class C∞ .

The number η = 1+
√
5

2 ≈ 1, 61803398874989... , which is the positive root of the equation x2−x−1 = 0,

represents the golden mean. There are two most important generalizations of the golden mean. The first of them

is the golden p -proportions being a positive root of the equation xp+1 − xp − 1 = 0, (p = 0, 1, 2, 3, ...) in [13].

The other, called the metallic means family or metallic proportions, was introduced by de Spinadel in [2, 3, 5, 4].

For two positive integers p and q, the positive solution of the equation x2 − px − q = 0 is named members

of the metallic means family. All the members of the metallic means family are positive quadratic irrational

numbers σp,q =
p+

√
p2+4q

2 . These numbers σp,q are also called (p, q)-metallic numbers. Inspired by the metallic

means family, Hretcanu and Crasmareanu [8] constructed a new structure on a Riemannian manifold and named

it a metallic structure. Indeed, a metallic structure is a polynomial structure with the structural polynomial

Q(J) = J2 − pJ − qI. Polynomial structures on a manifold were defined in [7]. A polynomial structure F

of degree d on a connected manifold M means that a (1, 1)-tensor field F satisfies the following algebraic

polynomial equation:

Q(F ) = F d + a1F
d−1 + ...+ ad−1F + adI = 0,

where a1, a2, ..., ad are real numbers and I is the identity tensor of type (1, 1).

Given a Riemannian manifold (M, g) endowed with the metallic structure J , then the triple (M,J, g) is

named a metallic Riemannian manifold if

g(JX, Y ) = g(X, JY ) (1)

or equivalently

g(JX, JY ) = g(J2X,Y ) = g((pJ + qI)X,Y ) = pg(JX, Y ) + qg(X,Y )
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for all vector fields X and Y on M [8]. The Riemannian metric (1) is referred to as J -compatible or pure

metric [11, 14, 17].

In general, a (0, s)-tensor field t is pure with respect to a (1, 1)-tensor field ψ if and only if the following

condition holds:

t(ψY1, Y2, ..., Ys) = t(Y1, ψY2, ..., Ys) = ... = t(Y1, Y2, ..., ψYs)

for any vector fields Y1, Y2, ..., Ys on M . The Tachibana operator Φψ applied to the (0, s)-tensor field t is

defined by

(Φψt) (X,Y1, ..., Ys) = (ψX) t (Y1, ..., Ys)−Xt (ψY1, ..., Ys) (2)

+
s∑

λ=1

t (Y1, ..., (LYλ
ψ)X, ..., Ys) ,

where LY denotes the Lie differentiation with respect to Y [11, 14, 17]. If the pure tensor t satisfies Φψt = 0,

then it is called a Φ-tensor. If ψ is a product structure, then a Φ-tensor is a decomposable tensor.

2. Locally decomposable metallic Riemannian structures

Let (M, g, F ) be a locally decomposable Riemannian manifold. This means that the Riemannian manifold

(M, g) is equipped with an almost product structure F , F 2 = I , such that

g(FX, Y ) = g(X,FY )

and

∇F = 0

for all vector fields X and Y on M , where ∇ is the operator of the Riemannian covariant derivation. The

theory of Riemannian almost product structures was initiated by Yano in [16]. The classification of Riemannian

almost product structure with respect to their covariant derivatives was described by Naveira in [9]. In [10], it

was shown that the condition ∇F = 0 is equivalent to decomposability of the pure metric g , i.e. ΦF g = 0,

where ΦF is the Tachibana operator [11, 14, 17]:

(ΦF g)(X,Y, Z) = (FX)(g(Y, Z))−X(g(FY,Z)) + g((LY F )X,Z) + g(Y, (LZF )X) .

As is known, a polynomial structure F is integrable if and only if it is possible to introduce a torsion-free

linear connection ∇ with respect to which the structure tensor F is covariantly constant [15]. By using the

Tachibana operator, we can give another condition of integrability for a metallic Riemannian structure.

Theorem 2.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g . Then:

a) J is integrable if ΦJg = 0 ,

b) the condition ΦJg = 0 is equivalent to ∇J = 0 , where ∇ is the Levi-Civita connection of g .

