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doi:10.3906/mat-1503-40

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Magnetic curves on flat para-Kähler manifolds

Mohamed JLELI1, Marian Ioan MUNTEANU2,∗

1Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
2Faculty of Mathematics, ‘Al. I. Cuza’ University of Iaşi Iaşi, Romania
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Abstract: In this paper we prove that spacelike and timelike magnetic trajectories corresponding to the para-Kähler

2-form on a para-Kähler manifold (M,P, g) are circles on M . We then classify all para-Kähler magnetic curves in

pseudo-Euclidean spaces E2n
n .
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1. Introduction

An almost para-Hermitian manifold is a manifold M equipped with a pseudo-Riemannian metric g and an

almost product structure P compatible with the metric; namely, P is a (1, 1)-type tensor field, P ̸= ±I , such

that

P2 = I, g(PX,PY ) = −g(X,Y ), (1.1)

for vector fields X , Y tangent to M , where I is the identity map. Clearly, it follows from (1.1) that the

dimension of M is even and the metric g is neutral. An almost para-Hermitian manifold is called para-Kähler

if it satisfies ∇P = 0 identically, where ∇ denotes the Levi-Civita connection of M .

Properties of para-Kähler manifolds were first studied in 1948 by Rashevski, who considered a neutral

metric of signature (m,m) defined from a potential function on a locally product 2m-manifold [25]. He called

such manifolds stratified spaces. Para-Kähler manifolds were explicitly defined by Rozenfeld in 1949 [26]. Such

manifolds were also defined by Ruse in 1949 [27] and studied by Libermann [22] in the context of G -structures.

Para-Kähler manifolds have been applied in supersymmetric field theories as well as in string theory in recent

years (see, for instance, [10, 11]). An interesting survey on para-Kähler manifolds is given in [17]. See also [12].

In analogy with holomorphic sectional curvature of Kähler manifolds, one may define the para-holomorphic

sectional curvature of para-Kähler manifolds. More precisely, if v and Pv determine a nondegenerate plane

at p ∈ M , the sectional curvature HP(v) = K(v ∧ Pv) is called the para-holomorphic sectional curvature of

the P -plane spanned by v . A para-Kähler space form is a para-Kähler manifold of constant para-holomorphic

sectional curvature. The simplest example of para-Kähler space form is furnished by the flat pseudo-Euclidean

2n-space described in Section 4. The model of a nonflat para-Kähler space form was constructed in [18]. See

also [8].
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A magnetic curve represents a trajectory of a charged particle moving on the manifold under the action of

a magnetic field. A magnetic field on a pseudo-Riemannian manifold (M, g) is a closed 2-form F . The Lorentz

force of the magnetic field F is a (1, 1)-type tensor field Φ given by

g(Φ(X), Y ) = F (X,Y ), ∀X,Y ∈ X(M). (1.2)

The magnetic trajectories of F are curves γ on M that satisfy the Lorentz equation

∇γ′γ′ = Φ(γ′), (1.3)

where ∇ is the Levi-Civita connection of g . See, e.g., [3, 5, 4]. The Lorentz equation generalizes the equation

satisfied by the geodesics of M , namely ∇γ′γ′ = 0. Therefore, from the point of view of the dynamical systems,

a geodesic corresponds to a trajectory of a particle without an action of a magnetic field. Hence, magnetic curves

generalize geodesics.

Since the Lorentz force is skew symmetric we get that a magnetic curve has constant speed v(t) = v0 .

When the magnetic curve γ(t) is arc-length parametrized (v0 = 1), it is called a normal magnetic curve.

A typical example of magnetic fields is obtained by multiplying the area form on a Riemannian surface

by a scalar q (usually called strength or magnitude). When the surface is of constant Gaussian curvature K ,

trajectories of such magnetic fields are well known. More precisely, on the sphere S2(K), K > 0, trajectories

are small circles of certain radius, on the Euclidean plane they are circles, and on a hyperbolic plane H2(−K),

K > 0, trajectories can be either closed curves (when |q| >
√
K ), or open curves. Moreover, when |q| =

√
K ,

normal trajectories are horocycles (see, e.g., [9, 28]).

