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Abstract: The paper is devoted to the study of metallic Riemannian structures. An integrability condition and curvature
properties for these structures by means of a ®-operator applied to pure tensor fields are presented. Examples of these

structures are also given.
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1. Introduction
Let M be an n-dimensional manifold. We point out here and once that all geometric objects considered in this
paper are supposed to be of class C*°.

The number 1 = % ~ 1,61803398874989... , which is the positive root of the equation 22 —z —1 =0,
represents the golden mean. There are two most important generalizations of the golden mean. The first of them
is the golden p-proportions being a positive root of the equation 2! —a? —1 =0, (p =0,1,2,3,...) in [13].
The other, called the metallic means family or metallic proportions, was introduced by de Spinadel in [2, 3, 5, 4].

For two positive integers p and ¢, the positive solution of the equation z? — pxr — ¢ = 0 is named members
of the metallic means family. All the members of the metallic means family are positive quadratic irrational

numbers o, 4 = W@. These numbers o, 4 are also called (p, ¢)-metallic numbers. Inspired by the metallic
means family, Hretcanu and Crasmareanu [3] constructed a new structure on a Riemannian manifold and named
it a metallic structure. Indeed, a metallic structure is a polynomial structure with the structural polynomial
Q(J) = J? — pJ — ql. Polynomial structures on a manifold were defined in [7]. A polynomial structure F
of degree d on a connected manifold M means that a (1, 1)-tensor field F satisfies the following algebraic
polynomial equation:
QF)=Fl4aF" 4 .. +ag 1F+aql =0,

where a1, as,...,aq are real numbers and I is the identity tensor of type (1,1).

Given a Riemannian manifold (M, g) endowed with the metallic structure J, then the triple (M, J, g) is
named a metallic Riemannian manifold if

9(JX,Y) = g(X, JY) (1)

or equivalently
9(JX,JY) = g(J*X,Y) = g((pJ + a)X,Y) = pg(JX,Y) + qg(X,Y)
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for all vector fields X and Y on M [8]. The Riemannian metric (1) is referred to as J-compatible or pure
metric [11, 14, 17].
In general, a (0, s)-tensor field ¢ is pure with respect to a (1,1)-tensor field ¢ if and only if the following

condition holds:
t(w}/la)/Qa "';}/S) = t(Ylaql)Y27 "'7Y€) = . = t(Yh}/Q’ 7¢Y9)

for any vector fields Y7,Y2,...,Y; on M. The Tachibana operator ®, applied to the (0, s)-tensor field ¢ is
defined by

(Pyt) (X, Y1,...,Y5) (WwX)t(Yq,..,Ys) — Xt (¥Yq,...,Ys) (2)

+ )tV (L) X, V),
A=1

where Ly denotes the Lie differentiation with respect to Y [11, 14, 17]. If the pure tensor t satisfies ®yt =0,

then it is called a ®-tensor. If v is a product structure, then a ®-tensor is a decomposable tensor.

2. Locally decomposable metallic Riemannian structures

Let (M,g,F) be a locally decomposable Riemannian manifold. This means that the Riemannian manifold

(M, g) is equipped with an almost product structure F', F2 = I, such that
g(FX,Y) =g(X,FY)

and

VF =0
for all vector fields X and Y on M, where V is the operator of the Riemannian covariant derivation. The
theory of Riemannian almost product structures was initiated by Yano in [16]. The classification of Riemannian
almost product structure with respect to their covariant derivatives was described by Naveira in [9]. In [10], it
was shown that the condition VF = 0 is equivalent to decomposability of the pure metric g, i.e. ®pg =0,

where ®p is the Tachibana operator [11, 14, 17]:
(®rg)(X,Y, 2) = (FX)(9(Y, 2)) = X(9(FY, Z)) + g(Ly F)X, Z) + (Y, (Lz F) X) .

As is known, a polynomial structure F' is integrable if and only if it is possible to introduce a torsion-free
linear connection V with respect to which the structure tensor F' is covariantly constant [15]. By using the

Tachibana operator, we can give another condition of integrability for a metallic Riemannian structure.