Proof The proof is similar to that of Theorem 2.1 in [6], so we omit it. 2

Next, we are going to give relationships between the almost product structures and metallic structures

on M .
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Proposition 2.2 [8] If J is a metallic structure on M , then

F± = ±(
2

2σp,q − p
J − p

2σp,q − p
I) (3)

are two almost product structures on M . Conversely, every almost product structure F on M induces two

metallic structures on M , given as follows:

J± =
p

2
I ± (

2σp,q − p

2
)F.

Due to (3), it follows that:

i) A Riemannian metric g is pure with respect to a metallic structure J if and only if the Riemannian

metric g is pure with respect to the almost product structures F± associated with J .

ii) The dependence between ΦF±g and ΦJg is as follows:

ΦF±g = ± 2

2σp,q − p
ΦJg, (4)

from which, in view of Theorem 2.1, we can say that the metallic Riemannian structure J is integrable if

ΦF±g = 0, i.e. the Riemannian metric g is decomposable. If (M,J, g) is a metallic Riemannian manifold with

a decomposable pure metric, then we call it a locally decomposable metallic Riemannian manifold. Hence, we

have the following.

Proposition 2.3 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a

Riemannian metric g . The manifold M is a locally decomposable metallic Riemannian manifold if and only if

ΦF±g = 0 , where F± are the almost product structures associated with J .

The twin metallic Riemannian metric is defined by

G(X,Y ) = g(JX, Y )

for all vector fields X and Y on M . One can easily prove that G is pure with respect to J . If we apply the

ΦJ -operator to the metric G , standard calculations give

(ΦJG)(X,Y, Z) = (ΦJg)(X,JY, Z) + g(NJ (X,Y ), Z). (5)

Thus, (5) implies the following result.

Proposition 2.4 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a

Riemannian metric g . Then ΦJg = 0 is equivalent to ΦJG = 0 if NJ = 0, where NJ is Nijenhuis tensor

constructed from J .

We now turn our attention to the Riemannian curvature tensor field R of the locally decomposable

metallic Riemannian manifold (M,J, g).

Theorem 2.5 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g . The Riemannian curvature tensor field is a J -tensor field.
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Proof The Riemannian curvature tensor field R of the metallic Riemannian metric g is pure with respect to

the metallic structure J , i.e.

R(JY1, Y2, Y3, Y4) = R(Y1, JY2, Y3, Y4) = R(Y1, Y2, JY3, Y4) = R(Y1, Y2, Y3, JY4).

From (2), the Tachibana operator ΦJ applied to the Riemannian curvature tensor field R of type (0, 4) can be

written as follows:

(ΦJR)(X,Y1, Y2, Y3, Y4) = (∇JXR)(Y1, Y2, Y3, Y4)− (∇XR)(JY1, Y2, Y3, Y4). (6)

We can also say that in the locally decomposable metallic Riemannian manifold, the covariant derivative of the

Riemannian curvature tensor R with respect to the Levi-Civita connection of g is pure. Using Bianchi’s second

identity and purity conditions, simple calculations give

(ΦJR)(X,Y1, Y2, Y3, Y4) = 0.

We omit standard calculations (see also [6]). 2

By (3) and (6), we can find, in a similar way as for (4), the following:

ΦF±R = ± 2

2σp,q − p
ΦJR. (7)

In view of Theorem 2.5 and (7), we have the result below.

Proposition 2.6 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a

Riemannian metric g . The Riemannian curvature tensor field is a decomposable tensor field.

3. Metallic structures with conformal metrics

Given a Riemannian metric g , we can easily define a new Riemannian metric g̃ in terms of g by multiplying

g by a smooth function f , or for vector fields X and Y on M ,

g̃(X,Y ) = e2fg(X,Y ).

The metric g̃ is called conformal to the Riemannian metric g .

Let us consider that (M,J, g) is a metallic Riemannian manifold. Immediately, we can say that (M,J, g̃)

is also a metallic Riemannian manifold. If we apply the ΦJ -operator to the conformal metric g̃ , we get

(ΦJ g̃)(X,Y, Z) = (JX)(e2fg(Y, Z))−X(e2fg(JY, Z)) + e2fg((LY J)X,Z)

+e2fg(Y, (LZJ)X)

= (JX)(e2f )g(Y, Z)−X(e2f )g(JY, Z) + e2f (ΦJg)(X,Y, Z).

