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Abstract: We consider integration and double integration operators, the Hardy operator, and multiplication and

composition operators on Lebesgue space Lp [0, 1] and Sobolev spaces W
(n)
p [0, 1] and W

(n)
p ([0, 1]× [0, 1]) , and we

study their properties. In particular, we calculate norm and spectral multiplicity of the Hardy operator and some

multiplication operators, investigate its extended eigenvectors, characterize some composition operators in terms of the

extended eigenvectors of the Hardy operator, and calculate the numerical radius of the integration operator on the real

L2 [0, 1] space. The main method for our investigation is the so-called Duhamel products method. Some other questions

are also discussed and posed.

Key words: Double integration operator, multiplication operator, composition operator, Sobolev space, Duhamel

product, numerical radius

1. Introduction and background

The present paper studies properties of some classical operators, including the Volterra integration operator,

double integration operator, multiplication operator, Hardy operator, and composition operator.

Our main method for the proofs of the obtained results is the Duhamel products method, which was

essentially used in investigation of various questions of analysis, including differential and integrodifferential

equations, the boundary value problems of mathematical physics, operator theory, and Banach algebras in the

works of Nagnibida [27], Fage and Nagnibida [11], Dimovski [9], Tkachenko [34], Malamud [25, 26], Domanov

and Malamud [10], Bojinov [4], Wigley [36, 37], Karaev [17], and Karaev et al. [19].

Let L (X) be the Banach algebra of all bounded linear operators on a Banach space X. A subspace

E ⊂ X is called a cyclic subspace of an operator T ∈ L (X) if

span {TnE : n = 0, 1, 2, ...} = X,

where span denotes a closed linear hull; that is:

span {TnE : n = 0, 1, 2, ...} = clos {p (T )E : p ∈ P (the set of polynomials)} .

An element x ∈ X is said to be a cyclic vector for the operator T, if
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clos {p (T )x : p ∈ P} = X.

In this case an operator T is said to be a cyclic operator.

The spectral multiplicity µ (T ) of T : X → X is the following nonnegative integer or the symbol ∞ :

µ (T ) := inf {dimE : clos {p (T )E : p ∈ P} = X} .

It is clear that T is a cyclic operator if and only if µ (T ) = 1. The set of all cyclic vectors is denoted by Cyc (T ) .

It is necessary to note that spectral multiplicity is an important invariant of operators. Clearly, the notion

of the cyclic vector is important in connection with the general problem of existence of a nontrivial invariant

subspace, because an operator T ∈ L (X) has no nontrivial invariant subspace if and only if every nonzero

vector x ∈ X is a cyclic vector for T. Cyclic vectors are important in weighted polynomial approximation

theory.

Let W
(n)
p := W

(n)
p [0, 1] denote the Sobolev space, which is a Banach space of continuous functions on

the unit segment [0, 1] for which f (n) ∈ Lp [0, 1] . The Duhamel product of the functions f, g ∈ W
(n)
p [0, 1] is

defined by (see Wigley [37]):

(f ⊛ g)(x) :=
d

dx

x∫
0

f(x− t)g(t)dt =

x∫
0

f ′(x− t)g(t)dt+ f (0) g (x) . (1)

One can use results from operational calculus to show that W
(n)
p [0, 1] is a commutative and associative algebra

with respect to the Duhamel product ⊛ with a unit f (x) ≡ 1. Moreover, it is known (and easy to verify) that(
W

(n)
p [0, 1] ,⊛

)
is a Banach algebra (see Karaev [17]).

Recall that the classical convolution product ∗ is defined in W
(n)
p by the formula

(f ∗ g)(x) :=
x∫
0

f(x− t)g(t)dt, f, g ∈ W (n)
p . (2)

It is classical that
(
W

(n)
p , ∗

)
is a Banach algebra without unit. The function f ∈ W

(n)
p [0, 1] (1 ≤ p < ∞) is a

∗-generator for the Banach algebra
(
W

(n)
p , ∗

)
if

span {f, f ∗ f, f ∗ f ∗ f, ...} = W (n)
p .

The ∗ -generators of the Banach algebras (C [0, 1] , ∗) and
(
C(n) [0, 1] , ∗

)
are investigated in [12] and [19],

respectively.

Consider an operator A : X → X such that A is bounded and linear. If B ∈ L (X) , it can be happen

that there is nonzero operator C such that

BA = AC. (3)

If we denote by EC the set of all B for which there exists an operator C satisfying (3) , then it is easy to see

that EA is an algebra. Furthermore, one can define the map ΦA : EA → L (X) by ΦA (B) = C. When C = λB,
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for some complex number λ ∈ C, equation (3) becomes

BA = λAB. (4)

Furthermore, if A has a dense range and kerA = {0} , one can easily see that ΦA is a uniquely defined algebra

homomorphism. It is clear that a pair (B, λ) in (L (X) \ {0})×C satisfies (4) if and only if λ is an eigenvalue

for ΦA and B is an eigenvector for ΦA. Following Biswas et al. [2], an eigenvalue of ΦA will be referred to as

an extended eigenvalue of A. The appropriate eigenvector of ΦA will be referred to as an extended eigenvector

of A.

The notion of extended eigenvalues and extended eigenvectors of operators is closely related, for example,

with the theory of invariant subspaces and with the theory of so-called Deddens algebras (see Karaev [18] and

Lacruz [20, 22, 21]). More detailed information about “extended spectral theory” can be found in the works of

Biswas et al. [2], Domanov and Malamud [10], Karaev [18], Malamud [25, 26], Lacruz et al. [21], Lauric [23, 24],

Cassier and Alkanjo [6], Alkanjo [1], Cowen [7], Bourdon and Shapiro [3], Tong and Zhou [35], and Shkarin [30].

