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Abstract: This paper deals with the global attractivity of positive solutions of the second-order nonlinear difference

equation
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where the parameters a , b , c , A , B , C and the initial values x0 , x−1 are arbitrary positive real numbers.
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1. Introduction and preliminaries

The study of difference equations is a very rich research field, and difference equations have been applied in

several mathematical models in biology, economics, genetics, population dynamics, medicine, and so forth.

Solving difference equations and studying the asymptotic behavior of their solutions has attracted the attention

of many authors, see for example [1, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31].

In [18, 19] the global stability of positive solutions of the difference equations
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was investigated. These equations are special cases of the difference equation
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n−1

. (3)

Here and motivated by the above-mentioned papers, we study the global character of positive solutions of the

difference equation Eq. (3) with bi = b , Bi = B , i = 1, 2, ..., k − 1. That is the equation

xn+1 =

axk
n + b

k−1∑
j=1

xj
nx

k−j
n−1 + cxk

n−1

Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

, k = 3, 4, ..., n = 0, 1, ..., (4)

where the parameters a , b , c , A , B , C and the initial values x0 , x−1 are arbitrary positive real numbers.

Now we recall some definitions and results that will be useful in our investigation; for more details see [11].

Let I be an interval of real numbers and let

F : I × I −→ I

be a continuous function. Consider the difference equation

xn+1 = F (xn, xn−1), n = 0, 1, ..., (5)

with initial values x−1, x0 ∈ I .

Definition 1 A point x ∈ I is called an equilibrium point of Eq.(5) if

x = F (x, x).

Definition 2 Let x be an equilibrium point of Eq.(5).

i) The equilibrium x is called locally stable if for every ϵ > 0 , there exist δ > 0 such that for all x−1, x0 ∈ I

with |x−1 − x|+ |x0 − x| < δ , we have |xn − x| < ϵ , for all n ≥ −1 .

ii) The equilibrium x is called locally asymptotically stable if it is locally stable, and if there exists γ > 0

such that if x−1, x0 ∈ I and |x−1 − x|+ |x0 − x| < γ then

lim
n→+∞

xn = x.

iii) The equilibrium x is called a global attractor if for all x−1, x0 ∈ I , we have

lim
n→+∞

xn = x.
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iv) The equilibrium x is called global asymptotically stable if it is locally stable and a global attractor.

v) The equilibrium x is called unstable if it is not locally stable.

Suppose F is continuously differentiable in some open neighborhood of x , and let

p =
∂F

∂x
(x, x), q =

∂F

∂y
(x, x).

Then the equation

yn+1 = pyn + qyn−1, n = 0, 1, ... (6)

is called the linearized equation of Eq. (5) about the equilibrium point x and

λ2 − pλ− q = 0 (7)

is called the characteristic equation of Eq. (6) about x .

The following theorem is very useful in establishing local stability.

Theorem 1 (Linearized stability)

1. If all the roots of Eq. (7) lie in the open unit disk |λ| < 1 , then the equilibrium point x of Eq. (5) is

locally asymptotically stable.

2. If at least one root of Eq. (7) has absolute value greater than one, then the equilibrium point x of Eq. (5)

is unstable.

To establish convergence results, we need the following two theorems from [2].

Theorem 2 Let [a, b] be a closed and bounded interval of real numbers and let F ∈ C([a, b]k+1, [a, b]) satisfy

the following conditions:

1. The function F (z1, . . . , zk+1) is monotonic in each of its arguments.

2. For each m,M ∈ [a, b] and for each i ∈ {1, . . . , k + 1} , we define

Mi(m,M) =

{
M, if F is increasing in zi
m, if F is decreasing in zi

and

mi(m,M) = Mi(M,m)

and assume that if (m,M) is a solution of the system:

{
M = F (M1(m,M), . . . ,Mk+1(m,M))
m = F (m1(m,M), . . . ,mk+1(m,M))

then M = m .
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Then there exists exactly one equilibrium x of the equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . (8)

and every solution of Eq. (8) converges to x .

