

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2015) 39: 954 – 962 © TÜBİTAK doi:10.3906/mat-1504-50

Research Article

On metallic Riemannian structures

Aydın GEZER, Çağrı KARAMAN*

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey

Received: 16.04.2015 • Acce	pted/Published Online: 06.07.2015	•	Printed: 30.11.2015
------------------------------------	-----------------------------------	---	----------------------------

Abstract: The paper is devoted to the study of metallic Riemannian structures. An integrability condition and curvature properties for these structures by means of a Φ -operator applied to pure tensor fields are presented. Examples of these structures are also given.

Key words: Conformal metric, metallic structure, pure tensor, Riemannian manifold, tensor bundle, twin metric

1. Introduction

Let M be an *n*-dimensional manifold. We point out here and once that all geometric objects considered in this paper are supposed to be of class C^{∞} .

The number $\eta = \frac{1+\sqrt{5}}{2} \approx 1,61803398874989...$, which is the positive root of the equation $x^2 - x - 1 = 0$, represents the golden mean. There are two most important generalizations of the golden mean. The first of them is the golden *p*-proportions being a positive root of the equation $x^{p+1} - x^p - 1 = 0$, (p = 0, 1, 2, 3, ...) in [13]. The other, called the metallic means family or metallic proportions, was introduced by de Spinadel in [2, 3, 5, 4]. For two positive integers *p* and *q*, the positive solution of the equation $x^2 - px - q = 0$ is named members of the metallic means family. All the members of the metallic means family are positive quadratic irrational numbers $\sigma_{p,q} = \frac{p + \sqrt{p^2 + 4q}}{2}$. These numbers $\sigma_{p,q}$ are also called (p,q)-metallic numbers. Inspired by the metallic means family, Hretcanu and Crasmareanu [8] constructed a new structure on a Riemannian manifold and named it a metallic structure. Indeed, a metallic structure is a polynomial structure with the structural polynomial $Q(J) = J^2 - pJ - qI$. Polynomial structures on a manifold were defined in [7]. A polynomial structure *F* of degree *d* on a connected manifold *M* means that a (1, 1)-tensor field *F* satisfies the following algebraic polynomial equation:

$$Q(F) = F^d + a_1 F^{d-1} + \dots + a_{d-1} F + a_d I = 0,$$

where $a_1, a_2, ..., a_d$ are real numbers and I is the identity tensor of type (1, 1).

Given a Riemannian manifold (M, g) endowed with the metallic structure J, then the triple (M, J, g) is named a metallic Riemannian manifold if

$$g(JX,Y) = g(X,JY) \tag{1}$$

or equivalently

$$g(JX, JY) = g(J^2X, Y) = g((pJ + qI)X, Y) = pg(JX, Y) + qg(X, Y)$$

*Correspondence: cagri-karamannn@hotmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 53C15, 55R10.

for all vector fields X and Y on M [8]. The Riemannian metric (1) is referred to as J-compatible or pure metric [11, 14, 17].

In general, a (0, s)-tensor field t is pure with respect to a (1, 1)-tensor field ψ if and only if the following condition holds:

$$t(\psi Y_1, Y_2, ..., Y_s) = t(Y_1, \psi Y_2, ..., Y_s) = ... = t(Y_1, Y_2, ..., \psi Y_s)$$

for any vector fields $Y_1, Y_2, ..., Y_s$ on M. The Tachibana operator Φ_{ψ} applied to the (0, s)-tensor field t is defined by

$$(\Phi_{\psi}t)(X, Y_1, ..., Y_s) = (\psi X) t(Y_1, ..., Y_s) - Xt(\psi Y_1, ..., Y_s) + \sum_{\lambda=1}^{s} t(Y_1, ..., (L_{Y_{\lambda}}\psi) X, ..., Y_s),$$
(2)

where L_Y denotes the Lie differentiation with respect to Y [11, 14, 17]. If the pure tensor t satisfies $\Phi_{\psi}t = 0$, then it is called a Φ -tensor. If ψ is a product structure, then a Φ -tensor is a decomposable tensor.