Recall that for a bounded linear operator T acting in the Hilbert space H its numerical range and

numerical radius are defined by

W (T ) := {⟨Tx, x⟩ : x ∈ H and ∥x∥ = 1}

and
w (T ) := sup {|⟨Tx, x⟩| : x ∈ H and ∥x∥ = 1} ,

respectively. It is well known that W (T ) is always a convex set in the complex plane C, σ (T ) (the spectrum)⊂

W (T ),

1

dist (λ, σ (T ))
≤
∥∥∥(T − λI)

−1
∥∥∥ ≤ 1

dist (λ,W (T ))

and
1

2
∥T∥ ≤ w (T ) ≤ ∥T∥ ,

and hence the numerical radius defines an equivalent norm in the Banach algebra L (H) (see, for instance,

Halmos [14] and Gustafson and Rao [13]). Thus, one of the interesting and important problems of operator

theory is the determination of the numerical range of the concrete operator and calculation of its numerical

radius.

The main motivation in this paper is to show the role of the Duhamel products method in various

questions for the different kinds of classical operators and thus demonstrate the “universality” of this method.

Here we calculate the norm and spectral multiplicity of the Hardy operator Vn defined on the Lebesgue

space Lp [0, 1] by the formula

(Vnf) (x) := xn

∫ x

0

f (t) dt, (5)

where n ∈ N, n ≥ 1, is a fixed number. Clearly,

Vn = MxnV = Mxn+1H,

where Mxm , Mxmf (x) := xmf (x) is a multiplication operator; V, V f (x) :=
∫ x

0
f (t) dt, is the classical Volterra

integration operator; and H, Hf (x) := 1
x

∫ x

0
f (t) dt, is the classical Hardy operator on the space Lp [0, 1] . We
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also investigate the extended eigenvectors of the Hardy operator Vn (Section 2). The characterization of some

composition operator is also studied (Section 3). Moreover, we describe ∗ -generators of the Banach algebra(
W

(n)
p , ∗

)
(Section 4). The extended eigenvectors of the integral operator Kln x

y
, defined on W

(n)
p [0, 1] by

Kln x
y
f (x) :=

∫ x

0

ln
x

y
f (y) dy,

is also investigated (Section 5). We also estimate the numerical radius of the Volterra integration operator V

on the space L2 [0, 1] of real-valued functions (Section 6). In Section 7, we give two different proofs for the

spectral multiplicity of the multiplication operator on the space C (Γ) of continuous functions on the unit circle

Γ of the complex plane C. Some open questions are also posed in the Section 8.

2. On the norm, spectral multiplicity, and extended eigenvectors of Hardy operators

For any fixed integer n ≥ 1, let us consider the Hardy operator Vn defined on the Lebesgue space Lp := Lp [0, 1]

(1 ≤ p < ∞) by the formula

Vnf (x) := xn

∫ x

0

f (t) dt, f ∈ Lp. (6)

In this section, we calculate the norm and spectral multiplicity of Vn and study extended eigenvectors of this

operator. Recall that the composition operator Cφ on Lp is defined by (Cφf) (x) = (f ◦ φ) (x) for a suitable

measurable function φ : [0, 1] → [0, 1].

Theorem 2.1 For any fixed n ≥ 1, let Vn be the Hardy operator defined on Lp by formula (6) . Then we have:

(a) ∥Vn∥ ≤ 1
p
√
np+1

;

(b) Vn is a Volterra operator (that is compact and quasinilpotent) on Lp [0, 1] ; in particular, Vn
s→ 0

(n → ∞) .

(c) µ (Vn) = 1.

Proof (a) Indeed, for any f ∈ Lp, we have:

∥Vnf∥pp =

∥∥∥∥xn

∫ x

0

f (t) dt

∥∥∥∥p
p

=

∫ 1

0

∣∣∣∣xn

∫ x

0

f (t) dt

∣∣∣∣p dx
≤
∫ 1

0

xnp

(∫ x

0

|f (t)| dt
)p

dx ≤
(∫ 1

0

|f (t)| dt
)p(∫ 1

0

xnpdx

)

=
1

np+ 1

(∫ 1

0

|f (t)| dt
)p

≤ 1

np+ 1

((∫ 1

0

|f (t)|p dt
) 1

p
(∫ 1

0

1qdt

) 1
q

)p

=
1

np+ 1

∫ 1

0

|f (t)|p dt = 1

np+ 1
∥f∥pp ,

which shows that ∥Vn∥ ≤ 1
p
√
np+1

, as desired.
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(b) For any λ ∈ C\ {0} the eigenvalue equation of Vn amounts to the differential equation λg′ (x) =

xng (x) with initial condition g (0) = 0 where g (x) =
x∫
0

f (t) dt with f as the eigenvector. The solution of this

integrodifferential equation is g (x) = f (x) ≡ 0, which implies that Vn has no nonzero eigenvalues. Since Vn

is compact, this implies that σ (Vn) = {0} , and this implies that Vn is quasinilpotent. Since Vn is compact,

this shows that Vn is a Volterra operator.

(c) We have:

V k
n 1 = V k−1

n (Vn1) = V k−1
n

(
xn

∫ x

0

1dt

)
= V k−1

n xn+1

= V k−2
n

(
Vnx

n+1
)
= V k−2

n

(
xn

∫ x

0

tn+1dt

)
= V k−2

n

x2(n+1)

n+ 2

=
1

n+ 2

(
V k−3
n

(
Vnx

2(n+1)
))

=
1

(n+ 2) (2n+ 3)
V k−3
n x3(n+1)

=
1

(n+ 2) (2n+ 3) (3n+ 4)
V k−4
n x4(n+1) = ... =

=
1

(n+ 2) (2n+ 3) (3n+ 4) ... ((k − 1)n+ k)
xk(n+1),

and hence

V k
n 1 =

1

(n+ 2) (2n+ 3) (3n+ 4) ... ((k − 1)n+ k)
xk(n+1) (k ≥ 1) , (7)

which implies by Müntz approximation theorem that

Span
{
V k
n 1 : k ≥ 0

}
= Lp;

that is, µ (Vn) = 1. The theorem is proved. 2

Our next result characterizes in terms of extended eigenvectors a special class of the composition operators

Cφ on Lp [0, 1] (1 ≤ p < +∞) (for the related result, see [19]). We set Cλ := Cλx; that is, Cλf (x) = f (λx)

for all f ∈ Lp [0, 1] .