Theorem 3 Let I be a set of real numbers and let

F : I × I −→ I

be a function F (u, v) , which decreases in u and increases in v . Then for every solution {xn}∞n=−1 of the

equation

xn+1 = F (xn, xn−1), n = 0, 1, . . . ,

the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd terms of the solution do exactly one of the

following:

i) They are both monotonically increasing.

ii) They are both monotonically decreasing.

ii) Eventually, one of them is monotonically increasing and the other is monotonically decreasing.

The following results [5, 13] give the rate of convergence for solutions of a system of difference equations.

Let us consider the system of difference equations

Xn+1 = (A+Bn)Xn, n ∈ N0, (9)

where Xn is an m−dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m is a matrix

function satisfying

∥Bn∥ → 0 (10)

as n → ∞ .

Theorem 4 (Perron’s First Theorem) Suppose that condition (10) holds. If Xn is a solution of (9), then

either Xn = 0 for all large n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

(11)

exists and is equal to the modulus of one of the eigenvalues of matrix A .

Theorem 5 (Perron’s Second Theorem) Suppose that condition (10) holds. If Xn is a solution of (9),

then either Xn = 0 for all large n or

ρ = lim
n→∞

(∥Xn∥)1/n (12)

exists and is equal to the modulus of one of the eigenvalues of matrix A .
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2. Stability of the positive solutions

Let f : (0,+∞)2 → (0,+∞) be the function defined by

f(x, y) =

axk + b
k−1∑
j=1

xjyk−j + cyk

Axk +B
k−1∑
j=1

xjyk−j + Cyk

.

In the following theorem we study the periodicity of the positive solutions.

Theorem 6 Let

p̆1 = aC − cA+ aB + bC,

p̆2 = aC − cA+ cC + aA− (k − 1)(bA+ cB) + k(aB + bC),

q̆i = aC − cA− i(bA+ cB) + (i+ 1)(aB + bC), i = 1, 2, ..., k − 2.

Assume that p̆1, p̆2, q̆1, q̆2, ..., q̆k−2 ≥ 0 . Then Eq. (4) has no positive prime period-two solution.

Proof For the sake of contradiction, assume that there exist distinct positive real number α and β , such that

..., α, β, α, β, ...

is a period-two solution of Eq. (4). Then α, β satisfy the system

α = f(β, α), β = f(α, β).

Hence

β.f(β, α)− α.f(α, β) = β.

(aβk + b
k−1∑
j=1

βjαk−j + cαk)

Aβk +B
k−1∑
j=1

βjαk−j + Cαk

− α.

(aαk + b
k−1∑
j=1

αjβk−j + cβk)

Aαk +B
k−1∑
j=1

αjβk−j + Cβk

= 0,

which gives

(β − α).
F (β, α)

K(β, α)
= 0,

where

F (β, α) = aC(α2k + β2k) + p̆1βα(α
2k−2 + β2k−2) + q̆1β

2α2(α2k−4 + β2k−4)

+ q̆2β
3α3(α2k−6 + β2k−6) + ...+ q̆k−2β

k−1αk−1(α2 + β2) + p̆2β
kαk

+ bB(

k−1∑
j=1

βjαk−j)2,

K(β, α) = (Aβk +B

k−1∑
j=1

βjαk−j + Cαk)(Aαk +B

k−1∑
j=1

αjβk−j + Cβk).

1008



HALIM et al./Turk J Math

Since F (β,α)
K(β,α) > 0, we get β = α , which is a contradiction. 2

In the sequel we need the following real numbers: r1 = aB − bA , r2 = aC − cA , r3 = bC −Bc .

Lemma 1 1) Assume that a
A ≥ max

{
b
B , c

C

}
and r3 ≥ 0 . Then f is increasing in x for each y and it is

decreasing in y for each x .

2) Assume that a
A ≤ min

{
b
B , c

C

}
and r3 ≤ 0 . Then f is decreasing in x for each y and it is increasing in

y for each x .

Proof 1. We have r3 ≥ 0 and it is easy to see that a
A ≥ max

{
b
B , c

C

}
implies

r1, r2 ≥ 0.

Therefore, the result follows from the two formulas

∂f

∂x
(x, y) =

r1

k−1∑
j=1

(k − j)xj+k−1yk−j + r2kx
k−1yk + r3

k−1∑
j=1

jxj−1y2k−j

(Axk +B
k−1∑
j=1

xjyk−j + Cyk)2

,

∂f

∂y
(x, y) = −

r1

k−1∑
j=1

(k − j)xj+kyk−j−1 + r2kx
kyk−1 + r3

k−1∑
j=1

jxjy2k−j−1

(Axk +B
k−1∑
j=1

xjyk−j + Cyk)2

.