2. Locally decomposable metallic Riemannian structures

Let (M, g, F) be a locally decomposable Riemannian manifold. This means that the Riemannian manifold (M, g) is equipped with an almost product structure F, $F^2 = I$, such that

$$g(FX,Y) = g(X,FY)$$

and

$$\nabla F=0$$

for all vector fields X and Y on M, where ∇ is the operator of the Riemannian covariant derivation. The theory of Riemannian almost product structures was initiated by Yano in [16]. The classification of Riemannian almost product structure with respect to their covariant derivatives was described by Naveira in [9]. In [10], it was shown that the condition $\nabla F = 0$ is equivalent to decomposability of the pure metric g, i.e. $\Phi_F g = 0$, where Φ_F is the Tachibana operator [11, 14, 17]:

$$(\Phi_F g)(X, Y, Z) = (FX)(g(Y, Z)) - X(g(FY, Z)) + g((L_Y F)X, Z) + g(Y, (L_Z F)X) + g(Y, ($$

As is known, a polynomial structure F is integrable if and only if it is possible to introduce a torsion-free linear connection ∇ with respect to which the structure tensor F is covariantly constant [15]. By using the Tachibana operator, we can give another condition of integrability for a metallic Riemannian structure.

Theorem 2.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. Then:

a) J is integrable if $\Phi_J g = 0$,

b) the condition $\Phi_J g = 0$ is equivalent to $\nabla J = 0$, where ∇ is the Levi-Civita connection of g.

Proof The proof is similar to that of Theorem 2.1 in [6], so we omit it.

Next, we are going to give relationships between the almost product structures and metallic structures on M.

Proposition 2.2 [8] If J is a metallic structure on M, then

$$F_{\pm} = \pm \left(\frac{2}{2\sigma_{p,q} - p}J - \frac{p}{2\sigma_{p,q} - p}I\right)$$
(3)

are two almost product structures on M. Conversely, every almost product structure F on M induces two metallic structures on M, given as follows:

$$J_{\pm} = \frac{p}{2}I \pm \left(\frac{2\sigma_{p,q} - p}{2}\right)F.$$

Due to (3), it follows that:

i) A Riemannian metric g is pure with respect to a metallic structure J if and only if the Riemannian metric g is pure with respect to the almost product structures F_{\pm} associated with J.

ii) The dependence between $\Phi_{F_{\pm}}g$ and Φ_Jg is as follows:

$$\Phi_{F_{\pm}}g = \pm \frac{2}{2\sigma_{p,q} - p} \Phi_J g,\tag{4}$$

from which, in view of Theorem 2.1, we can say that the metallic Riemannian structure J is integrable if $\Phi_{F_{\pm}}g = 0$, i.e. the Riemannian metric g is decomposable. If (M, J, g) is a metallic Riemannian manifold with a decomposable pure metric, then we call it a locally decomposable metallic Riemannian manifold. Hence, we have the following.

Proposition 2.3 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. The manifold M is a locally decomposable metallic Riemannian manifold if and only if $\Phi_{F_{\pm}}g = 0$, where F_{\pm} are the almost product structures associated with J.

The twin metallic Riemannian metric is defined by

$$G(X,Y) = g(JX,Y)$$

for all vector fields X and Y on M. One can easily prove that G is pure with respect to J. If we apply the Φ_J -operator to the metric G, standard calculations give

$$(\Phi_J G)(X, Y, Z) = (\Phi_J g)(X, JY, Z) + g(N_J(X, Y), Z).$$
(5)

Thus, (5) implies the following result.

Proposition 2.4 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. Then $\Phi_J g = 0$ is equivalent to $\Phi_J G = 0$ if $N_J = 0$, where N_J is Nijenhuis tensor constructed from J.

We now turn our attention to the Riemannian curvature tensor field R of the locally decomposable metallic Riemannian manifold (M, J, g).

Theorem 2.5 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. The Riemannian curvature tensor field is a J-tensor field. **Proof** The Riemannian curvature tensor field R of the metallic Riemannian metric g is pure with respect to the metallic structure J, i.e.

$$R(JY_1, Y_2, Y_3, Y_4) = R(Y_1, JY_2, Y_3, Y_4) = R(Y_1, Y_2, JY_3, Y_4) = R(Y_1, Y_2, Y_3, JY_4).$$

From (2), the Tachibana operator Φ_J applied to the Riemannian curvature tensor field R of type (0,4) can be written as follows:

$$(\Phi_J R)(X, Y_1, Y_2, Y_3, Y_4) = (\nabla_{JX} R)(Y_1, Y_2, Y_3, Y_4) - (\nabla_X R)(JY_1, Y_2, Y_3, Y_4).$$
(6)

We can also say that in the locally decomposable metallic Riemannian manifold, the covariant derivative of the Riemannian curvature tensor R with respect to the Levi-Civita connection of g is pure. Using Bianchi's second identity and purity conditions, simple calculations give

$$(\Phi_J R)(X, Y_1, Y_2, Y_3, Y_4) = 0.$$

We omit standard calculations (see also [6]).