Theorem 2.2 Let A : Lp [0, 1] → Lp [0, 1] be any nonzero bounded linear operator. Then A = Cλ for some

λ ∈ (0, 1) if and only if:

(a) A1 = 1;

(b) there exists an integer k ≥ 1 such that A is an extended eigenvector of the operator V k
n cor-

responding to the extended eigenvalue λ(n+1)k ∈ (0, 1) , where Vn is the Hardy operator on Lp defined by

Vnf = xn
∫ x

0
f (t) dt.

Proof ⇐ . Let AV k
n = λ(n+1)kV k

n A. Then

A
(
V k
n

)m
= λ(n+1)km

(
V k
n

)m
A,

or

AV km
n = λkm(n+1)V km

n A
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for all m ≥ 0. Thus, by considering that A1 = 1, we have

AV km
n 1 = λkm(n+1)V km

n A1 = λkm(n+1)V km
n 1

for all m ≥ 0. Then by using formula (7) , we obtain that

1

(n+ 2) (2n+ 3) (3n+ 4) ... ((km− 1)n+ km)
Axkm(n+1)

=
1

(n+ 2) (2n+ 3) (3n+ 4) ... ((km− 1)n+ km)
λkm(n+1)xkm(n+1)

or

Axkm(n+1) = λkm(n+1)xkm(n+1) = (λx)
km(n+1)

for all m ≥ 0, which by virtue of the Müntz theorem implies that Af (x) = f (λx) = Cλf (x) for all f in Lp.

This shows that A = Cλ.

⇒ . It is obvious that Cλ1 = 1. Let us prove assertion (b). We shall prove actually a more strong

assertion that for every k ≥ 1 Cλ is an extended eigenvector of the operator V k
n corresponding to the extended

eigenvalue λk(n+1) ∈ (0, 1) , i.e.

CλV
k
n = λk(n+1)V k

n Cλ. (8)

Indeed, by induction we obtain for any k ≥ 1 and f ∈ Lp

V k
n f (x) =

xkn+(k−1)

(k − 1)! (n+ 1)
k−1

∫ x

0

f (t) dt− x(k−1)n+(k−2)

(k − 2)! (n+ 1)
k−1

∫ x

0

tn+1f (t) dt+

+
x(k−2)n+(k−3)

(k − 3)! (n+ 1)
k−1

∫ x

0

t2(n+1)f (t) dt−

− x(k−3)n+(k−4)

(k − 4)! (n+ 1)
k−1

∫ x

0

t3(n+1)f (t) dt+ ...

+ (−1)
k+1 xn

(k − 1)! (n+ 1)
k−1

∫ x

0

t(k−1)(n+1)f (t) dt.

Then we have

V k
n Cλf (x) = V k

n f (λx)

=
xkn+(k−1)

(k − 1)! (n+ 1)
k−1

∫ x

0

f (λt) dt− x(k−1)n+(k−2)

(k − 2)! (n+ 1)
k−1

∫ x

0

tn+1f (λt) dt

+ ...+ (−1)
k+1 xn

(k − 1)! (n+ 1)
k−1

∫ x

0

t(k−1)(n+1)f (λt) dt
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for all f ∈ Lp. Since 0 ≤ t ≤ x, by denoting η = λt we have that 0 ≤ η ≤ λx and dt = dη
λ . By considering

these in the last equality, we obtain:

V k
n Cλf (x) =

xkn+(k−1)

(k − 1)! (n+ 1)
k−1

∫ λx

0

f (η)
dη

λ
− x(k−1)n+(k−2)

(k − 2)! (n+ 1)
k−1

∫ λx

0

ηn+1

λn+1
f (η)

dη

λ

+ ...+ (−1)
k+1 xn

(k − 1)! (n+ 1)
k−1

∫ λx

0

η(k−1)(n+1)

λ(k−1)(n+1)
f (η)

dη

λ

=
(λx)

kn+(k−1)

(k − 1)! (n+ 1)
k−1

λkn+(k−1)+1

∫ λx

0

f (η) dη−

− (λx)
(k−1)n+(k−2)

(k − 2)! (n+ 1)
k−1

λ(k−1)n+(k−2)+n+2

∫ λx

0

ηn+1f (η) dη + ...+

+ (−1)
k+1 (λx)

n

(k − 1)! (n+ 1)
k−1

λ(k−1)(n+1)+n+1

∫ λx

0

η(k−1)(n+1)f (η) dη

=
1

λk(n+1)

[
(λx)

kn+(k−1)

(k − 1)! (n+ 1)
k−1

∫ λx

0

f (η) dη−

− (λx)
(k−1)n+(k−2)

(k − 2)! (n+ 1)
k−1

∫ λx

0

ηn+1f (η) dη + ...+

+(−1)
k+1 (λx)

n

(k − 1)! (n+ 1)
k−1

∫ λx

0

η(k−1)(n+1)f (η)

]

=
1

λk(n+1)
CλV

k
n f (x) ,

and thus CλV
k
n f = λk(n+1)V k

n Cλf for all f ∈ Lp, which proves (8) . The theorem is proved. 2

Note that for any y ∈ [0, 1] the equation xn = y is solvable in the unit segment [0, 1] . In particular, for

any η ∈ (0, 1) there exists λ = λη ∈ (0, 1) such that η = λn+1. Therefore, Theorem 2.2 shows in particular

that (0, 1) ⊂ ext (Vn) where ext (Vn) denotes the set of extended eigenvalues of the operator Vn.