2. The proof of 2) is similar and it will be omitted. 2

In the following result, we show that every positive solution of Eq. (4) is bounded.

Theorem 7 Let {xn}+∞
n=−1 be a positive solution of Eq. (4).

1) Assume that a
A ≥ max{ b

B , c
C } and r3 ≥ 0 . Then

c

C
≤ xn ≤ a

A

for all n ≥ 1 .

2) Assume that a
A ≤ min{ b

B , c
C } and r3 ≤ 0 . Then

a

A
≤ xn ≤ c

C

for all n ≥ 1 .
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Proof 1. We have

xn+1 −
a

A
=

−r1

k−1∑
j=1

xj
nx

k−j
n−1 − r2x

k
n−1

A(Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + xk

n−1)

,

xn+1 −
c

C
=

r3

k−1∑
j=1

xj
nx

k−j
n−1 + r2x

k
n

C(Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + xk

n−1)

.

Now using the fact that a
A ≥ max{ b

B , c
C } , we get r1, r2 ≥ 0. Therefore, it follows that

c

C
≤ xn ≤ a

A
,

for all n ≥ 1.

2. The proof of 2) is similar and will be omitted. 2

The locally stability of the unique positive equilibrium point x = a+(k−1)b+c
A+(k−1)B+C of Eq. (4) is described in

the following theorem.

Theorem 8 Assume that

k
∣∣(k − 1)(r1 + r3) + 2r2

∣∣
(a+ (k − 1)b+ c)(A+ (k − 1)B + C)

< 1.

Then the positive equilibrium point x = a+(k−1)b+c
A+(k−1)B+C of Eq. (4) is locally asymptotically stable.

Proof The linearized equation of Eq. (4) about x = a+(k−1)b+c
A+(k−1)B+C is

yn+1 = pyn + qyn−1,

where

p =
∂f

∂x
(x, x) =

r1

k−1∑
j=1

(k − j)x2k−1 + r2kx
2k−1 + r3

k−1∑
j=1

jx2k−1

(
Axk +B

k−1∑
j=1

xk + Cxk

)2
,

=

x2k−1

[
r1

k−1∑
j=1

k − r1

k−1∑
j=1

j + r2k + r3

k−1∑
j=1

j

]

x2k

(
A+B

k−1∑
j=1

1 + C

)2
,

1010



HALIM et al./Turk J Math

=
k(k − 1)(r1 + r3) + 2r2k

2x

(
A+B

k−1∑
j=1

1 + C

)2
,

=
k(k − 1)(r1 + r3) + 2kr2

2(a+ (k − 1)b+ c)(A+ (k − 1)B + C)
.

Similarly, we have

q =
∂f

∂y
(x, x) = − k(k − 1)(r1 + r3) + 2kr2

2 (a+ (k − 1)b+ c) (A+ (k − 1)B + C)
.

The associated characteristic equation is

λ2 − pλ− q = 0.

Let h and g be the two functions defined by

h(λ) = λ2, g(λ) = pλ+ q.

We have

|g(λ)| ≤ |p|+ |q| =
k
∣∣(k − 1)(r1 + r3) + 2r2

∣∣
(a+ (k − 1)b+ c)(A+ (k − 1)B + C)

< 1 = |h(λ)|, ∀λ ∈ C : |λ| = 1.

Thus, by Rouché’s theorem, all zeros of λ2 − pλ− q = 0 lie in |λ| < 1. Therefore, by Theorem (1), x is locally

asymptotically stable. 2

The following two theorems are devoted to the global stability of the positive equilibrium point x =

a+(k−1)b+c
A+(k−1)B+C of Eq. (4).

Theorem 9 Let

p̆1 = aC − cA+ aB + bC,

p̆2 = aC − cA+ cC + aA− (k − 1)(bA+ cB) + k(aB + bC),

q̆i = aC − cA− i(bA+ cB) + (i+ 1)(aB + bC), i = 1, 2, ..., k − 2.

1. Assume that

• a
A ≤ min{ b

B , c
C } and r3 ≤ 0 .