By (3) and (6), we can find, in a similar way as for (4), the following:

$$\Phi_{F_{\pm}}R = \pm \frac{2}{2\sigma_{p,q} - p} \Phi_J R. \tag{7}$$

In view of Theorem 2.5 and (7), we have the result below.

Proposition 2.6 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. The Riemannian curvature tensor field is a decomposable tensor field.

3. Metallic structures with conformal metrics

Given a Riemannian metric g, we can easily define a new Riemannian metric \tilde{g} in terms of g by multiplying g by a smooth function f, or for vector fields X and Y on M,

$$\widetilde{g}(X,Y) = e^{2f}g(X,Y).$$

The metric \tilde{g} is called conformal to the Riemannian metric g.

Let us consider that (M, J, g) is a metallic Riemannian manifold. Immediately, we can say that (M, J, \tilde{g}) is also a metallic Riemannian manifold. If we apply the Φ_J -operator to the conformal metric \tilde{g} , we get

$$(\Phi_J \tilde{g})(X, Y, Z) = (JX)(e^{2f}g(Y, Z)) - X(e^{2f}g(JY, Z)) + e^{2f}g((L_Y J)X, Z) + e^{2f}g(Y, (L_Z J)X) = (JX)(e^{2f})g(Y, Z) - X(e^{2f})g(JY, Z) + e^{2f}(\Phi_J g)(X, Y, Z).$$

By using (3) and (4), we have

$$(\Phi_J \tilde{g})(X, Y, Z) = \pm \frac{2\sigma_{p,q} - p}{2} \{ (F_{\pm} X)(e^{2f})g(Y, Z) - X(e^{2f})g(F_{\pm} Y, Z) + e^{2f}(\Phi_{F_{\pm}} g)(X, Y, Z) \},$$

where F_{\pm} are the almost product structures associated with J. Therefore, we have following theorem.

Theorem 3.1 Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. Then $(M, J, \tilde{g} = e^{2f}g)$ is a locally decomposable metallic Riemannian manifold if and only if the function f is constant.

4. Examples

Example 1. Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and denote by $\pi : T_1^1(M) \to M$ its (1,1)-tensor bundle with fibers the (1,1)-tensor spaces to M. Then $T_1^1(M)$ is an $n + n^2$ -dimensional smooth manifold and some local charts induced naturally from local charts on M may be used. Namely, a system of local coordinates $(U; x^j)$ in M induces on $T_1^1(M)$ a system of local coordinates $(\pi^{-1}(U); x^j, x^{\overline{j}} = t_j^i)$ $j = 1, ..., n, \overline{j} = n+1, ..., n+n^2, J = 1, ..., n+n^2$, where (t_j^i) are the Cartesian coordinates in each (1, 1)-tensor space $T_{1(P)}^1M$ at $P \in M$ with respect to the natural base.

Let $X = X^i \frac{\partial}{\partial x^i}$ and $A = A^i_j \frac{\partial}{\partial x^i} \otimes dx^j$ be the local expressions in U of a vector field X and a (1, 1)tensor field A on M, respectively. Then the vertical lift ${}^V A$ of A and the horizontal lift ${}^H X$ of X are given, with respect to the induced coordinates, by

$${}^{V}A = \left(\begin{array}{c} {}^{V}A^{j} \\ {}^{V}A^{\overline{j}} \end{array}\right) = \left(\begin{array}{c} 0 \\ A^{i}_{j} \end{array}\right)$$
(8)

and

$${}^{H}X = \begin{pmatrix} {}^{H}X^{j} \\ {}^{H}X^{\overline{j}} \end{pmatrix} = \begin{pmatrix} X^{j} \\ X^{s}(\Gamma^{m}_{sj}t^{i}_{m} - \Gamma^{i}_{sm}t^{m}_{j}) \end{pmatrix},$$
(9)

where Γ_{ij}^h are the coefficients of the Levi-Civita connection ∇ of g. The vector fields γA and $\tilde{\gamma} A$ on $T_1^1(M)$ are respectively defined by

$$\begin{split} \gamma A &= \left(\begin{array}{c} 0 \\ t_j^m A_m^i \end{array} \right), \\ \tilde{\gamma} A &= \left(\begin{array}{c} 0 \\ (t_m^i A_j^m) \end{array} \right). \end{split}$$

From (8) we easily see that the vector fields γA and $\tilde{\gamma} A$ determine respectively the global vector fields on $T_1^1(M)$ [1].