The set of all extended eigenvectors of Vn corresponding to the extended eigenvalue λ is denoted by

{Vn}′λ . Then the following is an immediate corollary of the above Theorem 2.2 and Theorem 4.1 of paper [19].

Corollary 2.1 If λ ∈ (0, 1) is an extended eigenvalue of operators Vn := MxnV and Mx + V on Lp

(1 ≤ p < ∞) (where Mx is a multiplication operator and V is an integration operator), then

Cλ ∈ {Vn}′λ ∩ {Mx + V }′λ .

Note that an implication ⇒ in Theorem 4.1 of [19] is proved by using a sufficiently deep result of

Malamud (see [25, 26]).

Here we give an immediate proof of this implication.

Proposition 1 Let λ ∈ (0, 1) , p ≥ 1 be any integer and Cλ is a composition operator on Lp (1 ≤ p < ∞)

associated to λ defined by Cλf (x) = f (λx) , f ∈ Lp [0, 1] . Then

Cλ (αV
p + βMp

x ) = λp (αV p + βMp
x )Cλ (9)
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for every α, β ∈ C with |α|+ |β| ̸= 0.

Proof Indeed, for every polynomial q (x) =
∑deg q

j=0 qjx
j we have:

Cλ [αV
p + βMp

x ] q (x)

= αCλV
pq (x) + βCλM

p
xq (x)

= αCλ

∫ x

0

(x− t)
p−1

(p− 1)!
q (t) dt+ βCλ (x

pq (x))

= α

∫ λx

0

(λx− t)
p−1

(p− 1)!

deg q∑
j=0

qjt
jdt+ β (λx)

p
q (λx)

=
α

(p− 1)!

∫ λx

0

p−1∑
i=0

Ci
p−1 (λx)

p−1−i
(−t)

i
deg q∑
j=0

qjt
jdt

+ λp (βxp (Cλq) (x))

=
α

(p− 1)!

∫ λx

0

p−1∑
i=0

(−1)
i
Ci

p−1 (λx)
p−1−i

deg q∑
j=0

qjt
i+jdt

+ λp (βMp
xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

(−1)
i
Ci

p−1 (λx)
p−1−i

deg q∑
j=0

qj

∫ λx

0

ti+jdt

+ λp (βMp
xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

(−1)
i
Ci

p−1 (λx)
p−1−i

deg q∑
j=0

qj (λx)
i+j+1

i+ j + 1

+ λp (βMp
xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

deg q∑
j=0

(−1)
i
Ci

p−1

qj
i+ j + 1

λpλ−(i+1)λi+j+1xp−1−ixi+j+1

+ λp (βMp
xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

deg q∑
j=0

(−1)
i
Ci

p−1

qj
i+ j + 1

λpλjxp+j + λp (βMp
xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

deg q∑
j=0

(−1)
i
Ci

p−1 (λx)
p−1−i

qj
λi+j+1xi+j+1

i+ j + 1
+ λp (βMp

xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

(−1)
i
Ci

p−1 (λx)
p−1−i

deg q∑
j=0

qj
(λx)

i+j+1

i+ j + 1
+ λp (βMp

xCλq (x))

=
α

(p− 1)!

p−1∑
i=0

(−1)
i
Ci

p−1 (λx)
p−1−i

λi+1

deg q∑
j=0

qjλ
j

∫ x

0

ti+jdt+ λp (βMp
xCλq (x))
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= λp α

(p− 1)!

∫ x

0

p−1∑
i=0

Ci
p−1x

p−1−i (−t)
i
λ−(i+1)λi+1

deg q∑
j=0

qj (λt)
j
dt+ λp (βMp

xCλq (x))

= λpα

∫ x

0

(x− t)
p−1

(p− 1)!
q (λt) dt+ λp (βMp

xCλq (x))

= λpα

∫ x

0

(x− t)
p−1

(p− 1)!
(Cλq) (t) dt+ λp (βMp

xCλq) (x)

= λp (αV p + βMp
x )Cλq,

which obviously gives (9) . The proposition is proved. 2

3. Extended eigenvectors of the Volterra double integration operator

Let W
(n)
p ([0, 1]× [0, 1]) denote the Sobolev space of functions in two variables defined in the unit square

[0, 1] × [0, 1] , where 1 ≤ p < ∞ and n ≥ 2. In the space W
(n)
p ([0, 1]× [0, 1]) , we consider the Volterra

integration operator in two variables,

(Wf) (x, y) :=

∫ x

0

∫ y

0

f (t, τ) dτdt.

Denote by Exy the subspace of the space W
(n)
p ([0, 1]× [0, 1]) consisting of functions that depend on the product

xy. It is easy to see that

Exy = span
{
(xy)

k
: k = 0, 1, 2, ...

}
and Exy ∈ Lat (W ) ; that is, WExy ⊂ Exy. Set Wxy := W |Exy, i.e.

(Wxyf) (xy) =

∫ x

0

∫ y

0

f (tτ) dτdt.