• k
∣∣(k−1)(r1+r3)+2r2

∣∣
(a+(k−1)b+c)(A+(k−1)B+C) < 1.

• p̆1, p̆2, q̆i ≥ 0 .

Then the positive equilibrium point x = a+(k−1)b+c
A+(k−1)B+C of Eq.(4) is globally asymptotically stable.
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Proof Let {xn}+∞
n=−1 be a positive solution of Eq. (4) with x−1, x0 ∈ (0,+∞). By Theorem (8) we need only

to prove that x is a global attractor, that is lim
n→∞

xn = x . By Lemma (1) part 2, we see that the function

f(x, y) =

axk + b
k−1∑
j=1

xjyk−j + cyk

Axk +B
k−1∑
j=1

xjyk−j + Cyk

satisfies the Hypotheses of Theorem (3); also by Theorem (7) part 2 the solution is bounded. Hence, we get

lim
n→∞

x2n = l1 , lim
n→∞

x2n+1 = l2 , with l1 = f(l2 , l1), l2 = f(l1, l2). Now, in view of Theorem (6) (and its proof),

Eq. (4) has no prime period-two solutions and we have

l1 = l2 = x =
a+ (k − 1)b+ c

A+ (k − 1)B + C
.

2

Theorem 10 Let

p1 = cA− aC + bA+ cB,

p2 = cA− aC + aA+ cC − (k − 1)(bC + aB) + k(bA+ cB),

qi = cA− aC − i(bC + aB) + (i+ 1)(bA+ cB), i = 1, 2, ..., k − 2.

1. Assume that

• a

A
≥ max{ b

B
,
c

C
} and r3 ≥ 0 .

•
k
∣∣(k − 1)(r1 + r3) + 2r2

∣∣
(a+ (k − 1)b+ c)(A+ (k − 1)B + C)

< 1.

• p1, p2, qi ≥ 0 .

Then the positive equilibrium point x = a+(k−1)b+c
A+(k−1)B+C of Eq. (4) is globally asymptotically stable.

Proof Let {xn}+∞
n=−1 be a positive solution of Eq. (4) with x−1, x0 ∈ [ cC , a

A ] . By Theorem (8) we need only

to prove that x is a global attractor, that is lim
n→∞

xn = x . Consider again the function

f(x, y) =

axk + b
k−1∑
j=1

xjyk−j + cyk

Axk +B
k−1∑
j=1

xjyk−j + Cyk

.

Suppose that (m,M) ∈ [ cC , a
A ]× [ cC , a

A ] is a solution of the system

M = f(M1(m,M),M2(m,M)), m = f(m1(m,M),m2(m,M)). (13)
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By Lemma (1) part 1, we have

M1(m,M) = M, M2(m,M) = m, m1(m,M) = m, m2(m,M) = M. (14)

From (13) and (14), we get

M =

aMk + b

k−1∑
j=1

M jmk−j + cmk

AMk +B
k−1∑
j=1

M jmk−j + Cmk

, m =

amk + b

k−1∑
j=1

mjMk−j + cMk

Amk +B
k−1∑
j=1

mjMk−j + CMk

.

Hence,

M.

amk + b
k−1∑
j=1

mjMk−j + cMk

Amk +B
k−1∑
j=1

mjMk−j + CMk

−m.

aMk + b
k−1∑
j=1

M jmk−j + cmk

AMk +B
k−1∑
j=1

M jmk−j + Cmk

= 0,

which can be written as

(M −m).
L(m,M)

K(m,M)
= 0,

where

L(m,M) = cA(M2k+m2k)+p1mM(M2k−2+m2k−2)+q1m
2M2(M2k−4+m2k−4)+q2m

3M3(M2k−6+m2k−6)+

...+ qk−2m
k−1Mk−1(M2 +m2) + p2m

kMk + bB(
∑k−1

j=1 m
jMk−j)2 , and

K(m,M) = (Amk +B

k−1∑
j=1

mjMk−j + CMk)(AMk +B

k−1∑
j=1

M jmk−j + Cmk).