The Sasaki type metric ${}^{S}g$ on $T_{1}^{1}(M)$ is defined by the following three equations:

$$^{S}g\left(^{V}A, ^{V}B\right) = g(A, B),\tag{10}$$

$$^{S}g\left(^{V}A,^{H}Y\right) =0, \tag{11}$$

$${}^{S}g\left({}^{H}X,{}^{H}Y\right) = g\left(X,Y\right),\tag{12}$$

for any vector fields X and Y and (1,1)-tensor fields A, B on M, where $g(A, B) = g_{it}g^{jl}A_j^iB_l^t$ (see [12]). From equations (10)–(12) we easily see that the horizontal distribution H, induced by ∇_g and determined by

GEZER and KARAMAN/Turk J Math

the horizontal lifts, is orthogonal to the fibers of $T_1^1(M)$. Let now E be a nowhere zero vector field on M. For any vector field X and covector field $\tilde{E} = g \circ E$ on M, we define the vertical lift ${}^V(X \otimes \tilde{E})$ of X with respect to E. The map $X \to {}^V(X \otimes \tilde{E})$ is a monomorphism. Hence, an n-dimensional C^{∞} vertical distribution V^E is defined on $T_1^1(M)$. Let V^{\perp} be the distribution on $T_1^1(M)$, which is orthogonal to H and V^E . Then H, V^E , and V^{\perp} are mutually orthogonal distributions with respect to the Sasaki type metric Sg . We define a (1,1)-tensor field \tilde{J} on $T_1^1(M)$ by

$$\begin{cases} \widetilde{J}^{H}X = \frac{p}{2}^{H}X + (\frac{2\sigma_{p,q}-p}{2})^{V}(X \otimes \widetilde{E}), \\ \widetilde{J}^{V}(X \otimes \widetilde{E}) = \frac{p}{2}^{V}(X \otimes \widetilde{E}) + (\frac{2\sigma_{p,q}-p}{2})^{H}X, \\ \widetilde{J}(^{V}A) = \sigma_{p,q}^{V}A, \end{cases}$$
(13)

for any vector field X and (1,1)-tensor field A on M, where $\tilde{E} = g \circ E$ is a covector field on M. The restrictions of \tilde{J} to $H + V^E$ and V^{\perp} are endomorphisms, and hence \tilde{J} is a (1,1)-tensor field on $T_1^1(M)$. It is easily see that $\tilde{J}^2 - p\tilde{J} - qI = 0$, i.e. \tilde{J} is a metallic structure on $T_1^1(M)$.

Theorem 4.1 Let (M,g) be a Riemannian manifold and $T_1^1(M)$ be its tensor bundle equipped with the Sasaki type metric Sg and the metallic structure \tilde{J} defined by (13). The triple $\left(T_1^1(M), \tilde{J}, {}^Sg\right)$ is a metallic Riemannian manifold if and only if g(E, E) = 1.

Proof We calculate

$$A\left(\tilde{X},\tilde{Y}\right) = {}^{S}g\left(\tilde{J}\tilde{X},\tilde{Y}\right) - {}^{S}g\left(\tilde{X},\tilde{J}\tilde{Y}\right)$$

for any vector fields \tilde{X} and \tilde{Y} on $T_1^1(M)$. From (10)–(12) and (13), we obtain