Theorem 2.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g. Then:
a) J is integrable if ;9 =0,
b) the condition ®;9 =0 is equivalent to VJ = 0, where V s the Levi-Civita connection of g.
Proof The proof is similar to that of Theorem 2.1 in [6], so we omit it. O

Next, we are going to give relationships between the almost product structures and metallic structures
on M.
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Proposition 2.2 [§] If J is a metallic structure on M, then

2 p
Fy =+ J — I 3
(201741 —-p 20p,q — D ) ®)

are two almost product structures on M . Conversely, every almost product structure F on M induces two

metallic structures on M , given as follows:

p 20pq—D
Jy =TI+ (————)F.
x=5lE(—5—)
Due to (3), it follows that:
i) A Riemannian metric g is pure with respect to a metallic structure J if and only if the Riemannian
metric g is pure with respect to the almost product structures F. associated with J.
1) The dependence between ®p, g and @ ;g is as follows:

(I)Fig: + (I)ng (4)

20

Pq

from which, in view of Theorem 2.1, we can say that the metallic Riemannian structure J is integrable if
®r, g =0, ie. the Riemannian metric g is decomposable. If (M, J, g) is a metallic Riemannian manifold with
a decomposable pure metric, then we call it a locally decomposable metallic Riemannian manifold. Hence, we
have the following.

Proposition 2.3 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a
Riemannian metric g. The manifold M is a locally decomposable metallic Riemannian manifold if and only if

®p, g =0, where Fy are the almost product structures associated with J.
The twin metallic Riemannian metric is defined by
G(Xa Y) = g(JXa Y)

for all vector fields X and Y on M. One can easily prove that G is pure with respect to J. If we apply the

® ;-operator to the metric G, standard calculations give
(2,G)(X.Y, Z2) = (®s9) (X, JY, Z) + g(N,(X,Y), Z). (5)
Thus, (5) implies the following result.

Proposition 2.4 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a
Riemannian metric g. Then ®;9 = 0 is equivalent to ®;G = 0 if Ny = 0, where Nj is Nijenhuis tensor

constructed from J.

We now turn our attention to the Riemannian curvature tensor field R of the locally decomposable

metallic Riemannian manifold (M, J, g).

Theorem 2.5 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g. The Riemannian curvature tensor field is a J-tensor field.
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Proof The Riemannian curvature tensor field R of the metallic Riemannian metric g is pure with respect to

the metallic structure J, i.e.
R(JY17 Y27 }/3; }/21) = R(Y17 JY27 Y37 Y;L) = R(Yla }/27 JY3> Y4) = R(Yl7 }/27 YES; JY4)

From (2), the Tachibana operator ®; applied to the Riemannian curvature tensor field R of type (0,4) can be

written as follows:
(PsR)(X,Y1,Ys,Y3,Yy) = (VyxR)(Y1,Y2,Y3,Yy) — (Vx R)(JY1, Ya, Y3, Yy). (6)
We can also say that in the locally decomposable metallic Riemannian manifold, the covariant derivative of the

Riemannian curvature tensor R with respect to the Levi-Civita connection of g is pure. Using Bianchi’s second
identity and purity conditions, simple calculations give

(@JR)(X, Y17Y231/3;Y4) =0.

We omit standard calculations (see also [6]). O

By (3) and (6), we can find, in a similar way as for (4), the following:

2
bp, R=+——;R. 7
" 20pq =P ! @)

In view of Theorem 2.5 and (7), we have the result below.

Proposition 2.6 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a

Riemannian metric g. The Riemannian curvature tensor field is a decomposable tensor field.

3. Metallic structures with conformal metrics
Given a Riemannian metric g, we can easily define a new Riemannian metric g in terms of g by multiplying
g by a smooth function f, or for vector fields X and Y on M,

J(X,Y) =¥ g(X,Y).

The metric g is called conformal to the Riemannian metric g.
Let us consider that (M, J, g) is a metallic Riemannian manifold. Immediately, we can say that (M, J,q)

is also a metallic Riemannian manifold. If we apply the ® ;-operator to the conformal metric g, we get

(©s9)(X,Y, 2) (JX)(X g(Y, 2)) = X(e*Tg(JY, 2)) + € g((Ly J) X, Z)
+e*g(Y, (L2 J)X)

= (JX)()g(V,2) = X(e*)g(TY, Z) + e (®49) (X, Y, Z).
By using (3) and (4), we have

20p,q — P
2

+e* (®p, 9)(X,Y, Z)},

(©,9)(X,Y,2) = + {(FLX)(e)g(Y, Z) — X(e*)g(F1Y, Z)

where F are the almost product structures associated with J. Therefore, we have following theorem.
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Theorem 3.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Rieman-

nian metric g. Then (M,J,g = e¢* g) is a locally decomposable metallic Riemannian manifold if and only if

the function f is constant.