Since L(m,M)
K(m,M) > 0, we get M = m. From this fact and by Lemma (1) part 1, all Hypotheses of Theorem (2)

are satisfied and we have lim
x→∞

xn = x . 2

3. Rate of convergence and numerical examples

Now we estimate the rate of convergence of a solution that converges to the positive equilibrium point x =

a+(k−1)b+c
A+(k−1)B+C of Eq. (4). First, we will find a system that satisfies the error terms. Hence, we consider the

quantity

xn+1 − x =

axk
n + b

k−1∑
j=1

xj
nx

k−j
n−1 + cxk

n−1

Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

− a+ (k − 1) b+ c

A+ (k − 1)B + C
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=

(
r1 (k − 1)xk

n + r2x
k
n + r3

k−1∑
j=1

xj
nx

k−j
n−1

)
−

(
r1

k−1∑
j=1

xj
nx

k−j
n−1 + r2x

k
n−1 + r3 (k − 1)xk

n−1

)
(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

=

r1

(
(k − 1)xk

n −
k−1∑
j=1

xj
nx

k−j
n−1

)
+ r2

(
xk
n − xk

n−1

)
+ r3

(
k−1∑
j=1

xj
nx

k−j
n−1 − (k − 1)xk

n−1

)
(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

for n ∈ N0 . The last equality can be written as follows:

xn+1 − x =
r1
[(
xk
n − xnx

k−1
n−1

)
+
(
xk
n − x2

nx
k−2
n−1

)
+ · · ·+

(
xk
n − xk−1

n xn−1

)](
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

+
r2 (xn − xn−1)

(
xk−1
n + xk−2

n xn−1 + · · ·+ xk−1
n−1

)(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

+
r3
[(
xnx

k−1
n−1 − xk

n−1

)
+
(
x2
nx

k−2
n−1 − xk

n−1

)
+ · · ·+

(
xk−1
n xn−1 − xk

n−1

)](
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

.

After some computations, we get

xn+1 − x =

r1 (xn − xn−1)

[
k−2∑
j=0

xj+1
n xk−j−2

n−1 +
k−3∑
j=0

xj+2
n xk−j−3

n−1 + · · ·+
0∑

j=0

xj+k−1
n x−j

n−1

]
(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

+

r2 (xn − xn−1)
k−1∑
j=0

xj
nx

k−j−1
n−1(

Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

+

r3 (xn − xn−1)

[
0∑

j=0

x−j
n xj+k−1

n−1 +
1∑

j=0

x1−j
n xj+k−2

n−1 + · · ·+
k−2∑
j=0

xk−j−2
n xj+1

n−1

]
(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

or
xn+1 − x = (r1S1 + r2S2 + r3S3) (xn − xn−1) ,
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where

S1 =

k−2∑
j=0

xj+1
n xk−j−2

n−1 +
k−3∑
j=0

xj+2
n xk−j−3

n−1 + · · ·+
0∑

j=0

xj+k−1
n x−j

n−1(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

,

S2 =

k−1∑
j=0

xj
nx

k−j−1
n−1(

Axk
n +B

k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

and

S3 =

0∑
j=0

x−j
n xj+k−1

n−1 +
1∑

j=0

x1−j
n xj+k−2

n−1 + · · ·+
k−2∑
j=0

xk−j−2
n xj+1

n−1(
Axk

n +B
k−1∑
j=1

xj
nx

k−j
n−1 + Cxk

n−1

)
(A+ (k − 1)B + C)

.

Hence, we get the equation

xn+1 − x = (r1S1 + r2S2 + r3S3) (xn − x)− (r1S1 + r2S2 + r3S3) (xn−1 − x) . (15)

Note that

lim
n→∞

S1 = lim
n→∞

S3 =
k (k − 1)

2 (a+ (k − 1) b+ c) (A+ (k − 1)B + C)
,

lim
n→∞

S2 =
k

(a+ (k − 1) b+ c) (A+ (k − 1)B + C)
,

since xn → x as n → ∞ . Let

en = xn − x.

Then Eq. (15) becomes

en+1 = (p+ ϵ1(n))en + (q + ϵ2(n))en−1 (16)

where ϵ1(n), ϵ2(n) → 0 as n → ∞ . Clearly Eq. (16) can be written in the matrix form(
en

en+1

)
=

(
0 1
q p

)(
en−1

en

)
+

(
0 0

ϵ2(n) ϵ1(n)

)(
en−1

en

)

and the characteristic equation of the matrix

(
0 1
q p

)
is the same as the characteristic equation of the

linearized equation at x = a+(k−1)b+c
A+(k−1)B+C . Using Perron’s Theorems, we have the following result.