The study of this operator is important at least in view of its following relation with the integral operator

(Klog xf) (x) :=

∫ x

0

log
x

y
f (y) dy

on W
(n)
p [0, 1] with the kernel function K (x, y) = log x

y :

Wxyf (xy) =

∫ xy

0

log
xy

ν
f (v) dν

(see [17]).
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GÜRDAL et al./Turk J Math

In the space W
(n)
p ([0, 1]× [0, 1]) we define the Duhamel product as follows:

(f ⊛ g)(x, y) :=
∂2

∂x∂y

x∫
0

y∫
0

f(x− t, y − τ)g(t, τ)dτdt

=

x∫
0

y∫
0

∂2

∂x∂y
f(x− t, y − τ)g(t, τ)dτdt+

+

x∫
0

∂

∂x
f(x− t, 0)g(t, y)dt+

+

y∫
0

∂

∂y
f(0, y − τ)g(x, τ)dτ + f (0, 0) g (x, y) .

This formula implies that if f, g ∈ Exy, then

(f ⊛ g)(xy) =

x∫
0

y∫
0

∂2

∂x∂y
f((x− t) (y − τ))g(tτ)dτdt+ f (0) g (xy)

=

x∫
0

y∫
0

[f ′ ((x− t) (y − τ)) + (x− t) (y − τ) f ′′ ((x− t) (y − τ))] g(tτ)dτdt+

+ f (0) g (xy) . (10)

Formula (10) easily implies that 1⊛ g (xy) = g (xy)⊛ 1 = g (xy) for all g ∈ Exy,

W k
xyg (xy) =

(xy)
k

(k!)
2 ⊛ g (xy) (k ≥ 1) , (11)

and the “Duhamel operator” Df defined by

(Dfg) (xy) := (f ⊛ g) (xy) (12)

is bounded in Exy. More generally, it can be also proved by the arguments of paper [17] that (Exy,⊛) is the

Banach algebra.

Here we shall study the extended eigenvalues and extended eigenvectors of the double integration operator

Wxy on the space Exy. Namely, we describe in terms of the Duhamel operator and composition operator the

extended eigenvectors of the operator Wxy.

Recall that if θ : [0, 1]× [0, 1] → [0, 1]× [0, 1] is a measurable complex-valued function, the composition

operator Cθ is defined by the formula

Cθf (x, y) := (f ◦ θ) (x, y) = f (θ (x, y)) .

The composition operator Cλ(x,y), where λ ∈ (0, 1) , will be denoted simply as Cλ.

The main result of this section is the following.
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Theorem 3.1 Let λ ∈ C, A ∈ L (Exy) \ {0} , and let Wxy be the Volterra double integration operator on

Exy ⊂ W
(n)
p ([0, 1]× [0, 1]) . If λ ∈ (0, 1) then AWxy = λWxyA if and only if an operator A has the form

A = DA1Cλ, i.e.

(Af) (xy) =
∂2

∂x∂y

x∫
0

y∫
0

(A1) ((x− u) (y − v))Cλf (uv) dvdu,

where DA1 is the Duhamel operator in Exy defined by formula (18) and (Cλf) (xy) := f (λ (xy)) is a

composition operator in Exy.

Proof We shall use some arguments from [18]. Indeed, suppose that AWxy = λWxyA. Then it is clear that

AWn
xy = λnWn

xyA

for each n ≥ 0; that is,

AWn
xyf (xy) = λnWn

xyAf (xy)

for each f ∈ Exy. In particular,

AWn
xy1 = λnWn

xyA1 (13)

for each n ≥ 0. Since

Wn
xyf (xy) =

(xy)
n

(n!)
2 ⊛ f (xy) (14)

for all f ∈ Exy and n ≥ 0 (see formula (11)), we obtain from (11) and (14) that

A

(
(xy)

n

(n!)
2 ⊛ 1

)
= λn

(
(xy)

n

(n!)
2 ⊛A1

)
,

i.e.

A (xy)
n
= (λ (xy))

n ⊛A1, n ≥ 0. (15)

It follows from (15) that

Ap (xy) = p (λ (xy))⊛A1

for every polynomial p in xy. Since polynomials in xy are dense in the space Exy and (Exy,⊛) is a Banach

algebra, we have from the last equality that

Af (xy) = A1⊛ f (λ (xy)) = A1⊛ Cλf (xy)

= DA1Cλf (xy)

=
∂2

∂x∂y

x∫
0

y∫
0

(A1) ((x− u) (y − v))Cλf (uv) dvdu

for all f ∈ Exy.

We now show that every operator of the form A = DA1Cλ satisfies the equation

AWxy = λWxyA.
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Indeed, we have for each f ∈ Exy that:

(AWxyf) (xy) = (DA1CλWxyf) (xy) = DA1 (Wxyf) (λ (xy))

= A1⊛ (Wxyf) (λ (xy)) = A1⊛ ((λ (xy))⊛ f (λ (xy)))

= λ (xy)⊛ (A1⊛ f (λ (xy))) = λ (xy)⊛DA1Cλf (xy)

= λ [xy ⊛DA1Cλf (xy)] = λWxyDA1Cλf (xy)

= λWxyAf (xy) .

Theorem 3.1 is proved. 2

Corollary 3.1 The composition operator Cθ with θ (x, y) = θ (xy) satisfies the equation CθWxy = λWxyCθ,

where λ ∈ D\ {0} , if and only if θ (xy) = λ (xy) .

Proof By using assertion of Theorem 3.1 and the obvious fact that Cθ1 = 1, we have that CθWxy = λWxyCθ

if and only if

Cθf (xy) =
∂2

∂x∂y

x∫
0

y∫
0

f (λuv) dudv = f (λxy) = Cλf (xy)

for all f ∈ Exy, which proves that Cθ = Cλ, i.e. θ (xy) = λ (xy) . The corollary is proved. 2

4. ∗-generators of the Banach algebra
(
W

(n)
p [0, 1] , ∗

)
Recall that the Sobolev space W

(n)
p [0, 1] (1 ≤ p < ∞) is a Banach algebra with respect to the classical

convolution product ∗ and the Duhamel product ⊛. The following lemma is also known, which gives a ⊛ -

invertibility criterion for the elements of the Banach algebra
(
W

(n)
p [0, 1] ,⊛

)
(see, for instance, Karaev [17]).