$$\begin{split} A\left({}^{H}X,{}^{H}Y\right) &= {}^{S}g\left(\tilde{J}^{H}X,{}^{H}Y\right) - {}^{S}g\left({}^{H}X,\tilde{J}^{H}Y\right) \\ &= {}^{S}g\left(\frac{p}{2}{}^{H}X + (\frac{2\sigma_{p,q}-p}{2})^{V}(X\otimes\tilde{E}),{}^{H}Y\right) \\ &- {}^{S}g\left({}^{H}X,\frac{p}{2}{}^{H}Y + (\frac{2\sigma_{p,q}-p}{2})^{V}(Y\otimes\tilde{E})\right) \\ &= 0, \\ A\left({}^{V}(X\otimes\tilde{E}),{}^{V}(Y\otimes\tilde{E})\right) &= {}^{S}g\left(\tilde{J}^{V}(X\otimes\tilde{E}),{}^{V}(Y\otimes\tilde{E})\right) \\ &- {}^{S}g\left({}^{V}(X\otimes\tilde{E}),\tilde{J}^{V}(Y\otimes\tilde{E})\right) \\ &= {}^{S}g\left(\frac{p}{2}{}^{V}(X\otimes\tilde{E}) + (\frac{2\sigma_{p,q}-p}{2})^{H}X,{}^{V}(Y\otimes\tilde{E})\right) \\ &- {}^{S}g\left({}^{V}(X\otimes\tilde{E}),\frac{p}{2}{}^{V}(Y\otimes\tilde{E}) + (\frac{2\sigma_{p,q}-p}{2})^{H}Y\right) \\ &= 0, \end{split}$$

GEZER and KARAMAN/Turk J Math

$$\begin{split} A\left({}^{V}(X\otimes\tilde{E}),{}^{H}Y\right) &= {}^{S}g\left(\tilde{J}^{V}(X\otimes\tilde{E}),{}^{H}Y\right) - {}^{S}g\left({}^{V}(X\otimes\tilde{E}),\tilde{J}^{H}Y\right) \\ &= {}^{S}g\left(\frac{p}{2}{}^{V}(X\otimes\tilde{E}) + \left(\frac{2\sigma_{p,q}-p}{2}\right){}^{H}X,{}^{H}Y\right) \\ &- {}^{S}g\left({}^{V}(X\otimes\tilde{E}),\frac{p}{2}{}^{H}Y + \left(\frac{2\sigma_{p,q}-p}{2}\right){}^{V}(Y\otimes\tilde{E})\right) \\ &= \left(\frac{2\sigma_{p,q}-p}{2}\right){}^{S}g({}^{H}X,{}^{H}Y) - {}^{S}g({}^{V}(X\otimes\tilde{E}),{}^{V}(Y\otimes\tilde{E})) \\ &= \left(\frac{2\sigma_{p,q}-p}{2}\right){}^{S}g({}^{X}X) - g(X,Y)g(E,E){}^{S} \\ A\left({}^{V}A,{}^{V}B\right) &= {}^{S}g\left(\tilde{J}^{V}A,{}^{V}B\right) - {}^{S}g\left({}^{V}A,{}^{V}B\right) \\ &= \sigma_{p,q}{}^{S}g\left({}^{V}A,{}^{V}B\right) - {}^{S}g\left({}^{V}A,{}^{V}B\right){}^{S} \\ &= 0, \\ A\left({}^{V}A,{}^{V}(Y\otimes\tilde{E})\right) &= {}^{S}g\left(\tilde{J}^{V}A,{}^{V}(Y\otimes\tilde{E})\right) - {}^{S}g\left({}^{V}A,{}^{V}(Y\otimes\tilde{E})\right) \\ &= \sigma_{p,q}{}^{S}g\left({}^{V}A,{}^{V}(Y\otimes\tilde{E})\right) \\ &- {}^{S}g\left({}^{V}A,{}^{P}Y(\otimes\tilde{E}) + \left(\frac{2\sigma_{p,q}-p}{2}\right){}^{H}Y\right) \\ &= 0, \\ A\left({}^{V}A,{}^{H}Y\right) &= {}^{S}g\left(\tilde{J}^{V}A,{}^{H}Y\right) - {}^{S}g\left({}^{V}A,{}^{H}Y\right) \\ &= \sigma_{p,q}{}^{S}g\left({}^{V}A,{}^{H}Y\right) \\ &= 0. \end{split}$$

From the equations above, we say that ${}^{S}g$ is pure with respect to \tilde{J} if and only if g(E, E) = 1. This completes the proof.

Now we consider the covariant derivative of \tilde{J} with respect to the Levi-Civita connection of ${}^{S}g$. For this, first we state the following proposition.