4. Examples

Example 1. Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and denote
by 7 : TH(M) — M its (1,1)-tensor bundle with fibers the (1,1)-tensor spaces to M. Then T} (M) is an
n + n?-dimensional smooth manifold and some local charts induced naturally from local charts on M may be

used. Namely, a system of local coordinates (U;z?) in M induces on T} (M) a system of local coordinates
(w‘l(U);xj,ajj = t;) j=1,...n,j=n+1,...n+n%, J=1,..,n+n?, where (t;) are the Cartesian coordinates

in each (1,1)-tensor space Tll(P)M at P € M with respect to the natural base.

Let X = X! aii and A = A} 82’7 ® dz? be the local expressions in U of a vector field X and a (1,1)-

tensor field A on M, respectively. Then the vertical lift ¥ A of A and the horizontal lift ¥ X of X are given,

with respect to the induced coordinates, by

- (4)-(3)

and

Hxj X7
H _ _ — X .
X = ( HXj ) - ( Xs(rmtz S, tm) > ) (9)

sj'm smYj

where F?j are the coefficients of the Levi-Civita connection V of g. The vector fields yA and A on T} (M)

0
7= (el )

4= ( A7) ) |

From (8) we easily see that the vector fields vA and 4#A determine respectively the global vector fields on
TH(M) [1].

are respectively defined by

The Sasaki type metric g on T} (M) is defined by the following three equations:

Sg (VA,VB) = g(A, B), (10)
Sg(VARY) =0, (11)
Sg("X,7Y) = g(X,Y), (12)

for any vector fields X and Y and (1,1)-tensor fields A, B on M, where g(A, B) = gug’' AiB] (see [12]).
From equations (10)—(12) we easily see that the horizontal distribution H, induced by V, and determined by
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the horizontal lifts, is orthogonal to the fibers of Ti1(M). Let now E be a nowhere zero vector field on M. For
any vector field X and covector field E = go E on M, we define the vertical lift ViX® E) of X with respect
to E. The map X — V(X ® E) is a monomorphism. Hence, an n-dimensional C°° vertical distribution V¥
is defined on T} (M). Let V1 be the distribution on T (M), which is orthogonal to H and V¥. Then H,
VE and V1 are mutually orthogonal distributions with respect to the Sasaki type metric °g. We define a
(1,1)-tensor field J on T}(M) by

THX <BIIX 4 (220470)V (X 0 B)
TV(X 0 8) = 8¥(X 0 B) + (225-2)" X (13)

JVA) =0,," A,

for any vector field X and (1,1)-tensor field A on M, where E = go E is a covector field on M. The
restrictions of J to H+ V¥ and V1 are endomorphisms, and hence J is a (1,1)-tensor field on T3 (M). Tt is

easily see that J? — pj— ql =0, ie. J is a metallic structure on TH(M).

Theorem 4.1 Let (M,g) be a Riemannian manifold and T} (M) be its tensor bundle equipped with the Sasaki
type metric °g and the metallic structure J defined by (13). The triple (Tl1 (M), J, Sg) is a metallic Rieman-
nian manifold if and only if g(E,E) =1.

Proof We calculate

A(X7) =59 (JX,7) - 5 (X, JT)
for any vector fields X and Y on T} (M). From (10)-(12) and (13), we obtain
AHEXHEY) = S (jHX,H Y) _ 54 (HX, jHY)

2 -
= Sg( X +( U”g p)V(X®E),HY>

p
2
2 ~
Sg (HX pHY+ Op,q — p)V<Y®E))

A (V(X 2 E),V(Y® E)) - Sg (jV(X QE),V(Y® E))
S (V(xX @ B),JV(Y 0 E))

20p,q — P

pV ~ H ~
= Sg( (X ®E)+( 5 )X,V(Y®E)>

2

|
9]
Q
VRS
<
<
®
sl
NCRS]

"o b+ (2pa=P p)HY)
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A(V(X®E),HY) = Sg( V(X @ E), Y) (V(X®E),jHY)
_ Sg(;;)V (%p’;_p)HX’HY)

2 _ -
( (X ® E), pHY—i—(Up’;p)V(Y@@E))