Theorem 11 Let x be the positive equilibrium point and the sequence (xn)n≥1 be a positive solution of Eq.

(4). Then the error vector En =

(
en

en−1

)
of every solution of Eq. (4) satisfies both of the asymptotic relations

ρ = lim
n→∞

∥En+1∥
∥En∥

, ρ = lim
n→∞

(∥En∥)1/n ,
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where en = xn − x and ρ is equal to the modulus of one of the roots of the characteristic equation.

For confirming the results of this paper, we consider the following numerical examples.

Example 1 If we take k = 3 , a = 2 , b = 1 , c = 2 , A = 5 , B = 2 , C = 3 we obtain the equation

xn+1 =
2x3

n + x2
nxn−1 + xnx

2
n−1 + 2x3

n−1

5x3
n + 2x2

nxn−1 + 2xnx2
n−1 + 3x3

n−1

. (17)

Let x−1 = 0.45 , x0 = 0.55 , and we have x = 0.5 . All conditions of Theorem (9) are satisfied and lim
n→+∞

xn = x .

(See Figure 1).
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Figure 1. This figure shows the global attractivity of the

equilibrium point (x = 0.5) of Eq. (17).

Figure 2. This figure shows the global attractivity of the

equilibrium point (x = 0.707...) of Eq. (18).

Example 2 If we take k = 4 , a = 2 , b = 2 , c = 6 , A = 1.3 , B = 3 , C = 9.5 we obtain the equation

xn+1 =
2x4

n + 2x3
nxn−1 + 2x2

nx
2
n−1 + 2xnx

3
n−1 + 6x4

n−1

1.3x4
n + 3x3

nxn−1 + 3x2
nx

2
n−1 + 3xnx3

n−1 + 9.5x4
n−1

. (18)

Let x−1 = 0.95 , x0 = 0.75 , and we have x = 0.707 · · · . All conditions of Theorem (10) are satisfied and

lim
n→+∞

xn = x . (See Figure 2).

Acknowledgment

The authors would like to thank the referee for careful reading and for his/her comments and suggestions, which

greatly improved an earlier version of this paper.

References

[1] Camouzis E, Ladas G, Voulov H D. On the dynamics of xn+1 =
α+γxn−1+δxn−2

A+xn−2
. J Difference Equ Appl 2003; 9:

731–738.

[2] Camouzis E, Ladas G. Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjec-

tures. Boca Raton, FL, USA: Chapman & Hall/CRC, 2008.

1016

http://dx.doi.org/10.1080/1023619021000042153
http://dx.doi.org/10.1080/1023619021000042153


HALIM et al./Turk J Math

[3] Din Q, Qureshi MN, Khan A Q. Dynamics of a fourth-order system of rational difference equations. Adv Difference

Equ 2012; 2012: 215.

[4] Elabbasy EM, Elsayed EM. On the global attractivity of difference equation of higher order. Carpathian J Math

2008; 24: 45–53.

[5] Elaydi S. An Introduction to Difference Equations. Undergraduate Texts in Mathematics. New York, NY, USA:

Springer, 1999.

[6] Elsayed EM. Behavior and expression of the solutions of some rational difference equations. J Comput Anal Appl

2013; 15: 73–81.

[7] Elsayed EM. On the dynamics of a higher order rational recursive sequence. Commun Math Anal 2012; 12: 117–133.

[8] Halim Y. Global character of systems of rational difference equations. Electron J Math Analysis Appl 2015; 3:

204–214.

[9] Halim Y, Touafek N, Elsayed EM. Closed form solution of some systems of rational difference equations in terms

of Fibonacci numbers. Dynam Cont Dis Ser A 2014; 21: 473–486.

[10] Ibrahim TF, Touafek N. On a third order rational difference equation with variable coefficients. Dynam Cont Dis

Ser B 2013; 20: 251–264.

[11] Grove EA, Ladas G. Periodicities in Nonlinear Difference Equations. Boca Raton, FL, USA: Chapman and Hall/CRC

Press, 2004.
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