Lemma 4.1 Let f ∈ W
(n)
p [0, 1] . Then f is ⊛-invertible if and only if f (0) ̸= 0.

Actually, this lemma shows that f ∈ W
(n)
p [0, 1] generates

(
W

(n)
p [0, 1] ,⊛

)
if and only if f (0) ̸= 0.

For any function k ∈ W
(n)
p [0, 1] , let us define the usual convolution operator Kk on W

(n)
p [0, 1] by the

formula

(Kkf) (x) :=

∫ x

0

k (x− t) f (t) dt. (16)

Our following result gives some equivalent characterization of ∗ -generators of the radical Banach algebra(
W

(n)
p [0, 1] , ∗

)
.

Theorem 4.1 Let f ∈ W
(n)
p [0, 1] and f (0) ̸= 0. Then f is a ∗-generator of the algebra

(
W

(n)
p [0, 1] , ∗

)
if

and only if

span
{
1, F,KfF,K2

fF, ...
}
= W (n)

p [0, 1] ,
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where F (x) :=
∫ x

0
f (t) dt and Kf is an operator on W

(n)
p defined by (16) .

Proof Since F ′ (x) = f (x) , we have Kf = DF ; that is, Kfg = DF g for all g ∈ W
(n)
p [0, 1] , where DF is the

Duhamel operator defined W
(n)
p [0, 1] by DF g = F ⊛ g. In particular,

Kff = DF f =
d

dx

∫ x

0

f (x− t)F (t) dt

=

∫ x

0

f ′ (x− t)F (t) dt+ f (0)F (x)

= DfF,

where Df is an invertible operator in W
(n)
p [0, 1] (see Lemma 4.1). Thus,

f = Df1 (171)

and
f ∗ f = DfF. (172)

Further, we have:

f ∗ f ∗ f = K2
ff = Kf (Kff) = Kf (DfF )

= Kf (Kf ′ + f (0) I)F

= (KfKf ′ + f (0)Kf )F

= (Kf ′ + f (0) I) (KfF )

= Df (KfF ) ,

and thus
f ∗ f ∗ f = Df (KfF ) ; (173)

f ∗ f ∗ f ∗ f = K3
ff = Kf

(
K2

ff
)
= KfDf (KfF )

= DfKf (KfF )

= Df

(
K2

fF
)
,

and thus

f ∗ f ∗ f ∗ f = Df

(
K2

fF
)
. (174)

By induction we deduce that

Km
f f = Df

(
Km−1

f F
)

(∀m ≥ 1) . (17m+1)

Now, from formulas (17m+1) , m ≥ 0, we have:

span {f, f ∗ f, f ∗ f ∗ f, ...} = span
{
Df1,DfF,Df (KfF ) ,Df

(
K2

fF
)
, ...
}

= closDfspan
{
1, F,KfF,K2

fF, ...
}
.
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From this, by considering that the condition f (0) ̸= 0 means invertibility of the corresponding Duhamel

operator Df (see Lemma 4.1), we deduce that

span {f, f ∗ f, f ∗ f ∗ f, ...} = W (n)
p [0, 1]

if and only if

span
{
1, F,KfF,K2

fF, ...
}
= W (n)

p [0, 1] ,

which proves Theorem 4.1. 2

5. On the Volterra integral equations in the Sobolev space W
(n)
p [0, 1]

In this section, we consider the Volterra integral equation∫ x

0

k (x− t) f (t) dt = g (x) , (18)

where k ∈ W
(n)
p [0, 1] is the kernel function k (x, y) depending on x− y and g ∈ W

(n)
p [0, 1] is a given nonzero

function. It is well known from the theory of integral equations that every equation (18) has a solution in the

Sobolev space W
(n)
p [0, 1] . Let us denote

Gg :=
{
u ∈ W (n)

p [0, 1] : u is a solution of (18)
}
.

It is clear that g /∈ Gg, because σp (Kk) = ∅ and σ (Kk) = {0} (that is, Kk is quasinilpotent in W
(n)
p [0, 1]).

Let us denote (Gg)1 :=
{
u ∈ Gg : ∥u∥

W
(n)
p

= 1
}
. Thus, the following problem naturally arises.

Problem 1 To calculate dist
(
g, (Gg)1

)
.

In this short section, we prove the following theorem, which estimates dist
(
g, (Gg)1

)
in terms of the

kernel function k. The proof is based on the Duhamel product method.

Theorem 5.1 Let g ∈ W
(n)
p [0, 1] \ {0} be any function, and consider equation (18) in the Sobolev space

W
(n)
p [0, 1] . Then

inf
g∈W

(n)
p \{0}

dist
(
g, (Gg)1

)
≥ 1∥∥∥(−1 +

∫ x

0
k (t) dt

)−1⊛∥∥∥
W

(n)
p

,

where f−1⊛ denotes the ⊛-inverse of the function f ∈ W
(n)
p [0, 1] , and ⊛ is the usual Duhamel product in

W
(n)
p [0, 1] .