By using (3) and (4), we have

(ΦJ g̃)(X,Y, Z) = ±2σp,q − p

2
{(F±X)(e2f )g(Y,Z)−X(e2f )g(F±Y, Z)

+e2f (ΦF±g)(X,Y, Z)},

where F± are the almost product structures associated with J . Therefore, we have following theorem.
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Theorem 3.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g . Then (M,J, g̃ = e2fg) is a locally decomposable metallic Riemannian manifold if and only if

the function f is constant.

4. Examples

Example 1. Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and denote

by π : T 1
1 (M) → M its (1, 1)-tensor bundle with fibers the (1, 1)-tensor spaces to M . Then T 1

1 (M) is an

n+ n2 -dimensional smooth manifold and some local charts induced naturally from local charts on M may be

used. Namely, a system of local coordinates (U ;xj) in M induces on T 1
1 (M) a system of local coordinates

(π−1(U);xj , xj̄ = tij) j = 1, ..., n , j̄ = n+1, ..., n+n2 , J = 1, ..., n+n2 , where (tij) are the Cartesian coordinates

in each (1, 1)-tensor space T 1
1(P )M at P ∈M with respect to the natural base.

Let X = Xi ∂
∂xi and A = Aij

∂
∂xi ⊗ dxj be the local expressions in U of a vector field X and a (1, 1)-

tensor field A on M , respectively. Then the vertical lift VA of A and the horizontal lift HX of X are given,

with respect to the induced coordinates, by

VA =

(
VAj

VAj

)
=

(
0
Aij

)
(8)

and

HX =

(
HXj

HXj

)
=

(
Xj

Xs(Γmsjt
i
m − Γismt

m
j )

)
, (9)

where Γhij are the coefficients of the Levi-Civita connection ∇ of g . The vector fields γA and γ̃A on T 1
1 (M)

are respectively defined by

γA=

(
0

tmj A
i
m

)
,

γ̃A=

(
0

(timA
m
j )

)
.

From (8) we easily see that the vector fields γA and γ̃A determine respectively the global vector fields on

T 1
1 (M) [1].

The Sasaki type metric Sg on T 1
1 (M) is defined by the following three equations:

Sg
(
VA, VB

)
= g(A,B), (10)

Sg
(
VA,HY

)
= 0, (11)

Sg
(
HX,HY

)
= g (X,Y ) , (12)

for any vector fields X and Y and (1, 1)-tensor fields A,B on M , where g(A,B) = gitg
jlAijB

t
l (see [12]).

From equations (10)–(12) we easily see that the horizontal distribution H , induced by ∇g and determined by
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the horizontal lifts, is orthogonal to the fibers of T 1
1 (M). Let now E be a nowhere zero vector field on M . For

any vector field X and covector field Ẽ = g ◦E on M , we define the vertical lift V (X ⊗ Ẽ) of X with respect

to E . The map X → V (X ⊗ Ẽ) is a monomorphism. Hence, an n-dimensional C∞ vertical distribution V E

is defined on T 1
1 (M). Let V ⊥ be the distribution on T 1

1 (M), which is orthogonal to H and V E . Then H ,

V E , and V ⊥ are mutually orthogonal distributions with respect to the Sasaki type metric Sg . We define a

(1, 1)-tensor field J̃ on T 1
1 (M) by


J̃HX =p

2
HX + (

2σp,q−p
2 )V (X ⊗ Ẽ),

J̃V (X ⊗ Ẽ) = p
2
V (X ⊗ Ẽ) + (

2σp,q−p
2 )HX,

J̃(VA) = σp,q
VA,

(13)

for any vector field X and (1, 1)-tensor field A on M , where Ẽ = g ◦ E is a covector field on M . The

restrictions of J̃ to H + V E and V ⊥ are endomorphisms, and hence J̃ is a (1, 1)-tensor field on T 1
1 (M). It is

easily see that J̃2 − pJ̃ − qI = 0, i.e. J̃ is a metallic structure on T 1
1 (M).