20p.q — D S ~ ~

= (ZE (XY= g(V (X 9 E), V(Y © B))

20p,q

= (FELE){9(X.Y) - g(X,Y)g(E, E)}
A(VAVB) = Sg(jVA,VB> —Sg(VA,jVB)
= 0,4{°9(VA,VB) =" ¢ (A,"B)}
= 0,
A(VA,V(Y®E)) - Sg(JVA,V(Y®E)> ng(VA,jV(Y(@E))

= 0.5 (YA (Y 0 B))

~Sg (VA, gV(Y ® E) + (%“Z_Z))HY)
= 0,
A(VATY) = Sg(jVA,HY> 759<VA,J~HY>
= ope°g (VA TY)

2 — -
_Sg<VA,Z2)HX—|—( Op,q p)V(X®E)>

From the equations above, we say that %¢ is pure with respect to J if and only if g(E, E) = 1. This completes
the proof. O

Now we consider the covariant derivative of J with respect to the Levi-Civita connection of ®¢. For this,

first we state the following proposition.

Proposition 4.2 [12] Let (M, g) be a Riemannian manifold and T} (M) be its tensor bundle equipped with the
Sasaki type metric °g. Then the corresponding Levi-Civita connection satisfies the following relations:

i) SVux 7Y =H(VxY)+ 3(3 —7)R(X,Y),

i1) STy AT = LH (" Rty A)Y + gue(t* (97" o R( 7Y>Af))) :

iii) SVuxVB =" (VxB)+ i# (gbj R(ty, By)X + gai (t%(g~" o R( ,X)Bi))) ,
i) SVv VB =0,

for all vector fields X, Y and (1,1)-tensor fields A, B on M, where A; = (A})), At = (g4, t) = (A%Y),
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= ("), t*= (), R( ,X)Y isa (1,1)-tensor field and g~ o R( ,X)Y is a vector field.

By using Proposition 4.2 we calculate
(V)Y =5 V(JY) - J(°VY)

for all vector fields X,Y,Z on T} (M). Then we get

(Vux )Y = TPV (y g (o vim) + L2005 ) R(X,Y)
+20p,?1f—p Lg% R(ty, (YRE) ;)X + gai (t*(g~" o R( X)(YEE))},
(5VuxJ)VB
= 2 N R(n, B)X 4 gus (97 0 RO L X)BY)
$PZ2T0 Y (109 R, B)X 4 goi (g™ 0 RO X)BY)] ® B),
(Vax )Y (voB)

2 —
= V(Y @90 VxE) + —24—L(3 - )R(X.Y)

*% V{lg¥ R(th, (YOE) )X + gai (t°(g™ o R, X)(YBE)") @ E},

Vv )Y

= PRI V{1 Ry, AY + gat (7 o RO Y)AY) @ B),

(Vvad)V (Y ® E)
2054 — . _ .
= SR N R(ty, A))Y + gt (971 0 R Y)AD)),
(Vv xep ) (Y @ E)

= 2SR G Ry, (X @ B),)Y + guilt” (67 0 R( L Y)(XEE) ),

(Vo xem DY

= P22 Vi Ry, (X @ B),)Y + gualt® (67 o RO Y)(XBE) )] @ B,

(*Vvad)VB =0, (Vv(xprd) (Y © E) =0.

Therefore, from the last equations, we have the following result.

Theorem 4.3 Let (M, g) be a Riemannian manifold and T} (M) be its tensor bundle equipped with the Sasaki

type metric Sg and the metallic structure J defined by (13). The triple (Tll (M), J, Sg) is a locally decomposable
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metallic Riemannian manifold if and only if M is locally flat and g(E,E) =1, VE =0, where V is the Levi-

Cita connection of g.

Example 2. Let us consider the R” = R*¥ x R"* endowed with the Euclidean metric g , i.e.
6; 0 i=1,..,k ij=k+1
9= 0 5; y Ll =L R 4] = + y ooy T
The canonical product structure on R™ is given by
0 X - = =
F= 55' Oj , g =1,..k 4,j=k+1,...,n.
The triple (R™, F,g) is a locally decomposable Euclidean space. Metallic structures J1 on R™ obtained from
Dy (2P 50
Jj: = : j2”p,q*p a9 D Si ! :

The triple (R, Jy,g) is a locally decomposable metallic Euclidean space.

F' are as follows:
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