Proof We set F (x) := −1 +
∫ x

0
k (t) dt. Then the equation

k ∗ f = g
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can be rewritten as

d

dx

∫ x

0

F (x− t) f (t) dt+ f (x) = g (x) ,

or F ⊛ f = g − f. Then, by considering that F (0) = −1 ̸= 0, by Lemma 4.1 in Section 4, there exists a

function Φ ∈ W
(n)
p [0, 1] such that Φ⊛ F = 1. Hence,

Φ⊛ F ⊛ f = Φ⊛ (g − f) ;

that is, f = Φ⊛ (g − f) . Therefore, for any f ∈ (Gg)1 , we have

1 = ∥f∥
W

(n)
p

= ∥Φ⊛ (g − f)∥
W

(n)
p

≤ ∥Φ∥
W

(n)
p

∥g − f∥
W

(n)
p

(19)

(because W
(n)
p [0, 1] is a Banach algebra with unit 1 with respect to the Duhamel product ⊛ (see [17])). It

follows from inequality (19) that

∥g − f∥ ≥ 1

∥Φ∥
W

(n)
p

(20)

for each f ∈ (Gg)1 . Since Φ = F−1⊛, the last inequality (20) implies that

∥g − f∥ ≥ 1

∥F−1⊛∥
W

(n)
p

=
1∥∥∥(−1 +

∫ x

0
k (t) dt

)−1⊛∥∥∥
W

(n)
p

for all f ∈ (Gg)1 , and hence

dist
(
g, (Gg)1

)
≥ 1∥∥∥(−1 +

∫ x

0
k (t) dt

)−1⊛∥∥∥
W

(n)
p

. (21)

Since g ∈ W
(n)
p \ {0} is an arbitrary function, inequality (21) means that

inf
g∈W

(n)
p \{0}

dist
(
g, (Gg)1

)
≥ 1∥∥∥(−1 +

∫ x

0
k (t) dt

)−1⊛∥∥∥
W

(n)
p

,

which proves the theorem. 2

6. On the numerical radius of operator V

Here we will consider the Lebesgue space L2 = L2 [0, 1] of real-valued functions in the unit segment [0, 1] . Let

V, V f (x) =
∫ x

0
f (t) dt, be the Volterra integration operator in this space. Recall that the description of the

numerical range of operator V acting in the complex Hilbert space L2 [0, 1] isknown, and it is also known that

∥V ∥ = 2
π (see, for example, Halmos [14]). In this short section we calculate the numerical radius w (V ) of the

operator V acting in the real space L2 [0, 1] .

Theorem 6.1 Let V be the Volterra integration operator on the real space L2 [0, 1] . Then w (V ) = 1
2 .
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Proof Let f ∈ L2 [0, 1] , ∥f∥2 = 1, be an arbitrary real valued function. Then we have:

|⟨V f, f⟩| =
∣∣∣∣⟨∫ x

0

f (t) dt, f

⟩∣∣∣∣ = ∣∣∣∣∫ 1

0

(∫ x

0

f (t) dt

)
f (x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

(∫ x

0

f (t) dt

)
d

(∫ x

0

f (t) dt

)∣∣∣∣ =
(∫ x

0
f (t) dt

)2
2

∣∣∣∣∣
1

0

=
1

2

(∫ 1

0

f (t) dt

)2

≤ 1

2

[(∫ 1

0

f2 (t) dt

)1/2(∫ 1

0

12dt

)1/2
]2

=
1

2
∥f∥22 =

1

2
.

Thus, |⟨V f, f⟩| ≤ 1
2 for all f ∈ L2 [0, 1] with ∥f∥2 = 1, which shows that w (V ) ≤ 1

2 .

On the other hand, since 1 ∈ L2 [0, 1] and ∥1∥2 = 1, we have:

⟨V 1,1⟩ =
⟨∫ x

0

1dt,1

⟩
= ⟨x,1⟩ =

∫ 1

0

xdx =
1

2
,

and therefore, since 1
2 = |⟨V 1,1⟩| ≤ w (V ) ≤ 1

2 , we obtain that w (V ) = 1
2 , which proves the theorem. 2

7. On the spectral multiplicity of the shift operator

Let Γ be a unit circle of the complex plane C, and C (Γ) be the space of continuous functions on Γ. Let T be

the shift operator defined on C (Γ) by

Tf
(
eit
)
= eitf

(
eit
)
,

or
Tf (ξ) = ξf (ξ) , f ∈ C (Γ) ,

where ξ := eit, t ∈ [0, 2π).

It is well known that µ (T ) = 2, and the proof of the assertion that µ (T ) ≤ 2 is the main step in the

proof of this equality (because it is relatively easy to show that the operator T has no cyclic vector). In this

section, we give two different proofs of the following proposition.

Proposition 2 Let T be the shift operator defined on C (Γ) by Tf (ξ) = ξf (ξ) . Then µ (T ) ≤ 2.

Before giving the proofs of this proposition, let us state some auxiliary results on T -invariant subspaces

in C (Γ) (see Hasumi and Srinivasan [15]).

Let m be, just as earlier, the Lebesgue measure on Γ. The weak∗ closure of analytic polynomials in

L∞ (dm) is denoted by H∞ (dm) . We denote by Z (X) the space of functions in C (Γ) that vanish on a subset

X of Γ. Let E be a closed subspace of C (Γ) . The following two results are due to Hasumi and Srinivasan (see

[15, Theorems 1 and 2).
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GÜRDAL et al./Turk J Math

Lemma 7.1 TE = E if and only if E = Z (X) for some closed subset X of Γ.

Lemma 7.2 If TE ⊆ E but TE ̸= E, then E = θH∞ (dm) ∩ Z (X) , where θ ∈ L∞ (dm) with |θ| = 1

m−a.e., and X is a closed set in Γ with m (X) = 0.

Proof [First Proof of Proposition 2]We put

Γ+ := Γ ∩ {z ∈ C : Im z ≥ 0}

and

Γ− := Γ ∩ {z ∈ C : Im z < 0} .