Theorem 4.1 Let (M, g) be a Riemannian manifold and T 1
1 (M) be its tensor bundle equipped with the Sasaki

type metric Sg and the metallic structure J̃ defined by (13). The triple
(
T 1
1 (M), J̃ , Sg

)
is a metallic Rieman-

nian manifold if and only if g(E,E) = 1 .

Proof We calculate

A
(
X̃, Ỹ

)
= Sg

(
J̃X̃, Ỹ

)
− Sg

(
X̃, J̃ Ỹ

)
for any vector fields X̃ and Ỹ on T 1

1 (M). From (10)–(12) and (13), we obtain

A
(
HX,H Y

)
= Sg

(
J̃HX,H Y

)
− Sg

(
HX, J̃HY

)
= Sg

(
p

2
HX + (

2σp,q − p

2
)V (X ⊗ Ẽ),H Y

)
−Sg

(
HX,

p

2
HY + (

2σp,q − p

2
)V (Y ⊗ Ẽ)

)
= 0,

A
(
V (X ⊗ Ẽ), V (Y ⊗ Ẽ)

)
= Sg

(
J̃V (X ⊗ Ẽ), V (Y ⊗ Ẽ)

)
−Sg

(
V (X ⊗ Ẽ), J̃V (Y ⊗ Ẽ)

)
= Sg

(
p

2

V
(X ⊗ Ẽ) + (

2σp,q − p

2
)HX, V (Y ⊗ Ẽ)

)
−Sg

(
V (X ⊗ Ẽ),

p

2

V
(Y ⊗ Ẽ) + (

2σp,q − p

2
)HY

)
= 0,
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A
(
V (X ⊗ Ẽ),HY

)
= Sg

(
J̃V (X ⊗ Ẽ),HY

)
−S g

(
V (X ⊗ Ẽ), J̃HY

)
= Sg

(
p

2

V
(X ⊗ Ẽ) + (

2σp,q − p

2
)HX,HY

)
−Sg

(
V (X ⊗ Ẽ),

p

2
HY + (

2σp,q − p

2
)V (Y ⊗ Ẽ)

)
= (

2σp,q − p

2
){ Sg(HX,HY )−Sg(V (X ⊗ Ẽ), V (Y ⊗ Ẽ))

= (
2σp,q − p

2
){g(X,Y )− g(X,Y )g(E,E)}

A
(
VA,V B

)
= Sg

(
J̃VA, VB

)
−S g

(
VA, J̃VB

)
= σp,q{Sg

(
VA, VB

)
−S g

(
VA, VB

)
}

= 0,

A
(
VA, V (Y ⊗ Ẽ)

)
= Sg

(
J̃VA, V (Y ⊗ Ẽ)

)
−S g

(
VA, J̃V (Y ⊗ Ẽ)

)
= σp,q

Sg
(
VA, V (Y ⊗ Ẽ)

)
−Sg

(
VA,

p

2

V
(Y ⊗ Ẽ) + (

2σp,q − p

2
)HY

)
= 0,

A
(
VA,HY

)
= Sg

(
J̃VA,HY

)
−S g

(
VA, J̃HY

)
= σp,q

Sg
(
VA,HY

)
−Sg

(
VA,

p

2
HX + (

2σp,q − p

2
)V (X ⊗ Ẽ)

)
= 0.

From the equations above, we say that Sg is pure with respect to J̃ if and only if g(E,E) = 1. This completes

the proof. 2

Now we consider the covariant derivative of J̃ with respect to the Levi-Civita connection of Sg . For this,

first we state the following proposition.

Proposition 4.2 [12] Let (M, g) be a Riemannian manifold and T 1
1 (M) be its tensor bundle equipped with the

Sasaki type metric Sg . Then the corresponding Levi-Civita connection satisfies the following relations:

i) S∇HX
HY = H(∇XY ) + 1

2 (γ̃ − γ)R(X,Y ),

ii) S∇V A
HY = 1

2
H
(
gblR(tb, Al)Y + gat(t

a (g−1 ◦R( , Y )Ã t))
)
,

iii) S∇HX
VB = V (∇XB) + 1

2
H
(
gbj R(tb, Bj)X + gai (t

a(g−1 ◦R( , X)B̃ i))
)
,

iv) S∇V A
VB = 0,

for all vector fields X, Y and (1, 1)-tensor fields A, B on M , where Al = (A i
l ) , Ã

t = (gblA t
l ) = (Ab t· ) ,
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tl = (t al ) , t
a = (t ab ) , R( , X)Y is a (1, 1)-tensor field and g−1 ◦R( , X)Y is a vector field.