Proposition 4.2 [12] Let (M, g) be a Riemannian manifold and $T_1^1(M)$ be its tensor bundle equipped with the Sasaki type metric Sg . Then the corresponding Levi-Civita connection satisfies the following relations: i) ${}^S\nabla w = {}^H Y = {}^H (\nabla z Y) + {}^1 (\tilde{z} - z) P(Y, Y)$

$$i) {}^{S} \nabla_{H_{X}} {}^{H}Y = {}^{H} (\nabla_{X}Y) + \frac{1}{2} (\tilde{\gamma} - \gamma) R(X, Y),$$

$$ii) {}^{S} \nabla_{V_{A}} {}^{H}Y = \frac{1}{2} {}^{H} \left(g^{bl} R(t_{b}, A_{l})Y + g_{at}(t^{a} (g^{-1} \circ R(, Y)\tilde{A}^{t})) \right),$$

$$iii) {}^{S} \nabla_{H_{X}} {}^{V}B = {}^{V} (\nabla_{X}B) + \frac{1}{2} {}^{H} \left(g^{bj} R(t_{b}, B_{j})X + g_{ai} (t^{a} (g^{-1} \circ R(, X)\tilde{B}^{i})) \right),$$

$$iv) {}^{S} \nabla_{V_{A}} {}^{V}B = 0,$$

for all vector fields X, Y and (1,1)-tensor fields A, B on M, where $A_l = (A_l^{\ i}), \ \tilde{A}^t = (g^{bl}A_l^{\ t}) = (A_{\cdot}^{bt}), \ \tilde{A}^t = (g^{bl}A_l^{\ t}) = (A_{\cdot}^{bt}) = (A_{$

960

 $t_l = (t_l^{\,a}), \ t^a = (t_b^{\,a}), \ R(\quad, X)Y \ is \ a \ (1,1) \ \text{-tensor field and} \ g^{-1} \circ R(\quad, X)Y \ is \ a \ vector \ field.$

By using Proposition 4.2 we calculate

$$({}^{S}\nabla_{\widetilde{X}}\widetilde{J})\widetilde{Y} = {}^{S}\nabla_{\widetilde{X}}(\widetilde{J}\widetilde{Y}) - \widetilde{J}({}^{S}\nabla_{\widetilde{X}}\widetilde{Y})$$

for all vector fields $\tilde{X},\tilde{Y},\tilde{Z}$ on $T_1^1(M).$ Then we get

$$\begin{split} ({}^{S}\nabla_{H_{X}}\tilde{J})^{H}Y &= \frac{2\sigma_{p,q} - p}{2} V(Y \otimes (g \circ \nabla_{X}E)) + \frac{p - 2\sigma_{p,q}}{4} (\tilde{\gamma} - \gamma)R(X,Y) \\ &+ \frac{2\sigma_{p,q} - p}{4} H\{g^{bj} R(t_{b}, (Y \otimes \tilde{E})_{j})X + g_{ai} (t^{a}(g^{-1} \circ R(-,X)(Y \otimes \tilde{E})^{i})\}, \\ ({}^{S}\nabla_{H_{X}}\tilde{J})^{V}B \\ &= \frac{2\sigma_{p,q} - p}{4} H\{g^{bj} R(t_{b}, B_{j})X + g_{ai} (t^{a}(g^{-1} \circ R(-,X)\tilde{B}^{i})] \\ &+ \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, B_{j})X + g_{ai} (t^{a}(g^{-1} \circ R(-,X)\tilde{B}^{i})] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{H_{X}}\tilde{J})^{V}(Y \otimes \tilde{E}) \\ &= \frac{p}{2} V(Y \otimes (g \circ \nabla_{X}E)) + \frac{2\sigma_{p,q} - p}{4} (\tilde{\gamma} - \gamma)R(X,Y) \\ &+ \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (Y \otimes \tilde{E})_{j})X + g_{ai} (t^{a}(g^{-1} \circ R(-,X)(Y \otimes \tilde{E})^{i})] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{V_{A}}\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, A_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)\tilde{A}^{i}))] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{V}(Y \otimes \tilde{E}) \\ &= \frac{2\sigma_{p,q} - p}{4} H\{g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{V}(Y \otimes \tilde{E}) \\ &= \frac{2\sigma_{p,q} - p}{4} H\{g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))]\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))] \otimes \tilde{E}\}, \\ ({}^{S}\nabla_{V}(X \otimes \tilde{E})\tilde{J})^{H}Y \\ &= \frac{p - 2\sigma_{p,q}}{4} V\{[g^{bj} R(t_{b}, (X \otimes \tilde{E})_{j})Y + g_{ai}(t^{a} (g^{-1} \circ R(-,Y)(X \otimes \tilde{E})^{i}))] \otimes \tilde{E}\}, \end{aligned}$$

Therefore, from the last equations, we have the following result.