Let S be a closed subset of Γ\Γ+ such that m (S) > 0. Then there exists f ∈ C (Γ) such that f (Γ+) = {1}
and f (S) = {0} . Now, let K be a closed subset of Γ\Γ− such that m (K) > 0. Then there exists g ∈ C (Γ)

such that g (Γ−) = {1} and g (K) = {0} . It is easy to see that f and g are linearly independent. Let us show

that

clos {p (ξ) f + q (ξ) g : p and q runs over all polynomials} = C (Γ)

(i.e. span
{
eintf, eimtg : n,m = 0, 1, 2, ...

}
= C (Γ)). Assume on contrary that

Ef,g := clos {p (ξ) f + q (ξ) g : p and q runs over all polynomials} ≠ C (Γ) .

Since Ef,g ̸= {0} , it is a nontrivial T -invariant subspace. Clearly, ξEf,g ⊂ Ef,g. Since null (f) ∩ null (g) = ∅,
it follows from Lemma 7.1 that ξEf,g ̸= Ef,g (that is, Ef,g is a simply invariant subspace for T ). Then, by

Lemma 7.2, there exists a measurable function θ ∈ L∞ (dm) and a closed subset X in Γ such that |θ| = 1

m−a.e., m (X) = 0 and Ef,g = θH∞ (dm) ∩ Z (X) . Thus, we have that null (f) ∩ null (g) ̸= ∅, which is a

contradiction. The proof is completed. 2

Recall that the rational multiplicity of spectrum µR (A) of the operator A ∈ L (Y ) , where Y be a

Banach space, is defined as follows:

µR (A) := min {dimE : span (Rλ (A)E : λ ∈ C\σ (A)) = Y } ,

where Rλ (A) = (λI −A)
−1

is the resolvent of A and σ (A) stands for the spectrum of A . The subspace

E ⊂ Y with the property

span {Rλ (A)E : λ ∈ C\σ (A)} = Y

is called the rational cyclic subspace for A.

The following result belongs to Herrero [16].

Lemma 7.3 Let A ∈ L (Y ) and C be a subspace of Y. There exists a subspace C ′ ⊃ C, dimC ′ ≤ dimC + 1

such that

span {AnC ′ : n ≥ 0} = span {Rλ (A)C : λ ∈ C\σ (A)} .

In particular,

µ (A) ≤ µR (A) + 1. (22)
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Proof [Second Proof of Proposition 2]Since σ (T ) = Γ, we have the following:

(a) If |λ| < 1, then

Rλ (T ) f = (λI − T )
−1

f =
(
λ− eit

)−1
f = −eit

(
1− λe−it

)−1
f

=

(
−eit

∞∑
n=0

e−intλn

)
f

for all f ∈ C (Γ) .

(b) If |λ| > 1, then

Rλ (T ) f =
(
λ− eit

)−1
f =

1

λ

(
1− 1

λ
eit
)−1

f

=

(
1

λ

∞∑
n=0

eintλ−n

)
f

for all f ∈ C (Γ) .

Now by putting f = 1 and considering that C = D · C, from these formulas we obtain that

span {Rλ (T )1 : λ ∈ C\Γ} = C (Γ) ,

which shows that µR (T ) = 1, and hence by virtue of inequality (22) (see Lemma 7.3), we deduce that µ (T ) ≤ 2,

which completes the proof. 2

8. Open problems

Let −∞ ≤ a < b ≤ ∞ and let ν and w be locally integrable nonnegative weight functions on (a, b) . Let us

consider the Volterra integral operators

Kf (x) := w (x)

∫ x

a

k (x, y) f (y) ν (y) dy, x ∈ (a, b) , (23)

in Lebesgue spaces. Of course, besides other independent interests, these operators also play an important role

in applications to spectral theory, integral and differential equations, and embeddings of Sobolev spaces (see,

for instance paper [32] by Stepanov and Ushakova, and references therein).

A generalization of the Volterra integral operator (23) is the Hardy–Steklov type operator:

Kf (x) := w (x)

∫ b(x)

a(x)

k (x, y) f (y) ν (y) dy, (24)

with border functions a (x) and b (x) satisfying the following conditions:

(i) a (x) and b (x) are differentiable and strictly increasing on (0,∞) ;

(ii) a (0) = b (0) = 0, a (x) < b (x) for 0 < x < ∞, a (∞) = b (∞) = ∞, and a continuous kernel

k (x, y) > 0 on R := {(x, y) : x > 0, a (x) < y < b (x)} .
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In the limiting cases a (x) = 0 or b (x) = ∞, operator (24) is reduced to the Hardy type operators with

only one variable boundary a (x) or b (x) (for more information about Hardy–Steklov operators see Stepanov

and Ushakova [33]).

Let φ be a fixed nonnegative measurable function on (0,∞) that is not equivalent to 0. The multidi-

mensional Hardy operator Hn,φ is defined by

(Hn,φf) (x) := φ (|x|)
∫
B|x|

f (y) dy, x ∈ Rn, (25)

for all functions f ∈ Lℓα
1 (Rn) , where n ∈ N and Br is the open ball in Rn centered at the origin of radius

r > 0. For basic facts about operator (25) , see, for instance, Burenkov and Oinarov [5], Persson and Samko

[28], and Samko [29], and references therein.

Note that there are many different necessary and sufficient conditions for Lp − Lq, 0 < p, q < ∞,

boundedness of operators (23) , (24), and (25) (see, for instance, [5, 28, 29, 31, 32, 33] and their references).

In particular, there exist sufficient conditions ensuring Lp −Lp boundedness of operators (23)–(25) . Thus, for

such bounded operators (23)–(25) on Lp (0 < p < ∞), it would be very interesting and important to solve the

following problems:

Problem 2 To calculate spectral multiplicities of operators (23)–(25) .

Problem 3 To investigate extended eigenvalues and extended eigenvectors of operators (23)–(25) .

Problem 4 For p = 2, to investigate the numerical range and numerical radius of operators (23)–(25) .
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