By using Proposition 4.2 we calculate

(S∇X̃ J̃)Ỹ =S ∇X̃(J̃ Ỹ )− J̃(S∇X̃ Ỹ )

for all vector fields X̃, Ỹ , Z̃ on T 1
1 (M). Then we get

(S∇HX J̃)
HY =

2σp,q − p

2
V (Y ⊗ (g ◦ ∇XE)) +

p− 2σp,q
4

(γ̃ − γ)R(X,Y )

+
2σp,q − p

4
H{gbj R(tb, (Y⊗Ẽ)j)X + gai (t

a(g−1 ◦R( , X)(Y ⊗̃Ẽ)
i
)},

(S∇HX J̃)
VB

=
2σp,q − p

4
H{gbj R(tb, Bj)X + gai (t

a(g−1 ◦R( , X)B̃ i)}

+
p− 2σp,q

4
V {[gbj R(tb, Bj)X + gai (t

a(g−1 ◦R( , X)B̃ i)]⊗ Ẽ},

(S∇HX J̃)
V (Y⊗Ẽ)

=
p

2
V (Y ⊗ (g ◦ ∇XE)) +

2σp,q − p

4
(γ̃ − γ)R(X,Y )

+
p− 2σp,q

4
V {[gbj R(tb, (Y⊗Ẽ)j)X + gai (t

a(g−1 ◦R( , X)(Y ⊗̃Ẽ)
i
)]⊗ Ẽ},

(S∇V AJ̃)
HY

=
p− 2σp,q

4
V {[gbj R(tb, Aj)Y + gai(t

a (g−1 ◦R( , Y )Ã i))]⊗ Ẽ},

(S∇V AJ̃)
V (Y ⊗ Ẽ)

=
2σp,q − p

4
H{gbj R(tb, Aj)Y + gai(t

a (g−1 ◦R( , Y )Ã i))},

(S∇V (X⊗Ẽ)J̃)
V (Y ⊗ Ẽ)

=
2σp,q − p

4
H{gbj R(tb, (X ⊗ Ẽ)j)Y + gai(t

a (g−1 ◦R( , Y )(X⊗̃Ẽ)
i
))},

(S∇V (X⊗Ẽ)J̃)
HY

=
p− 2σp,q

4
V {[gbj R(tb, (X ⊗ Ẽ)j)Y + gai(t

a (g−1 ◦R( , Y )(X⊗̃Ẽ)
i
))]⊗ Ẽ},

(S∇V AJ̃)
VB = 0, (S∇V (X⊗Ẽ)J̃)

V (Y ⊗ Ẽ) = 0.

Therefore, from the last equations, we have the following result.

Theorem 4.3 Let (M, g) be a Riemannian manifold and T 1
1 (M) be its tensor bundle equipped with the Sasaki

type metric Sg and the metallic structure J̃ defined by (13). The triple
(
T 1
1 (M), J̃ , Sg

)
is a locally decomposable
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metallic Riemannian manifold if and only if M is locally flat and g(E,E) = 1 , ∇E = 0 , where ∇ is the Levi-

Civita connection of g .

Example 2. Let us consider the Rn = Rk × Rn−k endowed with the Euclidean metric g , i.e.

g =

(
δij
0

0

δi
j

)
, i, j = 1, ..., k, i, j̄ = k + 1, ..., n.

The canonical product structure on Rn is given by

F =

(
0

δij

δi
j

0

)
, i, j = 1, ..., k, i, j̄ = k + 1, ..., n.

The triple (Rn, F, g) is a locally decomposable Euclidean space. Metallic structures J± on Rn obtained from

F are as follows:

J± =

(
p
2δ
i
j

±(
2σp,q−p

2 )δij

±(
2σp,q−p

2 )δi
j

p
2δ
i
j

)
.

The triple (Rn, J±, g) is a locally decomposable metallic Euclidean space.
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