This problem was extended also for different ambient spaces. For example, if the ambient is a complex

space form, Kähler magnetic fields are studied (see [2]), and in particular, explicit trajectories for Kähler

magnetic fields are found in the complex projective space CPn [1].

If the ambient is a contact manifold, the fundamental 2-form defines the so-called contact magnetic field.

Interesting results are obtained when the manifold is Sasakian; more precisely, it is proved that the angle

between the velocity of a normal magnetic curve and the Reeb vector field is constant; that is, they are slant

curves. Moreover, explicit description for normal flowlines of the contact magnetic field on a 3-dimensional

Sasakian manifold is known [6]. See also [20].

In the case of a 3-dimensional Riemannian manifold (M, g), 2-forms and vector fields may be identified

via the Hodge star operator ⋆ and the volume form dvg of the manifold. Thus, magnetic fields mean divergence-

free vector fields (see, e.g., [7]). In particular, Killing vector fields define an important class of magnetic fields,

called Killing magnetic fields. Recall that a vector field V on M is Killing if and only if it satisfies the Killing

equation:

g(∇Y V, Z) + g(∇ZV, Y ) = 0 (1.4)

for every vector field Y,Z on M , where ∇ is the Levi-Civita connection on M . See, for example, [7, 15, 16,

23, 24].

In this paper we prove that spacelike and timelike magnetic trajectories corresponding to the para-

Kähler 2-form on a para-Kähler manifold (M,P, g) are circles on M , namely curves of order 2 having constant

curvature. Then we classify all para-Kähler magnetic curves in pseudo-Euclidean spaces E2n
n . The main result

is Theorem B. Let γ : I −→ E2n
n be a magnetic curve corresponding to the standard flat para-Kähler structure
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on E2n
n and with constant strength q ̸= 0 . Then, up to a Lorentzian transformation in the ambient space, γ

belongs to the following list:

(1a) γ(s) = 1
q

(
eqsw; eqsw

)
, w ∈ Rn , w ̸= 0 ;

(1b) γ(s) = 1
q

(
− e−qsw; e−qsw

)
, w ∈ Rn , w ̸= 0 ;

(2a) γ(s) = 1
q

(
cosh(qs), 0, . . . , 0; sinh(qs), 0, . . . , 0

)
;

(2b) γ(s) = 1
q

(
sinh(qs), 0, . . . , 0; cosh(qs), 0, . . . , 0

)
;

(2c) γ(s) = 1
q

(
sinh(qs), cosh(qs), 0, . . . , 0; cosh(qs), sinh(qs), 0, . . . , 0

)
, only when n ≥ 2 .

2. Magnetic trajectories on para-Kähler manifolds

On a Kähler manifold (M,J, g) a closed 2-form Fq = qΩJ , where ΩJ is the Kähler 2-form on M , is said to be

a Kähler magnetic field [1, 2]. A smooth curve γ parametrized (usually by its arc-length) is a trajectory of Fq

if it satisfies the Lorentz equation ∇γ′γ′ = q Jγ′ .

It is a natural problem to study Kähler magnetic fields and their trajectories on Kähler manifolds of

constant holomorphic sectional curvature. See, e.g., [21]. On a complex space Cn the situation is quite trivial.

For a complex projective space CPn(c), (c > 0), Adachi [1] proved that every trajectory corresponding to

a Kähler magnetic field is a small circle on a totally geodesic embedded 2-sphere. In [2], the author gives

explicit expressions of magnetic curves in complex hyperbolic spaces CHn(−c), (c > 0). While on CPn(c) the

trajectories are simply closed, on CHn(c) the feature of trajectories changes according to the value of |q| is

greater or smaller than
√
c .

Consider now a para-Kähler manifold (M,P, g) and the 2-form ΩP defined by ΩP(X,Y ) = g(PX,Y ),

for all X,Y ∈ X(M). Let γ : I −→ M be a smooth curve on M . Then γ is a magnetic trajectory corresponding

to the para-Kähler magnetic field Fq = q ΩP , q ̸= 0, if it satisfies the Lorentz equation

∇γ′γ′ = q Pγ′. (2.1)

Since P is skew symmetric, we immediately obtain

d

dt
g(γ′, γ′) = 2g(∇γ′γ′, γ′) = 2qg(Pγ′, γ′) = 0,

and hence g(γ′, γ′) does not depend on the parameter t .