Theorem 4.3 Let (M, g) be a Riemannian manifold and $T_1^1(M)$ be its tensor bundle equipped with the Sasaki type metric Sg and the metallic structure \tilde{J} defined by (13). The triple $\left(T_1^1(M), \tilde{J}, {}^Sg\right)$ is a locally decomposable

metallic Riemannian manifold if and only if M is locally flat and g(E, E) = 1, $\nabla E = 0$, where ∇ is the Levi-Civita connection of g.

Example 2. Let us consider the $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ endowed with the Euclidean metric g, i.e.

$$g = \begin{pmatrix} \delta_j^i & 0\\ 0 & \delta_{\overline{j}}^{\overline{i}} \end{pmatrix}, \ i, j = 1, ..., k, \quad \overline{i}, \overline{j} = k+1, ..., n.$$

The canonical product structure on \mathbb{R}^n is given by

$$F = \begin{pmatrix} 0 & \delta_{\overline{j}}^{i} \\ \delta_{\overline{j}}^{\overline{i}} & 0 \end{pmatrix}, \ i, j = 1, ..., k, \quad \overline{i}, \overline{j} = k + 1, ..., n.$$

The triple (\mathbb{R}^n, F, g) is a locally decomposable Euclidean space. Metallic structures J_{\pm} on \mathbb{R}^n obtained from F are as follows:

$$J_{\pm} = \begin{pmatrix} \frac{p}{2}\delta^i_j & \pm (\frac{2\sigma_{p,q}-p}{2})\delta^i_{\overline{j}} \\ \pm (\frac{2\sigma_{p,q}-p}{2})\delta^{\overline{i}}_j & \frac{p}{2}\delta^{\overline{i}}_{\overline{j}} \end{pmatrix}.$$

The triple $(\mathbb{R}^n, J_{\pm}, g)$ is a locally decomposable metallic Euclidean space.

References

- [1] Cengiz N, Salimov AA. Complete lifts of derivations to tensor bundles. Bol Soc Mat Mexicana 2002; 8, 1: 75–82.
- [2] de Spinadel VW. The metallic means family and multifractal spectra. Nonlinear Anal Ser B 1999; 36: 721–745.
- [3] de Spinadel VW. The family of metallic means. Vis Math 1999; 1: 3.
- [4] de Spinadel VW. The metallic means family and renormalization group techniques. Proc Steklov Inst Math Control Dynamic Systems 2000; 1: 194–209.
- [5] de Spinadel VW. The metallic means family and forbidden symmetries. Int Math J 2002; 2: 279–288.
- [6] Gezer A, Cengiz N, Salimov A. On integrability of Golden Riemannian structures. Turk J Math 2013; 37: 693–703.
- [7] Goldberg SI, Yano K. Polynomial structures on manifolds. Kodai Math Sem Rep 1970; 22: 199–218.
- [8] Hretcanu C, Crasmareanu M. Metallic structures on Riemannian manifolds. Rev Un Mat Argentina 2013; 54: 15–27.
- [9] Naveira AM. A classification of Riemannian almost-product manifolds. Rend Mat Appl VII Ser 1983; 3: 577–592.
- [10] Salimov AA, Akbulut K, Aslanci S. A note on integrability of almost product Riemannian structures. Arab J Sci Eng Sect A Sci 2009; 34: 153–157.
- [11] Salimov AA. On operators associated with tensor fields. J Geom 2010; 99: 107–145.
- [12] Salimov A, Gezer A. On the geometry of the (1,1)-tensor bundle with Sasaki type metric. Chin Ann Math Ser B 2011, 32: 369–386.
- [13] Stakhov AP. Introduction into Algorithmic Measurement Theory. Moscow, Russia: Soviet Radio, 1977 (in Russian).
- [14] Tachibana S. Analytic tensor and its generalization. Tohoku Math J 1968; 12: 208–221.
- [15] Vanzura J. Integrability conditions for polynomial structures. Kodai Math Sem Rep 1976; 27: 42–50.
- [16] Yano K. Differential Geometry on Complex and Almost Complex Spaces. International Series of Monographs in Pure and Applied Mathematics, Vol. 49. New York, NY, USA: Pergamon Press, 1965.
- [17] Yano K, Ako M. On certain operators associated with tensor fields. Kodai Math Sem Rep 1968; 20: 414–436.