As the metric g is no longer Riemannian, we have to distinguish several cases according to the causality

of γ (which is the same at each point). When γ is spacelike or timelike we consider normal magnetic curves,

namely those curves γ parametrized by arc-length s .

Let γ be a spacelike magnetic curve on M , i.e. g(γ̇, γ̇) = 1. Here by ˙ we denote the derivative with

respect to the parameter s . We have ∇γ̇ γ̇ = κν , where ν is the (first) unit normal to γ and κ is the (first)
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curvature. Combining this with the Lorentz equation and the fact that γ̇ is unitary, we get κ = q and ν = P γ̇ .

Then

∇γ̇ν = ∇γ̇(P γ̇) = P∇γ̇ γ̇ = qP2γ̇ = qγ̇.

It follows that γ has order 2 and its curvature is constant. Hence, γ is a circle on the para-Kähler manifold

M .

Similar discussion may be done when γ is timelike.

We can state the following.

Theorem A Let γ be a spacelike or timelike normal magnetic curve with constant strength q on a para-Kähler

manifold (M, g,P) . Then γ is a circle, i.e. a curve of order 2 with constant curvature κ = q .

Remark 1 For lightlike curves the curvature is not defined. Moreover, ∇γ̇ γ̇ is lightlike, too.

3. Magnetic curves on E2n
n

On R2n consider canonical coordinates x1, . . . , xn, y1, . . . , yn . Define the pseudo-Euclidean metric

g = −
n∑

j=1

dx2
j +

n∑
j=1

dy2j , (3.1)

and the para-complex structure

P ∂

∂xj
=

∂

∂yj
, P ∂

∂yj
=

∂

∂xj
. (3.2)

The manifold E2n
n = (R2n, g,P) is a flat para-Kähler manifold. Its fundamental 2-form is given by ΩP(X,Y ) =

g(PX,Y ).

Define the magnetic field Fq = qΩP , where q ̸= 0 is the strength. Let γ : I ⊆ R −→ E2n
n be the

trajectory corresponding to the magnetic field Fq . Then the Lorentz equation becomes

γ′′ = q Pγ′. (3.3)

As we have already pointed out, due to the skew-symmetry of P , the curve γ has constant ”speed”; namely,

g(γ′, γ′) is constant. As the metric g is pseudo-Riemannian, we distinguish three situations:

1. g(γ′, γ′) = v2 (spacelike magnetic curve),

2. g(γ′, γ′) = −v2 (timelike magnetic curve),

3. g(γ′, γ′) = 0 (lightlike magnetic curve).

In the case of spacelike and timelike magnetic curves, we will consider γ parameterized by the arc-length s , i.e.

v = 1.

We have the following result.

Theorem B Let γ : I −→ E2n
n be a magnetic curve corresponding to the standard flat para-Kähler structure

on E2n
n and with strength q ̸= 0 . Then, up to a Lorentzian transformation in the ambient space, γ belongs to

the following list:
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(1a) γ(s) = 1
q

(
eqsw; eqsw

)
, w ∈ Rn , w ̸= 0 ;

(1b) γ(s) = 1
q

(
− e−qsw; e−qsw

)
, w ∈ Rn , w ̸= 0 ;

(2a) γ(s) = 1
q

(
cosh(qs), 0, . . . , 0; sinh(qs), 0, . . . , 0

)
;

(2b) γ(s) = 1
q

(
sinh(qs), 0, . . . , 0; cosh(qs), 0, . . . , 0

)
;

(2c) γ(s) = 1
q

(
sinh(qs), cosh(qs), 0, . . . , 0; cosh(qs), sinh(qs), 0, . . . , 0

)
, only when n ≥ 2 .

Proof The speed γ̇ is written as

γ̇ =
n∑

j=1

aj
∂

∂xj
+

n∑
j=1

bj
∂

∂yj
,

where aj and bj are smooth functions to be determined. Moreover, they satisfy

−
n∑

j=1

a2j +
n∑

j=1

b2j = δ,

where δ ∈ {−1, 0, 1} .
The Lorentz equation leads to the following system of ordinary differential equations:{

ȧj = qbj
ḃj = qaj , ∀j = 1, . . . , n.

The general solution is given by{
aj = αj cosh(qs) + βj sinh(qs)
bj = βj cosh(qs) + αj sinh(qs), αj , βj ∈ R, j = 1, . . . , n.

Hence, the velocity of γ is given by

γ̇ = cosh(qs) V + sinh(qs)PV,

where V =
n∑

j=1

αj
∂

∂xj
+

n∑
j=1

βj
∂

∂yj
. Obviously, V ̸= 0.

We have to distinguish two cases:

Case 1. V and PV are linearly dependent. This means V is a constant lightlike vector of the form

V =
n∑

j=1

αj

(
∂

∂xj
+ ε ∂

∂yj

)
, ε = ±1. Thus, the velocity of γ can be expressed as

γ̇ =
(
cosh(qs) + ε sinh(qs)

)
V.

It follows that γ is given by

γ(s) = γ0 +
1

q
(sinh(qs) + ε cosh(qs))V.

967



JLELI and MUNTEANU/Turk J Math

Denote by w = (α1, . . . , αn) ∈ Rn , w ̸= 0. Then the curve γ is parametrized as:

1a. for ε = 1:

{
x(s) = x0 +

1
q eqsw

y(s) = y0 +
1
q eqsw,

1b. for ε = −1:

{
x(s) = x0 − 1

q e−qsw

y(s) = y0 +
1
q e−qsw.

Subsequently, γ represents the two bisectrices in a 2-plane in E2n
n , spanned by (w; 0) and (0;w).

Case 2. V and PV are linearly independent, and hence they are orthogonal. We have

δ = g(γ̇, γ̇) = cosh2(qs)g(V, V ) + sinh2(qs)g(PV,PV ) = g(V, V ).

2a. δ = 1: Without loss of the generality we may take V = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ R2n . Then

γ̇(s) = sinh(qs)e1 + cosh(qs)ē1 , where e1 = (1, 0, . . . , 0; 0, . . . , 0). Therefore, γ is a spacelike hyperbola in a

2-plane R2
1 given by {

x(s) = x0 +
1
q (cosh(qs), 0, . . . , 0)

y(s) = y0 +
1
q (sinh(qs), 0, . . . , 0).

2b. δ = −1: Take V = e1 = (1, 0, . . . , 0; 0, . . . , 0) ∈ R2n . The velocity of γ is

γ̇(s) = cosh(qs)e1 + sinh(qs)ē1 . Hence, γ is a timelike hyperbola given by{
x(s) = x0 +

1
q (sinh(qs), 0, . . . , 0)

y(s) = y0 +
1
q (cosh(qs), 0, . . . , 0).

2c. δ = 0: Thus, V = (u,w), where u,w ∈ Rn are linearly independent vectors in Rn such that

|u| = |w| . Here | · | stands for the Euclidean norm in Rn . Notice that this situation occurs only when n ≥ 2.

We get the velocity of γ :

γ̇(s) = (cosh(qs)u+ sinh(qs)w, sinh(qs)u+ cosh(qs)w).

Without loss of the generality consider u = (1, 0, . . . , 0) and w = (0, 1, 0, . . . , 0). Hence, γ is a hyperbola in a

lightlike 2-plane given by {
x(s) = x0 +

1
q (sinh(qs), cosh(qs), 0, . . . , 0)

y(s) = y0 +
1
q (cosh(qs), sinh(qs), 0, . . . , 0).

After a translation one can take x0 = 0 and y0 = 0. 2

Let us conclude this paper with the following remark.

Remark 2 We have obtained that the codimension of a spacelike or timelike magnetic curve γ in the flat

para-Kähler manifold may be reduced to 1; namely, there exists a 2-plane invariant by P such that γ lies on

it. See also [1, 13, 14, 19, 21] for results of the same type in other ambient spaces.
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